1. Stellarator equilibrium axis-expansion to all orders in distance from the axis for arbitrary plasma beta
    W Sengupta, E Rodriguez, R Jorge, M Landreman, and A Bhattacharjee
    Submitted (2024)
  2. A family of quasi-axisymmetric stellarators with varied rotational transform
    S Buller, M Landreman, J Kappel, and R Gaur
    Submitted (2024)
  3. Grad-Shafranov equilibria via data-free physics informed neural networks
    B Jang, A A Kaptanoglu, R Gaur, S Pan, M Landreman, and W Dorland
    Phys. Plasmas 31, 032510 (2024)
  4. Optimization of Nonlinear Turbulence in Stellarators
    P Kim, S Buller, R Conlin, W Dorland, D W Dudt, R Gaur, R Jorge, E Kolemen, M Landreman, N R Mandell, and D Panici
    J. Plasma Phys. 90, 905900210 (2024)


  1. MONKES: a fast neoclassical code for the evaluation of monoenergetic transport coefficients
    F J Escoto, J L Velasco, I Calvo, M Landreman, and F I Parra
    Submitted 90, 905900210 (2023)
  2. Coil Optimization for Quasi-helically Symmetric Stellarator Configurations
    A Wiedman, S Buller, and M Landreman
    J. Plasma Phys. 90, 905900307 (2023)
  3. Efficient calculation of self magnetic field, self-force, and self-inductance for electromagnetic coils. II. Rectangular cross-section
    M Landreman, S Hurwitz, and T M Antonsen Jr
    Submitted 90, 905900307 (2023)
  4. Efficient calculation of the self magnetic field, self-force, and self-inductance for electromagnetic coils
    S Hurwitz, M Landreman, and T M Antonsen Jr
    Submitted 90, 905900307 (2023)
  5. The Magnetic Gradient Scale Length Explains Why Certain Plasmas Require Close External Magnetic Coils
    J Kappel, M Landreman, and D Malhotra
    Plasma Phys. Controlled Fusion 66, 025018 (2023)
  6. Topology optimization for inverse magnetostatics as sparse regression: application to electromagnetic coils for stellarators
    A A Kaptanoglu, G P Langlois, and M Landreman
    Computer Methods in Applied Mechanics and Engineering 418A, 115504 (2023)
  7. Understanding Trade-offs in Stellarator Design with Multi-objective Optimization
    D Bindel, M Landreman, and M Padidar
    J. Plasma Phys. 89, 905890503 (2023)
  8. Sparse regression for plasma physics
    A A Kaptanoglu, C Hansen, J D Lore, M Landreman, and S L Brunton
    Phys. Plasmas 30, 033906 (2023)
  9. Single-Stage Stellarator Optimization: Combining Coils with Fixed Boundary Equilibria
    R Jorge, A Goodman, M Landreman, J Rodrigues, and F Wechsung
    Plasma Phys. Controlled Fusion 65, 074003 (2023)
  10. Direct Optimization of Fast-Ion Confinement in Stellarators
    D Bindel, M Landreman, and M Padidar
    Plasma Phys. Controlled Fusion 65, 065012 (2023)
  11. An adjoint-based method for optimizing MHD equilibria against the infinite-n, ideal ballooning mode
    R Gaur, S Buller, M E Ruth, M Landreman, I G Abel, and W D Dorland
    J. Plasma Phys. 89, 905890518 (2023)
  12. Direct Microstability Optimization of Stellarator Devices
    R Jorge, W Dorland, P Kim, M Landreman, N R Mandell, G Merlo, and T Qian
    Submitted 89, 905890518 (2023)
  13. Neoclassical transport in strong gradient regions of large aspect ratio tokamaks
    S Trinczek, F I Parra, P J Catto, I Calvo, and M Landreman
    J. Plasma Phys. 89, 905890304 (2023)
  14. Constructing precisely quasi-isodynamic magnetic fields
    A Goodman, K Camacho Mata, S A Henneberg, R Jorge, M Landreman, G Plunk, H Smith, R Mackenbach, C D Beidler, and P Helander
    J. Plasma Phys. 89, 905890504 (2023)


  1. Direct stellarator coil optimization for nested magnetic surfaces with precise quasisymmetry
    A Giuliani, F Wechsung, A Cerfon, M Landreman, and G Stadler
    Phys. Plasmas 30, 042511 (2022)
  2. Mapping the space of quasisymmetric stellarators using optimized near-axis expansion
    M Landreman
    J. Plasma Phys. 88, 905880616 (2022)
  3. Greedy permanent magnet optimization
    A Kaptanoglu, R Conlin, and M Landreman
    Nucl. Fusion 63, 036016 (2022)
  4. Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry
    E J Paul, A Bhattacharjee, M Landreman, D Alex, J L Velasco, and  R Nies
    Nucl. Fusion 62, 126054 (2022)
  5. Stellarator coil optimization supporting multiple magnetic configurations
    B F Lee, E J Paul, G Stadler, and M Landreman
    Nucl. Fusion 63, 014002 (2022)
  6. Permanent magnet optimization for stellarators as sparse regression
    A Kaptanoglu, T Qian, F Wechsung, and M Landreman
    Physical Review Applied 18, 044006 (2022)
  7. A single-field-period quasi-isodynamic stellarator
    R Jorge, G G Plunk, M Drevlak, M Landreman, J-F Lobsien, K Camacho Mata, and P Helander
    J. Plasma Phys. 88, 175880504 (2022)
  8. Optimization of quasisymmetric stellarators with self-consistent bootstrap current and energetic particle confinement
    M Landreman, S Buller, and M Drevlak
    Phys. Plasmas 29, 082501 (2022)
  9. Stochastic and a-posteriori optimization to mitigate coil manufacturing errors in stellarator design
    F Wechsung, A Giuliani, M Landreman, A Cerfon, and G Stadler
    Plasma Phys. Controlled Fusion 64, 105021 (2022)
  10. Direct computation of magnetic surfaces in Boozer coordinates and coil optimization for quasi-symmetry
    A Giuliani, F Wechsung, M Landreman, G Stadler, and A Cerfon
    J. Plasma Phys. 88, 905880401 (2022)
  11. Precise stellarator quasi-symmetry can be achieved with electromagnetic coils
    F Wechsung, M Landreman, A Giuliani, A Cerfon, and G Stadler
    Proc. Nat. Acad. Sci. 119, e2202084119 (2022)
  12. Magnetic fields with precise quasisymmetry for plasma confinement
    M Landreman, and E Paul
    Phys. Rev. Lett. 128, 035001 (2022)
  13. Improving the stellarator through advances in plasma theory
    C Hegna, D Anderson, A Bader, T Bechtel, A Bhattacharjee, M Cole, M Drevlak, J Duff, B Faber, S Hudson, M Kotschenreuther, T Kruger, M Landreman, I McKinney, E Paul, M J Pueschel, J Schmitt, P Terry, A Ware, M Zarnstorff, and C Zhu
    Nucl. Fusion 62, 042012 (2022)
  14. Stellarator optimization for nested magnetic surfaces at finite β and toroidal current
    A Baillod, J Loizu, J P Graves, and M Landreman
    Phys. Plasmas 29, 042505 (2022)
  15. Single-stage gradient-based stellarator coil design: stochastic optimization
    F Wechsung, A Giuliani, M Landreman, A Cerfon, and G Stadler
    Nucl. Fusion 62, 076034 (2022)
  16. Single-stage gradient-based stellarator coil design: Optimization for near-axis quasi-symmetry
    A Giuliani, F Wechsung, A Cerfon, G Stadler, and M Landreman
    J. Comp. Phys. 459, 111147 (2022)


  1. SIMSOPT: A flexible framework for stellarator optimization
    M Landreman, B Medasani, F Wechsung, A Giuliani, R Jorge, and C Zhu
    J. Open Source Software 6, 3525 (2021)
  2. Stellarator optimization for good magnetic surfaces at the same time as quasisymmetry
    M Landreman, B Medasani, and C Zhu
    Phys. Plasmas 28, 092505 (2021)
  3. Modeling of energetic particle transport in optimized stellarators
    A Bader, D Anderson, M Drevlak, B Faber, C Hegna, S Henneberg, M Landreman, J Schmitt, and A Ware
    Nucl. Fusion 61, 116060 (2021)
  4. A neoclassically optimized compact stellarator with four planar coils
    G Yu, Z Feng, P Jiang, N Pomphrey, M Landreman, and G Fu
    Phys. Plasmas 28, 092501 (2021)
  5. Ion-temperature-gradient stability near the magnetic axis of quasisymmetric stellarators
    R Jorge, and M Landreman
    Plasma Phys. Controlled Fusion 63, 074002 (2021)
  6. An adjoint method for determining the sensitivity of island size to magnetic field variations
    A Geraldini, M Landreman, and E Paul
    J. Plasma Phys. 87, 905870302 (2021)
  7. Calculation of permanent magnet arrangements for stellarators: A linear least-squares method
    M Landreman, and C Zhu
    Plasma Phys. Controlled Fusion 63, 035001 (2021)
  8. Figures of merit for stellarators near the magnetic axis
    M Landreman
    J. Plasma Phys. 87, 905870112 (2021)
  9. Gradient-based optimization of 3D MHD equilibria
    E J Paul, M Landreman, and T Antonsen
    J. Plasma Phys. 87, 905870214 (2021)
  10. Heat pulse propagation and anomalous electron heat transport measurements on the optimized stellarator W7-X
    G Weir, P Xanthopoulos, M Hirsch, U Höfel, T Stange, N Pablant, O Grulke, S Äkäslompolo, J Alcuson, S Bozhenkov, M Beurskens, A Dinklage, G Fuchert, J Geiger, M Landreman, A Langenberg, S Lazerson, N Marushchenko, E Pasch, J Schilling, E Scott, Y Turkin, and T Klinger
    Nucl. Fusion 61, 056001 (2021)
  11. The Use of Near-Axis Magnetic Fields for Stellarator Turbulence Simulations
    R Jorge, and M Landreman
    Plasma Phys. Controlled Fusion 63, 014001 (2021)


  1. Magnetic well and Mercier stability of stellarators near the magnetic axis
    M Landreman, and R Jorge
    J. Plasma Phys. 86, 905860510 (2020)
  2. Advancing the physics basis for quasi-helically symmetric stellarators
    A Bader, B J Faber, J C Schmitt, D T Anderson, M Drevlak, J M Duff, H Frerichs, C C Hegna, T G Kruger, M Landreman, I J McKinney, L Singh, J M Schroeder, P W Terry, and A S Ware
    J. Plasma Phys. 86, 905860506 (2020)
  3. Construction of Quasisymmetric Stellarators Using a Direct Coordinate Approach
    R Jorge, W Sengupta, and M Landreman
    Nucl. Fusion 60, 076021 (2020)
  4. Impurity temperature screening in stellarators close to quasisymmetry
    M F Martin, and M Landreman
    J. Plasma Phys. 86, 905860317 (2020)
  5. Adjoint approach to calculating shape gradients for 3D magnetic confinement equlibria. II: Applications
    E J Paul, T M Antonsen Jr, M Landreman, and W A Cooper
    J. Plasma Phys. 86, 905860103 (2020)
  6. Near-Axis Expansion of Stellarator Equilibrium at Arbitrary Order in the Distance to the Axis
    R Jorge, W Sengupta, and M Landreman
    J. Plasma Phys. 86, 905860106 (2020)
  7. Optimization of quasi-axisymmetric stellarators with varied elongation
    Z Feng, D Gates, S Lazerson, M Landreman, N Pomphrey, and G Fu
    Phys. Plasmas 27, 022502 (2020)
  8. Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X
    N Pablant, A Langenberg, J A Alonso, J Baldzuhn, C Beidler, S Bozhenkov, R Burhenn, K Brunner, A Dinklage, G Fuchert, O Ford, D Gates, J Geiger, M Hirsch, U Hofel, Y Kazakov, J Knauer, M Krychowiak, H Laqua, M Landreman, S Lazerson, H Maassberg, O Marchuk, A Mollen, E Pasch A Pavonne, S Satake, T Schroder, H Smith, J Svensson, P Traverso, Y Turkin, J Velasco, A von Stechow, F Warmer, G Weir, R Wold, and D Zhang
    Nucl. Fusion 60, 036021 (2020)


  1. Constructing stellarators with quasisymmetry to high order
    M Landreman, and W Sengupta
    J. Plasma Phys. 85, 815850601 (2019)
  2. Direct construction of optimized stellarator shapes. III. Omnigenity near the magnetic axis
    G G Plunk, M Landreman, and P Helander
    J. Plasma Phys. 85, 905850602 (2019)
  3. An adjoint method for neoclassical stellarator optimization
    E J Paul, I Abel, M Landreman, and W Dorland
    J. Plasma Phys. 85, 795850501 (2019)
  4. Optimized quasisymmetric stellarators are consistent with the Garren-Boozer construction
    M Landreman
    Plasma Phys. Controlled Fusion 61, 075001 (2019)
  5. Adjoint approach to calculating shape gradients for 3D magnetic confinement equilibria
    T M Antonsen Jr, E J Paul, and M Landreman
    J. Plasma Phys. 85, 905850207 (2019)
  6. Direct construction of optimized stellarator shapes. II. Numerical quasisymmetric solutions
    M Landreman, W Sengupta, and G G Plunk
    J. Plasma Phys. 85, 905850103 (2019)


  1. Direct construction of optimized stellarator shapes. I. Theory in cylindrical coordinates
    M Landreman, and W Sengupta
    J. Plasma Phys. 84, 905840616 (2018)
  2. Stella: A mixed implicit-explicit, delta-f gyrokinetic code for general magnetic field configurations
    M A Barnes, F I Parra, and M Landreman
    J. Comp. Phys. 391, 365 (2018)
  3. On-surface potential and radial electric field variations in electron root stellarator plasmas
    J M Garcia-Regana, T Estrada, I Calvo, J L Velasco, J A Alonso, D Carralero, R Kleiber, M Landreman, A Mollen, E Sanchez, C Slaby,  the TJ-II team, and  the W7-X team
    Plasma Phys. Controlled Fusion 60, 104002 (2018)
  4. The Parallel Boundary Condition for Turbulence Simulations in Low Magnetic Shear Devices
    M F Martin, M Landreman, P Xanthopoulos, N R Mandell, and W Dorland
    Plasma Phys. Controlled Fusion 60, 095008 (2018)
  5. Flux-surface variations of the electrostatic potential in stellarators: impact on the radial electric field and neoclassical impurity transport
    A Mollen, M Landreman, H M Smith, J M Garcia-Regana, and M Nunami
    Plasma Phys. Controlled Fusion 60, 084001 (2018)
  6. Computing local sensitivity and tolerances for stellarator physics properties using shape gradients
    M Landreman, and E J Paul
    Nucl. Fusion 58, 076023 (2018)
  7. An adjoint method for gradient-based optimization of stellarator coil shapes
    E J Paul, M Landreman, A Bader, and W Dorland
    Nucl. Fusion 58, 076015 (2018)
  8. Optimized up-down asymmetry to drive fast intrinsic rotation in tokamaks
    J Ball, F I Parra, M Landreman, and M Barnes
    Nucl. Fusion 58, 026003 (2018)
  9. Stellarator Research Opportunities, A report of the National Stellarator Coordinating Committee
    D A Gates, D Anderson, S Anderson, M Zarnstorff, D A Spong, H Weitzner, G H Neilson, D N Ruzic, D Andruczyk, J H Harris, H Mynick, C Hegna, O Schmitz, J N Talmadge, D Curreli, D Maurer, A Boozer, S Knowlton, J P Allain, D Ennis, G Wurden, A Reiman, J D Lore, M Landreman, J Freidberg, S R Hudson, M Porkolab, D Demers, J Terry, E Edlund, S Lazerson, N Pablant, R Fonck, F Volpe, J Canik, R Granetz, A Ware, J D Hanson, S Kumar, C Deng, K Likin, A Cerfon, A Ram, A Hassam, S Prager, C Paz-Soldan, M J Pueschel, I Joseph, and A Glasser
    J. Fusion Energy 37, 51 (2018)
  10. Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas
    N Pablant, A Langenberg, A Alonso, C Beidler, M Bitter, S Bozhenkov, R Burhenn, M Beurskens, L F Delgado-Aparicio, A Dinklage, G Fuchert, D Gates, J Geiger, K Hill, U Hofel, M Hirsch, J Knauer, A Kramer-Flecken, M Landreman, S Lazerson, H Maassberg, O Marchuk, S Massidda, G H Neilson, E Pasch, S Satake, J Svennson, P Traverso, Y Turkin, P Valson, J Velasco, G Weir, T Windisch, R Wolf, M Yokoyama, D Zhang, and  the W7-X Team
    Phys. Plasmas 25, 022508 (2018)
  11. Laguerre-Hermite Pseudo-Spectral Velocity Formulation of Gyrokinetics
    N R Mandell, W Dorland, and M Landreman
    J. Plasma Phys. 84, 905840108 (2018)


  1. An improved current potential method for fast computation of stellarator coil shapes
    M Landreman
    Nucl. Fusion 57, 046003 (2017)
  2. Recent advances in stellarator optimization
    D Gates, A Boozer, T Brown, J Breslau, D Curreli, M Landreman, S Lazerson, J Lore, H Mynick, G H Neilson, N Promphrey, P Xanthopoulos, and A Zolfaghari
    Nucl. Fusion 57, 126064 (2017)
  3. Rotation and neoclassical ripple transport in ITER
    E J Paul, M Landreman, F M Poli, D A Spong, H M Smith, and W Dorland
    Nucl. Fusion 57, 116044 (2017)
  4. Major results from the first plasma campaign of the Wendelstein 7-X stellarator
    R C Wolf, A Ali, A Alonso, J Baldzuhn, C Beidler, M Beurskens, C Biedermann, H-S Bosch, S Bozhenkov, R Brakel, A Dinklage, Y Feng, G Fuchert, J Geiger, O Grulke, P Helander, M Hirsch, O Hofel, M Jakubowski, J Knauer, G Kocsis, R Konig, P Kornejew, A Kramer-Flecken, M Krychowiak, M Landreman, A Langenberg, H P Laqua, S Lazerson, H Maassberg, S Marsen, M Marushchenko, D Moseev, H Niemann, N Pablant, E Pasch, K Rahbarnia, G Schlisio, T Stange, T Sunn Pedersen, J Svensson, T Szepesi, H Trimino Mora, Y Turkin, T Wauters, G Weir, U Wenzel, T Windisch, G Wurden, D Zhang, and  et al
    Nucl. Fusion 59, 014018 (2017)
  5. Performance and properties of the first plasmas of Wendelstein 7-X
    T Klinger, A Alonso, S Bozhenkov, R Burhenn, A Dinklage, G Fuchert, J Geiger, O Grulke, A Langenberg, M Hirsch, G Kocsis, J Knauer, A Kramer-Flecken, H Laqua, S Lazerson, M Landreman, H Maassberg, S Marsen, M Otte, N Pablant, E Pasch, K Rahbarnia, T Stange, T Szepesi, H Thomsen, P Traverso, J L Velasco, T Wauters, G Weir, T Windisch, and  the Wendelstein 7-X Team
    Plasma Phys. Controlled Fusion 59, 014018 (2017)
  6. Electrostatic potential variation on the flux surface and its impact on impurity transport
    J Garcia-Regana, C Beidler, R Kleiber, P Helander, A Mollen, J A Alonso, M Landreman, H Maassberg, H Smith, Y Turkin, and J L Velasco
    Nucl. Fusion 57, 056004 (2017)
  7. NORSE: A solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma
    A Stahl, M Landreman, O Embreus, and T Fulop
    Comp. Phys. Comm. 212, 269 (2017)


  1. Runaway-electron formation and electron slide-away in an ITER post-disruption scenario
    A Stahl, O Embreus, M Landreman, G Papp, and T Fulop
    J. Phys. Conference Ser. 775, 012013 (2016)
  2. Efficient magnetic fields for supporting toroidal plasmas
    M Landreman, and A H Boozer
    Phys. Plasmas 23, 032506 (2016)
  3. Investigation of the core radial electric field in Wendelsetin 7-X plasmas
    N A Pablant, A Dinklage, M Landreman, A Langenberg, A Alonso, C D Beidler, M Beurskens, M Bitter, S Bozhenkov, R Burhenn, L-F Delgado-Aparicio, G Fuchert, D A Gates, J Geiger, K W Hill, U Hoefel, M Hirsch, J Knauer, A Kramer-Flecken, S Lazerson, H Maassberg, O Marchuk, N B Marushchenko, D R Mikkelsen, E Pasch, S Satake, H Smith, J Svensson, P Traverso, Y Turkin, P Valson, J L Velasco, G Weir, T Windisch, R C Wolf, M Yokoyama, D Zhang, and  the W7-X team
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  4. Core confinement in Wendelstein 7-X limiter plasmas
    A Dinklage, A Alonso, J Baldzuhn, C D Beidler, C Biedermann, B Blackwell, S Bozhenkov, R Brakel, B Buttenschon, Y Feng, G Fuchert, J Geiger, P Helander, M Hirsch, U Hoefel, J Knauer, A Kramer-Flecken, A Langenberg, H P Laqua, M Landreman, H Maassberg, N A Pablant, E Pasch, K Rahbarnia, L Rudischhauser, T Stange, L Stephey, H Trimino-Mora, Yu Turkin, J-L Velasco, G Wurden, D Zhang, T Andreeva, M Beurskens, E Blanco, H-S Bosch, R Burhenn, A Cappa, A Czarnecka, M Dostal, P Drews, M Endler, T Estrada, T Fornal, O Grulke, D Hartmann, J H Harris, M Jakubowski, T Klinger, S Klose, G Kocsis, R Konig, P Kornejew, N Krawczyk, M Krychowiak, M Kubkowska, I Kiazek, S Lazerson, Y Liang, S Liu, O Marchuk, S Marsen, N Marushchenko, V Moncada, D Moseev, D Naujoks, H Niemann, M Otte, T S Pedersen, F Pisano, K Risse, T Rummel, O Schmitz, S Satake, H Smith, T Schroder, T Szepesi, H Thomsen, P Traverso, M Tsuchiya, P Valson, N Wang, T Wauters, G Weir, R Wolf, M Yokoyama, and  the W7-X Team
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  5. Microturbulence-induced modifications to the alpha particle distribution
    G J Wilkie, I G Abel, M Landreman, and W Dorland
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  6. Neoclassical transport with non-trace impurities in density pedestals
    S Buller, I Pusztai, and M Landreman
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  7. Transport and deceleration of fusion products in microturbulence
    G Wilkie, I Abel, M Landreman, and W Dorland
    Phys. Plasmas 23, 060703 (2016)
  8. Global effects on neoclassical transport in the pedestal with impurities
    I Pusztai, S Buller, and M Landreman
    Plasma Phys. Controlled Fusion 58, 085001 (2016)
  9. Parallel impurity dynamics in the TJ-II stellarator
    J Alonso, I Calvo, T Estrada, J Fontdecaba, J Garcia-Regana, J Geiger, M Landreman, K McCarthy, F Medina, B Van Milligen, M Ochando, F Parra, and J Velasco
    Plasma Phys. Controlled Fusion 58, 074009 (2016)
  10. Kinetic modelling of runaway electrons in dynamic scenarios
    A Stahl, O Embreus, G Papp, M Landreman, and T Fulop
    Nucl. Fusion 56, 112009 (2016)


  1. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current
    A Mollen, M Landreman, H M Smith, S Braun, and P Helander
    Phys. Plasmas 22, 112508 (2015)
  2. Universal instability for wavelengths below the ion Larmor scale
    M Landreman, T M Antonsen Jr, and W Dorland
    Phys. Rev. Lett. 114, 095003 (2015)
  3. Generalized universal instability: Transient linear amplification and subcritical turbulence
    M Landreman, G G Plunk, and W Dorland
    J. Plasma Phys. 81, 905810501 (2015)
  4. Less constrained omnigeneous stellarators
    F Parra, I Calvo, P Helander, and M Landreman
    Nucl. Fusion 55, 033005 (2015)
  5. Accurate spectral numerical schemes for kinetic equations with energy diffusion
    J Wilkening, A Cerfon, and M Landreman
    J. Comp. Phys. 294, 58 (2015)
  6. Poloidal asymmetries in edge transport barriers
    R M Churchill, C Thelier, B Lipschultz, I H Hutchinson, M L Reinke, D Whyte, J W Hughes, P Catto, M Landreman, D Ernst, C S Chang, R Hager, A Hubbard, P Ennever, J R Walk, and  the Alcator C-Mod Team
    Phys. Plasmas 22, 056104 (2015)


  1. On collisional impurity transport in nonaxisymmetric plasmas
    A Mollen, M Landreman, and H M Smith
    J. Phys. Conf. Ser. 561, 012012 (2014)
  2. Inboard and outboard radial electric field wells in the H- and I-mode pedestal of Alcator C-Mod and poloidal variations of impurity temperature
    C Theiler, R M Churchill, B Lipschultz, M Landreman, D R Ernst, J W Hughes, P J Catto, F I Parra, I H Hutchinson, M L Reinke, A E Hubbard, E S Marmar, J T Terry, J R Walk, and  the Alcator C-Mod Team
    Nucl. Fusion 54, 083017 (2014)
  3. Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas
    M Landreman, H M Smith, A Mollen, and P Helander
    Phys. Plasmas 21, 042503 (2014)
  4. Radially local delta-f computation of neoclassical phenomena in a tokamak pedestal
    M Landreman, F I Parra, P J Catto, D Ernst, and I Pusztai
    Plasma Phys. Controlled Fusion 56, 045005 (2014)
  5. Radio frequency induced and neoclassical asymmetries and their effects on turbulent impurity transport in a tokamak
    I Pusztai, M Landreman, A Mollen, Y O Kazakov, and T Fulop
    Contrib. Plasma Phys. 54, 534 (2014)
  6. Compressible impurity flow in the TJ-II stellarator
    J Arevalo, J A Alonso, K J McCarthy, J L Velasco, J M García-Regana, and M Landreman
    Nucl. Fusion 54, 013008 (2014)
  7. Numerical calculation of the runaway electron distribution function and associated synchrotron emission
    M Landreman, A Stahl, and T Fulop
    Contrib. Plasma Phys. 185, 847 (2014)


  1. Conservation of energy and magnetic moment in neoclassical calculations for optimized stellarators
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 55, 095017 (2013)
  2. Synchrotron radiation from a runaway electron distribution in tokamaks
    A Stahl, M Landreman, G Papp, E Hollmann, and T Fulop
    Phys. Plasmas 20, 093302 (2013)
  3. Ion runaway in lightning discharges
    T Fulop, and M Landreman
    Phys. Rev. Lett. 111, 015006 (2013)
  4. New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions
    M Landreman, and D R Ernst
    J. Comp. Phys. 243, 130 (2013)
  5. Comparison of edge turbulence imaging at two different poloidal locations in the scrape-off layer of Alcator C-Mod
    S J Zweben, J L Terry, M Agostini, W M Davis, A Diallo, R A Ellis, T Golfinopoulos, O Grulke, J W Hughes, B LaBombard, M Landreman, J R Myra, D C Pace, and D P Stotler
    Phys. Plasmas 20, 072503 (2013)
  6. Kinetic effects on a tokamak pedestal ion flow, ion heat transport and bootstrap current
    P J Catto, F I Parra, G Kagan, J B Parker, I Pusztai, and M Landreman
    Plasma Phys. Controlled Fusion 55, 045009 (2013)


  1. Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal
    M Landreman, and D R Ernst
    Plasma Phys. Controlled Fusion 54, 115006 (2012)
  2. Omnigenity as generalized quasisymmetry
    M Landreman, and P J Catto
    Phys. Plasmas 19, 056103 (2012)
  3. Neoclassical Theory of Pedestal Flows and Comparison with Alcator C-Mod Measurements
    G Kagan, K D Marr, I Pusztai, M Landreman, P J Catto, and B Lipschultz
    Contrib. Plasma Phys. 52, 365 (2012)


  1. Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal
    M Landreman, T Fulop, and D Guszejnov
    Phys. Plasmas 18, 092507 (2011)
  2. Electric fields and transport in optimized stellarators
    M Landreman
    PhD Thesis, MIT 18, 092507 (2011)
  3. The monoenergetic approximation in stellarator neoclassical calculations
    M Landreman
    Plasma Phys. Controlled Fusion 53, 082003 (2011)
  4. A unified treatment of kinetic effects in a tokamak pedestal
    P J Catto, G Kagan, M Landreman, and I Pusztai
    Plasma Phys. Controlled Fusion 53, 054004 (2011)
  5. Neoclassical flow, current, and electric field in a quasi-isodynamic stellarator
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 53, 035016 (2011)
  6. Effects of the radial electric field in a quasisymmetric stellarator
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 53, 015004 (2011)
  7. The effect of the radial electric field on neoclassical flows in a tokamak pedestal
    G Kagan, K D Marr, P J Catto, M Landreman, B Lipschultz, and R McDermott
    Plasma Phys. Controlled Fusion 53, 025008 (2011)


  1. Trajectories, orbit squeezing, and residual zonal flow in a tokamak pedestal
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 52, 085003 (2010)


  1. Comparison of parallel and perpendicular polarized counter-propagating light for suppressing high harmonic generation
    M Landreman, K O’Keeffe, T Robinson, M Zepf, B Dromey, and S M. Hooker
    J. Opt. Soc. Am. B 24, 2421 (2007)
  2. Simple technique for generating trains of ultrashort pulses
    T Robinson, K O’Keeffe, M Landreman, S M Hooker, M Zepf, and B Dromey
    Opt. Lett. 32, 2203 (2007)
  3. Quasi-phasematching of harmonic generation via multimode beating in waveguides
    B Dromey, M Zepf, M Landreman, and S M Hooker
    Opt. Express 15, 7894 (2007)
  4. Generation of a train of ultrashort pulses from a compact birefringent crystal array
    B Dromey, M Zepf, M Landreman, K O’Keeffe, T Robinson, and S M Hooker
    App. Opt. 46, 5142 (2007)
  5. Quasi phase matching techniques for high harmonic generation
    M Landreman
    MSc Thesis, Oxford University 46, 5142 (2007)
  6. Bright quasi-phasematched soft x-ray harmonic radiation from argon ions
    M Zepf, B Dromey, M Landreman, P Foster, and S M Hooker
    Phys. Rev. Lett. 99, 143901 (2007)


  1. A nontrivial manifesto
    M Landreman
    Phys. Today 58, 52 (2005)
  2. Generalized Ohm’s law in a 3-D reconnection experiment
    C D Cothran, M Landreman, M R Brown, and W H Matthaeus
    Geophys. Res. Lett. 32, L23104 (2005)
  3. Fluid and kinetic structure of magnetic merging in the Swarthmore Spheromak Experiment
    W H Matthaeus, C D Cothran, M Landreman, and M R Brown
    Geophys. Res. Lett. 32, L23104 (2005)


  1. The Three-Dimensional Structure of Magnetic Reconnection on SSX
    M Landreman
    Undergraduate Thesis, Swarthmore College 32, L23104 (2003)
  2. Rapid multiplexed data acquisition: Application to three-dimensional magnetic field measurements in a turbulent laboratory plasma
    M Landreman, C D Cothran, M R Brown, M Kostora, and J Slough
    Rev. Sci. Instrum. 74, 2361 (2003)
  3. Spheromak merging and field reversed configuration formation at the Swarthmore Spheromak Experiment
    C D Cothran, A Falk, A Fefferman, M Landreman, M R Brown, and M J Schaffer
    Phys. Plasmas 10, 1748 (2003)
  4. Three dimensional structure of magnetic reconnection in a laboratory plasma
    C D Cothran, M Landreman, W H Matthaeus, and M R Brown
    Geophys. Res. Lett. 30, 1213 (2003)


  1. Energetic particles from three-dimensional magnetic reconnection events in SSX
    M R Brown, C D Cothran, M Landreman, D Schlossberg, W H Matthaeus, G Qin, V S Lukin, and T Gray
    Phys. Plasmas 9, 2077 (2002)
  2. Observation of energetic ions accelerated by three-dimensional magnetic reconnection activity
    M R Brown, C D Cothran, M Landreman, D Schlossberg, and W H Matthaeus
    Astrophys. J 577, L66 (2002)