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Abstract

Recent stellarator experiments have been designed with one of two types of neoclassical
optimization: quasisymmetry or quasi-isodynamism. Both types of stellarator have per-
fectly confined collisionless particle orbits as well as one additional feature. Quasisymmet-
ric plasmas have minimal flow damping, which may lead to reduced turbulent transport.
Quasi-isodynamic plasmas can have vanishing bootstrap current, implying less variation in
the magnetic configuration as the pressure changes and also implying greater stability.

Analytical expressions for neoclassical transport in a general stellarator are compli-
cated, so it is desirable to find reduced expressions for ideal limiting cases to provide in-
sight. Here, new neoclassical expressions are derived for a quasi-isodynamic plasma. The
Pfirsch-Schliiter flow and current can be written concisely as an integral of B. The remain-
ing components of the flow and bootstrap current are identical to those in a quasi-poloidally
symmetric device. A compact expression is derived for the radial electric field E, which is
largely independent of the details of the magnetic field.

Another issue in the neoclassical theory of stellarators which has not been fully resolved
is the validity of the so-called monoenergetic approximation, in which ad-hoc changes are
made to E, terms in the kinetic equation to expedite numerical computations. Here we
show that at least in a quasisymmetric plasma, this approximate treatment of E, leads to
a significant and systematic underestimation of the trapped particle fraction. This distor-
tion of the collisionless orbits is independent of any approximations made to the collision
operator.

For ideal quasisymmetric and quasi-isodynamic plasmas, new neoclassical expressions
are derived in which this problematic monoenergetic approximation is avoided. In the
quasisymmetric case, results are presented in both the banana regime and plateau regime
for the ion flow, ion radial heat flux, and bootstrap current. The bootstrap current is found to
be enhanced. For the quasi-isodynamic case, new E,-driven contributions to the distribution
function are obtained. The flow and bootstrap current turn out to be modified by the same
numerical coefficient as in the quasisymmetric case.
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CHAPTER

Introduction

The two most promising concepts for magnetic plasma confinement are tokamaks and stel-
larators. Tokamaks rely on a large current in the plasma, which has several negative con-
sequences. The use of a transformer to induce this current makes tokamaks intrinsically
pulsed rather than steady-state. If non-inductive current drive is used, a large fraction of
any electricity produced in a reactor would need to be recirculated to run the current drive
system. This large recirculating power fraction detracts from the overall economic viability
of the concept. Finally, the large plasma current makes tokamaks susceptible to disruptions.
The stellarator concept, in contrast, does not rely on any current in the plasma, so none of
the the aforementioned problems apply [1, 2].

However, stellarators have a handicap compared to tokamaks when it comes to con-
finement. In axisymmetric plasmas, it can be proven that in the absence of collisions and
turbulence, the guiding-center drift orbit of every particle is confined, a result known as
Tamm’s theorem [3]. However, in nonaxisymmetric plasmas, some trapped particles gen-
erally have drift trajectories that are not periodic, moving from the confined region outward
to open field lines. This distinction between tokamaks and general stellarators is illustrated
in figure 1-1. Alpha particles that are born on one of the unconfined trajectories in a stel-
larator are likely to collide with plasma-facing components before slowing down on the
bulk plasma. In a reactor, the first wall would therefore suffer significant damage from
this irradiation by high-energy alpha particles. Thermal ions and electrons may also follow
these unconfined trajectories out of the core plasma. These unconfined particles carry heat
away from the core, lowering the energy confinement of the system.

The particle and energy fluxes associated with these unconfined orbits can be calculated
within the framework of neoclassical transport theory, in which the simplifying assumption
is made that there is no turbulence in the plasma, but collisions are accounted for rigor-
ously using kinetic theory. The collisional transport associated with guiding-center drifts
is referred to as ‘neoclassical’ to distinguish it from the classical transport associated with
Larmor motion. Neoclassical theory is important in both stellarators and tokamaks for un-

8



CHAPTER 1. INTRODUCTION 9

(a) Tokamaks and omnigenous stellarators (b) Non-omnigenous stellarators
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Flux surface
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Figure 1-1:  Trajectories of trapped particles. (a) In tokamaks and omnigenous stellara-
tors, all collisionless trajectories are confined. (b) In contrast, trapped particles in other
stellarators may have a radial drift that does not average to zero.

derstanding the flows and currents which arise in plasmas. However, neoclassical theory is
particularly important in stellarators because radial neoclassical transport can be large in a
stellarator due to the unconfined particle orbits, large enough to compete with or dominate
turbulent transport in the plasma core. (Near the plasma edge, turbulent transport tends to
be dominant due to the larger density and temperature gradients there, and also because
neoclassical diffusion is a strong function of temperature.) As shown in figure 1-2, neo-
classical theory has shown success at modeling radial transport in the core of stellarators.
For the high temperatures typical of modern experiments, the electrons tend to be a “1/v”
collisionality regime [4, 5], in which the radial diffusion coefficient is proportional to 1/ve,
where v, is the total electron collision frequency.
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Figure 1-2: Comparison of neoclassical theory (solid red curves) to the transport inferred
from experimental power balance (dashed blue curves) in W7-AS. Plots show the particle
flux, ion heat flux, and electron heat flux respectively. Figure from [6].

In the last several decades it has become feasible to numerically search through the
space of stellarator equilibria to minimize the fraction of particles that have unconfined
orbits. A stellarator that was perfectly optimized in this sense would be “omnigenous,”
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meaning that the time-averaged radial guiding center drift vanishes for all particles [7—10].
(This condition in fact only constrains the trapped particles, as this average radial drift au-
tomatically vanishes for passing particles). In an omnigenous stellarator, trapped particle
orbits resemble the tokamak orbits in figure 1-1.a rather than the typical stellarator trapped
particle trajectories of figure 1-1.b. An equivalent definition of omnigenity is that the lon-
gitudinal adiabatic invariant J = ﬁv,, dt is constant on a flux surface. (Appendix A gives
a proof that these two definitions are equivalent.) Axisymmetric plasmas are omnigenous
due to Tamm’s theorem. (Usage of the term “omnigenous” in the literature is inconsistent:
some authors have used the term to mean a stricter condition, that the instantaneous (local)
radial drift vanishes, which implies B is constant on a flux surface [11]. Herein we use the
weaker definition given above.)

The condition of omnigenity places strong mathematical constraints on B(r). One re-
markable feature which can be proven is that on any flux surface of an omnigenous field,
the maximum and minimum of B = [B| form closed curves rather than isolated points.
There are three topological possibilities: these maximum- and minimum-B curves can close
toroidally, poloidally, or helically.

Many recent stellarator experiments and experiment designs fall into two sub-types of
omnigenity: quasisymmetry and quasi-isodynamism. In this thesis we will focus attention
on these two types of optimized stellarator. Both types of stellarator have perfectly confined
collisionless particle orbits, and each type also has an additional feature relative to the more
general class of omnigenous equilibria.

Quasisymmetric devices have minimal damping of plasma flows. As flows increase
stability to MHD modes, and as sheared flows are expected to suppress turbulence, qua-
sisymmetric plasmas are expected to have improved MHD stability and reduced turbulent
transport [12]. In contrast to a general stellarator, in which flows turn out to be damped
strongly in all directions, in a quasisymmetric plasma a direction exists in which strong
flows are permitted. Associated with this direction, the magnitude of B has a symmetry
in certain special coordinate systems, even if the full vector B has no obvious symmetry.
More precisely, B varies on a flux surface only through a fixed linear combination of the
toroidal and poloidal angles [13, 14]:

By, 6,{) = B, M6 — N{) (1.1)

where M and N are fixed integers for a given device, ¢ is any flux surface label, and 6 and
¢ are poloidal and toroidal angles that will be defined more precisely in the next chapter.
It turns out that quasisymmetry can also be defined in several other equivalent ways which
are independent of any coordinate system on a flux surface. For example, we shall prove in
the next chapter that (1.1) is equivalent to

(1.2)

B‘V(vaonB)zo

B-VB

It can be proven that any quasisymmetric magnetic field is omnigenous. As with all om-
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nigenous fields, quasisymmetric fields fall into three classes based on the topology with
which the constant-B curves close. These three varieties of quasisymmetry are known as
quasi-axisymmetry (N = 0), quasi-poloidal symmetry (M = 0), and quasi-helical sym-
metry (both M and N nonzero). It also turns out quasisymmetric stellarators have many
tokamak-like properties. The Helically Symmetric eXperiment (HSX) at the University of
Wisconsin - Madison is nearly quasisymmetric [15], as is the design for the National Com-
pact Stellarator eXperiment (NCSX), which was partially constructed at Princeton [16].

The second variety of optimized stellarator we will consider is one which is quasi-
isodynamic. A quasi-isodynamic plasma is defined to be one in which the field is om-
nigenous and in which the B contours close poloidally, rather than toroidally or helically
[17-21]. (While this definition is the one given by Helander and Niihrenberg in [17], un-
fortunately the term “quasi-isodynamic” is defined inconsistently in the literature. For
example, Mynick [22] defines the term to mean that the most deeply trapped particles are
omnigenous, wWhereas barely trapped particles are not.) It turns out when the B contours
close poloidally, the pressure-gradient-driven current known as the “bootstrap current” is
minimized. As plasma currents can be a source of free energy to drive instability, quasi-
isodynamic plasmas should have improved stability. Also, elimination of the bootstrap
current minimizes the variation in the magnetic configuration as the pressure is varied.
Therefore, the magnetic field can be optimized to be omnigenous over a wide range of
pressures, rather than just for a specific pressure profile. The W7-X stellarator, currently
under construction at the Max Planck Institute for Plasma Physics in Greifswald, Germany,
is nearly quasi-isodynamic [17, 23-25]. Recent stellarator design studies have examined
equilibria which are even closer to perfect quasi-isodynamism [20].

The various classes of stellarator are displayed in figure 1-3, in which contours of B are
plotted for a given flux surface as a function of the toroidal and poloidal angles £ and 6.
Again, these angles will be defined precisely in the next chapter. Figures 1-3.a-c depict the
three classes of quasisymmetric fields, showing the B contours are straight. The contour
plot for a quasi-axisymmetric device (a) is identical to that for a tokamak. Omnigenous
and quasi-isodynamic fields, depicted in (e) and (d), are more complicated, in that the B
contours are not straight and there is no symmetry direction. Nonetheless, the B contours
all encircle the plasma with the same topology: poloidally for the quasi-isodynamic case
(d), and toroidally in (e). A general stellarator, shown in (f), is more complicated still.
Here, different B contours close with different topology. For the particular case shown
here, some contours (red and blue) do not encircle the plasma at all, whereas the orange,
green, and cyan contours encircle the plasma toroidally.

The varying levels of complexity for these classes of stellarator can also be understood
by considering how the magnitude of B varies along a field line. The corresponding plots
for each class of stellarator are shown in figure 1-4. In quasisymmetric fields, as in toka-
maks, B varies in a periodic manner along a field line. In omnigenous or quasi-isodynamic
fields, the situation is more complicated because B(£) is no longer periodic. However, each
well in B({) has the same height and width. A general stellarator is much more complex,
with many trapping wells of varying height and width.

The logical relationship among these classes of stellarators is displayed in figure 1-5.
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@ " (b) 27
0 0 |
i
: 0 |
0 C 2n 0 c 2n/N

Figure 1-3: Contours of B on a flux surface for various types of stellarator. (a) A tokamak or
quasi-axisymmetric stellarator. (b) Quasi-poloidal symmetry. (c) Quasi-helical symmetry.
(d) A quasi-isodynamic device. (¢) An omnigenous but non-quasi-isodynamic field. (f) A
general (non-optimized) stellarator. In each case, red contours indicate the maximum B and
blue contours indicate the minimum B, and the integer N indicates the number of identical
toroidal segments.
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Tokamak or B particles
quasisymmetric stellarator:
Omnigenous or B o
Quasi-isodynamic —uf —
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Distance along field line

Figure 1-4: Variation of B along a field line for various types of toroidal magnetic field, in
increasing order of complexity.
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Axisymmetric plasmas are quasisymmetric (with N = 0 and M = 1), but nonaxisymmetric
plasmas can be found which are quasisymmetric (to a close approximation.) Axisym-
metric plasmas are not quasi-isodynamic, for the constant-B contours in an axisymmetric
plasma close toroidally rather than poloidally. A quasi-poloidally symmetric plasma is

quasi-isodynamic.

All toroidal ﬁelds\ Omnigenous, Quasisymmetric\ Axisymmetric
s |
/ j \ [ \
/(')uasi-isodynamic B contouts B contours
closehelieally close toroidally
LHD .
; Quam Quasi
W7-X Qt.mst helically axisymmetric
poloidally symmetric
CTH symmetric
\ HSX NCSX //

N

Figure 1-5: Relationship among the various classes of stellarators.

A wide literature exists on these and other concepts of stellarator optimization. Useful
reviews include references [6, 18, 22, 26].

Analytical expressions for neoclassical transport in a general stellarator are quite com-
plicated. For example, the bootstrap current in a general stellarator is given in appendix A
of reference [27]. As shown there, to evaluate the bootstrap current it is necessary to solve
two partial differential equations which depend on the magnetic field, and then compute
several two- and three-dimensional integrals of the resulting solutions. While this evalua-
tion can be done numerically for a specified magnetic equilibrium, it does not give the same
insight as a compact and explicit analytic formula. It is therefore desirable to find limits in
which the general formulae simplify. Quasisymmetry is one such limit. The equations of
neoclassical transport for a quasisymmetric plasma were derived previously by Boozer in
1983 [28], who pointed out that the results turn out to be identical to the results for a toka-
mak if certain “isomorphism” substitutions are made. Helander and Niihrenberg pointed
out that quasi-isodynamic fields are another limit in which the problem of stellarator trans-
port simplifies [17]. While these authors made important first steps, neoclassical theory
in quasi-isodynamic fields has not been fully developed. In Chapt. 3, we further develop
neoclassical theory in quasi-isodynamic plasmas, deriving several new results. The boot-
strap current and parallel flow are found to resemble those in a quasi-poloidally symmetric
plasma. The Pfirsch-Schliiter flow and current have a form which has no analogue in a
quasisymmetric plasma, but which can be written concisely as an integral of B. In contrast
to a quasisymmetric field, in a quasi-isodynamic field it is possible to calculate the radial
electric field, and the result turns out to be largely independent of the details of the magnetic
field.

The aforementioned calculations, as with the vast majority of neoclassical theory, em-
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ploy an ordering in which the radial electric field is relatively small. More precisely, it is
assumed that

fuyb - V£ > |vg - V], (1.3)

where vg = cB~>E x B is the E x B drift, and we will refer to this ordering as the “small-E,”
regime. However, the approximation (1.3) is not always justified. The small-E, ordering is
particularly unrealistic in the HSX stellarator, for reasons which will be detailed in Chapt. 4.
More generally, the radial electric field can have a significant effect on particle trajectories,
thereby affecting the neoclassical properties of the plasma. To accurately determine the
bootstrap current, which is particularly crucial for stellarators, “finite-E,” effects need to
be calculated by relaxing the ordering (1.3), allowing for larger F,.

Such calculations are currently done in codes using a so-called monoenergetic approx-
imation, in which ad-hoc changes are made to the E, terms in order to enable rapid compu-
tation. Here we show that at least in a quasisymmetric plasma, this approximate treatment
of E, significantly distorts the particle orbits and leads to a systematic order-unity under-
estimation of the trapped particle fraction. These problems are related to the collisionless
orbits and are therefore independent of other known problems arising from approximation
of the collision operator.

For ideal quasisymmetric and quasi-isodynamic fields, new neoclassical expressions
are derived in which this problematic monoenergetic approximation is avoided. In the qua-
sisymmetric case, results are presented in both the banana regime and plateau regime for the
ion flow, ion radial heat flux, and bootstrap current. The results resemble the conventional
small-E, expressions, but with a modified numerical coefficient for the ion temperature
gradient terms. The bootstrap current is found to be enhanced. For the quasi-isodynamic
case, new finite-E, contributions to the distribution function are obtained. The flow and
bootstrap current turn out to be modified by the same numerical function of E, as in the
quasisymmetric case.

The remaining chapters are organized as follows. In Chapt. 2 we give further back-
ground on quasisymmetry, and review the calculation of neoclassical transport in quasisym-
metric plasmas when the radial electric field is small. Chapt. 3 presents the new neoclassi-
cal results for quasi-isodynamic stellarators with a small E,. In Chapt. 4, we introduce the
finite-E, regime, and we explain the problem with previous calculations. Chapt. 5 and 6
present the new results for quasisymmetric and quasi-isodynamic stellarators with finite-E,
effects. We summarize and conclude in Chapt. 7. A number of noteworthy but techni-
cal issues are discussed in the appendices. Some of the work described herein has been
published in references [29-31].

Throughout this thesis we will assume the magnetic field forms nested toroidal flux
surfaces, ignoring the possibility of stochastic regions. Gaussian units are used throughout.



CHAPTER

Quasisymmetric stellarators

In this chapter we discuss quasisymmetric stellarators, the first of the two types of opti-
mized stellarators analyzed in this thesis. We first motivate quasisymmetry using a novel
coordinate-free approach. Discussions of quasisymmetry in the literature rely on magnetic
coordinates and involve guiding-center drifts parallel to B or Lagrangian/Hamiltonian me-
chanics. These complexities are all avoided in the new approach given here in order to
make the subject accessible to a wider audience. However, in this chapter we do also in-
troduce Boozer coordinates, which allow us to give the more conventional definition of
quasisymmetry. Boozer coordinates will also be used extensively in later chapters. Finally,
we evaluate conventional (small-E,) neoclassical transport in a quasisymmetric stellarator
(demonstrating the isomorphism with axisymmetric systems) and we briefly discuss exper-
iments.

2.1 Coordinate-free approach

2.1.1 Axisymmetry

To motivate quasisymmetry, it is instructive to first review some properties of axisymmetric
plasmas, and in particular, the fact mentioned in the introduction that all particle orbits in
an axisymmetric field are confined. For a charged particle moving in axisymmetric electro-
magnetic potentials, the canonical angular momentum pg = Rmuv, +ZeRAy/c is conserved,
where ¢ is the standard cylindrical angle, R is the major radius, Ze is the particle’s charge,
m is the mass, c is the speed of light, v, = Rv - V¢ is the toroidal component of the veloc-
ity, and A, is the toroidal component of the magnetic vector potential. Using ¢, = —RAy,
where 27y, is the poloidal magnetic flux, it follows that

o mcRv
Y=g —— @.1)

16
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is conserved.

We now prove that all particle orbits in an axisymmetric field are confined to roughly
a poloidal gyroradius p, = (B/ Bp) p of a given flux surface, the result known as Tamm’s
theorem [3]. Here, p = v/Q is the Larmor radius evaluated at the particle speed, Q =

ZeB/(mc) is the gyrofrequency, B, = /B§ + B2 = |Vi|/R is the poloidal magnetic field,
and we assume variation in the electrostatic potential is not too large so the speed v is nearly
constant. First, consider that |v,| is bounded from above by v. The constancy of (2.1) then
implies that the particle’s radial coordinate i, can only vary by ~ mcRv/(Ze) = RB,pp. As
Ay, ~ RB,Ar where Ar is the distance the particle departs from a given flux surface, then
Ar is bounded from above by a distance ~ p,. Thus, as long as there is a poloidal field, all
particle orbits are confined. This proof does not hold in a general stellarator because (2.1)
only holds in axisymmetry.

Now suppose we want to find a quantity which is conserved by the guiding-center
motion rather than by the exact particle motion. We first recall that any axisymmetric
magnetic field can be written as B = V¢ X Vi, + IVg where I = RB; and B, = RB - V¢ is
the toroidal field. It follows that

R*B*V¢ = IB - B x Vi, (2.2)

and therefore

1 (] \ A b X Vlﬂp
E + —gz—'—'.
Here, vy = v+-b, b = B/B, and v, = v —yb. The last term in (2.3) oscillates at the gy-
rofrequency about an average value of zero, whereas the other terms do not oscillate at the
gyrofrequency to leading order. Since the guiding-center drifts are obtained by averaging
over the gyromotion, it seems plausible that the quantity

¥, =y, - 2.3)

I (X

¥ =y~

(2.9
will be conserved during motion of the guiding-center drifts.
To confirm rigorously that ¥, is indeed conserved, we will need to evaluate the total

time derivative
da¥y,

dt

where the gradient holds the magnetic moment y = v / (2B) and total energy E = (vﬁ / 2) +
uB + Ze®/m fixed, and v, is the sum of the E x B, VB, and curvature drifts:

= (U"b + Vd) - VP, (2.5)

2 2
_C [ Yy
Vq = —BZB><V(I)+2 BZBXVB+_BBXK (2.6)

where k = b - Vb. It has been assumed for simplicity that E = —V®, and we will also
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assume the potential ® is a flux function. As b - Vi, = 0, then (2.5) can be written

d¥y.
dt

I (&} 1 Uy

=Vd'Vz//p+v”b'V('E)+Vd'V(—g-2— . 2.7
Consider now that the two terms on the right-hand side of (2.4) are well separated in

magnitude: estimating ¥, ~ B,L? for some scale-length L, and using I ~ BL, then

/@ P 2.8)
7

where now p, = (B/B,)uy/Q is the thermal poloidal gyroradius. Similarly, the magnetic
drifts in (2.5) are ~ p/L smaller than the parallel motion term vyb. The drifts (2.6) are
derived assuming the E X B drift is comparable in magnitude to the magnetic drift speeds.
Therefore, the last term in (2.7) is formally smaller than the others, so we will neglect it!,
leaving

d¥. Iy
vV — -V (E") 2.9)
Using the identity B X - Viy, = B X VB - Vi, we find the first right-hand-side term to be
2up + 13
V4 Vl/lp = _-ZEBZ—B X VB V(ﬂp (2.10)

Next, we write vy = \ﬁ [E — uB — (Ze®/my)], so the last term in (2.9) can be evaluated
using

202 + 12
v") -l _tp.yp @.11)

-ub-¥(3) = Zapr

In MHD equilibrium, / is a flux function so b- VI = 0. Finally, we take the VB component
of (2.2) to find
IB-VB=BXVy,-VB. (2.12)

Combining (2.9)-(2.12), a cancellation occurs, leaving d'¥, /dt = 0 to leading order in p/L,
as desired.

Notice that Tamm’s theorem can be proven using the guiding-center conservation law
(2.4) using the same reasoning we used earlier to prove the theorem from the true conser-
vation law (2.1).

11t can actually be shown that v4 - V(Iv)/Q) is exactly zero, as shown in appendix B, but the proof requires
that the guiding-center drift parallel to b be included in v4. This subtlety concerning a formally negligible
term is ignored here to make the present discussion accessible to a wider audience.



CHAPTER 2. QUASISYMMETRIC STELLARATORS 19

2.1.2 Quasisymmetry

Note that we did not need axisymmetry to derive (2.10) or (2.11). The proof of the con-
servation law for guiding-center motion above only used axisymmetry to derive (2.12), the
fact that the ratio of B X Vi, - VB to B - VB is the flux function . Suppose we could find a
nonaxisymmetric magnetic field in which a similar property held:

—W =Y (s) 2.13)

for some flux function Y (cpp). Then we could use (2.10) and (2.11) to obtain

.
= 2.14
dt 0 (2.14)
to leading order in p/L where
- YU"
=P — — 2.15
Ye=dp— 4 2.15)

and d/dt = (yyb + v4) - V as in the axisymmetric case. Tamm’s theorem then implies that
all particle orbits in such a field are confined. (The proper component of B to use in place
of B, in Tamm’s theorem is not immediately clear, but if all magnetic field components
were estimated equally as ~ B, then particles could only drift ~ p off a flux surface.) Such
a field would therefore be omnigenous, and it should therefore exhibit reduced transport
compared to a general stellarator.

We define quasisymmetry to be the property (2.13), which is equivalent to (1.2). Itis
shown in [32] that another equivalent definition of quasisymmetry is

VB X Vi, -V(B-VB) =0. (2.16)

2.2 Properties of quasisymmetric plasmas

Axisymmetric fields are quasisymmetric due to (2.12). Garren and Boozer have shown
that nonaxisymmetric fields can be exactly quasisymmetric only on isolated flux surfaces
[33, 34]. However, in practice, nonaxisymmetric fields can be found which nearly satisfy
(2.13) to a good approximation throughout the plasma [14, 15, 35, 36].

Although the quasisymmetry property (2.13) implies omnigenity, it turns out that om-
nigenous fields exist which are not quasisymmetric [9, 10]. Therefore quasisymmetry is
a stricter condition than necessary for eliminating unconfined orbits. However, quasisym-
metric fields are still desirable because they permit larger flow and flow shear than non-
quasisymmetric omnigenous stellarators. This property can be understood in two ways.
First, the flow in a nonaxisymmetric plasma can approach the ion thermal speed only in a
quasisymmetric field [12]. Secondly, even when the flow speed is much lower than the ion
thermal speed, in a general stellarator the flow is required to have a specific value, whereas
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in a quasisymmetric field, the flow is not determined to leading order [37]. This flexibility
permits both larger flows and larger flow shear. The possibility of larger flows and flow
shear in a quasisymmetric device relative to non-quasisymmetric stellarators is important
due to the effect of flows on instability and turbulent transport. Flows are understood to
stabilize MHD modes [38]. Sheared flows are understood to break up turbulent eddies and
thereby reduce cross-field transport [39]. Consequently, quasisymmetric stellarators should
have not only reduced neoclassical transport compared to a non-optimized stellarator, but
they may also have improved MHD stability and reduced turbulent transport.

The aforementioned property of quasisymmetric (and axisymmetric) plasmas that the
flow is not automatically determined is known as “intrinsic ambipolarity.” In a non-quasi-
symmetric stellarator, the ion and electron particle fluxes have differing dependencies on
the radial electric field E,. Therefore quasi-neutrality is established only for one or a small
number of discrete values of E,. Once E, is thereby determined, the plasma flow is known.
However, in quasisymmetric or axisymmetric plasmas, the ion and electron particle fluxes
are always equal to each other to leading order, regardless of E,. Consequently, it is not
possible to solve for E, by the requirement that the leading-order radial current be zero.
In principle, an electric field could be calculated by finding higher-order corrections to the
radial particle fluxes, but this procedure is too difficult to be practical.

2.3 Magnetic coordinates

2.3.1 General magnetic coordinates

In analyzing stellarators, both quasisymmetric and non-symmetric, it is useful to introduce
“magnetic coordinates” 6 and . These quantities are defined to be poloidal and toroidal
angle-like coordinates that satisfy the equation

B =gV, xVO+ VI X Vy, (2.17)
where g (cﬁp) is the safety factor, or equivalently,
B =V, X VO + ¢V X Vi (2.18)

where ¢() = 1/q is the rotational transform. Here, “angle-like” means that 6 increases by
2nk along any closed path which lies on a flux surface and which links the toroid k times
in the poloidal direction, and £ increases by 2n£ along any closed path which lies on a flux
surface and which links the toroid £ times in the toroidal direction. A proof that magnetic
coordinates exist for any toroidal MHD equilibrium can be found in appendix C of [2].
From (2.17) it can be shown that field lines form straight lines in the (6, £) plane.

The expressions (2.17) and (2.18) are known as the “contravariant” representations of B.
Another representation, known as the “covariant” form, can be obtained by decomposing
the vector B in the Vi, VO, V{ basis: B = LVy, + KVO + IV{. In general, the three
coefficients L, K, and I will depend on all three coordinates Wp,0,0).
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2.3.2 Boozer coordinates

Equation (2.17) does not uniquely determine the magnetic coordinates, and it turns out
to be useful to introduce further constraints on the angles. The coordinates which will
be used most in this and later chapters are “Boozer angles,” which can be defined by the
requirement that the K and  coefficients in the covariant representation be flux functions:

B = LYy, 0, )V, + K(Wp)V6 + () VL. 2.19)

Appendix C of [2] gives a proof that Boozer coordinates can be constructed for any toroidal
MHD equilibrium. In Boozer coordinates, the coefficients K and I acquire a physical
meaning, which we now derive. From the rules of vector calculus in general coordinate
systems (e.g. see pages 126-127 of [40] or the appendix of [41]) a differential step can be
written

1

= g VX Ve

(Vi X VO)IL + (VO X VO)dy, + (VI X Vip)d6]. (2.20)

Now consider a loop at constant ¥, and £, along which @ increases by 2. Along this loop,
then, B - dr = Kd6f, where we have used (2.19) and (2.20). It follows from Ampere’s Law
then that K equals 2/c times the toroidal current linked inside the flux surface. A similar
argument using a constant-y, constant-6 loop proves that I equals 2/c times the poloidal
current linked outside the flux surface. (Some references on quasisymmetry instead use [ to
denote the V@ coefficient. We choose the new convention because RB; in an axisymmetric
plasma is often denoted by I, as we have done in (2.2), and our I properly reduces to RB,
in axisymmetry.)

We can show that the terms in (2.19) are well separated in magnitude. First, observe that
both currents in the plasma and in the external coils contribute to I, whereas only currents
in the plasma contribute to K. Thus, typically / > K. Second, consider the limit of a
vacuum field (j = 0). In this case, the Ampere’s Law argument above proves that K — 0
and I — constant. It can also be shown that L. — 0 in this limit (if £ is shifted by the proper
flux function), so a vacuum field is described by B = IV with I a constant.

In a substantial fraction of the stellarator literature, a different sub-class of magnetic
coordinates called Hamada angles (fy, ;1) are used. These coordinates may be defined by
the requirement that Viy,, - V6 X Vg be a flux function. This definition turns out to be
equivalent to the requirement VV - VOy x V& = 4n?, where V is the volume enclosed
by a flux surface. Appendix C gives further discussion of Hamada coordinates and their
relationship to quasisymmetry.

2.4 Quasisymmetry in Boozer coordinates

We now show that the definition of quasisymmetry (2.13) has a concise and equivalent
definition in terms of the Boozer angles. The proof which follows is adapted from [37].



22 CHAPTER 2. QUASISYMMETRIC STELLARATORS

First, using (2.17) and (2.19), the quasisymmetry condition (2.13) can be written

k- q(;—?+g—§})’. @21)
Now consider a Fourier-decomposition of B,
B= Z exp ([ M6 - N¢|) By (2.22)
MN
where the By 5 are flux functions. Then (2.21) requires
(NK + 811+ [Ng— 1) Y) By = 0 (2.23)

must be satisfied for every pair (IVI , N). The quantity in parentheses in (2.23) can be zero

only for a single value of the ratio M/N, so By & can be nonzero only for a single value of
M/N. It follows that
B = By, M9 - N¢) (2.24)

for some integers M and N. Thus, (2.13) implies (2.24).
We can also prove the converse. Suppose (2.24) is satisfied. Then

0B 0B

— = _N—, 2.2
or dy 2.25)
It follows from (2.21) that (2.13) is then satisfied, with
NK + MI
= UV (2.26)

Thus, (2.24) and (2.13) are two equivalent statements of quasisymmetry.

In the proof of section 2.1, we dropped a small term in going from (2.5) to (2.9). How-
ever, using Boozer coordinates it can be shown that this small term actually vanishes if we
slightly redefine the conserved quantity and if we use a slightly different definition of the
guiding-center drift:

Vq = (U"/Q)V X (U"b), (2.27)

where the curl is taken at fixed u and total energy E. This form of the guiding center drifts
is equivalent to (2.6) to leading order, but the two forms differ in a higher-order correction
to the parallel velocity. In appendix B it is shown that with this new form of the drift, an

exact constant of the motion is .
v
Yo =ty — —';—2'1 (2.28)

where
Un = My, — Ny, (2.29)
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and
I, = NK + M1 (2.30)

This proof in the appendix also shows that the conservation law still holds if electrostatic
potential varies in time and space, as long as the spatial variation has the same single
helicity as B.

2.5 Quasisymmetry-axisymmetry isomorphism

In an axisymmetric field B = B(y,, ©), where © is a poloidal angle (not necessarily the
Boozer angle), we have seen that B X V¢, - VB/B - VB = I. In a quasisymmetric field
B = B(iyp, x), where

x =M6-N¢ (2.31)

is a helical angle, we have seen that B X Vi, - VB/B - VB = Y, where Y is defined in
(2.26). Due to the parallelism in these fundamental geometric relations, we might expect
that other tokamak formulae may be applicable to a quasisymmetric stellarator if we make
the replacements

0 -y, I-Y. (2.32)

In fact, it turns out that all the important formulae for neoclassical transport in a quasisym-
metric plasma can indeed be obtained by naive application of the substitutions (2.32) to the
corresponding tokamak formulae. However, it turns out to be somewhat advantageous to
take the fundamental isomorphism to be

0] - X, I—- Ihv d/p - ‘/Ih (2'33)

with I, and ¢y, given in (2.29)-(2.30). The isomorphism (2.33) correctly implies B X Vi, -
VB/B-VB = I, so it is at least equally valid to (2.32). However, (2.33) has the advantage
that it gives the exact conserved quantity ¢, for a quasisymmetric field, whereas (2.32)
instead suggests the conserved quantity would be ., and this latter quantity is conserved
only to leading order rather than exactly. Both versions of the isomorphism give correct
results for all neoclassical transport formulae.

As mentioned earlier, I > K, so if the symmetry is not quasi-poloidal (i.e. if M # 0),
then it can be useful to approximate I, = MI.

The existence of the isomorphism was pointed out by Boozer in [28]. The isomor-
phism does not hold for all quantities, however. For example, classical transport does not
obey the isomorphism rules [42]. To ascertain whether the isomorphism holds for a given
quantity, therefore, care is required, and it must be rigorously shown that the equation(s)
which determine the quantity in a quasisymmetric plasma are isomorphic to the equations
which determine the quantity in an axisymmetric plasma. In the next section we sketch the
proof that the isomorphism indeed holds for the conventional (low-flow) banana-regime
neoclassical fluxes and flows.
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2.6 Neoclassical transport in quasisymmetric plasmas

We begin with the drift kinetic equation (vyb +v4) - Vf = C (derived in e.g. [43]) for
any particle species in a quasisymmetric plasma, using (¥4, Y, {) as the spatial coordinates.
(For M = 0 quasi-poloidal symmetry, y and J are degenerate, in which case 6 could be
substituted for { as the third coordinate throughout.) We make an ansatz that (3f/90), = 0,
and the f we find will be consistent with this assumption. The leading order equation is
taken to be v (b- Vx)dfo/dy = C{fp). The conventional entropy production argument
then shows that f; is a Maxwellian and a flux function. The next order equation is then

o (b~ V) %% + (Va- Vi) gﬁ _ Clfi). 2.34)

Next, we apply the following identity (proven in appendix B):
d
\’ V(ﬁh = U||b Y (IhU”/Q) =Y (b - VX) 5; (IhU"/.Q) . (235)

This result is what one would expect by naively applying the substitutions (2.32) to the
corresponding identity for axisymmetry. We can then combine (2.34)-(2.35) as

og L 8fo
Vy)— = -_— .
v (b-Vy) 9% C {g 3 3 wh} (2.36)
where
g = fi + L Q' 9 fo/ . 2.37)

A subsidiary expansion g = g@ + g® + ., is then made in the smallness of the right side
of (2.36) compared to the left. The leading order equation is 9g®/dy = 0. The g term in
the next order equation is then annihilated by a transit average to give the constraint

0 = C (g© — Ly Q1 So/ Oy} (2.38)

which determines g©, thereby determining f;. Here, the transit average of any quantity X
is defined by

$dx X/ (wb - Vy)

$dy/ (b Vx)
For passing regions of (E,u,yy)-space (in which any y is allowed), 9§ (+) dy indicates
LhM () dy. For trapped regions (in which not all y are allowed), the integral § () dx de-
notes Y, ¢ ﬁ:x () dy where ¢ = sgn (v).

To justify our assumption that /3, = 0, we need to show that neither b- Vy nor C in-
troduce £-dependence in g through (2.38)-(2.39). First, by forming the product of (2.17)
with (2.19) we find B - V8 = B/ (qI + K), sob - Vy = B! (M — Ng) B - V@ is independent
of £. Second, as argued in the footnote of [17], the linearized and gyro-averaged collision

X =

(2.39)



CHAPTER 2. QUASISYMMETRIC STELLARATORS 25

operator only introduces spatial dependence through B, so no {-dependence is introduced.
The pitch-angle scattering model operators have this same property. Thus, g© is indepen-
dent of Z, so f; is as well. The problem of finding f; in a 3D field has thereby become 2D
if the field is quasisymmetric and the y variable is used.

Equations (2.37)-(2.38) can be obtained by applying the substitutions (2.32) to the cor-
responding tokamak expressions, so f; can be obtained by these same substitutions. Form-
ing f d*vy, fi, then the parallel flows and currents obey the isomorphism as well. Finally,
as shown in appendix D, the moment equations used to obtain the particle and heat fluxes
from f; also obey the isomorphism. Thus, all the banana-regime neoclassical fluxes and
flows follow the isomorphism. A similar argument shows that plateau-regime fluxes and
flows do so as well.

Table 2.1 summarizes the isomorphism rules. Care must be taken in two regards. First,
whereas in axisymmetric plasmas it is common to apply b-V® = (gR,)™", it is not generally
true that b - Vi =~ (gRo)™" in a quasisymmetric stellarator. Second, tokamak calculations
often use the model field magnitude B = B, [1 + 2 sin® (®/ 2)] with & = a/Ry. In a stellara-
tor, however, it will not generally be true that the relative field variation equals twice the
inverse aspect ratio. We can use the expression B = By [1 + 2¢sin? (x/ 2)] in stellarator cal-

culations only if we understand the ¢ therein to be defined as (B - l?) / (21?), where B and

B are the maximum and minimum of B on the flux surface respectively. Thus, the isomor-
phism substitutions must be made in tokamak expressions before either b - VO = (gRo)™
or € = a/Ry are invoked.

Table 2.1: Axisymmetry- quasisymmetry isomorphism

Axisymmetry Quasisymmetry
Symmetry of B B = B(y, ©) B = B(Un, x)
Angle on which B depends Poloidal angle ©® Helical angle y = M6 — N{
Radial coordinate Poloidal flux i, Helical flux ¢, = My, — Ny,
B component flux function [ = RB; I, =NK+ MI
Conserved quantity Y, =y, — I /Q Ve =¥Yn — Ly /Q
Inverse connection length b -VO = 1/ (gR) b:-Vy =(M—-Ngq)B/(gl +K)

Relative B variation g=a/R e= (3 - IVS) / (21?)
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2.7 Existence of quasisymmetric equilibria

Strictly speaking, toroidal equilibria with M # 1 symmetry are not possible for the follow-
ing reason. On the magnetic axis, the pressure gradient vanishes, and so

0=jxBox (VxB)xB=«xB*-V,(B/2). (2.40)

In a toroidal device, the curvature of the axis x cannot be zero everywhere, since the axis
must close. Assuming B is nonzero, then (2.40) implies V, B # 0 on axis. Therefore,
expanding B(,, 6, ) in distance from the axis \/z/f_p, the term that is linear in /4, must
have a sin(6 — 6y({)) component. Consequently, M = 1 harmonics must be present, and so
symmetries with M # 1 cannot be realized exactly. However, in analyzing quasisymmetric
systems it can still be useful to allow for the possibilities of M # 1 symmetries, since M # 1
symmetry can be approximately obtained away from the magnetic axis. For instance, the
Quasi Poloidal Stellarator (QPS) which has been partially designed at Oak Ridge has an
equilibrium with approximate M = (0 symmetry in almost all of the plasma volume [44].

In extrapolations to a power reactor, quasi-axisymmetric plasmas have an advantage
over quasi-helically symmetric plasmas for the following reason. In an axisymmetric
plasma, the B spectrum has a “toroidal” (N = 0, M = 1) harmonic associated with the
approximate proportionality of B to 1/R. To obtain a quasi-helically symmetric (N # 0)
equilibrium, this toroidal harmonic must be canceled out. As the amplitude of the toroidal
harmonic in an axisymmetric field increases with decreasing aspect ratio, quasi-helically
symmetric equilibria tend to have large aspect ratio. Quasi-axisymmetric designs do not
have the same minimum limit on the aspect ratio. In a power reactor, it is desirable to min-
imize the aspect ratio in order to minimize the reactor size, which in turn reduces the total
reactor cost. Consequently, quasi-axisymmetry appears more promising than quasi-helical
symmetry in a reactor-scale stellarator.

2.8 Experiments

The first identification of a non-axisymmetric equilibrium which was nearly quasisym-
metric was in a numerical study by Niihrenberg and Zille [14], published in 1988. This
symmetry of this first equilibrium was N = 6, M = 1.

Inspired by this success, a similar optimization procedure was used to design the He-
lically Symmetric eXperiment (HSX) at the University of Wisconsin — Madison [15, 45].
HSX is currently the only operating quasisymmetric stellarator. The field of the device pos-
sesses (N = 4, M = 1) helical symmetry. HSX is equipped with a set of additional planar
coils which can be energized to spoil the quasisymmetry, thereby allowing comparisons
between quasisymmetric and non-symmetric plasmas which are otherwise similar. By in-
ducing flows with biased probes and measuring the rate of flow decay when the probe
potential is allowed to float, it has been demonstrated that damping of plasma flows is in-
deed reduced in the symmetric configuration compared to the asymmetric configuration



CHAPTER 2. QUASISYMMETRIC STELLARATORS 27

[46]. Also, the energy confinement has been measured to be significantly higher in the
symmetric configuration compared to the asymmetric configuration [47].

In parallel with this development of quasi-helically symmetric stellarators, in 1996
Garabedian identified equilibria with quasi-axisymmetry [35, 36]. Quasi-axisymmetric
equilibria were refined, leading to the design of the National Compact Stellarator eXper-
iment (NCSX) [16], which was to be built at the Princeton Plasma Physics Laboratory.
The US Department of Energy terminated the construction of NCSX in 2008, citing con-
struction delays and cost overruns, although fabrication of the nonplanar coils had already
been completed. It remains to be seen whether a quasi-axisymmetric stellarator will be
constructed.



CHAPTER

Quasi-isodynamic stellarators

In this chapter we discuss quasi-isodynamic stellarators, the second of the two types of
optimized stellarators which will be analyzed in this thesis. Quasi-isodynamism is the de-
sign principle behind the W7-X stellarator, presently under construction at the Max Planck
Institute for Plasma Physics in Greifswald, Germany. A quasi-isodynamic magnetic field
can be defined as one which is both omnigenous and in which the constant-B contours
close poloidally. After giving further background on the concept of quasi-isodynamism,
we will next derive several geometric relations among the magnetic field components and
the field strength in a quasi-isodynamic field. Using these relations, the forms of the flow
and current will be obtained for arbitrary collisionality. The flow, radial electric field, and
bootstrap current are then determined explicitly for the long-mean-free-path regime.

3.1 Introduction

The quasisymmetric fields discussed in the previous chapter have two desirable proper-
ties: all collisionless orbits are confined (omnigenity), and flows are not strongly damped.
However, quasisymmetry places a strong constraint on the magnetic field geometry. It is
therefore desirable to examine the larger design space of non-quasisymmetric fields which
are still nearly omnigenous. Such fields would still have minimal neoclassical transport, but
they would likely have somewhat larger turbulent transport compared to a quasisymmetric
plasma.

We should first ask whether or not there are in fact any omnigenous fields which are
non-quasisymmetric. This issue has been investigated by Cary and Shasharina [9, 10], and
the answer is somewhat complicated. These authors showed that any analytic and perfectly
omnigenous field must be quasisymmetric, but analytic fields can be constructed which are
nearly omnigenous and yet are far from being quasisymmetric. Therefore, in practice a
magnetic field can be omnigenous without being quasisymmetric.

28
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Omnigenous fields have many remarkable mathematical and physical properties. For
example, it is proven in [9] that the maximum and minimum of B are the same for each field
line on a flux surface. In contrast to a general stellarator, the vanishing of the time-averaged
radial drift implies that no D o 1/v regime exists in a perfectly omnigenous device, where
D is any radial transport coefficient and v is the relevant collision frequency.

As the maximum and minimum of B on a flux surface form curves, rather than iso-
lated points, these curves will close in one of three ways: toroidally, poloidally, or heli-
cally. A quasi-isodynamic field is an omnigenous field in which these constant-B curves
close poloidally [17, 19-21]. Note that axisymmetric fields are not quasi-isodynamic since
constant-B contours close toroidally.

In the analysis which follows, we will restrict our attention to quasi-isodynamic fields,
rather than considering the more general case of omnigenous fields, for several reasons.
Quasi-isodynamic fields are experimentally relevant, as the W7-X stellarator is designed
to be approximately quasi-isodynamic [24? ], and recent stellarator design studies have
examined equilibria which are even closer to perfect quasi-isodynamism [20]. The reason
these designs have emphasized quasi-isodynamic fields over other varieties of omnigenous
fields is that quasi-isodynamism results in minimal bootstrap current. More precisely, it
is proven in [17, 20] that in a quasi-isodynamic field, it is consistent to have zero toroidal
current (K = 0 in the notation of (2.19)) and zero bootstrap current density (j;B). The
minimization of the bootstrap current is desirable for two reasons. First, as the bootstrap
current is proportional to the pressure gradient, then the magnetic field of a plasma with
zero bootstrap current will remain optimized over a wide range of plasma pressures. Sec-
ondly, plasma currents can be a source of free energy to drive instability, so a plasma with
zero bootstrap current should be generally more stable than a comparable plasma with large
(B

In contrast to quasisymmetric fields, in which neoclassical transport had been calcu-
lated previously [28, 48], neoclassical transport in quasi-isodynamic fields has not been
fully explored. Some initial work was done by Helander and Niihrenberg in [17]. These
authors showed that the part of the long-mean-free-path- (banana) regime distribution func-
tion determined by the collisional constraint is found from an equation which is identical in
form to the analogous equation for an axisymmetric plasma. However, several new results
for quasi-isodynamic fields are obtained in the following sections.

In section 3.2, we give new derivations for some of the properties of quasi-isodynamic
fields discussed in [17], and new expressions are also derived which relate the components
of B to derivatives of B and of the Boozer angles. In section 3.3, we use these relations to
derive novel expressions for the flow and current in a quasi-isodynamic field. It is shown
that the distribution function obtained in [17] for the long-mean-free-path regime is con-
sistent with these forms, but our forms of the flow and current are valid for all regimes of
collisionality. In section 3.4, we use ambipolarity to determine the radial electric field in
the long-mean-free-path regime. The bootstrap current is given in section 3.5, and we con-
clude in section 3.6. Emphasis is given throughout on practical calculations for a specified
B (6, {), and the figures show an example calculation of the key quantities for a model field.

Although the field of any real stellarator will not be perfectly quasi-isodynamic, the re-
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sults which follow are useful in several regards. A perfectly quasi-isodynamic model field
can be provided as input to transport codes, so the results herein can be used to validate
such codes. In addition, the flow, current, and radial electric field in a plasma which is ap-
proximately quasi-isodynamic can be expected to resemble the analytic forms derived here.
Therefore, the results herein may give insight into the physics of W7-X-like stellarators.

3.2 Geometric properties of quasi-isodynamic fields

We begin by recalling the contravariant and covariant representations of the magnetic field
in Boozer coordinates:
B = Vi, x VO+q 'V x Vi, 3.1

and
B =IV{+KV6+ LV, (3.2)

where 2y, is the toroidal flux, cI (¥,) /2 is the poloidal current linked outside the flux
surface, cK (¢,) /2 is the toroidal current inside the flux surface, and g (¢,) is the safety
factor. We introduce the field line label @ = 6 — g7'¢, so B = Vi, x V. Let B and
B denote the minimum and maximum of B along a field line, respectively. Omnigenity
requires that the most deeply trapped particles (those with vy = 0) have no radial drift, so if
the electrostatic potential is a flux function, the radial VB drift « B X VB - Vi, must vanish.
As these particles also lie at B = B where B - VB = 0, then B must be independent of field
line (@B/da = 0). By considering the action of marginally trapped particles, it is proven
in [9] that B must be independent of field line as well. As the range of allowed B is thus
independent of @, and as a 27 increase in « at fixed B is a closed poloidal loop, it becomes
convenient to use (¥, @, B) as the spatial coordinates. However, specifying (1, @, B) does
not uniquely determine a location on the flux surface — there are two possible locations in
each magnetic well, one on either side of B along the field line. We denote this discrete
degree of freedom by y = =1, which Helander and Niihrenberg term the branch [17)].

In an omnigenous field, the longitudinal adiabatic invariant J = § v df must be con-
stant on a flux surface. This requirement implies [9]

é] Yy
(%)B Zt b-vE G-)

a result which is termed the “Cary-Shasharina Theorem” in [17]. Here and throughout,
subscripts on partial derivatives indicate quantities which are held fixed. A proof of (3.3) is
given in appendix A. It is shown in [9] that (3.3) implies the contours of B = Bare straight
in Boozer coordinates. In a quasi-isodynamic field, the B contours close poloidally, and so
B = B contours must be curves of constant .
It is useful to express B in terms of its covariant components in the (¢, @, B) coordi-
nates:
B =B, VY, + B,Va + BpVB. (3.4)
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From the dot product of this expression with B = Vi, X Va we find
B2
Bg = .
*~B.VB
The dot product of (3.4) with Vi, X VB gives B, = —B X Vi - VB/B - VB, and the dot

product of (3.4) with Va X VB gives By = B X Va - VB/B - VB.
We note that an incremental step can be written in the (¢4, @, B) coordinates as

(3.5)

dr = [(Va X VB) dy, + (VB X Vi) d + BdB] (3.6)

1
B:-VB
and in the (¥, 6, {) coordinates by

dr

B [(VO x V) dyr + (VL X Vi) dO + (Vi x V6) dL] . (3.7)

By applying Ampere’s law to a constant-B poloidal loop on a flux surface, and using (3.6)

to write B - dr = B,da for this path, we find f:" B.da = 27K, where K (y) is the same
quantity as in (3.2). It follows that [17]

_BxVy,-VB =K+(6h)
B

B, = (3.8)

B-VB oa
for some single-valued function 4. As shown in section 2.1.2, BXx Vi, - VB/B - VB is a flux
function if and only if the field is quasisymmetric, so the (0k/0a)p — 0 limit corresponds
to quasisymmetry. More precisely, (0h/da)p — 0 corresponds to quasi-poloidal symmetry
(B = B (i, £)) since, by definition, B contours in a quasi-isodynamic field close poloidally.

Next, we use the fact that (VX B) X B is parallel to Vi, in a scalar-pressure MHD
equilibrium, so

0Bg

O=(VxB)-V:ﬁt:V-(BngI/‘):(B-VB)[(—(,);) —(%) ] (3.9
B @

Plugging in (3.5) and (3.8), we obtain the useful identity

a\ B> _ &hn
da),B-VB  9adB’

(3.10)

Applying (3.3), then Zy'yézh/aaéB = 0. The integral of this result from B to B gives
2, Y (Oh/0a)g = 0, i.e. (0h/0a)p must be branch-independent everywhere. In this inte-
gration, the contribution from the B boundary has vanished because y = +1 and y = -1
refer to the same location there, so B, is branch-independent there, and so (0h/0a)p is
branch-independent there as well. Although (0h/0a)p must therefore be y-independent
everywhere, h itself may depend on the branch. However, consider the quantity hy =



32 CHAPTER 3. QUASI-ISODYNAMIC STELLARATORS

[h(y = 1)+ h(y = =1)] /2. By applying (8/da)s to h () = hz + % [ () = h(—y)], we then
find (0h/da)y = (Ohg/Oa)g, so h could be replaced by ks in (3.8), the equation which
defined A. Thus, it is no loss in generality to assume 4 is branch-independent. This proof
differs somewhat from the one given in [17], though the underlying principles are the same.
In the sections which follow, we will only ever need (8h/da)g rather than # itself, so the
calculation of Ax will not be necessary.

For completeness, we now present one additional relation which can be found for B,.
We use (3.4) to form

(VxB)xB = (B-VB) 9B, 9 B \y (3.11)
- 0B @ 6¢t «.B B-VB wt- .
Then, from MHD equilibrium 47Vp = (V X B) X B it follows that
(_65)6, - (Tw)a,B (B : VB) * B VB (3.12)

We now relate the components of B in the (i1, @, B) basis to the more familiar quantities
0 and £. The results will be important in later sections for calculating the parallel flow and
current. First, the dot product of (3.1) with (3.2) gives B- V8 = B2/ (gl + K) = g"'B - V¢,

and it follows that , .
B OB 0B\ |

Using (0B/d6), = (0B/ 69){ +q (0B/3(),, then
B? _ 00\ ql+K (0]

Also, from (3.2) we can form

B oB
BxVy.-VB=(B-Vo)gq [1(%)1: -K (E)J : (3.15)

Plugging this result into (3.8) we obtain

oh oB\ [(oB oB\ I
(%)B"(‘f’”"(%)g[(%)f"(&)gl ' (310

Using (0B/d6), = (0B/36), + (0B/da)y, then (3.16) implies

an) _ ) _||_al+K (o
@) ol @, o
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OB OB Ja 0B
0—(55)3- (@);(55)3(5;), G189

Comparing (3.14) and (3.17), it is evident that (3.10) is satisfied. Equations (3.16) and
(3.17) will be needed for computations in section 3.

As the B = B contours are constant-Z curves, then (9¢/da), = 0 along these contours.
Equation (3.17) then implies (0h/da)z — O along these contours as well.

Let A{(B) = X,y f; (0" |0B"), dB’ be the difference in ¢ between the two points of
field magnitude B on either side of B, where { = {(B'). By (3.14) and (3.3),

where we have used

(0(AD) [6a)g =0 (3.19)

for a quasi-isodynamic field. In section IV of [9], Cary and Shasharina give a procedure
to construct a function B (6, ) with the property (3.19) and with B straight in Boozer
coordinates. This construction is reviewed briefly in appendix E since we will use it to
obtain the figures. Differentiating (3.19), then

Z‘y—— =0 (3.20)
Y

which, due to (3.14), implies (3.3). Thus, any field generated by the Cary-Shasharina
construction will be quasi-isodynamic, in the sense that all the properties described in this
section will apply. For example, (0h/da)g can be calculated from (3.16), and the result will
automatically be branch-independent. (This last fact can also be seen by integrating (3.20)
from B and using (3.17).)

Figure 3-1 shows a quasi-isodynamic field generated using the Cary-Shasharina con-
struction, with parameters specified in appendix E. The property (3.19) is illustrated in
figure 3-1 by the fact that the two thick line segments, both of which are parallel to the field
lines, have the same A{. Figure 3-2 shows (0h/0a)p which is calculated for this field using
(3.16).

3.3 Parallel flows and current

3.3.1 General collisionality case

We now derive the form of the equilibrium flow for any particle species in a quasi-isodynamic
field. We assume the species density n, pressure p, and electrostatic potential @ are
all flux functions to leading order. The perpendicular flow is given to leading order by
the sum of the E x B and diamagnetic flows: V, = wB™B X Vi, where w () =
c(d®/dy) + c(dp/dy) | (Zen) and Ze is the species charge. Writing the total flow as
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2n
1.1
0
1
0.9
0
0

Figure 3-1:  Contours of the normalized magnetic field magnitude » = B/ (Bz)”zfor

the model quasi-isodynamic field specified in appendix E. The dashed contour indicates
B/ (Bz)_l = 0.88, and B/ (Bz)_l = 1.15 occurs at the left and right edges. The two thick
line segments, which are parallel to field lines, illustrate the property (3.19). Points x and y
refer to the analysis preceding (E.3).
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2n
0.2
0.1
)
0
-0.1
0

0 ‘; 2n/N

Figure 3-2: The normalized departure from quasisymmetry g (g/ + K )~ (8h/da)g, calcu-
lated for the model field of figure 3-1 using (3.16). Dashed contours are negative.

V =V, + V;B™'B, then from the mass conservation relation V - (nV) = 0 we can write
V) + U
B»V(%)=O (3.21)

where U is defined to be a single-valued and continuous solution of
B-V(U/B)=BxVy,V(1/B). (3.22)

The solvability condition of (3.22) is satisfied for any scalar-pressure MHD equilibrium.
Applying (3.8), we find

aWw/B)\ 2 oh
( o8 ) B (aa)g]‘ b
Integrating in B, i
U K+
Y= R (3.24)

where Y is the integration constant, and

B / ’
T (Y, @, B) = 2B* f dB (ah) . (3.25)
B

s B?\oa
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Again, primes indicate a quantity indicate it is evaluated using the dummy integration vari-
able B’ rather than using the local value of B. We will see the quantity T’ appears repeatedly
in the analysis of quasi-isodynamic fields.

While Y is by definition independent of B, additional work is required to show that ¥
is also independent of @ and y, which we do as follows. At B = B, both signs of y refer
to the same location, so U is y-independent there. Consequently the entire right-hand side
of (3.24) is y-independent at B = B, so Y must be v-independent. Next, the right-hand
side of (3.24) is continuous across the curve B = B when 6 is held fixed. Therefore ¥
must have this same property, implying ¥ (@) = Y (@ + 27/ (¢N)) for all @, where again
N 1is the number of identical stellarator cells. It follows that ¥ must be independent of a,
and therefore Y is a flux function. Had B been chosen as the limit of integration in (3.25)
instead of B, then the right-hand side of (3.24) would not be continuous across the curve
B = B when @ is held fixed, and so ¥ would need to depend on a.

We choose to specify Y by requiring (UB) = 0, where the brackets denote a flux surface
average. For any quantity Q, this average is

Q)= - ‘ (3.26)

Note that (') = 0, since the « integral can be performed by parts, and (3.3) applied. We

< >

Next, it follows from (3.21) that V|B + wUB = B*A for some flux function A (). Flux-
surface-averaging this equation to find A, we obtain our final form for the parallel flow of
each species in a quasi-isodynamic field:

_ B(V;B)

V|| = m— + Vlrs’ (328)

where the “Pfirsch-Schliiter flow” is
()} 2
VPs = 2 o L\ _ B g,y (3.29)
B\dy, Zendy, (B?)
and satisfies (VIFSB> = 0. For (0h/da)s — 0, then T — 0, and (3.29) reduces properly to

the result for a quasi-poloidally symmetric field.
The parallel current has a similar form to (3.28)-(3.29), which can be obtained by mul-
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tiplying these equations by Zen and summing over species. The result is

B(jiB)

jll = (Bz> ]“ > (330)

where the “Pfirsch-Schliiter current” is

. dpt t 82
S = “IH1- =< ]|K+T
L ( dy )[( (Bz)) v
and satisfies ( ]PSB> = 0, and p. is the sum of the pressures of each species.

We emphasize that (3.28)-(3.31) are valid in a quasi-isodynamic stellarator at arbitrary
collisionality.

(3.31)

3.3.2 Long-mean-free-path regime

We now show that the distribution function obtained in [17] for the long-mean-free-path
regime indeed gives a flow of the form (3.28)-(3.29). The distribution function obtained in
that reference was

ed; wdfy cm f o\ 9 v dfy

- fo— +K—— — — dB’ —_—— 32
f=o fo Q(‘)c//t Ze da » OB’ B’ Oy, (3:32)
where fj is a stationary Maxwellian flux function, ®; (¢, 0, {) is the next-order correction
to the potential, and Q = ZeB/ (mc) is the gyrofrequency. The d/dy, derivatives and the B’
integral are performed holding the leading-order energy v?/2 + Ze®/m and the magnetic
moment v /2B fixed. Also,

B ={ B if 1<B/B (3.33)

B/A if 1> BJB,

where A = v2 B/ (sz), and g is a flux function which vanishes for trapped particles. Ap-
plying [ dvyy to (3.32) gives

ay, Zendy,
fdvvf Ldp  Zedd ﬂ__ 1dT f (o) 9 Y
WOV o dy, T dy \2T 2] Tay, ba ), 0B' B
where X = [dPvyjg. We can write X = (B/BrY.s j;o dv? fOBm dig, where ¢ =
sgn (1), and the upper limit of the A integral is changed from B/B to B/B since g is zero

for trapped particles. As g is a flux function at fixed v and A, then X o B, so X has the form
of the B(V;B) / (B?) term in (3.28). Finally, we evaluate the last line of (3.34), obtaining

cnK(d(I) Lfl_’l) (3.34)

nV” = X+ —
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as a first step

oW\ 9 v 3nTB (DB = qow\ (2-4B/B
fd3vv||fof dB'( ) . Il = - k f d/lf dB'( ) ( ) .
5 da |, OB'B 4mB 0 |y p2\1-1B'/B
(3.35)
The contribution from the dT /dy term in (3.34) vanishes in the v integration. We now

switch the order of the A and B’ integrations, so B’ ranges over (B, B) and A ranges over
gr g

(O, B/ B’). The A integral can then be evaluated, giving precisely the T term in (3.29). Thus,
the flow associated with the distribution (3.32) indeed has the form (3.28)-(3.29).

As described in [17], the g component of the distribution function for passing particles
is computed from the constraint ((B/v)) C) = 0, where C is the collision operator. If we
consider the ions in a pure plasma, we can explicitly calculate g; and X using the standard
momentum-conserving model operator

C = VJ;{ f fom‘”v"} (3.36)
where .
_ 2U||B 0 d
L— 2B o1 U"-(;)Tl (337)

is the pitch-angle scattering operator,

U= [ f P fo'—”-‘fv] f & favu, (3.38)
2nZ%*n;In A [erf (x) — ¥ (x)]
- = (3.39)

¥ (x) = [erf (v) - x derf (x) /dn)] / (26%), erf(0) = (2/ V) ;' exp (%)t is the error
function, and x = v/ ¥27Ti/m;. The analysis then closely resembles the standard tokamak
calculation [8], giving

—foo

Kmic dTl miv2 Sv B/B dx
ZeTi:i—gl-/:[ —133] SH| O —& (3.40)

2B (m)

where H = H (B/ B- /l) is a Heavyside function which is 1 for passing particles and 0 for
trapped particles. The final expression for the parallel ion flow in the long-mean-free-path
regime becomes

KcB dT d(D 1 dp;
Vip = -117fc—— ( P

Ze(B?) dt/lt B \dy, Zen, dzﬁt) (K+1) 34D
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where the effective fraction of circulating particles

fe (3.42)

_3(B) ff*”"*_ﬂ_ff_ﬁ__
4 B Jo (x/l—lB/E)

is approximately one if the variation in B is small. As expected, (3.41) has the form (3.28)-
(3.29).

Notice that the distribution function (3.32) was derived in [17] only for the long-mean-
free-path regime, whereas the general form of the flow (3.28)-(3.29) was derived here with-
out any assumption about the collisionality.

3.3.3 Computation of geometric integral

For any particular quasi-isodynamic field, the Y quantity (3.25) which appears in the
Pfirsch-Schliiter flow (3.29) and Pfirsch-Schliiter current (3.31) can be evaluated numer-
ically in a number of ways. One approach is to use (3.17) to write

1+K (BdB (o0
'rzsz"—f = (=] . 4
) (), a4

The function ¢ (@, B) can be computed from a given field B (6, ) or specified directly. The
integrand in (3.43) can then be computed, the integral evaluated, and if desired, the result
mapped to (6, {) coordinates. Figure 3-3 shows T computed using this method for the
model field of figure 3-1.

In an alternative approach, we begin by transforming (3.25) as follows:

Cdl (OB'\ (oW 2B (¢dl |(oB oB'\ |{on
- 2 - i -
v (5 (3) ), 0 L 515, (@) |5, e

For points between B and ¢ = 0, the integration bound ¢, is 0, and for points on the other
side of B, {, = 2n/N, where again N is the number of toroidal periods of the stellarator (i.e.
the number of B or B curves). Applying (3.16), then

[+K (Ydl (0B
=28t "= f S (—) . (3.45)
q & B 60 I

This expression can also be obtained from (3.43) using (3.18), with 6 replaced by ¢ in the
latter. Depending on the particular application, either the form (3.43) or (3.45) for T may
be more convenient to evaluate.
Notice that the integrals throughout this section are performed along constant-a paths.
As the right-hand side of (3.25) is branch-independent, then the integrals in (3.43) and
(3.45) must be so as well. These integrals can still be computed for a B (6, {) which is
not quasi-isodynamic, but the result will be discontinuous at B = B. For a nearly quasi-
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0.05

0
g 2r/N

Figure 3-3: Contours of the dimensionless quantity Tg/ (gl + K), where T appears in the
parallel flow and current and is defined in (3.25). The calculation is performed for the model
field of figure 3-1 using (3.43). Dashed contours are negative.

isodynamic B (6, {), such as the one obtained in [9, 10] by Fourier-filtering a perfectly
quasi-isodynamic field, the discontinuity in Y is small.

3.4 Particle flux and radial electric field

We now derive an expression for the radial flux of each particle species at any collisionality.
The neoclassical part of the flux is

(I V) = (fd3vad : Vsﬁu) (3.46)

where vq = (/) V x (yb) is the drift velocity. As in section 3.3.2, derivatives throughout
this section will hold the leading-order energy v*/2 + Ze®/m and the magnetic moment
v’ /2B fixed. It can be shown using (3.8) that v, - Vi, = yyb - VA where

Y

A=-K—+8§ 3.47
a0 (3.47)

S ‘fBIdB’ o) 8 Y 3.48
" da ), OB Q' (3.48)

and
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Using

fd3v(-)=7r§ng®vzdv B/B—L(-) (3.49)
B4 Jo o 1-2B/B '

and the fact that (B - VQ) = 0 for any single-valued Q, we find

(T - Vi) = < f d*v fyb - VA> = —< f dvyAb -V f>. (3.50)

In the last equation we have also used the fact that A = Qat A = B/B. Substituting in the
drift kinetic equation

afo
b-V \Y/ = 51
yb-Vf+vq- (/’tawt C (3.51)
where C is the collision operator, we then obtain
(T-Vi) = - < f v AC) . (3.52)

We now specialize to the case of the ion flux in a pure plasma, so ion collisions with
electrons and the radial electron particle flux can be ignored to leading order in Vm/m;.
We also specialize to the long-mean-free-path collisionality regime. The model collision
operator (3.36) is again employed. This operator is constructed to have the momentum
conservation property f vy C = 0, s0 (3.52) can be written

6 i
(Fi.v¢t>=-< f d3vSv£{ 05: gi— ﬁom;iv"}> (3.53)

where we have applied the distribution function (3.32).

We next make use of the property {(8Q/da)g) = 0 for any branch-independent Q. This
property follows from (3.26) and (3.10) if an integration by parts is performed in e. It
follows that any terms in (3.53) which are linear in (Oh/0a)p will vanish. For example, g;
is a flux function and so it does not contribute to (3.53). We group the nonvanishing terms
into two pieces as follows:

(- V) =T} + T, (3.54)
where ok
I = ( f v5eSY L{S}> (3.55)
r,= < f d3v5v.£{f0m‘”"“”}> (3.56)
and

2 -1
' v] fd3v6—f°vv“S (3.57)

nv
_[fdsvﬁo 3T
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is the part of (3.38) which depends on a. Notice that upon applying (3.49), the d°v velocity
integral in I'; gives

fO 4
Flocf dva"[/t V. (3.58)

Also, examining (3.57), u, is proportional to the same factor. Therefore I', and the total
flux have the same proportionality:

af;O 4
T

Consequently, when (0h/0a) is nonzero, the v integrals can be factored out of the ambipo-
larity condition (I; - Vi) = 0 to obtain

_ 1 dpl Ze dD ( 5) 1 dTi]
dxxte™ — (- ==L 3.60
J V[pl dv T, dv, 2) T dy, (3.60)

We can rearrange to solve for the radial electric field, using

-1
__[fmdx "1] rdxxe v=1.17, (3.61)

a number which is familiar from the banana-regime analysis in a tokamak and from (3.41).
The radial electric field in a long-mean-free-path-regime quasi-isodynamic stellarator is
therefore

(T - V) oc f dv2fo (3.59)
0

Ledd __ldp 117473 (3.62)
T d‘/’t pi A Ti dyn
Physically, this formula shows an inward electric field E ~ T;Vn;/ (Zen;) is required to
reduce the ion flux down to the level of the electron flux, corresponding to “ion root”
confinement.
Note that if a pitch-angle scattering operator without the momentum conserving term u
were used in the above calculation, the same radial electric field would be obtained.
The result (3.62) can be used to simplify (3.41), leaving the parallel ion flow in a long-
mean-free-path-regime quasi-isodynamic stellarator as

c dT;

Notice that Vy; oc dT;/di, so an ion temperature gradient is required for there to be a parallel
ion flow.
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3.5 Bootstrap current

In a quasi-isodynamic field, the bootstrap current can be calculated exactly as in a tokamak
[17], for although the (8k’/da)p term in the distribution function (3.32) does not arise in a
tokamak, this term vanishes whenever a flux surface average is taken, as argued following
(3.53). Therefore in the evaluation of (jB) using the standard analytical method for a
tokamak [8], the (Oh’/da)p terms disappear from the analysis.

For the long-mean-free-path regime and arbitrary ion charge Z the result is

7242217 +075 (dp; dp.  2.07Z+088  dT. ne dT,
i B) = fK hi | ZPe _ e 7)),
(iiB) = fKe z(V2+2) (d¢,+d¢q ZZ+221Z+ 075 “dy Zdzpt)
(3.64)

where f; = 1 — £, is the effective trapped fraction and f; is given by (3.42). To obtain (3.64)
we have used the Spitzer function as described on page 207 of [8], and we have used the
approximate Spitzer function with two Laguerre polynomials from appendix B of [49].
The total parallel current is then obtained from (3.64) using (3.30). For example, for
Z = 1 the result is
fiKcB dpe dT, dT;

. dpi )
= 1.64=—m—|—+ —-0.74n.— - 1.170.— 3.65
h (B (d«//t v, " dy, e dy, (3.65)

sl ) -]
+=|—+—|||1 = =< | K+ T|.
B (dt/'t dip (B?)
Another independent relation exists between j; and K, for as we have noted previously,
cK /2 is the total toroidal current inside a flux surface, and so K () = (2/c) f d*a- j. Here,
the surface integral is performed over a constant-£ cross-section of the plasma, a surface

which covers the region from the magnetic axis out to the flux surface ;. As shown in
appendix F, it follows that

dK K dpw _ 47 (iiB)

Y AR TON oe0

This equation is in fact true for any stellarator, just just a quasi-isodynamic one. The system
of equations (3.64) and (3.66), together with the boundary condition that K = 0 at the
magnetic axis, can be solved to give a self-consistent current profile K(¥). As (jB) < K
in (3.64), then the self-consistent solution is K = 0. This is the result, anticipated in
[17, 201, that the bootstrap current can vanish in a quasi-isodynamic stellarator.

However, the solution K = 0 is fragile, and it is important to not simply set K = 0 in
all formulae for a quasi-isodynamic plasma, for several reasons. Any small departure from
(3.64) anywhere inside the flux surface of interest will alter the solution of (3.66), giving
nonzero K. Departures from (3.64) are inevitable due to the impossibility of achieving per-
fect quasi-isodynamism [9] and the fact that the collisionality is not infinitesimally small.
In W7-X, for example, these factors are expected to lead to a plasma current cK/2 of up to
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~100 kA [50].

3.6 Discussion and conclusions

We have shown that perfectly quasi-isodynamic fields provide an important point of refer-
ence for understanding transport in optimized stellarator designs: while quasi-isodynamic
fields are generally not quasisymmetric, neoclassical calculations are analytically tractable
in a quasi-isodynamic field to the same extent as in a tokamak, with several modest modi-
fications.

We have derived a general form for the flow in a quasi-isodynamic stellarator, given in
(3.28)-(3.29). The form resembles the flow in an axisymmetric or quasisymmetric field,
but a new term " arises in the Pfirsch-Schliiter flow due to the deviation from symmetry.
Our form of the flow agrees with the previously published distribution function for the
long-mean-free-path regime, but the derivation here is valid also at higher collisionality. A
similar form (3.30)-(3.31) for the parallel current immediately follows. The new quantity
T can be evaluated readily for a given B (6, ¢) using (3.43) or (3.45). When the enclosed
toroidal current cK/2 vanishes in the long-mean-free-path regime, the parallel flow and
current become proportional to T, and their flux surface averages vanish. For the more
general case of nonzero K, we can use (3.45) to estimate

T (B-B)1 (B-B);,
K B K B i

(3.67)

where i, is the poloidal current outside the flux surface (essentially equal to the total current
in the external toroidal field coils) and i, is the plasma current (the toroidal current inside
the flux surface). As i, > i, in any stellarator, the new Y terms in V} and j; will dominate
over the “tokamak-like” terms proportional to K even when K is not strictly zero. For
example, for W7-X parameters, even with a high estimate for the bootstrap current, we
expect T/K > 60. To a very good approximation then,

c (d(D 1 dp,

for each species a and
¢ dpi

B? dy,
Due to the departure from symmetry, the radial particle flux is not intrinsically ambipo-

lar. We can therefore solve for the radial electric field by imposing ambipolarity. Using a
momentum-conserving pitch-angle-scattering model collision operator, the electric field in
the long-mean-free-path regime is found to have the concise form (3.62). In the limit of
quasi-poloidal symmetry, corresponding to (8k/da)z = 0, the radial ion flux (3.54)-(3.57)
becomes zero even when the velocity integral in (3.59) is not, so the electric field becomes

J (BXxVy+ TB). (3.69)
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undetermined.

These results for the flow, current, and radial electric field may be used to validate
codes, since in a code it is possible to specify a perfectly quasi-isodynamic field B (6, {).
Also, in an optimized stellarator which is not perfectly quasi-isodynamic but nearly so,
our results may apply approximately. In a field which is not perfectly quasi-isodynamic, a
D « 1/v regime will reappear for the radial particle flux, so the ambipolar radial electric
field (3.62) will be the first of our results to break down. However, the parallel flows and
current are less sensitive to the details of the ripple-trapped particles, so our results for the
flows and current should be relatively robust.



CHAPTER

Electric field orderings and the
monoenergetic approximation

In the kinetic theory analysis in the preceding two chapters, our expansion of the drift
kinetic equation
Wb+VvE+vy) -Vf=C 4.1)

was done assuming the ordering |yyb - Vf| > |vg - Vf]. Here, vg = cB2E X B is the Ex B
drift, and v, is the magnetic drift. However, starting in this chapter we will consider a
stronger ordering for the radial electric field, an ordering which will be referred to as the
“finite-E,” regime, and which will be defined more precisely in the next section.

One of the most widely used tools for calculating neoclassical transport in stellarators
in the finite-E, regime is the DKES (Drift Kinetic Equation Solver) code [51, 52]. Other
codes such as PENTA [53, 54] have been developed recently which use the calculations
of DKES as input, compensating for the lack of momentum conservation by the collision
operator used in DKES [50]. In the drift kinetic equation solved by DKES, not only is the
collision operator simplified, but ad-hoc changes are also made to several other terms in
order to facilitate rapid computation. These changes, which involve assuming the particle
speed is a constant rather than the total (kinetic plus potential) energy, will be explained in
more detail in section 4.2, and are sometimes referred to as the “monoenergetic approxi-
mation” [55]. It is natural to ask what effect the monoenergetic approximation has on the
transport coefficients. To rigorously assess the validity of this approximation in neoclassi-
cal calculations, it is necessary to solve the drift kinetic equation with collisions or use a
Monte-Carlo approach.

However, to avoid the complexity of the collision operator, a simpler calculation which
is instructive is the determination of collisionless effective particle orbits. The characteristic
curves of the kinetic equation represent effective particle trajectories, and so the effective
trajectories associated with the DKES kinetic equation can be compared with the true par-
ticle trajectories. It has already been noted elsewhere that along the DKES trajectories,

46
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neither total energy nor magnetic moment are conserved [55]. Here, using a quasisym-
metric vacuum magnetic field as a model, we will calculate the guiding-center trajectories
analytically for both the equations used in DKES and for the true equations of motion. We
will find that when there is a nonzero radial electric field, the trajectories used by DKES
are fundamentally different than the true particle trajectories, and for both trajectories we
will derive the shape of the trapped-passing boundaries in velocity space. It will be shown
that DKES systematically under-predicts the trapped particle fraction.

The present analytical calculation complements and provides insight into a recent nu-
merical study by Beidler et al [55]. In that work, the particle diffusion coefficient calculated
by DKES was compared to Monte-Carlo calculations, where in the latter, either the true or
the monoenergetic equations of motion could be used. It was found that the DKES diffu-
sion coefficient can be substantially erroneous once the radial electric field E, approaches a
value which was termed the “resonance” E™*. For a axisymmetric or quasisymmetric field,
E™ is defined to be the value of E, at which v;b- VB + vg - VB = 0, where v; = V2T, /m;
is the ion thermal speed. We too will find that substantial problems arise in monoenergetic
calculations when E, approaches E™. These findings are relevant to the HSX stellarator
[15], since E, in this device is expected to somewhat exceed EX* near the magnetic axis
[56], and so monoenergetic transport calculations are likely to be unreliable. In another
recent work, Maassberg et al [50] examined the lack of momentum conservation by the
collision operator in DKES. This investigation is complementary to the analysis herein,
for the error in the trapped fraction discussed in the following sections is associated with
the collisionless trajectories, and it is therefore unrelated to the fact that DKES uses an
approximate collision operator rather than the full Fokker-Planck operator.

4.1 Orderings for the electric field

In neoclassical theory, the magnitude of the electric field can be ordered in one of three
ways. The most common [8, 57, 58] is the “small-E,,” “low-flow,” or “drift” ordering,
which is the ordering we have used in the preceding chapters. In this ordering, |[vg| ~ v,
where § < 1 and the small parameter § = v;/(€;a) is the ion gyroradius divided by a system
scale-length a. No distinction is made between radial and parallel scale-lengths. Also, all
components of B are ordered as the same magnitude. The magnetic moment u = v? /(2B)
is an adiabatic invariant, and the perpendicular guiding-center drifts are given to leading
order by (2.6) or (2.27), the latter repeated here for convenience:

Vg = (U“/Q)V X (U"b). (42)

Another ordering which is sometimes used is the “large-E,,” “large flow,” or “MHD”
ordering [12, 59—64], in which |vg| is taken to have a comparable magnitude to v;. Again,
no distinction is made between radial and parallel scale-lengths or between different com-
ponents of B. In the large-flow ordering, the adiabatic invariant changes to [v, — vel?/(2B),
and other perpendicular drifts arise which are the same order as those in (4.2).
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The third ordering, which we will use for this and future chapters, may be termed
“finite-E,”. In the finite-E, ordering, we take |vg| < v;, but we allow

[uyb - Vf] ~ [vg - V. 4.3)

As |[Vg| < v; as in the finite-E, ordering, then u = v? /(2B) is still an adiabatic invariant, the
perpendicular drifts are still given by (4.2) to leading order, and the low-flow drift kinetic or
gyrokinetic equations are applicable.

The finite-E, ordering places a constraint on the geometry, which forces different com-
ponents of B to be ordered differently. This result can be seen by considering a tokamak.
In this case, b- Vf = (b - VO®)df/00O, where as before, ® is any poloidal angle, and
vg - Vf = cl(d®/dy,)B (b - V@)If /90, so (4.3) implies cI(dD/dy,)B™' ~ v;. How-
ever, |vg| < v; implies c(d(D/dz//p)B‘llval < v;, and so it must be that |Viy,| < I, or
equivalently, B, < B;. This analysis can be generalized to quasisymmetry using b - Vf =
(b - Vx)df/dx, (since as we showed in section 2.6, (8f1/9¢), = 0.) It follows that [Vi|/I;
must be < 1, or else the finite-E, ordering is not consistent. The finite-E, ordering for a
quasisymmetric field can be written

1~U<k?! 4.4
where v
VE' VX
= 4,
bV 4.5)

and the geometric quantity

_ Vil _ (M = N) IV

k
I MI

(4.6)

must be <« 1.

Let us determine whether the geometric constraint k¥ < 1 is satisfied in the one existing
quasisymmetric stellarator, the HSX device at the University of Wisconsin-Madison [15].
HSX has N =4, M =1, and ¢ = 1 [15]. Figures 4 and 5 in reference [65] give values of

(127Vyul?) and I for HSX. Taking [Vgr| ~ (IVrP)'”, we find k ~ 0.3 at the last closed flux
surface, with k decreasing monotonically to zero at the magnetic axis. Thus, k is indeed
< 1, so the finite-E, regime is allowed to exist in HSX if E, has an appropriate value.

The normalized electric field U is often small compared to unity in laboratory plasmas
(both stellarators and tokamaks.) However, there are several situations in which U can
grow to order unity. One such situation is a transport barrier, such as the edge pedestals
and internal transport barriers (ITBs) observed in both tokamaks and stellarators [66, 67].
These transport barriers are associated with a large inward E,. While pedestals and ITBs
have been observed on many stellarators [66, 67], neither feature has been observed to date
on HSX, probably because HSX is a small device with relatively little heating power.

Another regime in which U can grow to order unity is the Core Electron-Root Con-
finement (CERC) regime, an enhanced confinement regime that has been observed in HSX
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[56] and many other stellarators [68], and which has no analogue in tokamaks. The CERC
regime arises when there is strong electron heating. As T./T; grows large, the electrons
diffuse outward faster than the ions (opposite to the situation in a T, = T; plasma), and the
resulting charge imbalance leads to an outward E,. An equilibrium is achieved when this
E, becomes sufficient to suppress the electron particle flux down to the level of the ion flux.
However, as the electron thermal speed is so large in comparison to the Ex B drift, the elec-
tron particle flux is relatively insensitive to E,, and so the equilibrium E, needs to be quite
large. The CERC regime cannot arise in tokamaks because transport in axisymmetric fields
is intrinsically ambipolar, meaning the ion and electron particle fluxes are equal regardless
of the value of E,. A perfectly quasisymmetric field would be intrinsically ambipolar as
well [37], but the departure from perfect quasisymmetry in HSX is sufficient that the CERC
regime can be observed. ' '
The normalized radial electric field U for HSX can be estimated using

U=12 (E,/400V/cm) Vm./mH
“(k/0.3)(B/1T) VT;/60eV

The normalization for each parameter above reflects a typical HSX magnitude [56]. The
radial electric field value E, ~ 400 V/m above is typical of the CERC regime [56]. The
value E, ~ 400 V/m is not measured directly, but fields of this magnitude are predicted from
PENTA calculations which solve for E, using ambipolarity; the electron and ion particle
fluxes are not automatically equal in these calculations because the departures of the real
HSX field from perfect quasisymmetry are included. It is evident from (4.7) that U can be
comparable to 1, and so the finite-E, ordering can indeed be appropriate. One reason U can
be relatively large in HSX is that there is no ion heating on the experiment, only electron
cyclotron heating, so the ions are cold, and T; enters the denominator of (4.7).

Each of the three ordering schemes (small-, finite-, and large-E,) involves not only
orderings for the electric field but also for the net plasma flow speed. For the small-E,
and large-E, orderings, the flow speed is set by the E x B speed (O(6v;) for the small-E,
regime and O(v;) for the large-E, regime.) For the finite-E, ordering, we will take the net
flow speed to be small compared to the thermal speed, as this ordering is appropriate for
experiments. Assuming the distribution function is Maxwellian to leading order, then the
center of the Maxwellian is close to the origin of velocity space (v = 0) relative to the width
of the distribution function, and so it can be further assumed that the distribution function
is a stationary Maxwellian to leading order.

4.7

4.2 Monoenergetic guiding-center equations

In order to state the monoenergetic approximation precisely, let us first recall the “true”
equations of guiding-center motion in steady electric and magnetic fields. First, E=0
where E = v?/2+ Ze®/m is the total energy and the over-dot is a total time derivative d/dt,
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® is the electrostatic potential, j« = 0 where u = v? / (2B) is the magnetic moment,

i‘=U||b+Vm+VE, (48)
C
v = 5B XV, (4.9)
and
L By VB vﬁB b-Vb vﬁbe b 4.10
vm—ZQBZ X +Q—B‘ X( . )+h— -V XD, ( )

SO Vg + Vi, = V4 With v4 given by (4.2).

Now let us assume that the plasma consists of nested toroidal flux surfaces labeled by
a radial coordinate ¥, satisfying B - Vi, = 0, and let us assume ® is a flux function. We
assume MHD equilibrium so (V X B) - Vi, = 0. The radial equation of motion becomes

2U”
U = YD B VB - Vy,. 4.11)

The guiding-center equations of motion can be cast in terms of the speed v and the pitch
angle p = y;/v. With a few lines of algebra, it can be shown that

b= C;3Zi(1 +p*)Bx Vyy - VB 4.12)
and
1-
p:—-z%é-(l— )B VB+2BSZE) (1-p2)BxV¢,-v3—(2p§2)vm-v3. (4.13)

It is at this point that the monoenergetic approximation is made in DKES [51, 52, 55]. The
magnetic drifts v, are neglected in the I equation (4.8) and the p equation (4.13). Next, the
d®/dy, term is dropped in (4.13), and (4.12) is replaced with ¢ = (. Lastly, the E x B drift
in the I equation is replaced with

c do
Ve = —B X Vi, (4.14)
(B dy,
which differs from the true vg in that V - ¥g = (. The rationale for these approximations is
to reduce the number of independent variables in the system by treating v as a parameter,
while maintaining a conservative structure of the equations.
To summarize, the effective equations of motion used in DKES are

I'= U||b + Vg, (415)

. c do
VE = @E{;:B X Vg[/t, (416)
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p=-55(1-7)B-VB, 4.17)

and
v=0. 4.18)

4.3 Monoenergetic trajectories for a model magnetic
field
To examine how the particle trajectories are altered when these approximations are made,

we consider a model magnetic field in which an analytic solution of the equations is possi-
ble, specified as follows. We consider Boozer coordinates 8 and { satisfying

with 2my, equaling the toroidal flux and ¢ (y,) the rotational transform. We take the field to
be a vacuum field so
B=1IV¢ (4.20)

where [ is position-independent. We further assume that the field is quasisymmetric, and
we ignore the radial variation in B in the region of interest, so

By, 6, {) = B(y) (4.21)

where
x=M0—-N{ (4.22)

is a helical angle. Finally, we take d®/dy, to be constant.
The equations of motion (4.15)-(4.17) can then be written

_WNoeM) v 5\ (9B),
p=—5p1 p)(ae)b v, (4.23)
£ =uyb- Ve, 4.24)
and (N—M) B
9=[wu+;Mb—nﬁ§ b-V¢, (4.25)

where B is the minimum of B (y), n = B?/ (BZ> is a geometric coefficient which is close to
1, and we have introduced the normalized radial electric field

M cId®

“E W =M B dun

(4.26)

(a constant of the motion).
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From (4.25) and (4.24) we can also form

. (N-eM)( B 0B

B= T (ﬂu—lv;' - U||) —6'6' b- V{ (427)
Combining this result with (4.23), we obtain the following ordinary differential equation
for p(B):

.B dp v 5
(nué —vp) 7B - 2B (1 P ) (4.28)

It can be verified that this equation has the solution
(up —nitb)? = —Pih* = bX (4.29)

where b = B/B and X is some constant. Let us eliminate X in favor of &, which is the
value of v when the orbit crosses through the field minimum B. The result is

(vy — mitb)? = & — nit)’ b — v*b — PiPb + V* + i’ b2 (4.30)

A particle is trapped if the right-hand side of this equation is negative for b = b. Tt follows
that the trapped-passing boundary is described by

oy = (B/B) i+, \/(B/B)- 1 (4.31)

where 72 = v* - 1.

If the variation in B is weak, i.e. £ < 1 where ¢ = (B— B)/ (2é), we can write (4.31) as

oy =it U, V2e. 4.32)

This is precisely the usual d®/dy, = 0 relation for particle mirroring, but with the apex of
the passing “cones” shifted by i in the parallel direction.

4.4 True trajectories for the model magnetic field

For the true trajectories, it is not v but rather the total energy E = vﬁ /2+uB+Ze®/m which
is constant. We eliminate E in this relation in favor of quantities when the trajectory passes
through B = B, denoted with the same accent:

v? P Zed(y
Ay pe 200 T 200
2 m 2

(4.33)

To analyze this equation further, we need another relation between ¢ and . This relation
can be obtained in a quasisymmetric field from the conservation of helical momentum. As
discussed in Chapt. 2 and appendix B, the original equations of motion (4.8)-(4.10) and the
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quasisymmetric condition (4.21) imply . = O where

v

Ve = My = Niw— MIg (4.34)
and 27y, is the poloidal flux. (The fact that K = 0 in a vacuum has been used.) We
eliminate , in (4.34) in favor of quantities when the trajectory passes through B = B:

My, — Ny — MI% = My, - N, - MI% (4.35)

and so, using dyr,/dy = ¢,

Wt_‘/;t=

M Icm (f}“ v") 4.36)

(N—eM) Ze \B B
AsO@) — O ((ﬁt) = (lﬁt - l/;t) d®/dy, we can use (4.36) to eliminate ® () and @ (;5‘) in

(4.33), giving
2

U | B\. Y -
> (v" -y E)u = - (B-B)u. (4.37)

Solving (4.37) for vy, gives

w

u i

Y= 'b- t b_2 - 21217|| + lvlﬁ -2 (B - é)/l (4.38)

A particle is trapped if the radicand in (4.38) is negative for B = B, and so the trapped-
passing boundary is obtained by setting the radicand to zero:

B B
Uy — 200 + ﬁzﬁ + (1 - E) 7 =0. (4.39)

O =+ (—A - 1) v’ +(1 - _'2)v2 (4.40)
v u < v ~— |u. .
: B . B?

In the € < 1 weak-B-variation limit, this expression becomes

Rearranging,

Uy = it £ V2e i + 202, (4.41)

4.5 Trapped particle fraction

Notice that these last two equations for the true trapped-passing boundaries differ from
(4.31)-(4.32) for the corresponding boundary in DKES. Figure 4-1 shows the trapped-
passing boundaries for the two models. Both the DKES curve and the true curve show
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trapping near & ~ i, but the true trapped region is larger than the DKES prediction. If the
radial electric field vanishes (it = 0), then the DKES equations reduce to the correct equa-
tions of motion (to leading order in the ratio of gyroradius-to-scale-length), and so DKES
gives the correct prediction for the trapped-passing boundary.

(b) 2

) /ven
o

-2

L —
[

-2 0 0 2

fL/ Uth U / (1N

Figure 4-1:  The trapped region of velocity space at a location where B = B. (a) DKES and
the true trajectories give the same result when there is no electric field (i = 0) . (b) When
it # 0, the actual trapped region is larger than the one obtained from the DKES equations.

To describe the difference in particle trapping between DKES and the true equations of
motion, it is useful to deﬁne ﬁ, the fraction of a stationary Maxwellian distribution which

th

where vy = V27 /m is the thermal speed, and the range of the ¥ integration is taken from
(4.31), (4.32), (4.40), or (4.41). For ¢ < 1, we can approximate the last ¢ v in (4.42) by ii?,
allowing the integrals to be performed analytically, giving

x V2ge” (DKES)
h= @e'oz (2 7| + [1 - erf(\ﬁ|ff|)] ewz) (actual) (4.43)

where U = it/ vy,. This parameter Uis equivalent to the value of U in (4.5) when the latter
is evaluated at the field minimum B = B. The difference between U and U/ is O(ée) so the
distinction will be neglected for the rest of this chapter. The functions in (4.43) are plotted
in Figure 4-2.a.
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— True trajectories
--- DKES trajectories
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Figure 4-2: (a) Trapped particle fraction in the two models. (b) Ratio of the DKES trapped
fraction divided by the actual trapped fraction.
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4.6 Discussion

Both the monoenergetic and true equations show that there is an exponential (exp(—U?))
decrease in the trapped fraction as |E,| increases. Figure 4-2 show that when E, # 0, DKES
systematically underestimates the trapped particle fraction. Figure 4-2.b shows the ratio
of the two functions in (4.43), showing that the discrepancy is as large as a factor of 2 for
U > 1. Based on the estimate in section 4.1, this error will be substantial in a CERC-regime
HSX plasma.

In the small-E, ordering, U is formally « 1, while U ~ 1 in both the large-E, and finite-
E, orderings. However, the analysis in this chapter is not valid in the large-E, ordering
because the drifts and magnetic moment would need to be modified.

The bootstrap current and radial fluxes in a quasisymmetric, high-aspect-ratio, low-
collisionality plasma are proportional to an “effective trapped fraction”

2 B/B
fo1o 38 AdA wan

4 B Jo  (\1-aB/B)

which differs the £, defined in (4.42). It is reasonable to expect that the bootstrap current and
radial fluxes calculated by the monoenergetic approach are distorted by the eftect shown
in figure 4-2. However, it is not correct to simply replace f; in the expressions for these
neoclassical quantities by the second line of (4.43). To properly evaluate the bootstrap
current and radial fluxes, it is necessary to solve the drift kinetic equation with collisions.
This problem will be analyzed in the next chapter.

A magnetic field cannot be perfectly quasisymmetric [33, 34], so accurate evaluation
of neoclassical transport in an experimentally relevant magnetic field requires numerical
computation. However, as the calculation herein shows, when E, approaches E*, the
radial magnetic drift causes significant changes to a particle’s energy through variation
in the electrostatic potential, even when this potential is a flux function. Thus, proper
evaluation of neoclassical transport in the regime likely requires a code which is radially
nonlocal, so this radial magnetic drift can be retained.




CHAPTER

Finite-E, effects in a quasisymmetric
stellarator

In the previous chapter, we showed that the conventional approach to calculating the effect
of E, on neoclassical quantities in the finite-E, regime, the monoenergetic approximation,
is fundamentally flawed. In the present chapter, we propose an improved approach for
neoclassical calculations in the finite-E, regime for the case of a perfectly quasisymmetric
field. The calculations in this chapter build upon techniques developed recently for toka-
maks [49, 69—73]. In the next section we will begin to solve the kinetic equation. A key
element of the calculations will be the use of the conserved canonical helical momentum
¥, as a coordinate in place of the radial variable ¢,. This change of variables requires
some care to ensure that each point in phase space is counted precisely once, as we will
discuss in section 5.2. Whereas in the previous chapter we were able to avoid analyzing the
collision operator, in this chapter we will need to take the collision operator into account,
which we do in section 5.3.1. The ion heat flux, flow, and bootstrap current in the banana
regime are then calculated in the remainder of section 5.3. Although the banana regime
is the collisionality ordering that is most interesting for fusion-relevant experiments, the
plateau regime is also discussed briefly at the end of the chapter.

5.1 Change of variables and orderings
To evaluate neoclassical transport we must solve the drift kinetic equation

Df =C. .1)

where D = (yyb + v4) - V. As before, the gradient holds the magnetic moment u = v?/(2B)
and the total energy E = v?/2 + Ze®/m fixed. When we analyzed the drift kinetic equation
for a quasisymmetric stellarator in section 2.6, in accordance with the small-E, ordering

57
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used there, we took v4 (which includes the E x B drift) to be insignificant compared to
yyb. However, when the normalized electric field U defined in (4.5) has a non-negligible
magnitude, vg cannot be dropped in (5.1). This complication invalidates the steps used
to analyze neoclassical transport in the small-E, regime in section 2.6, so we must use a
different approach to find f.

Before beginning the presentation of this new approach, it should be noted that although
the ions may be in the finite-E, regime, the electrons will essentially always be in the small-
E, regime because of their much larger thermal speed. Hence, the discussion in this and
the next chapter is specific to the ions. For the rest of the calculations, then, all symbols
will be assumed to refer to ions unless specified otherwise.

The first step in solving the drift kinetic equation for the finite-E, regime is to make
a change of variables. We use ¥, instead of ¢y as an independent variable in the kinetic
equation (along with y, ¢, u, and E), using the chain rule for changing to a new set of
variables {Q j}:

Df = " (DQ;)(0£/50;) (5.2)
J

where 0f/6Q; holds fixed all the Q; for i # j. We make an ansatz (3f/0¢ ). = 0, and the
S = f .. x,u, E) we find will be consistent with this assumption. We have already shown
Dy, = (0, so the kinetic equation becomes

(U"b + Vd) . VX (a—f) =C (53)
%)y,
Note that unlike (2.34) there is now no “radial” derivative term.

As in section 2.6, we neglect the contribution of the magnetic drifts to v4 - Vi in (5.3)
compared to the adjacent yyb - Vy. However, we now keep the contribution of the E x B
drift to v4 - Vy, giving

(U"b + Vd) . VX = (v" + u) (b . VX) (54)

where
u=ch®d'/B (5.5)

and the prime denotes d/dyy,. With this definition, u evaluated at the field minimum B = B
and in the limit K — 0 gives precisely the quantity i in (4.26). In the finite-E, ordering,
u ~ .

Next, we take the distribution function to be a stationary Maxwellian to leading order:

f = fu where .
fu= 17(27%) / exp (—mTE) (5.6)

and where i and T are flux functions. Further motivation for this leading-order distribution
is given in appendix G using an entropy production argument. We define

g=f~F (5.7)



CHAPTER 5. FINITE-E, EFFECTS IN A QUASISYMMETRIC STELLARATOR 59

where F (., E) is obtained by replacing ¢, with ¢, in the arguments of 7 and T in fi:

mE ] (5.8)

m 3/2
F= "("’*)lzn:r (m)] P [_T(w

Note that a Taylor-expansion of 77 and T about ¥, = i, in this definition gives F = fu + Fy
with

2T 2

2T 2

Fi=—-fm——|—+ —
1 fMQn T

U"Ih [7]’ (mv2 3) T’
T

U"Ih [p’ + Zed’ + (m212 5) T

]= —fg T —], (5.9)

where primes again denote d/0yn, and n, T, p, and ® are evaluated at ¢ rather than
Y. As discussed in appendix G, the radial scale-lengths a, = n/([Vynldn/dyn) and ar =
T /(IVynldT /dyr) are ordered as long compared to p/k (where k = |[Vi|/1 as in section
4.1) so |Fy| < fu. It follows that the preceding Taylor expansion is a good approximation,
and also, from the definition (5.7), then |g| < fu. Thus, the departure of f from the
Maxwellian (5.6) has two parts: f — fyy = F + g, where both F; and g are small compared

to fm.
We next write the kinetic equation as

(vy +u) (b-Vx) (Bg/dx),, = C{F +g}. (5.10)

We approximate the collision operator by the linearized ion-ion collision operator C = Ciie.
Using Ciiz {Xfu)} = 0for X = 1, v, or v?, we can write C {F + g} = Cji ¢ {g — G} where

m (uz + u2)

2T

(v +u) Iy
Q

r
T

G = fu —z (5.11)

and z is independent of velocity. We will choose the value of z later to preserve momentum
conservation by our model collision operator.
We next expand the kinetic equation and g = g@ + g + .. for small collisionality. The

leading order form of (5.10) is (6g(°) /6)()w = 0. The next order form is

(o + ) (b- V) (98 /6x), = Cue {F +£°}. (5.12)

5.2 Phase space structure when y, is a coordinate

In conventional banana-regime analysis, the next step in the asymptotic analysis would be
to annihilate the left-hand side of (5.12) using a transit average. However, we are now
using ¥, rather than i, as a coordinate, so phase space has a different structure, and care
is therefore required. At given (4., {, i, E), the requirement vﬁ > 0 will mean that not all
values of y will be allowed, and we must determine this constraint on y. We will also find
that a new discrete degree of freedom must be specified in addition to the aforementioned
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coordinates in order to uniquely identify a phase space location. Once we understand this
discrete degree of freedom, we will be able to precisely state the periodicity requirements
on gD, and thereby define an annihilation operation.

To allow for finite radial electric fields (i.e. nonzero u), we will take into account
the changes in potential @ due to variation in a particle’s radial coordinate iy, over its
trajectory. However, we will neglect the radial variation of all magnetic quantities, treating
I, as constant. We also ignore the effect of the radial drift on B, taking.

B (Y1, x) ~ B(x) = B/h(x) (5.13)

where the constant B represents the minimum value of [B| over the particle’s trajectory, so
h(x) < 1. This neglect of the radial variation in 1, and B amounts to ordering the scale-
lengths of I, and B as being long compared to p/k.

As before, we assume the potential is a flux function. Then none of the quantities in the
conservation of ¢, or E equations depend on £, so the range of allowed y is independent
of . Stated another way, all values of { are always allowed regardless of (., y, 1, E). We
will further assume the potential is a linear function of flux; therefore

O Yn) = W) + [Yn — 4] (5.14)
where @' is uniform. Combining this equation with the definitions of , and E then gives

v|2, Ze
5 +u +,uB+—n7®(lﬁ*)—E= 0. (5.15)

Applying the quadratic formula then yields

Z
Yy =-uxt \/ZE - 25@(«//*) + u? - 2uB. (5.16)

Notice that u and B above are functions of y, and due to assumptions stated earlier, we
are neglecting the radial variation of  and B. It is evident from the sign ambiguity in
(5.16) that specifying (¢, x, £, u, E) does not yet uniquely specify the phase-space location
(.x,{ vy, vy): there is also the discrete degree of freedom o = sgn (v +u) = +1. In
contrast to the usual situation where 4, (or i or ¥) is used as a variable, sgn (v}) is no
longer a useful coordinate, since for example, the two phase-space locations sharing a given
(s> X> {5 14, E) may both have the same sgn (v)).

Since vy must be real, (., u, E)-space is split into passing and trapped regions, defined
by the sign of the radicand in (5.16) at B = B. In the trapped region, single-valued functions
of phase space (like the distribution f) must be independent of o~ at the bounce points, the
values of y where the radicand vanishes (and so vy+u = 0.) This constraint is the periodicity
condition we need to annihilate the gV’ term in (5.12) for trapped ions. We thus introduce
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a new transit average operation, defined for any quantity Y by

55 dyY @y +u) " (b-Vy)!

Y = i
$dy (o +u)" (b- V)™

(5.17)

For regions of (E, u, ¥.)-space corresponding to passing particles, the integral § () dy
indicates K”M (+) dx. For regions corresponding to trapped particles, the operation §(-) dy
means ), o0 ‘mn:x () dy. Tt is important to notice that since i, rather than ¢y was taken as

an independent variable in the kinetic equation (5.10), the integrations in the transit average
hold i, rather than ¢, fixed. Applying the new transit average to (5.12) gives

Cﬁ,g {g(o) - G} =0. (518)

As in the standard banana-regime analysis, the g obtained from this equation can be used
to find the radial heat flux and parallel flow. We henceforth drop the superscript on g© to
simplify notation.

We consider a model for the magnetic field well by taking k(y) = 1 - 2¢ sin® (x/2)
with £ <« 1. (We are free to shift the coordinate y such that y = 0 aligns with B) As
stated earlier, in a stellarator, & does not necessarily equal the geometric inverse aspect
ratio, unlike the tokamak case. Recall from the discussion following (17) that b - Vy =
(M — Nq) B/ (gl + K). Keeping the variation of B with y in this definition would only give
a O (¢) correction to the new transit average (5.17), so we treat b - Vy as constant in (5.17)
for analytical calculations.

5.3 Banana regime neoclassical transport

5.3.1 Model collision operator

In the conventional banana-regime analysis, the collision operator is replaced with the pitch

angle scattering operator
)4 J_hU" 0 0

Cpas = A as

2w 91 "'6a

-1
where w = v2/2, 1 = 2uB/v?, v, = va3 V2r[erf (x) = ¥ (x)] (2x3) , x = v\m/2T,
vg = 4rZ%*n;InAc/ (3 \/ETW) is the Braginskii ion-ion collision frequency, In Ac
is the Coulomb logarithm, erf (x) = x~1/22 fox ¢ dy is the error function, and ¥ (x) =
(sz)_l [erf (x) — xerf’ (x)]. Use of the model operator Cps is justified by noting that for

& < 1, the distribution function obtained using Cp,s has a large (O (8_1)) 0/0A derivative
[57]. Since Cpes can be obtained by keeping only /A derivatives in the operator for col-
lisions with a Maxwellian field (as we will show shortly), it is plausible that Cp,s yields
accurate results. The operator Cp,s does not generally satisfy the momentum conservation

(5.19)



62 CHAPTER 5. FINITE-E, EFFECTS IN A QUASISYMMETRIC STELLARATOR

property
f dPvyC=0 (5.20)

that is satisfied by both the full Fokker-Planck ion-ion collision operator and the lineariza-
tion thereof. However, (5.20) becomes true for a particular choice of the constant z in G,
and so in conventional neoclassical calculations, z is selected to be this value [8].

For the present finite-E, calculation, we will need to use a modified and generalized
model collision operator. The fundamental reason that the pitch-angle scattering operator
is inappropriate in the finite-E, regime is that the trapped region is shifted away from the
origin of velocity space (v = 0). Therefore, particles are scattered into and out of the
trapped region not only by pitch-angle scattering, but also by energy scattering.

Consider the properties which a good model collision operator would possess. First,
the operator should give the same ion heat flux, flow, and bootstrap current as Cpas 1n the
E, — 0 limit. Second, we will want to exchange the order of derivatives in the collision op-
erator with the transit average integral in (5.18). To do so, the collision operator derivatives
must be of the form d/0X for some X (., E, u) (independent of y), holding other combi-
nations of (y, ., E, u) fixed. Lastly, the operator should keep only velocity derivatives in
a direction approximately normal to the modified trapped-passing boundary described by
(5.16) and the discussion following it.

Here we consider only the case of no electric field shear, ®” = (. By restricting our
attention to the ®” = 0 case, several expressions in the following discussion become much
less complicated. Also, in a tokamak [70, 72] it was found that the most significant effect
of E, arises through the magnitude of @’ itself rather than through its derivative: @’ had
exponential effects on neoclassical quantities (as we too shall find) while ®” only affects
the ion heat flux through an overall algebraic multiplier, and ®” does not affect the ion flow
or bootstrap current at all.

The model collision operator is then derived from the linearized Fokker-Planck oper-
ator. The implicit field term dramatically complicates the analysis, so it is neglected as
in [57]. The explicit test-particle term then gives the standard Rosenbluth potential for
collisions with a Maxwellian field. The resulting operator can then be written as

Culfi) = V- [fMé Vo il i) (5.21)
where N
0= (7v2 - vv) %— + vv—2ﬂ (5.22)

and vy = vg3 VIR () (22) .

We next cast (5.21) into a new set of velocity-space variables. The choice of variables
is unusual, so we motivate it with the following argument. Suppose we could find new
variables W and A such that

v +u=+V2W+1-AJh (5.23)
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so as to closely resemble the expression

v =+ V2w+1-2/h (5.24)

which is used often in the conventional calculations, but with the same v — vy +u replace-
ment we have needed to make in the transit average. The parallelism between (5.23)-(5.24)
will allow the finite-E, calculations to then be done in much the same way as the conven-
tional calculations, and allow the finite-E, results to continuously reduce to the standard
u = 0 ones. Also, the shifted trapped-passing boundary will then be the curve A = min (h),
just as the trapped-passing boundary in the E, — 0 case is the curve 4 = min (k). Thus,
keeping only /A derivatives in the collision operator will capture the dominant velocity-
space behavior for the finite-E, regime, just as 3/ derivatives do in the E, — 0 case.
As stated in the paragraph following (5.20), we require that W and A be “constants of the
motion”, i.e. functions of ¥., E, u, B, etc.

However, looking at (5.16) and observing that u o« h?, the y dependence (i.e. the h
dependence) in (5.16) is fundamentally different from that in (5.23), so there is no way to
define a W and A to make (5.23) true exactly. However, if the magnetic field does not vary
much on a flux surface (i.e. if # = 1 + O (&) for € < 1) we can make the replacement
1* = 3~ (2/h) + O(&?). Then (5.16) can be written

wtu=oV2 \/ - Zeq;:‘”*) + %az = % (&2 + uB) + 022 (5.25)

where iz = u/h is the value of u at B = B and is a constant. (The quantity in 4.26 is identical
in the vacuum limit K = 0.) From (5.25) it can be seen that the desired form (5.23) can be
achieved approximately, and to do so there is only one possible way to define W and A:

_ZedW) | 3.

W=E 2, (5.26)
m 2
Ao HBEE (5.27)
== ,

Notice that as E, — 0, A reduces to A, and W — w. We will use W and A along with
gyrophase ¢ as the velocity space variables in most of the remaining calculation.
We will need to relate W and A to vy and v,. To do so we first combine (5.16) and
(5.26) to obtain
2W = (y +u) + (3 - 1) + 0. (5.28)

Using (5.27) we then find

(1 - A/R)2W = (uy +u)’ + (3 = k> = 2/h) P (5.29)
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Thus, instead of (5.23), the exact relationship is

v+ = £ /(L— AJR)2W — (3 — 2 — 2/ h) . (5.30)

For & < 1, the O (¢) terms in 3—h? —2/h cancel, and so (5.23) is obtained within on overall
1+ O (¢) multiplicative factor. A particle is trapped if and only if vy +u can vanish, meaning
the right hand side of (5.23) vanishes as # varies while A and W are fixed (since A and W
are constants of the motion.) Therefore, to a very good approximation, a particle is trapped
if and only if A > min (k).

Another useful property of the variables A and W is found by applying a A derivative

to (5.29):
(6(v||+u)) _(?ﬂ) _ w (5.31)
N Jy, \OAJy, ™ @+u)h '

This property is reminiscent of the result (dv/d1),, = —w/ (v;h) which is used extensively

in the conventional neoclassical calculations. The equalities (5.31) are true regardless of

whether y, or ¢, is held fixed in the partial derivatives, since y is fixed so u is constant.
Now consider the result of applying a velocity gradient to (5.28),

VvW = (v" + It) b+ V;. (5.32)

Applying a velocity gradient to (5.27) and using (5.32) we find

(v||+u)A (1 —A/h)h
VA = - . .
W b+ WV (5.33)
Then using Vy¢ = v?b X v, we obtain the Jacobian
1 w
J = = . .
ViIWXVA-Vyp  (yy+u)h (5.34)
This expression closely resembles the Jacobian for the conventional variables
1
d (5.35)

Vow X Vod-Vog gk

with the same v — v + u replacement seen in (5.31).

Note that in contrast to [70], the small-g approximation has not been used at all here to
derive (5.31)-(5.34) (aside from motivating the definitions (5.26)-(5.27)).

For trapped and barely passing particles, the right hand side of (5.29) is O (sviz). There-
fore 1 - A/h must be O (g) for these particles. In light of (5.32) and (5.33), then [V, W| ~ v;,
IV\Al ~ Ve/v;, and

IVyA -V, W|
VLAV W~

Therefore, in the trapped and barely passing region of velocity space, the A and W co-

Ve. (5.36)
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ordinates are nearly orthogonal. Thus, (3/0A)y will act roughly normal to the shifted
trapped-passing boundary, as desired. For comparison, the conventional variables satisfy
V.- V,w = 0 exactly.

To perform integrals later on, we will need to know the upper and lower bounds of W
and A at given & and y. From (5.28), W can be arbitrarily large, and the lower bound is
(3- h2) i2/2 ~ i2[1 + O (&)]. To find the bounds on A, we can combine (5.28) and (5.29)
to write

B 2 + 20
(v +u) + (3 —h2) 2 + 2
It follows that at given and , the minimum of A is exactly 0 (which occurs when vy — +00)
and the maximum allowed A is precisely 2/ (3 - hz) (which occurs when vy = —u and

(5.37)

v, = 0.) For £ < 1, this upper bound equals % + O (82)
Next, we use the general formula for the divergence in an arbitrary coordinate system
to write (5.21) as

Culf) =5 [fMJ(VVX) Q- (V1) ay(,{;)} (5.38)

where X and Y each range over the set {A, W, ¢}. The partial derivatives in (5.38) hold fixed
the remaining elements of this set, along with ¢ and y. Recall that the collision operator
appearing in the drift kinetic equation (and therefore in (5.18)) has been gyroaveraged. If
we gyroaverage (5.38), the X = ¢ terms vanish since the quantity in square brackets is
periodic in ¢. Then V,W- Q- V¢ = 0 from (5.32) and V,A- 0V, = 0 from (5.33), so the
gyroaveraged Cy {1} is given by the right hand side of (5.38) with X and Y each limited to
the set {A, W}.

In analogy to the small-E, case, we now drop the 9/0W derivatives in (5.38) in order
to enable further analysis. For u = 0, the result of this simplification is precisely Cp as
defined in (5.19). For the general u # 0 case, the distribution function we obtain using
our final model operator has a large A derivative, making it plausible that discarding the
derivatives will not dramatically affect the calculations for & < 1.

To evaluate (5.38) we must compute (V,A)- @ (V,A). The algebra becomes intractable
unless we use 1 — A/h ~ O(g) and (vy +u) ~ 0( \/Evi) to discard terms which are small
for trapped and barely passing particles. We thereby neglect the v, term in (5.33) to obtain

(VoA) - O~ (VeA) = (uy + 1) = {‘;*ui Dot +0(Vone? )} (5.39)

We approximate vf = %, and using (5.26), we approximate Vv m 2(W - ﬁz). Our model
operator becomes

_(w+u)fo
V=T (BX)W

(v + ) A [Wyo + 2 (v - vl)]( 3 A)w( J’:;)] (5.40)



66 CHAPTER 5. FINITE-E, EFFECTS IN A QUASISYMMETRIC STELLARATOR

Notice that (5.40) has a similar form to Cp,, (in (5.19)). (To obtain (5.40) we have made the
replacement A? — A, which is permissible since A ~ 1. In the related earlier derivation of
a model collision operator for tokamaks [70], the replacement A? — 1 was made instead.
All results will be independent of the exponent on A because the later result (5.58) is
independent of this exponent.)

Where v appears inside v, v, and fy in the operator, we make the approximation

v~ V2W 2. (5.41)

The quantities v, v, and fv are then all constant with respect to the A derivative. We now
apply the chain rule, so as to hold ¥, rather than iy, fixed in the partial derivatives. For any

quantity &,
2,0 B, e
(6A v NS w \OA ), oy \O s (5.42)

To allow further analysis, the last term in (5.42) must be dropped for both of the partial
derivatives in (5.40). Then defining

vk = vy + (v —vy) 2 /W (5.43)

C < (vn + “) Aok (ts\)ww [(v" +u)A ( ‘;j\)w (1{;4 )] (5.44)

We may now plug in f; — g — G from (5.18). In G we use (5.41) and Q ~ Q. Thus

o (), (), (- )
(5.45)

This operator is isomorphic to the one employed for tokamaks in [70] with 7 — I, and
Yp — Yy Since T, T’, I, and Q do not vary significantly over an orbit width, these
quantities are all treated as constant with respect to derivatives and integrals at constant i,.

We have demonstrated that many expressions for the new W, A variables are identical
to the conventional results in the w A variables, but with the replacement vy — vy + u. This
pattern can be seen in the form of the model operator, the derivative (5.31), and the Jacobian
(5.34). Due to the correspondence between the new expressions and the conventional ones,
the steps used to calculate neoclassical quantities with the new collision operator will mirror
steps in the conventional calculations. However, the replacement v, (w) — vg (W) in the
new collision operator is a significant change, for now energy diffusion as well as pitch-
angle scattering is retained. This change to the effective collision frequency will cause
finite-E, modifications to the ion heat flux, ion flow, and bootstrap current.

we have
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5.3.2 Collisional constraint

We must now find the g piece of the distribution function by solving (5.18). First consider
the trapped particles, for which this equation becomes

Xmax
1 9 d g mW LT’
0= ;0‘ deb_V;(_a_A {(U" +u) Aa—A [—f; - (v" + u) (—T— - Z) fZT }} . (546)
Xmin

The T drive term vanishes due to the o sum. Therefore g = 0 is a solution for trapped
particles, as in the standard banana-regime calculation.
Next we consider passing particles, for which (5.18) becomes

27nM
N 918 _ mW _ AL
0= deaA {(U"+u)A0A[fM (v||+u)( T Z) QT]}. (547)
0

It is permissible to switch the order of the integral and the first 3/9A derivative because we
have constructed A and W to be functions of (., u, E). We integrate in A from A = 0 and
apply (5.31) to find

0 (g)\_ HW (mW )IhT’
3A(fM)_ n+w T )81 (48)
where
1 2rM
©. = 577 | € e (5:49)
0

and H = H (hy;, — A) is a Heavyside step function which is 1 for passing particles and 0
for trapped particles.

5.3.3 Momentum conservation

We choose the parameter z by requiring

fd3l} (v" + u) CK = 0, (550)

a combination of the particle and momentum conservation properties of the ion-ion col-
lision operator. Using a parity argument as in appendix D, it can be shown that number
conservation ( f d@*vCx = 0) and energy conservation (f d*v1*Cx = 0) are both satisfied
to leading order regardless of z.

To evaluate velocity integrals such as (5.50) we need to write d*v in (W, A) variables.
Notice from (5.30) that for given W, A, and y, there are two allowed values for v + u,
associated with o = +1. Therefore at given y, (5.30) and (5.28) give a 1-to-1 map between
(W, A, ¢, o) and v. The proper way to integrate a quantity £ over velocity space in our new
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za:defdAfdgo ||& (5.51)
%;adefdAfmp(—v"v—‘:_f—u)

with the Jacobian J given by (5.34).
Combining (5.50)-(5.51) with our model operator (5.45) and the distribution function
(5.48), we therefore require

variables is therefore

fd3vX

_ o (MW — o [, HAVT=ATR
o_defMW vK( - z)fdA T=Afh|A ), (5.52)

The A integral is independent of W so we divide it out of the equation. We then change
variables from Wto y = (W - ftz) m/T. From the earlier discussion of the lower bound on
W, the lower bound on y 1s O (g) so effectively zero. Therefore

K ayer(y+ 202" (yv. + 20

=
j;o dy e ly + 2U2 (yv, + 2U%)

where U here is really the flux function U = i/v; (equivalent to the definition in Chapt. 4),
but here and for the rest of this chapter, we will drop the decoration to simplify notation.
Using x = +/y + U2 in the definitions of v, and v, we can now evaluate z for any given U.
For U = 0, (5.53) gives z = 1.33, in agreement with conventional neoclassical theory.

(5.53)

5.3.4 Neoclassical ion heat flux

In appendix D we derive the following equation to relate the radial ion heat flux to an
integral of the collision operator:

)f v
(q- Vi) = —Eh <hfd3v v"%—C>. (5.54)

Although this equation was derived directly from the full Fokker-Planck equation using
only the quasisymmetry condition B = B ({4, Y), the same equation would result if the
isomorphism substitutions (2.33) were naively applied to the analogous equation for toka-
maks. Using the number, momentum, and energy conservation properties of the collision
operator, as well as (5.41), then (5.54) is equivalent to

(q- Vi) = —%IE <h f Fv (v + u) WC>. (5.55)
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Substituting in the collision operator and distribution function, we then have

2nmI T’ Y. (mW
@ Vo = e f aw W fure (2 - 2) (5.56)

We next integrate by parts in A, noting there is no contribution from the boundary. Apply-
ing (5.23) then results in

\/iﬂmIﬁT’ s mW
. = __——"h /2 =7 _
(q-Viyn) = ST de w fMVK( T Z) 5.57

XU:‘MA[ = (W—{{A/h)*]>'

The A integral can then be performed using the method in appendix B of [57]. In general,

1 H
dA N - =1.95 o 5.58
I [ = 1_A/h>*] VE+0 @) (5.59

for any v > —1 where

1
1.95:2«/5{“ fo %’25[1—?’2’(-2—)}} (5.59)

and £ (Kz) is the complete elliptic integral of the second kind. Again changing to the vari-
able y = (W — #*) m/T, then

(q- Vi) = —1.95 «/’ ni 1T eV x r dye™ (y+ 202)3’2 (y+20% = 2) (v +2U% ).
2 \Tms»? 0 !
(5.60)
Plugging in the collision frequencies,
12TT ’
<q : V‘/’h) -1.35 V— Qban (U) (561)

where
B _ _ \3/2 \-3/2 2
Ovan (U) = 153 ’O dye y(y +2U ) (y +U ) (y +2U z) (5.62)

et (B T) (0 -5)¥ (Vo T
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This function is plotted in figure 5-1.a. At U = 0, Qpan = 1 and (5.61) recovers the
conventional heat flux. Multiplying the right-hand side of (5.61) by VS accounts for orbit
squeezing effects [70], where
S w =1+ h 563
=14+ ——. .
) B

Figure 5-1: Numerical functions which appear in (a) the heat flux and (b) the parallel flow
and bootstrap current. Solid (red) curves are the banana regime functions Qpan and Apay,
while dashed (blue) curves are the plateau regime functions Qp,; and Ap.

5.3.5 Ion Flow
The parallel flow is obtained by forming the integral
Vi = f dvyf ~ f Py (F1+g) (5.64)

ph (P Zed' f 3
= ——|=—+ + | d .
mo (p T ) vy g
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We then write the remaining integral as

fd3vv||g=fd3vv”G+fd3v(v“+u)(g—G)—ufd3v(g—G). (5.65)

Using (5.11), the first integral on the right-hand side gives

LT’
f PouG = (% +U? —z) ?;n;z—T. (5.66)

The second integral on the right-hand side of (5.65) can be evaluated in the same manner
as the integral (5.57) for the heat flux, and the result is v/€ smaller than (5.66). The last
integral in (5.65) is also estimated to be v/ smaller than (5.66), as discussed in appendix
D. Thus, the final integral in (5.64) is approximately given by the right-hand side of (5.66).
Defining

Apan (U) = % (% +U? - z) (5.67)

then the parallel flow can be written

Ze® T ] (5.68)

ph [P
- — - 1.17 Apan —_
Vi an[p + T ban (U) T

The function Ay (U) is plotted in figure 5-1.b and agrees with the corrected result from
[49, 73]. Note that Ay, (0) = 1, and so (5.68) recovers the conventional result for U = 0.

5.3.6 Bootstrap current

The bootstrap current calculation for the finite-E, regime in a quasisymmetric stellarator
proceeds exactly as for the low-flow regime in a tokamak (e.g. as shown in [8]), but with
two modifications. First, the electron kinetic equation is written in (¥, ¥, {) variables and
analyzed as in section 2.6 (which is appropriate as the electrons are in the small-E, regime.)
Second, the parallel ion velocity (5.68) is used. This latter change affects the electron-ion
collision operator, but otherwise the conventional model electron collision operator is used.
The electron distribution function in the banana regime is found in the usual way, and a
velocity moment is taken to obtain the parallel current, using the Spitzer function f; as
in [8]. We approximate f; with two Sonine polynomials, as in appendix B of [49]. The
resulting bootstrap current for arbitrary Z can be written

72 +221Z+0.75
> B) ~ — 1.46 Vec, ' (5.69)
<J" ) "z (Z + \/5)
oy QUZEOSORT
Pe¥ i ™ (72 5012+ 075) Tz
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where, as usual, primes denote /Ay, = g(M — gN)™' 8/8y,. For Z = 1, then
(j*B) ~ ~2.42Vech (p, + p} = 0.75nT, - 1.17 AwanT}), (5.70)

Setting Apan (U) = 1 in (5.70) we recover equation (5.20) from [28], Boozer’s low-flow-
regime result for a quasisymmetric stellarator.

5.4 Plateau regime neoclassical transport

Analysis of the plateau regime is identical to that of the banana regime through equation
(5.10). Using the momentum conservation property C; ¢ {vyfa} = 0 we can write

o v”lhT mvy* 5 Apl _ G {8}
e+ ) (ax)¢.[ Ol R Y RT e S
where LT (m? 5 A
5= o_ g lifnl fmvT > Apl
g=g-fuqr (2T 272 ) .72

and Ay, is independent of velocity. Equation (5.71) has an intrinsically ambipolar form, as
it should in a quasisymmetric stellarator. The equation resembles the equation for ax-
isymmetric geometry analyzed in [49, 73], so the remaining steps are similar to those
in these references. The Krook approximation Cj, — —v; is made for the collision
operator in (5.71), and the distribution function is found by assuming a solution of the
form § = g,siny + g.cosy. We next determine Ay by requiring that the radial ion flux

< f v fvy - Vz//h> vanish, with the result

1 +4U% + 6U* + 12U°

O = o 673
The parallel ion flow is then given by
pIh p' Zed’ Apl (U) T’
~ — — —1. 74
Yi nmg [ p * T * 2 T .79

The function Ay, is plotted in figure 5-1.b. The ion heat flux is found to be

7 (M~ Ng) BEnNTT’
2 (qI + K) C2mP/2

(q- Vtﬁh)—< f dsv_fvd Vtﬁh> -3 O (U)  (5.75)

where

1+4U% + 8U* + (16/3) U + (4/3) U8 _?

1+202 + 207 670

Qpl
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This numerical function is plotted in figure 5-1.a. The bootstrap current is calculated as in
[49] and is found to be

(B) = - VR2CLTY B (M - Ng) (V2 +4Z) ( s 1T @%T{]‘
" mve@l+K)  z(2+2Z)Ut T 2V2e8z 0 227
.77

The function Ay is monotonically increasing with |U], so a nonzero E, of either sign will
increase the boostrap current.

5.5 Discussion and conclusions

In the preceding sections we have shown how to calculate neoclassical quantities in a qua-
sisymmetric stellarator when the ions are in the finite-E, regime. The technique of changing
from the radial variable i, to the canonical angular momentum ¥, in the kinetic equation
was crucial to the analysis. No analogous quantity is conserved in a non-quasisymmetric
stellarator. The conservation of i, enabled an analytical treatment of the particle orbits,
which cannot be done to the same extent in a more general stellarator field. To define the
finite-E, regime in a quasisymmetric field, we note that the ratio k = [Vyu| /I plays the role
that B,/B plays in a tokamak, so we order k < 1. Our analysis considers relatively strong
electric fields given by the ordering E, ~ Bu;/ (kc). As discussed in section 4.1, present
estimates of E, in the HSX stellarator suggest it may indeed be as large as in this ordering.

Through the calculations in this chapter, we have calculated the finite-E, modifications
to the banana-regime and plateau-regime ion heat flux, ion flow, and bootstrap current.
These expressions turn out to match those which would be obtained by applying Boozer’s
isomorphism substitutions to the tokamak results in [49, 70-73]. Thus, we have shown
the isomorphism can be generalized to include these neoclassical quantities in the finite-
E, regime. Table 5.1 summarizes the generalized isomorphism, including the quantities
U and k which are important in the finite-E, regime. Physically, the isomorphism holds
for neoclassical quantities even in the finite-E, regime because these quantities arise from
guiding-center drift dynamics and not from additional physics such as the gyromotion. The
jsomorphism relates the guiding-center drifts but not the gyromotion. Roughly speaking,
neoclassical processes are associated with guiding-center drifts whereas classical transport
is associated with gyromotion, which helps to understand why neoclassical transport obeys
the isomorphism but classical transport does not.

The modifications to banana-regime transport are obtained by generalizing the modi-
fied model collision operator proposed in [70]. Our derivation emphasizes that the (W, A)
variables are unique, in that they are the only possible way to generalize the conventional
relation Iv"| = V2w+T1 = A/k to the form |v|| + u| = V2W VT —=AJh. The finite-E, mod-
ifications to banana-regime transport are in part due to the replacement of the deflection
frequency v, in the usual pitch-angle scattering operator by a new frequency vk in the
new collision operator. The frequency vk accounts for energy scatter across the modified
trapped-passing boundary when this boundary is shifted due to E,.
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Table 5.1: Extended quasisymmetry- axisymmetry isomorphism

Axisymmetry Quasisymmetry
Symmetry of B B = B(y,, ©) B= B x)
Angle on which B depends Poloidal angle ® Helical angle y = M0 — N
Radial coordinate Poloidal flux ¢, Helical flux y, = My, — Ny,
B component flux function I = RB; Iy = NK + MI
Conserved quantity Y, =y, — Iy /Q W =t — Ly /Q

Inverse connection length

Relative B variation
Small ratio of B components

Normalized electric field

b.-VO® = 1/(gR)
g=al/R
IVpl/1 = By/ B

U = cl(v;B)™'d®/dy,

b-Vy =(M-Ng)B/(ql +K)
£= (B—B)/(zis)
k = |Vynl/ L

U = cly(uB)"'d®/dyy,
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To understand the physical origin of the finite-E, effects calculated here, it is useful to
recall figure 4-1 and figure 4-2.a. As the radial electric field is increased from zero, the
trapped-passing boundary shifts from v ~ 0to vy = —u. In the finite-E, ordering it is
consistent for the ion flow to remain subsonic, so the leading-order distribution can remain
centered at v = 0. The trapped fraction therefore diminishes as exp (— U 2), an effect which
was discussed in Chapt. 4. Consequently, the heat flux becomes exponentially small. The
parallel ion flow is mostly carried by passing particles, so for a strong radial electric field
(U ~ 1) the flow does not become exponentially small, though it is substantially modified.
The bootstrap current ji* depends on the ion flow, so j;* is modified as well. In the banana
regime, the coefficient of the ion temperature gradient in the parallel ion flow and bootstrap
current reverses sign when U exceeds ~ 1.2. Importantly, in both the banana and plateau
regimes, the bootstrap current grows stronger as |E,| is increased.



CHAPTER

Finite-E, effects in a
quasi-isodynamic stellarator

In the previous chapter we developed techniques for analyzing the finite-E, regime in a
quasisymmetric stellarator. In the present chapter we will combine these techniques with
methods of Chapt. 3 to analyze finite-E, effects in a quasi-isodynamic device. Even in
a perfectly quasi-isodynamic plasma, the kinetic equation is extremely difficult to solve
outside of the small-E, ordering. Here we present a limit in which an analytic solution is
still possible. Our procedure will be to expand around the solution of the previous chapter
for a quasisymmetric plasma. Terms in the kinetic equation associated with the departure
from quasisymmetry are treated as a perturbation. An ordering is developed systematically
so that the results of both Chapt. 3 and 5 can be recovered in the appropriate limits. In
the end, modifications to the distribution function will be obtained that are driven by E,,
thereby modifying the flow and current for the small-E, regime which were calculated in
Chapt. 3. It will be possible to reuse several components of the calculations in Chapt. 3
and 5, including the model collision operator from the latter, and the numerical function
Apan Will reappear. An important application of the results in this chapter is verification of
numerical codes. In a code that attempts to calculate finite-E, effects in a general stellarator,
it is possible to specify a geometry, E,, and collisionality to match the ordering developed
here, and the code then must reproduce the results we now derive.

6.1 Partitioning of the drift kinetic operator

As in Chapt. 3, we write the magnetic field as B = Vi, X Va where 2my, is the toroidal
flux, @ = 6 — {/q again is a field line label, and 6 and ¢ are the poloidal and toroidal Boozer

76
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angles. The drift kinetic equation is Df = C, where

Df (U"b VB + vy - VB) -_— + (Vd Va)—f- + (Vd V(/It) f (61)

A

and vq = »Q7'V x (yb), with gradients taken at fixed total energy E = 1%/2 + Ze®/m
unless otherwise noted. The electrostatic potential ® (i) is again assumed to be a flux
function.

It was shown in Chapt. 3 that a quasi-isodynamic B can be written as

2

B =B,V
Wt BT

———VB+ (K + —g—}—l)Va, 6.2)

where cK/2 is the toroidal current inside the flux surface y,, and

&’h 0 B
8adB ~ daB-VB’ ©63)
The components of the drifts are
) oh v, OB
va-VB =y (b- VB)a—%{— (K+ 6a)] v (b VB) s! = ’ (6.4)
Yy 0 (4] 32
va-Va = (b- VB)[ Bw) 6%( QB_VB)], 6.5)
and o\ [ 8
Y
va- Vi = =y (b - VB) (K + 5—) (%é) (6.6)

At this point we collect the terms of the drift kinetic operator into groups D = Dp +
D, + D,, where we will formally take Do > D; and D; > D,. As a general principle of
asymptotic analysis, the terms in a given D; need not all have the same magnitude. It is
only necessary that each term in D; be smaller than one of the terms in Dy and each term
in D, be smaller than one of the terms in D;. Thus, we are free to include small terms in
Dy and D; in order to facilitate the analysis.

To form the leading order group Dy, we collect all the terms that arise in a quasisym-

metric field:
_ . 9 (Lun\|of |9 w|df
Dof = vy(b-VB) {[“_&//t (KQ)] L K| Q] 6«/11} ©.7)

By retaining some of the small magnetic drifts in Dy (those that arise in a quasisymmetric
field), the leading order problem will be equivalent to that of Chapt. 5, a problem which we
already solved.

For the next order operator D, we want to include the rest of the E X B drift in order to
capture all finite-E, effects. We also want to include the rest of the radial magnetic drift (the
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Oh/da term in (6.6)) since by doing so we will recover the results of Chapt. 3 associated the
departure from quasisymmetry in a quasi-isodynamic field. Based on the reasoning thus
far we should define D, as follows:

of c® [0h\ Of d v\ of
Dyf = c® =~ (b- VB)——(E—)aB (b - B)( )(aBQ)M (6.8)

where @’ = d®/dy,. However, (6.8) is not the final expression we will use for D;. The last
" two terms in (6.8) equal terms in Dy multiplied by K~'0h/da. To facilitate the analysis, it
will turn out to be convenient to include in D; all the other Dy magnetic drifts, multiplied
by this same factor K~'0h/da. Therefore we take

da
" 9 0 Kyy\ o LAY 0
—uy(b - VB) | —= of | 0 Kv\of _(on ur\ 9f
yb-VB 0a K 6a oy Q |0B \oa 0B Q 6«/4
By including these particular magnetic drift terms in Dy, it becomes possible to write D,
in terms of Dy as in the first line of (6.9), which will simplify the calculation later in this
chapter. The operator D, then consists of all the remaining terms in D, which correspond

to Va and VB components of the magnetic drifts. However, the coefficient of df/dB in
(6.9) does not quite match v4 - VB; in effect a small quantity

o\ (0K\ &h 10
v (b - VB) v"[ ( )( 6«/«) aaawt] a£ (6.10)

that does not correspond to any actual drift has been included in D;. This quantity must be
subtracted from D, to compensate. Thus, we obtain

1(on\(0K\ [ &®h \ 0B,
Dy f =y(b- VB){U"[ ( )(M) ((9&6{/11) aa** azfs (6.11)

{atin)-(3) il
B ‘”)_ (agat v(?iB : VB) aa}‘
The v subscript on the last line of (6.11) indicates that v rather than total energy is held
fixed when taking the derivative.

The equation D = Dy + D; + D, is exact. In the quasisymmetric limit 8/8a = 0, then
D; — 0and D, — 0so D = D,.

For the remainder of this section we will manipulate D, and Dl to obtain expressions
that will simplify future computations. We begin by defining

Dif =er 4 K((9 )[Dof (- VB)—f] 6.9)

Uu

Q (6.12)

Yo =t +

which is precisely what the conserved helical momentum would be in the quasisymmetric
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limit # — 0. Indeed, ¥, is conserved by the D, operator (Doy. = 0). However, ., will
not be conserved by the full drift kinetic operator now except in the quasisymmetric limit
h = 0. Using the definition (6.12), then (6.7) becomes
oy, \ 0 o\ 0
Dof =vy(b-VB) [(i) of _ (i) ._f] .

0.8\ 9B ) 3y (6.13)

We can also write

OX\ _(0X\ | (0y.\(0X) _(9X\ _(0y.)(3p.\" (OX
(5B)w B (6B)¢,, " ( 33)(6%) - (63)% +(63)(3¢t) (;97) (6.14)

to obtain 5 of
W
Dof = -VB —1 . .
of =vy(b )( 3 %)( 63)% (6.15)
The first equation in (6.14) also gives
BX) ((')X) (6 U||) (6X)
_— == +K|—— . (6-16)
(6B s \0BJ, dBQ ), \oy.
Noting
dBQ v - Ze U”B2 '
then (6.9) becomes
1 {0h A mec [0h\ V5 + 1B [ of of
=—=|=—={1- -VB)— | — f—, .
Dif=x (aa)( aw,,)D of +ulb-VBZ, (aa) uB \a) T e C1Y
Note also that since
0X 0X 6:/1,,) (6X) (6X)
(Ba)w (0&)% (aa o \ O o), ©.19)
N——

0

then we are free to switch between holding ¢, fixed and holding ¢, fixed in §/da deriva-
tives.

6.2 Notation and properties of phase-space

We will reuse several expressions and conventions from Chapt. 3. First, we again define
By to be the minimum of B on a flux surface, and B () to be the maximum of B on
a flux surface. We will also make frequent use of the Cary-Shasharina theorem, repeated
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here for convenience: P
2: Y _
0 £4b- VB =0. (6.20)

We will again assume that the potential is a linear function of flux, so @’ is a constant.

Recall from Chapt. 3 that specifying (a, B, #,) does not uniquely specify a location:
there is still a choice between two branches, corresponding to moving forward versus back-
ward along B from B. We again let y = +1 denote the branch. Since vy=+landy = -1
refer to the same point when B = B, then f must be independent of y at B = B.

In the following sections we will want to use ¥, as a coordinate in place of , for
much of the calculation. Consequently, as in Chapt. 5, it becomes necessary to examine the
topology and geometry of phase space. The analysis of phase space structure from section
5.2, done there for a quasisymmetric field, can be repeated for a quasi-isodynamic field,
substituting (B, &) for (y, {) as the coordinates on a flux surface. The conclusions turn out
to be very similar. Using (6.12), the definition E = vﬁ /2 4+ uB + Ze®/m, and the linearity
of (), we obtain

W= —ux \/2E - 2%[5@ W) + u? — 2uB (6.21)

where now
u=-cK®/B. (6.22)

Therefore, when (., B, a, v, u, E) are used as the phase-space coordinates instead of
(Y, B, @, v, p, E), a point in phase space is not fully specified until the discrete coor-
dinate o = sgn(v + u) is specified as well. For certain values of (., u, E), B is not
permitted to reach B because the radicand of (6.21) becomes negative. These values of
(Y., u, E) correspond to particles that would be trapped in the associated quasisymmet-
ric field, but not necessarily to the actual trapped particles in the quasi-isodynamic field.
Similarly, the rest of (., u, E) space corresponds to particles that would be passing in the
associated quasisymmetric field, but not necessarily to the actual passing particles in the
quasi-isodynamic field. Nevertheless, as a notational shortcut, we will refer to these two
regions of phase space simply as the passing and trapped regions. (It is assumed that B
and B do not vary significantly over the radial width of an orbit, so B(y) ~ B(y.) and
B(://) = E(w*).) For trapped particles, we let B. = B.(i., i, E) denote the “critical” field
magnitude at which the radicand of (6.21) vanishes. This value of B corresponds to the
bounce points. As o = +1 and o = -1 refer to the same phase-space point when B = B,
then f must be independent of o~ at B = B,.

Next, we prove another result that will be used frequently in the following sections: for
any quantity X, 0X/0B = 0 implies 0X/da = 0 in the passing part of phase space but not
in the trapped part of phase space.

~ In the passing region, dX/dB = ( means that X is constant along a field line even if
we follow that field line many times around the torus. On an irrational surface, we can
get as close as we want to any point by starting at any other point and following a field
line sufficiently far. Therefore, if we assume X is continuous, then 8X/da = 0 on the
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irrational surface. Assuming g is not a constant rational number, then continuity of X
implies X/da = 0 on rational surfaces as well.

In the trapped part of phase space, however, the preceding argument does not hold: we
cannot follow a field line even once around toroidally because phase space “ends” when
we reach the bounce point. Thus, there is no reason dX/de needs to vanish for trapped
particles.

6.3 Orderings and annihilation operation

We now order the terms of the drift kinetic equation. We want the ordering to meet several
criteria. First, it should lead to a distribution function f that reduces, in the appropriate
limits, to the distributions of Chapt. 3 and 5. Second, the ordering should allow new terms
in f to be obtained that are driven by E,, thereby capturing finite-E, effects. Third, the
ordering should result in equations that can be solved analytically. As we shall see in the
rest of this chapter, an ordering that turns out to satisfy all these requirements is

Do> D > C> D,, (623)

with

C/D, > D,/Dy. (6.24)
Not only do the inequalities (6.23)-(6.24) meet the technical requirements just mentioned,
but this ordering is also physically reasonable. As Dy contains parallel streaming motion
while D, contains only magnetic drift terms, then D,/Dy ~ V4/vs ~ p/R, where R is
the major radius. As p/R is extremely small compared to one, there is room between Dy
and D, for intermediate scales. Laboratory plasmas are typically described in conventional
neoclassical theory by the banana-plateau regime ordering 1 > vgR/vy > p/R, which
can be translated as Dy > C > D,, in agreement with (6.23). In a code that attempts to
calculate finite-E, effects in a general stellarator, the input parameters to the code can be
set so the ordering (6.23)-(6.24) is satisfied. Through this procedure, the results derived
here can be used to verify such codes.

To apply the ordering (6.23)-(6.24) to the kinetic equation, the distribution function is
expanded f = fo + fi + f2 + .... Subscripts will not denote precisely how a quantity scales
with respect to any particular small parameter, only that f; > f;,;. The first two orders of
the drift kinetic equation are

Dofo =0 (6.25)

and
D()f] + D]f() =0. (626)

This last equation implies fi/fo ~ D1/Do, and so due to (6.24),

Clfo} > D1 fi. 6.27)
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This result and C > D, imply the next equation in the expansion is
Dofy = C{fo}. (6.28)

The term f; will not be Maxwellian, so the right-hand side of (6.28) will not vanish.

As in many asymptotic calculations, we will need to annihilate the largest operator,
which in this case is Dy. The annihilation operation, which will be denoted by an overbar,
is defined by the property DoX = 0 for any X. For trapped particles, this operation is

i=Yod chdB A__ o (6.29)
a p= > Y B v"b-VB(')«,h* )

for any quantity A. This operation annihilates Dy due to two findings from section 6.2:
continuous single-valued functions must be 1) independent of y at B, and 2) independent
of o~ at B,. For passing particles the annihilation operation is

_ 2 B A a(//t
= B . .
A Ey:yfo daL d V55, (6.30)

This operation annihilates Dy due to two facts. First, as mentioned above, continuous
single-valued functions must be independent of y at B. Second, consider the two curves
defined by ¥ = +1 or y = -1, with a varying from 0 to 2, and holding B = B and y,
constant. (Along both of these paths, ¥ is constant as well, since the difference ¥, — i, is
independent of @.) Assuming the plasma has N identical toroidal segments with N > 1,
the two curves do not coincide in space, but plasma parameters along the two loops must
be identical due to periodicity. Thus, when the operation (6.30) is applied to DyX, the
contributions from the upper and lower boundaries of the B integration each separately
cancel, leaving zero. Note that the integrals in both (6.29) and (6.30) are performed at
constant ,.
Applying the annihilator to the full drift kinetic equation gives

D\ f + D,f = C{f}. (6.31)

This equation provides a series of constraints that must be satisfied at each order. We again
apply the ordering (6.23)-(6.24). Using D, > D, and D, > C, the first constraint equation
1s

Dify=0. (6.32)
Then using C > D, and (6.27), the second equation is

0 = C{fy). (6.33)
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The third equation, obtained using D; > C, is
D, fi + D,fy = 0. (6.34)

The final equation we will need is then found by applying C > D, to obtain

D f, = C{fi}. (6.35)

6.4 Evaluation of the distribution function

6.4.1 Zeroth order drift kinetic equation
The leading order equation (6.25) implies

ofo\ _
),

so fo = fo W, a,u, E,0). The distribution function f; cannot have any dependence on y
for either trapped or passing particles because fy must be independent of -y at B. Also, as
shown at the end of section 6.2, for passing particles f, cannot depend on @. For now, f,
for trapped particles can still be allowed to depend on a. For trapped particles, f, cannot
depend on o since f; must be independent of o~ at the bounce points, but (for now) f, can
still depend on o for passing particles.

We consider the physically sensible case that f, is approximately Maxwellian. Let
T (i) be the temperature of this Maxwellian and n(y.) be its density. Thus, we want

m 2 mE
2wy P (‘T(wo) (©6.37)

where = nexp(Ze®/T) is the pseudo-density. However, this Maxwellian does not satisfy
(6.36). To obtain a solution of (6.36) which is approximately Maxwellian we define

Jfo= '](l/’t)[

go=F-fo (6.38)

where

32 mE
F= 77(!/'*)[2 T(W*] eXP(—T(d/*))- (6.39)

Our task is now to find a gy such that the appropriate kinetic equations are satisfied. If
go < F, and if ' and T’ are sufficiently weak that n(y.,) = n(¥,) and T(¥,) =~ T(),
then f, will be approximately Maxwellian as desired. The statements made earlier about
fo also apply to go: go is independent of y for all particles, go can depend on a for trapped
particles but not for passing particles, and go can depend on o for passing particles but not
for trapped particles.
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6.4.2 Zeroth order constraint equation

Now consider the first constraint equation, (6.32), beginning with the equation for passing
particles:

2 mc [ Oy, 6h U" +uB afo c®’ o\ dfo
ny daf dB[Ze 3% UuB2 (59’/*) yb- VB(W/*) =0. 640

As discussed earlier, dfp/0a is 0 in this part of phase space. The df,/dy. term gives a
vanishing contribution to either the @ integral or the y sum. Thus the constraint equation
for passing particles is automatically satisfied.

Now consider the constraint for trapped particles:

mc [ Oy, v2+pB afo D’ o\ 9
Z ny [Ze (aw )(60') U"B2 (6(%') U”b VB (6¢*) =0. (641)

The dfo/dy. term vanishes in the v sum. The dy/da term does not automatically vanish,
s0 dfo/0a must be 0 for the trapped particles. (We already knew this for passing particles).

6.4.3 First order drift kinetic equation

The next equation to consider is (6.26), which when written out is

(%) mc(ac//t)( )v2+uB(6fo) cd’ (6«,0()% 6.42)
oB), ~ Ze \w. wB \ow.] ub-VB\oy. ) oa” '

Before integrating to obtain f;, consider the dy,/dy, factors which appear in (6.42). If the
radial variation in magnetic quantities is weak relative to the radial variation of @, then

oy, Y +u
—_= . 6.43
a0 ” (6.43)
Therefore, the integral of (6.42) can be written
ofp\me (* ., (3K (V) +uB
=g - —— B|—|—— 44
h=a (5l//*) Zej; (5‘1)(v +u)B’2 (649

for passing particles and

2
e (afo)mch . (ah')(v")_wB 645

oy da (vl’l + u’) B?
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for trapped particles, where g; is an integration constant (independent of B), and primes
indicate quantities are evaluated at B’ rather than B. The integrals in (6.44)-(6.45) are
performed at constant ¢,.

The endpoints for the integration are chosen as shown for a reason. In the next section
we will find that to satisfy a collisional constraint, we must take g; = 0 for trapped particles.
However, g; must be consistent with the requirement that f; is independent of o at the
trapped-passing boundary. The choice of B, as the integration endpoint in (6.45) means
that fi — g; at this boundary, so gy = 0 will satisfy the boundary condition. Had a
different integration endpoint been used, g; = 0 would not satisfy the boundary condition.
The choice of B as the integration endpoint in (6.44) ensures that g; is continuous across
the trapped-passing boundary.

Since g, is independent of B, then for passing particles, g; must also be independent
of . However, for trapped particles, g, is free to depend on . For trapped particles, f;
must be independent of o at B — B,.. Therefore g, must be independent of o for trapped
particles, though g; is still free to depend on o for passing particles.

For both passing and trapped particles, f; must be independent of y at B = B. Therefore
g1 must be independent of -y for both passing and trapped particles. Consequently, fi is
independent of y everywhere.

6.4.4 First order constraint equation

We next consider (6.33), which can be written as

_ Cif)
0= Z f dB f da G b VB (6.46)

for passing particles and

_ & Cifol
0= ;’y Za-: UL dBm (647)

for trapped particles. Equation (6.43) has been applied. The above two constraints de-
termine go. All integrals are performed at constant ¥,. The passing constraint (6.46) is
equivalent to

0=< B C{ﬁ)}>. (6.48)

Y +u
The distribution fo departs from a Maxwellian both due to go and due to the difference
lp* —l//t in F. ThuS,
Clifo} = Celgo+ F1} (6.49)
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where C, is the linearized operator for self-collisions and

ulp Zed [(m? 5\T
Fi1 = fmK—=|— - == .
=M1 T T +(2T 2| T (6.50)
Using the conservation properties of C,, then
Clfo} = Ce{go -G} (6.51)
where ( )
P O] fd ot I &
G=-mK 0 T —2| 7 (6.52)

and the unknown z has been added anticipating the need to restore momentum conservation
once the collision operator is replaced with a model. The next steps of the analysis proceed
exactly as in the quasisymmetry case of Chapt. 5, noting I, — NK and ¢y, — —Ny,. We
use the model collision operator

Yy tu y+w)I' (m
s~ = S35, [ +0n 7)., (o[ 1)
' ’ (6.53)
derived in Chapt. 5, and with z chosen to maintain momentum conservation. In the trapped
constraint, the drive term vanishes in the o sum, so go = 0 is a valid solution. The passing
constraint gives the go we found in Chapt. 5.

6.4.5 Second order drift kinetic equation

The next order equation (6.28) can be written

(22) - (). c 654
¥

0B 6(//,, U||b -VB’

Integrating (6.54) gives
B
Cifo)
= dB —— VY
S 82+J; (v||+u)b-VB

where g; is independent of B. From the argument at the end of section 6.2, g, must also be
independent of « for passing particles, but it can depend on « for trapped particles. Unlike
the B’ integrals in (6.44)-(6.44), we have chosen the bound of integration in (6.55) to be B
instead of B, or B. This choice ensures that g, is independent of -y (which follows from the
fact that f, must be independent of y at B = B.) The y-independence of g, will be needed
for a later step of the calculation.

Notice that f, depends on both @ and ¥, and it has neither even nor odd o-parity due
to the v dependence of the collision operator. However, if the model collision operator is
used, then C {f} = C,{go — G} will be odd in o to leading order.

(6.55)
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At B — B, for the trapped, f> must be independent of o~. Therefore g, does depend on
o for the trapped, unlike previous cases. As before, g, can depend on o for the passing.
One further property which will be useful later is

6f2_0

Lr (6.56)

for both passing and trapped.

6.4.6 Second order constraint equation

The next equation to examine is (6.34). Noting D, f, = 0, this constraint becomes

oh 5¢//t Ooh ﬁ'*'/,lB afl ,6f1 _
L (22)(1 - 2%) s - v (2) EE2 (05 02 s

Substituting in (6.26) and (6.18), the constraint for passing particles becomes
2
me 1 On \ (B \ Vi + HB [ 3fy
dB 1- 6.5
ny daf lZe K (3‘1) ( 0. )(3%) y B \dy, (658)
mc (9 \ (Oh\ Vi +HB (af; @ (o \ofi| _
~ Ze \ oy, y B> \oy. vub -VB\dy, | 6a
Using the fact that f; and f; are independent of v, it can be seen that this equation is always
satisfied automatically. To see the df,/da term vanishes, integrate the term by parts in

and use the identity (6.20).
For trapped particles, the constraint derived similarly from (6.57) is

me 1 2 e\ (O \ Ui + 1B [ af
Yo s ol (- e ) e
mc((')c,l/t)( )v2+uB(afl c®’ (awt afi]
Ze 6(//,.. U"B2 61//, U||b VB 6(//)

The dfy/dy, and df,/0. terms vanish in the y sum. However, the /0 term does not
automatically vanish, giving the constraint

B 1 ofi
O—Zy:y;o-fé dBma—a (6.60)

Be 1 d dfo\ mc , (O (Uﬁ)z"‘ﬂB,
=Zy:7;"f3 B b vBaa |5~ (a.p,,) de (5(;)(11 ru)B?|
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In the limit of vanishing radial electric field (u — 0), then the drive term vanishes due to
o parity, and so g; = 0 would be a solution. However, for u # 0, (6.60) gives us a new
a-dependent part of g, for trapped particles. We can write

(vﬁ)2 = (vl’I + u’)2 -2 (vl'| + u’) + (u’)2 6.61)

and carry out the o~ sum to obtain

B 1 4] ofo \ mc oW\ o
0= f dB————— g1 +2 f dB’ (——) } 6.62
Zy: N oy +u| b - VB de [gl (0‘//*) Ze da | (B'Y ©.62)

Recalling g, is independent of B, we can then solve for dg, /da:
f : [Z ] f’*v dB (a2h')
g1 22KOm (0f,\ V8 [ +ul{5D-VB)Js (B) \d?
o Ze o, 2 )
f IU” + ul Z b-VB

An integration in @ from 0 to 27 annihilates both the left-hand and right-hand sides. (The
denominator is @-independent due to 8/da [Z »(y/b- VB)] = (, and the numerator is a total
0/0a derivative.) Thus, (6.63) does not provide a constraint. However, it does tell us the
a-dependent part of g;, which we display by writing

(6.63)

s1=51+8& (6.64)

‘ B aB (ow
. 2¢*Kd'm (Bfo f IUII + ul [Z b- VB]L By (%)
81 =
Ze 6!//,,) A
f |U" + ul [Z b- VB]

and g, is a yet-undetermined flux function. We will determine g, from the next (and final)
constraint equation. Notice that as u — 0, then g; — 0 as well. Note also that we can
equivalently write g, as a total 3/da derivative:

{ f 2 [Z Jch @

_ 8 |2ckom (of, o +u[\ 540 VB)Jp (B

817 % | ze (6(//*) e )
f oy + 4 (Zb VB]

where

(6.65)

(6.66)
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6.4.7 Third order constraint equation

The last equation we must consider is (6.35). Applying (6.18) and (6.28), the constraint for
passing particles can be written

o W\ Clfo)
Z f daf dB[ ( )( )(W*)Wb VB (667
mc(awt)( ) i +”B(3fz)+ e (a«//t)% _(a«/«) Cif |_
Ze \Oy, B2 \dy.) wub-VB\oy.)da \dy.)ub-VB|
The C{f,} and df,/d¢. terms then both vanish after integrating by parts in @. To see that

the C {fo} term vanishes, observe that f,, C {fo}, and £ are all independent of 7y, and apply
(6.20). The 8f,/0y, term vanishes due to the property (6.56). The remaining terms are

p 2 B 1 o\ 0 B [0\ Clfo)
oo [ a2 Lo ae] e
R 2
— o 1 me (0fe\ (. , (O (UI'I) +uB’
5 [ o) () ar() )

It can be seen that the dfy/dy. drive term vanishes if it is integrated by parts in . It also
turns out that the C {fp} term vanishes. To see this is so, first define

1
y(B,a,y) = b VB (6.69)

The identity (6.20) is equivalent to

0 0
‘a';y (B’ @, +) - %)’ (B, a, —) . (6.70)
Integrating,
y(B,a,+) =y (B,a,-) + A(B) 6.71)

for some function A (B). The C {fy} term in (6.68) is proportional to a B and B’ integral of
X where

21 a , 6 ,
X= j; do [)’ (B,a,+) 5(;)’(3 ,@,+) - y(B,a,-) 3’ (B, a, —)l- (6.72)

Applying (6.71) to the first term,

_ 9 )—y(B,a,-) - y(B,a,-)—y(B,a,-)|.
X fo da[Aaay(B,a,+)+y(B,a, )aaY( a,-)-y(B,« )aay( o7 )]
(6.73)
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The first term vanishes since it is a total derivative, and the second and third terms cancel
each other, leaving X = 0.
Thus, the top line in (6.68) vanishes, so we are left with

0= ny daf dB(aw*)u,,b -5C la1). (6.74)

There is no drive left for g;, so the physically sensible solution is g; = 0.
For trapped particles, we again apply (6.18) and (6.28) to the constraint equation (6.35),
this time obtaining

° 1 (0h W\ (o) Clfo)
Z‘y;a-fé dB[E(EE)(I—EIlf_)(%:) yb- VB ©.79)
+mc(6wt)(6h)vu+l~¢3(6f2)+ ' (awt gﬁ_(%) cify |
Ze \oy.J\Oa) vyB® \dy.] uyb-VB\oy./da \Ow.)vb-VB|

This equation contains two yet-unknown quantities: g, and g,. It will turn out that if (6.75)
is integrated in a, the g, dependence disappears, leaving a simpler equation to determine
21. The original a-dependent constraint equation (6.75) is still solvable due to the freedom
remaining in g.

In the a-averaged equation, the C{fy} and 0/,/0y, terms vanish upon integrating by
parts in @ and applying (6.20) and (6.56). We are left with

2 B c®  (dYs) O (O Clfo}
fo dajz; dBZy:yZ‘O-Uub -VB (5'//*)5& [g f 4 (3%) yjb - VB]
2 B, 6‘/’( 1
= d dB 6.76
‘fo\ a£ ;7; (&ﬁ*) U“b VB ( )
cla +z -2 (%) f B (ah) (vf) + B
s O O (vﬁ + u’) B

Since g, is independent of 7, the g, term vanishes upon integration by parts in a. The C {f;}
term will vanish for the same reason as described in (6.72)-(6.73). The g; term vanishes
if we recognize that g; is a total /0 derivative (6.66) and is y-independent, so upon

integrating by parts in @, the Cary-Shasharina theorem (6.20) can be applied. The 8,/
term similarly vanishes. We are left with

: o\ 1 )
0= f daff dBZyZ (a:/i) D .VE Ciz1). 6.77)

There is consequently no drive for g;, and so the only physically sensible solution is g; = 0.
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We have now completely determined the distribution function through order f;.

6.4.8 Summary of distribution function

We make one last approximation, replacing df,/0%., — 0F/0y. in f;. Then the distribution
function through order f; for passing particles is

2
oF ow\ (v) +uB
fauFtgy—2C (-—) dB’ (—) AW 7 (6.78)
f (

O dar v+ u’) (B')?

where, again,

32 mE
F= 77(!1/*)[2 T(‘//*] CXP(_T(«/I*))' (6.79)

The equation for go, given by (6.48), is completely independent of & and it is identical to
the quasisymmetric case. From the model collision operator developed in Chapt. 5, go is
given to leading order in /& by (5.48). For trapped particles,

12 4
pores-t (o) [P (G e

oy, o U+ u )(B')2

[ R AL
B ‘U” + ul > b-VB B (B’)3 da
f |U|| + ul [Z b- VB]

The g and OF/dy. terms in (6.80) are formally the same order, so either one can dominate
the other.

where

2K’ F
. 2K m((') ) 6.81)

&= Ze oy,

6.4.9 Consistency of the ordering

Now that the distribution functions fp and f; are known, the regime of validity of the order-
ing in section 6.3 can be further investigated. The asymptotic procedure required f; < fo,
which will be consistent if § <« F and fo < F, where

2
me ( OF f"x ,(611’) () +uB
- _ - dB | — | —F—-— . 6.82
fa Ze (6«//,) B oo (v|’|+u’)(B’)2 ©52

Here B,=B. for trapped particles and B, = B for the passing particles. From (3.17) and
K < I we estimate dh/da ~ I ~ RB where R is the major radius. As shown in figure
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3-2, 0h/0 in practice tends to be smaller than this estimate, so we refine the estimate to
Oh/O0a ~ 6RB where 6 < 0.3. We also estimate 2mj, ~ nr*B where r is the minor radius,
s0 |Vi| ~ rB. Then 8F /0y, ~ OF [0y ~ |Vy|'8F |Or ~ F/(rBrr), where rr is the scale
length for temperature or pseudo-density. We thereby estimate

Ja Rp (6.83)
F rrr
where p = v;/Q is the thermal ion gyrofrequency. In typical stellarators, R/r ~ 10. The
last factor p/rr above is usually very small compared to 0.3 in stellarator experiments, and
s0 for < F should be a good approximation.
Similarly, we estimate

s .. = ~-" 2. Ly ¥ 84
F  Ze|VirrB2 a E 6.84)

2 20KP'm Oh ) (R)zKp
r

where My = cE,/(v;B) is the Mach number associated with the E x B flow. In a non-
quasisymmetric device, Mg must be small compared to unity [12], and indeed, M is typ-
ically small in any laboratory experiment. The fraction K/I is the ratio of plasma to coil
current, so it will be very small. (Recall from the discussion in the conclusion to Chapt. 3
that K/I will be < 1/60 in W7-X.) The ordering § < F thus seems quite appropriate.

6.5 Flows and current

The parallel flow can in principle be obtained by forming the integral V; = n™! f Puyf
of the distribution function above. However, this task is daunting due to the complexity of
the terms in f. The calculation can be dramatically simplified by explomng several results
from Chapt. 3. Recall that in section 3.3.1, it was found that

= Egi'—? +V, (6.85)
where o 1 5
=5l 7| )< o0
is the Pfirsch-Schliiter flow, satisfying (VF*B) = 0, and
T= ZBZqI R f ; “ (‘ﬁ,ﬁf ){,' (6.87)

These results were derived using only incompressibility V - (nV) = 0 and the form of the
perpendicular flow V, = ¢cB 2 [(d®/dy) + c(dp/dy) | (Zen)] B x Vi, two results which
remain true in the finite-E, ordering. Hence, we need only evaluate (V;B) rather than V,
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itself, for once (V;B) is known, the full V}; can be constructed using (6.85).

In evaluating (V| B) = (n"'B f d*vu,f), none of the @-dependent terms in the distribu-
tion function contribute, due to the property (9X/da) = 0 for any branch-independent X.
Consequently,

(V,B) = (n"'B f BPoy(F + go)). (6.88)

The only terms that remain on the right-hand side are the ones which arise in a quasi-

poloidally symmetric plasma. For the main ions, then, we can use the result from section
5.3.5:

(VuB) = 7 ——-1.17 (6.89)

Di dl/’t T; din . Ti din
where A, (U) is the dimensionless function in figure 5-1.b. Above we have set i, = —Ni,
and I, — NK to specialize from general to poloidal quasisymmetry. Using (6.85), then the
total parallel flow is

KcT; [ ldp  Zed® Apan(U) dTi]

KcB dT; dd 1 i
Vi = =1.17Apaa(U) cB d 3( dp

73 B \dn " Zom dwt)(K ). (6.90)

Now that the ion flow is known, the parallel current can be determined as described in
section 3.5. The result is
B{jiB)

j|| = (BZ> +]" 5 (691)

where J B2

PS _ D
1- K+7T 6.92
r=slali-am)e 6
is the Pfirsch-Schliiter current, satisfying < j" B> = 0, p = p. + pi is the total pressure, and
7% +221Z +0.75
(B =fiKc (6.93)
) e (Vv 2)
dp; dpe 2.07Z +0.88 dT, n. dT;
- 1.17Ap:0
% (d«//t T Zra21Z+ 075 ay, A7 dz//t)

As in Chapt. 3, f, = 1 — f, is the effective trapped fraction and f; is given by (3.42).

6.6 Radial fluxes and electric field

To evaluate the radial particle flux, we can reuse equation (3.50) from the small-E, analysis
in Chapt. 3:

(C-Vy) = - < f dvuyAb-V f> (6.94)
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where A = —Kyy Q™! + § and

(6.95)

’ ’\2 ’
_ne Bde' i ___(U”) 1B
Ze Jg O [ vy(B')?

It can be verified that these equations are all still valid in the finite-E, ordering. Notice the
integral in (6.95) is performed at constant ¥, rather than constant ,. Substituting the drift
kinetic equation into (6.94) gives

(T- V) = —<fd3vA(C—vd-Vf)>. (6.96)

In the small-E, ordering, the v4-V f term above can be approximated by (vq4- Vi )(O fir/Owo),
and the latter does not contribute to the integral in (6.96) due to sgn(v;) parity. However,
in the ordering developed in this chapter, other (vq - Vif)(0f/d¢:) and vg - Vf terms be-
come equally important and they give nonvanishing contributions to (6.96). Due to the
complexity of the terms in f it is not possible in general to obtain the radial particle flux
analytically.

Analytic progress becomes possible, however, in the limit X — 0. This limit is in-
teresting as it corresponds to a self-consistent current profile when there is absolutely no
departure from omnigenity anywhere inside the flux surface of interest and also no current
driven by RF, neutral beams, or a transformer, as discussed at the end of section 3.5. Ex-
amining the definition (6.12), the distinction between ¢, and ¥, disappears in this limit.
Furthermore, u o« K so # — (. In this case the calculation of E, reduces to the problem
solved in section 3.4, and so we recover the radial electric field derived there:

Ze dO _ ldp; 1.17dT;

— = —_— 6.97
T; dl//t Di dl//t T; dlﬁt ( )

Thus, the radial electric field reduces to the one obtained in Chapt. 3 in the limit K — 0.
For other values of X, presumably E, will be different from (6.97). If so, then if plasma
current is driven using neutral beams or RF waves, K can be experimentally controlled,
thereby allowing some control over E,, unlike the small-E, case in which E, is fixed by
(6.97).

6.7 Discussion and conclusion

In this chapter we have constructed an ordering in which finite-E, effects can be derived an-
alytically for a quasi-isodynamic plasma. The procedure is based upon a novel grouping of
the terms in the drift kinetic equation, exploiting the fact that in any asymptotic expansion,
small terms can always be added or subtracted from expressions having terms of larger
magnitude. We can thereby arrange for the leading-order drift kinetic equation to be one in
which a quantity ¢, is conserved, even though this quantity is not conserved by the full drift
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kinetic operator. The leading order equation then resembles the problem solved in Chapt. 5,
and so results from that earlier chapter can be reused. However, in the quasi-isodynamic
case, the terms in the higher order kinetic equations lead to new a-dependent terms in the
distribution function which did not appear in the quasisymmetric case. One such term, the
last term in (6.78) and (6.80), resembles a term from the small-E, quasi-isodynamic distri-
bution function (3.32), but with vy — v + . Another term (6.81) appears which has no
analogue in any of the previous calculations.

The results in this chapter continuously reduce to results from previous chapters in
the appropriate limits. Specifically, in the quasisymmetric limit # — 0, the distribution
function, flow, and bootstrap current in this chapter reduce to the corresponding expressions
in Chapt. 5. Also, if & is nonzero but the normalized electric field U is much less than unity,
expressions from the present chapter reduce to those of Chapt. 3.

Exploiting general results from Chapt. 3 that give the form of Vj; and jj required to
satisfy V- nV = 0 and V - j = 0, it has been possible to find V} and jy for a finite-E, quasi-
isodynamic plasma without directly integrating all the terms in the distribution function.
The expression for the radial drifts is more complicated in the finite-E, quasi-isodynamic
case compared to the finite-E, quasisymmetric case or the small-E, quasi-isodynamic case
due to the v4- Vf term in (6.96). Consequently, an explicit expression for the radial electric
field does not exist in general. However, analytic solution for E, does become possible in
the interesting and important limit X — 0, in which case the result of Chapt. 3 is recovered.

The results herein are perhaps most useful for verification of codes that attempt to
calculate finite-E, effects in general stellarators, since experiments like W7-X are not and
cannot be precisely quasi-isodynamic. In such codes, the collisionality, E,, and magnetic
geometry can be specified so the ordering developed here is satisfied.
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Conclusion

In the preceding chapters, neoclassical transport in optimized stellarators has been analyzed
in two regimes: the conventional small-E, ordering and the finite-E, ordering. In the small-
E, regime, the E X B drift is taken to be much smaller than any component of the parallel
speed. In the finite-E, ordering, the E X B drift is still smaller than the parallel speed in
overall magnitude, but due to geometric effects, the Vf components of the E x B drift and
parallel velocity can be comparable. The finite-E, ordering can be appropriate for HSX
and other stellarators that exhibit Core Electron-Root Confinement [56, 68], as well as for
pedestals and internal transport barriers observed in stellarators [66, 67].

The new results derived in this thesis fall into four categories, corresponding to Chapt. 3-
6. First, in Chapt. 3, we have calculated compact expressions for the flows, current, and
radial electric field in a quasi-isodynamic stellarator, using the conventional small-E, or-
dering. These expressions are all new, although other authors had argued previously that
a self-consistent state free of toroidal current would be possible [17, 20], in agreement
with the calculation here. In a general stellarator, the Pfirsch-Schliiter flows and Pfirsch-
Schliiter current can only be written as the solution of a partial differential equation, but
we have shown that in a quasi-isodynamic field, these quantities can be written explicitly
in terms of T, which is an integral of B(6,). The Pfirsch-Schliiter flows and Pfirsch-
Schliiter current we have derived are, by definition, independent of collisionality. Our
expressions for the remaining terms in the flow and current, as well as the equation for the
radial electric field, are derived for the long-mean-free-path regime. Our findings demon-
strate that quasi-isodynamic fields are a useful ideal to consider: they can be a reasonable
model for W7-X-like stellarators, they are more general than poloidally symmetric fields,
and yet they permit explicit analytic results to be derived that are nearly as compact as
results for quasisymmetric or axisymmetric fields.

Second, in Chapt. 4, we have shown that there is a fundamental problem with previous
treatments of the finite-E, regime in stellarators. We have done so by analytically calculat-
ing the particle orbits in a quasisymmetric field for both the true equations of motion and for
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the monoenergetic DKES equations. We derived new analytic expressions for the fraction
of trapped particles in each model. While both models correctly find the trapped fraction
to scale as exp(—U?) where U is a normalized radial electric field, DKES systematically
under-predicts the trapped fraction, and the amount of this error can exceed a factor of two
in experimentally relevant conditions. Trapped particles play a central role in neoclassical
theory, and so DKES is likely making errors of this same relative size.

Third, to correct this problem, in Chapt. 5 we have presented a new analysis of the finite-
E, regime in a quasisymmetric stellarator. Our analysis does not employ the problematic
monoenergetic approximation. Expressions were calculated for the ion heat flux, flow, and
bootstrap current in both the banana and plateau regimes. All of these quantities turn out
to be modified in a similar manner to the corresponding quantities in a tokamak pedestal.
The heat flux exhibits exp(—U?) scaling as it is proportional to the trapped particle fraction.
Another important finding is that the bootstrap current is enhanced in the finite-E, regime
compared to the small-E, regime, regardless of the sign of E,.

Finally, in Chapt. 6 we have analyzed finite- E, effects in a quasi-isodynamic stellarator.
A regime of finite E, and collisionality was identified in which the kinetic equation can be
solved analytically and without making the problematic monoenergetic approximation. The
radial electric field drives modifications to the distribution function that have no analogue
in the quasisymmetric finite-E, or the quasi-isodynamic small-E, cases. Explicit formulae
were derived for the ion flow and bootstrap current. In appropriate limits, the distribution
function, flow, current, and ambipolar E, reduce to results from the previous chapters.

One primary implication of the results herein is that a new continuum neoclassical
code should be developed to replace DKES (and the derivative code PENTA). The new
code would need to be radially nonlocal, to account for the change in potential energy
over an orbit. Such finite-orbit-effects on radial transport can be examined with Monte-
Carlo codes, but in calculating parallel flows and the bootstrap current, the near cancelation
between v > 0 and vy < 0 particles leads to large noise in any estimate of parallel transport
[74]. Thus, the new code should be Eulerian (continuum). The analytic results derived in
Chapt. 5 and 6 can be used for benchmarking. The new code would ideally use the full
Fokker-Planck collision operator (either in the original nonlinear form or linearized about
a Maxwellian), for as shown in Chapt. 5, a momentum-conserving pitch-angle-scattering
operator will not be an accurate approximation. The proposed new code would then be the
first to solve the drift kinetic equation without further approximation, making it the first to
include all the physics necessary for accurate modeling of HSX and other CERC-regime
stellarators.

The code would be useful not just for stellarators but also for tokamaks. Even for a per-
fectly axisymmetric tokamak, no continuum neoclassical code presently exists to calculate
the finite-orbit-width effects in an H-mode pedestal, and so the new code would fill this
gap. The code would enable calculation of the finite-orbit-width-induced modification of
the bootstrap current in the pedestal, which will impact studies of ELM stability. Also, the
code could be used to calculate the neoclassical toroidal viscosity (NTV) associated with
tokamak error fields. The finite-orbit-width physics in the code would be important in the
pedestal where ripple is relatively large compared to the core. As NTV damps toroidal ro-
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tation, increasing susceptibility to locked modes and disruptions, the code would therefore
enable improved calculation of the error field tolerance for ITER.



APPENDIX
Omnigenity

In this appendix we will first prove the equivalence of the two definitions of omnigenity:
1) the bounce-averaged radial drift vanishes, and 2) the longitudinal adiabatic invariant is a
flux function. Then, we will derive (3.3).

We begin by considering a general (not necessarily optimized) stellarator equilibrium.
Using (2.27) we can write v4 - Vif, = (vy/Q)V - [(1/Q)B X Vi¢]. Next, we consider Boozer
coordinates 6 and ¢, defining a field line label @ = 6—¢{ so B = Vi xVa. Treating (1, @, )
as independent variables, then from the form of the divergence in general coordinates,

R CYERNTICY

Next, we define the bounce average, which for any quantity A is

A= 1§M where T= d—f (A.2)
T [ Uy

Here, £ is the distance along a field line, and 56 indicates an integral along a full bounce.
Equivalently, in terms of the £ coordinate,

__Z f BV where T= Z L . Vg (A.3)

¢ = sgn(yy), and { and ¢, are the two bounce points (where vy = 0). Notice that the
integrals in (A.2)-(A.3) are performed at constant @. Applying the bounce average to (A.1)

gives .
Va Vi = Z f ( )( u%) (A4)
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Even though £ and ¢, depend on @, it is valid to pull the 3/da derivative in front of the
integral in (A.4) because the integrand vanishes at these endpoints. Thus,

6 +
Z:r da Z gf d (b f)274")' (A.5)

Now, consider the longitudinal invariant for trapped particles:

Ve Vi =

J (W, a,v,) = § ydt (A.6)
where the integration is again carried out along a full bounce. Using df = d/b - V¢ in this
definition, then (A.5) can be written

mc aJ
Zet o’

Va- Vi = (A7)
Consequently, the bounce-averaged radial drift vanishes if and only if the longitudinal in-
variant J is a flux function, and so the two definitions of omnigenity are equivalent.

Now we move on to the proof that (3.3) must hold in an omnigenous field. Here we
rewrite J using df = dB/b - VB to obtain

B//l
_ Ji-amES Y
J—2ude 1 AB/BZ/:b_VB (A.8)
B

where the factor of 2 arises from a sum over ¢, and the integral is performed at fixed
Yu, @, 4, and v. Applying a (3/da),,, . derivative, and noting that §J/0a = 0 due to

omnigenity, then
X

0=degcs Vx—-B (A9)
B
where 5
Y
) 7B =l T .
gcs (0, @, B) (aa)B;b-VB (A.10)

and x = B/A. The original definition of the longitudinal invariant (A.6) was valid for all
trapped particles (i.e. for 2 > B/B and 2 < 1), and so (A.9) is true for any x between B and
B.

It is proven in the appendix of [9] that in this situation, gcs must vanish at all locations.
We repeat the argument here for convenience. First, (A.10) is divided by \y — x, where y
is any value in the range (B, B), and the result is integrated in x from B to y. The order of
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the B and x integrals is reversed, giving

'y Yy _ 'y
0=degcs(B)fdx1/x B=ff dB gcs(B)(y — B). (A.11)
B B y—x 2 Js

Differentiating once with respect to y and dropping the /2 gives

y Yy
0 = gesO)y - y)+ f dB ges(B) = f dB ges(B). (A.12)

Differentiating again with respect to y gives gcs(y) = 0. As y was allowed to have any
value in the range (B, B), then gcs must vanish everywhere, proving the Cary-Shasharina
theorem (3.3).



APPENDIX

Conservation of canonical momentum

Here we establish a few technical results related to the conservation of canonical momen-
tum in axisymmetric and quasisymmetric fields.

Vanishing of v4 - V(Iy/Q) in axisymmetry

Consider X = v4 - V(Iy)/£2), a term that was neglected in deriving the conservation of
¥, in section 2.1.1 since it was formally small. Here we prove that X is in fact exactly
zero, so the term could have been retained in section 2.1.1. Using the form of the drifts
va = (/) V X (vyb), a form that includes the parallel velocity correction, then

X o« Vx (%B) : v(%) (B.1)

2
Yj Y y |, Iy uy
- EVXB-VI+[V(—§)XB-VI]-§ +—§-VxB-V(§).
The first term in the last line vanishes because V x B - Vi, = 0 and VI = I'Vy, where
I' = dI/dy,. Thus,

XocI'VS -Bx Vi, +IVXB-VS (B.2)

where § = vy/B. As Bx Vi, = IB— R?B?V¢ and 35 /0¢ = 0, then the first right-hand-side
term in (B.2) equals /I’B - VS. The last term in (B.2) is evaluated using

VXB-VS = V-BXxVS) = V-[(V¢ x Vi) x VS + IVpx VS| = Vpx VS -VI = —I'B-VS

(B.3)
Thus, the two terms in (B.2) cancel, so X = 0.
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Exact conservation of , in quasisymmetry

We now give another proof of the conservation of ¥, = ¥y — Iyv)/L in quasisymmetric
fields, where ¢, = My, — Ny and I, = NK + MI. The proof will be more general than
the one given in Chapt. 2 in that it allows for both a time-dependent electrostatic potential
® as well as for variation of ® on a flux surface. Along the way we will derive the identity
(2.35), repeated here for convenience:

\l V(/lh = U"b -V (IhU"/Q) =) (b . VX) g(' (IhU"/Q) (B4)

where y = M6 — N{. Proofs of . conservation have been given previously in references
[14], [28], and [75].

Both the conservation of ¢, and (B.4) require that the potential, if it varies at all on
a flux surface, have the same helicity as B: © = © (iy, x, t). In this case, since uﬁ =
2(E — uB — Ze®/m), then M3 (vy/B) /df = —N 0 (v;/B) /36. This result, together with
the Boozer representations for B in (2.17) and (2.19), gives

b - V(I‘;:") B (g, - vexvg)(l—&)-a%(%). (B.5)

Also, using v4 = (v/Q) V X (vb), we can similarly show

va- Vg = =2 (Vi - VOX V) AI/I[?G (v") (B.6)
The identity (B.4) immediately follows. To avoid dividing by zero in the M = 0 case,
(1 — Ng/M) (vy/B) /06 in (B.5) can be replaced by g (v)/B) /¢, and M~'3 (vy/B) /06
in (B.6) can be replaced by —N~'3 (v;/B) /d¢.

Next, we prove another intermediate result: B depends on 6 and { only through the
combination M@ — N¢ (i.e. the field is quasisymmetric) if and only if L in (2.19) has this
same property. We begin by casting the equilibrium condition (V X B) X B/4xr = Vp into
Boozer coordinates. Then applying Vi, - VO X V{ = B?/ (gl + K) (which follows from the
scalar product of (2.17) with (2.19)) we obtain

6_L+ %_dK_ dl _4ﬂ(qI+K)dp
96 Yot "ay, Yag, T T B dy,

(B.7)

Note that the only quantities in this equation which vary in 6 or { are B and L. By expanding
(B.7) in Fourier series in 6 and Z, it follows that L depends on § and £ only through the
combination M@ — N{ if and only if B does the same.

In a quasisymmetric field therefore M dL/3{ = —N OL/06. Using (2.17) and (2.19) we
can then show v4- V (I,v)/2) = 0. Combining this result with (2.35), we obtain (vyb + vy) -
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Vi, = 0. It quickly follows that

0 Ze (0D 0
a + (U||b +vyg)-V+ ;1- (3{) &7] Y. = 0. (BS)

This equation represents the generalized version of ¢, conservation.



APPENDIX

Quasisymmetry in other coordinate
systems

In this appendix, we prove that B has a single helicity in Boozer coordinates if and only
if B has a single helicity in Hamada coordinates. The result which is proved is actually
more general, that symmetry is equivalent for any magnetic coordinate system in which the
Jacobian is proportional to some power of B. Preliminary results are derived in the next
three sections which are used for the proof in the last section.

Transformations between magnetic coordinates

Consider two sets of magnetic coordinates, (6, {;) and (6, {,), satisfying

B

Vb X VO, + VL, X Vil (C.1)
= V(llt X Vey + bVé'y X Vd’t

where 27y, is the toroidal flux. Suppose the transformation from one system to the other
was written as
0y = Ox + F (wt, exa é‘x) (CZ)

ly = é’x + G (wta ex, gx) (C.3)

where F and G are periodic in both the poloidal and toroidal angles. Substituting (C.2)-
(C.3) into (C.1),
Vi X VF +eVG X Vi, = 0. (C.4)

The V6, component of this equation tells us 0F/d(, = ¢ G /L, so upon integrating,

F=tG+yWn6y). (C.5)
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Here and throughout this appendix, 8/dZ, holds 6, fixed, /00, holds ¢, fixed, 8/9¢, holds
6, fixed, and 8/06, holds ¢, fixed. The VZ, component of (C.4) implies 0F/36, = ¢3dG/d6,,
SO

F = l’G +w (l;bt’ {x) . (C6)
Comparing (C.5) with (C.6), F must equal ¢G plus a flux function, so

8, = 0, + G +a ) (C.7)

and

&H=46+G (C.8)

for some flux function a (¢,).

Coordinates in which the Jacobian is proportional to a power of B

Suppose the Jacobian for the (6,, {,) coordinates is proportional to B*:
Vi - VO, XV, = A, (Y) B (C.9)

for some flux function A, (¢,). Hamada coordinates have x = 0 and Boozer coordinates
have x = 2. The flux surface average of a quantity Q is

1 27 27 Q
@ =y [ a [ dtm i €10

where V (¥) is the volume enclosed by a flux surface, and the prime denotes d/dy,. Ob-
serve that

47?
(B*) = VAL (C.11)
SO ”2 .
Vi, - VO, X VI, = ir B (C.12)

V' (B¥)
Therefore the Hamada Jacobian is Vi, - Vy x Vo = 472/ V.

Useful identities

Now we again consider the two magnetic coordinate systems (6, {x) and (6,,{,), and we
suppose that the latter also has a property analogous to (C.9):

Vi - VO, X Vg, = A, (9) B. (C.13)

Then from (C.12),

B By, V6, x V2, (C.14)

Vl//t : Vex X V(x = <Bx) B




APPENDIX C. QUASISYMMETRY IN OTHER COORDINATE SYSTEMS 107

Next, we apply the chain rule to G from (C.7)-(C.8):

oG 06, 0G agx oG

a6, = 30, 80, 96, 0L, (C.15)

By applying d/86, to (C.7) and (C.8), we find 1 = 36,/00, + ¢0G/86, and 0 = 8L,/86, +
dG/d8,, so (C.15) implies

oG 0G\ oG 0G oG
— =l = 1
26, ( *aey) 20, 06,07, (C.16)
Rearranging,
oG 0G\oG oG
Now, apply B - V to (C.8) to obtain
Vi x VO, -V, = Vi x V6, -V, + B - VG. (C.18)
Noting (C.14), then (C.18) can be written
(B*) P 0G oG
=14 — +t—. .
= (By) + oz, + *69, (C.19)
Substituting this expression into (C.17) then gives
B* oG P oG
(B) 90, (B} 06, 2
A similar calculation gives
B* 0G B 4G €21

(B0l (B)dL,
Next, applying 4/38, to (C.19) and commuting the derivatives on the right-hand side,

(B¥) OB [ 0 0 ]66 (C.22)

y-x—- —_—
e il FYalir v v

Recalling that B - V = Vi X VO, - V{, [(8/0Z,) + £(8/06,)], then (C.22) is equivalent to

oG _47r2(y x)By_ 0B

V—
BV = v © a

(C.23)
where we have also applied (C.12). We could have applied 8/8Z; to (C.19) instead of 8/96,
and so it is also true that

G 4n*(y - B »-19B

B-Voo = —2_—

7V By (C24)
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Boozer and Hamada symmetry are equivalent

Suppose B has only a single helicity in the (6,,,) coordinates: B = B(M8, — N¢,) for
some integers M and N, or equivalently,

0B OB
sz + Ma—é,; =0. (C.25)
Then from (C.23)-(C.24),
oG oG
B V(N(%)x + M&:) 0 (C.26)
It follows that 5G oG

for some flux function § (¢). Integrating (C.27) in 6, and £, from O to 27 in both variables,
we obtain 0 = (27)2 S, so § = 0. Then applying (C.20) and (C.21),

oG oG
Finally, we form
OB 0B 00, 0B 0, 0B 06, 0B 3, OB
—+M— = N —t—=—— |+ M| —=—— + =— )
Nao, * Moz, (aey 36, 96, ag,) * (agy 36, o, agx) (€.29)

l—te | —

N 0G|0B _9GoB\ . ( 9G OB 8G 8B
26, | 96, ~ 86, 02, '

9Ly | 0Lx

a¢, 00,
The first equality above is the chain rule, and to get the second line we have used the 4/06,
and 9/0¢, derivatives of (C.7) and (C.8). The last line vanishes due to (C.28), and so

0B 0B 0B 0B

The right equality in (C.30) also implies the left one, since x and y were arbitrary in the
proof. For the specific case of x = 0 and y = 2, then B has a single helicity in Boozer
coordinates if and only if B has a single helicity in Hamada coordinates.
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Moment equations for the radial
particle and heat fluxes

We now derive the result (5.54) which relates the radial heat flux to a moment of the col-
lision operator in a quasisymmetric stellarator. Along the way, we will also derive an
analogous relation for the particle flux. We first note the identity

B x Vyy-VB=ILB-VB, D.1)

obtained by writing B in the Boozer representations (2.17) and (2.19) and using M 0B/8¢ =
-N8B/d6.
Next, we follow [37, 76] and define the vector

1 L
7B % Vi - B (D.2)

Using (D.1) and [(V X B) X B] X Vi, = 0 we find the useful properties

y=

V.-y=0 and b-(Vy)-b=0. D.3)

In the axisymmetric limit, y — —R*V¢ where ¢ is the conventional toroidal angle in cylin-
drical (R, ¢, Z) coordinates.

Now take the full Fokker-Planck equation, multiply it by any function X (r, v), integrate
over velocity, and apply a flux surface average. The result can be written

< f d*v fX> ( f v Xf> 7 d%( ( f FPvXfv- V¢h>) ( f d3vXC> (D.4)

where the overdot indicates the Vlasov operator 8, + v - V + Zem™! (E +clvx B) -V,
with V' = (1 - Ng/M)™! 9§d09§d§ (B - VO)™!. Consider the choice X = v?v-y. Assuming
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E = —VO® with O a flux function, then

7

3 o
X=vv-(Vy)-v— ZZe—y vy - Vi — -Z—evzv - Vi (D.5)
m mc

where a prime denotes d/dy, as usual.

We now proceed to order the various terms in (D.4) using the conventional drift or-
derings rather than the finite-E, orderings. We use the small parameter § = p/a with
p = v;/Q and a a macroscopic scale length. We expand the full distribution function as
f =2 f; with f; ~ 8’ fy and f, the Maxwellian of (5.6). We order 9, ~ 62Q, v ~ 6Q,
T/IVT| ~n/IVnl ~ B |Vyn| ~ y ~ a, and |E| ~ 6Bu;/c.

We fieﬁne (-), to be a gyroaverage holding ¥, 6, {, 4 = v2 /2B, and E fixed. We then
define f = f —(f),. By the standard drift kinetic procedure [43],

2T 2 ©6)

f 5 p  Zed' m? S5\T’

= — vV . , — .
fi=5fob X Vi - v where s (v, 1) ST ( -
In (D.4), the time derivative term is 0(52v;‘n) and therefore negligible compared to the

collision term, which is O (6v;‘n). In the V' term, the contribution from (f),, is proportional
to [dPv (f),vAs W) v = [ v (f), 1?5 (V) (VV),. Due to

vy, = vibb + (22/2) (7 - bb) D7)

then y - (vv),, - Vify, = 0, so (f), does not contribute to the term. The contribution to the
V’ term from f; is proportional to [ d®v fov?s (v) vwv = 0. Thus, the largest contribution

to the V’ term in (D.4) comes from f;, making the V’ term 0(62v;‘n) and negligible. From
(D.4) we therefore have

i—i <fd3va2v . Vlﬁh) = <fd3uv2v . yC> + <fd3va2v - (Vy) - v> (D.8)

Ze¥ <y . fd3vav . V¢h> + 0(62v§'n) .

m

-2

Due to (D.7) and (D.3), (f), does not contribute to the Vy term in (D.8). The contribution
to the term from ﬁ vanishes since f d®v for?s (v) vvy = 0. Thus, the largest contribution
to the term in (D.8) comes from f;, making the term 0(62v?n) and therefore negligible
compared to the collision term.

Now consider the @ term in (D.8). Noting f dPu(f),vv = f v {(f),(vv), and (D.7),
then (f )q, does not contribute to this term. The contribution from f; is proportional to
f d*v fos W) vvv = 0. The largest contribution to the term in (D.8) therefore comes from

f>. This term is 0(62vfn) and therefore negligible (though it would remain if E were
ordered larger.)
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To restrict our attention to neoclassical transport and exclude classical transport, we
keep the parallel component of y in the collision term, but drop the perpendicular compo-

nent. This leaves
<fd3va2v : Vz//h> ~ —-éi <hfdsvv2v"C>. (D.9)
0

The particle flux can be found by repeating the preceding argument using X = v-y in (D.4).
We find

X=v-(Vy)-v—£e—v-Vg[/h. (D.10)
mc

The ordering of terms in (D.4) proceeds as before, and so

( f B fv- V./,h> = ’;_: <y : f v vc> + 0(5%?%). D.11)

For a plasma with a single species of ions, C = Cj in the ion kinetic equation, and so the
collision term in (D.11) vanishes to leading order in Vm./m;.
In light of this result and (D.9), the ion heat flux can be written as

2
(q-Vin) = <fd3vf(£nzi - %)v V¢h> = <fd3vf#v . Vz//h>, (D.12)

which when combined with (D.9) gives (5.54) as desired.
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Construction of quasi-isodynamic
fields

Here we review the procedure described in [9] for constructing a field B (6, ¢) with the
property (3.19) and with B straight in Boozer coordinates. While the original construction
in [9] was given for a field in which the B contours may close toroidally or helically, here we
specialize to the case where the contours close poloidally. We have also modified the nota-
tion slightly to account for the possibility of multiple toroidal periods. As shown following
(3.19), any field generated by the construction which follows will be quasi-isodynamic.

We assume the stellarator has N identical toroidal periods, with the B = B curves falling
along ¢ = 2xN@/N for any integer N©. We also assume there is a single B = B curve in
each of the N periods, and there are no local maxima or minima in B aside from the global
extrema B and B. We define &, = (B - B) / (ZB) and define 1 by the relation

B/B=1+s¢, +¢-cosn, (E.1)

so contours of B (6, {) are contours of (6, ). We stipulate that p = 0 at £ = 0, varying
continuously to n = 2x at £ = 2x/N. Our goal will be to construct r (6, £) for the single
period 0 < ¢ < 2x/N. We define

Ges =N{ -1 (E.2)

For i in the range 0 < < x, Gcs is then specified to be some continuous function of
6 and n such that Gcs = 0 when = 0. For example, the model field shown in the
figures was obtained using Ges (6, 17) = [0.6 + 0.9 sin 6] sin (57/2). A function A/ (1) is also
chosen such that AZ (0) = 2x/N and A () = 0, and it must satisfy the periodicity condition
A¢ (m) = AL (2 — ). For the figures we choose the inverted tent function AZ = 2| — n| /N.
While we chose Ges (6, n) freely in the range 0 < 17 < 7, in the range 7 < 7 < 2mr, Ges (6, )
is fixed by the requirement (3.19). To derive the mathematical constraint which is placed on
Gs by this requirement, consider points x and y in figure 3-1, two points on the same field
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line and at the same value of B but on opposite sides of B. Suppose point xhas coordinates
¢ =&, 0 = 6y, and n = 1. Then point y has coordinates = {o—AZ (170), 6 = 8o—AL (o) /9,
and n = 2r—ny. Writing out (E.2) for each point, algebraically eliminating {,, and dropping
the subscripts, we obtain

Ges (0, m) =2n =2+ Ges 0 — AL () /g,2m —m) + NAL (). (E.3)

This formula, which determines G¢s for 7 < < 27 in terms of the Ges we chose for
0 < i <, ensures (3.19) is satisfied. Next, the relationship ¢ (6, 1) = [+ Gcs (6, m)] /N is
inverted numerically to obtain 7 (6, £), and finally B (6, {) can be computed from (E.1).

For the model field shown in the figures, we have chosen g, = 0.15, g = 1.079, and
N =5.
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Relations for the current in a general
stellarator

Here we calculate several relations which are satisfied by the current in a general stellarator.
The results are important for understanding the principle that the bootstrap current can
vanish in a quasi-isodynamic stellarator, but in this appendix, we will consider the more
general case of any MHD equilibrium with nested toroidal flux surfaces.
We begin by noting that the perpendicular currentis j, = ¢ (dp/dy,) B~2B x Vi, where
p is the sum of the pressures of each species and a flux function. The condition V-j = 0
then implies
B -V (ji/B) = —c(dp/dy) B x Vyy - V(1/B%). (F.1)
This equation only determines j; up to a flux function times B. We define the Pfirsch-
Schiliiter current jlll’S to be the solution of (F.1) with this free flux function chosen such that

( jﬁ’sB) = 0. The true parallel current and the Pfirsch-Schliiter current then may differ by a
flux function times B, and we call this flux function A (4): ji = ji® + AB. Multiplying this

equation by B and flux surface averaging gives (jj,B) = A (Bz>, SO

. _ .S (jIIB> B
}" - ]" + (Bz> . (F'Z)
The total current vector is therefore
S .
c dp Ji (iB)
= — T Bx Vi + —— ) .
J BZdthx U + B (B B (F.3)

Next, recall that the coefficient K (i) in the covariant Boozer representation 2.19 equals
2/c times the toroidal current inside a flux surface. Therefore K (¢) = (2/c¢) f d*a-j,
where the surface integral is performed over a constant-{ cross-section of the plasma, a
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surface which covers the region from magnetic axis out to the flux surface . The area
element is d?a = dy,df (Vi - VO X V) V¢, and so

c _ dp (0 f‘” ,{JiB)
K@) =—c ﬁ dy'K d{/jt d0—+ fu Ay fo R o (F.4)

where each integrand is evaluated at y; rather than ¢,. We next integrate (F.4) over all {.
Recalling that the flux surface average can be written

) I de [ de (x/B?)
- Fas [T dg(1/B2)

(F.5)

then the £ integral of the jﬁs term in (F.4) becomes an integral of ( jI‘I’SB> = 0, and so it
vanishes. Also noting (Bz> = 47%/ LZ" do fozx d¢ (I/Bz), then we are then left with

K d 4 B
K ((ﬁt) = \fw dwt (Bz> dgt 7/ 4 ﬁ wt <(J£2>> (F.6)
Differentiating in i,
K __, K dp  4n(iB) (E7)

din (BYdy. ¢ (B’
Importantly, the Pfirsch-Schliiter current does not contribute to K. If another equation for
(jyB) in terms of K can be obtained from kinetic theory (as we have done for a quasi-
isodynamic stellarator in 3.64), then this equation can be used with (F.6) to calculate a
self-consistent current profile. In integrating (F.7), the initial condition K = 0 at ¢, = 0 is
used. For a quasi-isodynamic stellarator this procedure is done at the end of section 3.5.
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Leading-order solution of the drift
kinetic equation

We first prove a theorem regarding the time-independent drift kinetic equation
Df = C{f} where D=@b+vy)-V, (G.1)

f is gyrophase-independent, C {f} is the (nonlinear) Fokker-Planck operator for self col-
lisions, and the magnetic field is quasisymmetric. We look for solutions f which are in-
dependent of ¢ at fixed y. Casting into (¥,, x, £, E, ) variables as in (5.3) we obtain
(Dx) (0f/dx),, = C{f}. We multiply both sides by (In f) /Dy and recognize a perfect
derivative: 5 CLfinf

(a—) (inf-f)==—p—=. G2

X /y. Dy

Now multiply by o = sgn (Dy), integrate over all allowed y, and sum over ¢ and (in the
case of trapped particles) all helical wells. These operations annihilate the left-hand side.
Next, integrate over all allowed ¢,, u, and E, so we have integrated over all of position-

and velocity-space (except for the unimportant £ coordinate). This leaves
0= Z f dudE dy, dy |Dx|™ C{f}1n f. (G.3)

We now change from i, to ¥, as an integration variable. This is done using the remarkable
identity
6&//,, _ (U”b + Vd) . VX

G4
64//h U"b . VX ( )
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which can be shown with a few lines of algebra using the techniques of appendix B. Then
(G.3) becomes

0= f dudE dyndy |vb - Vx| C{f}Inf (G.5)
[y

where ¢ = sgn (v). This can be rewritten as

0= f din, f B - V) ldy f dPvC{f)Inf. (G.6)

Using the Landau form of the operator for self-collisions, the Cauchy-Schwartz inequality
as usual implies [ d®v C{f}In f < 0 for any f. Thus, (G.6) implies that [PvC{fiinf=0
at all positions, so f must be Maxwellian

3/2 V2
f=n(£T—) exp (-—? (E—V-V+ 7)), G.7

where, for the moment, n, 7, and V may depend on position. Next, (G.1) becomes
(@f/3x),. = 0, so f can vary only through ¢,, p, and E. Using this fact, a brief calcu-
lation then shows n, T, and V must be position-independent.

Thus, we have proven that the only {-independent exact solutions of the equilibrium
drift kinetic equation (G.1) in a quasisymmetric field are Maxwellians as in (5.6) but with
no gradients in temperature, mean flow, or pseudo-density 7.

We now consider the related problem of finding the leading-order distribution function
for the neoclassical transport analysis in a quasisymmetric field. If the leading-order kinetic
equation is taken to be (yyb + va) - Vfy = C{fo}, the proof following (G.1) applies and fo
must be Maxwellian. If we restrict our attention to the case in which the mean flow is
small compared to the thermal speed, then it is permissible to take V = 0 to leading order.
Although the gradients 7 and 7 are nonzero in a realistic plasma, we interpret the proof
as indication these gradients are weak. If we instead expand the kinetic equation for small
collisionality, to leading order Df ~ 0, so f must be a function of the constants of the
motion (., i, E). Since we want f to also be nearly Maxwellian, we therefore must take
f =~ F (., E) with F given by (5.8), and we demand that F be Maxwellian to leading
order. A Taylor-expansion of 7 and T in F about ¢, = i, gives F = fy + F where

__puhin (mE_ 3\T

with 77 and T evaluated at ¢, rather than ¢,. (This F is equivalent to (5.9).) Therefore
Fi/fu ~ p/ (krr) where k = |Vi|/ I, is the quasisymmetry generalization of Bp/B; defined
in section (4.1), and rr is the scale length for n and T. For f to remain Maxwellian to
leading order, T and 5 can vary only on a scale length which is long compared to p/k. It is
still possible that the true density  and the potential @ vary on the length scale p/k as long
as their combination in n = nexp(Ze®/T') varies more slowly.
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Integral for the parallel flow

Here we argue that
nl, T’

[@ve-6)~ Ve

and therefore that the last integral in (5.65) can be dropped. We begin by writing the integral
in terms of (W, A) variables:

E-GOW
fdsv(g_c;)_ fodeA 7vu+u| —27erdedA(g G) 5~ |v||+u|.

(H.2)

(H.1)

We are free to add a constant behind the derivative, so

fd3v(g—G)=27erdedA‘/2_Vl7(g—G)-56X(1— VI-A/h). (H.3)

We next integrate by parts in A. There is no contribution from the lower boundary A = 0
because the last quantity in parentheses vanishes there. There is also no contribution from
the upper boundary since G = 0 there and g = 0 in this trapped region to leading order.
Thus,

fd3v(g—G)=2andedA\/§W(\/1—A/h—1)[f 9 (g- +(8"G)an].

N~ fu M OA

H.4)
To leading order in +/e, fy; is independent of A, so the dfy/OA term vanishes. Also,
from (5.48), fud[(g — G) /fu] /0A is odd in o to leading order, and so it vanishes in the
o sum. To properly calculate the leading nonvanishing contribution to the integral above,
we would need to find not only the next correction to fy; in the /£ expansion, but also the
next correction to g, which is not feasible. In any event, since the right-hand side of (H.4)
vanishes in leading order, the estimate (H.1) is adequate.
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