What are the neural mechanisms for coding complex sounds?

 All information about an auditory scene combines to a single sound pressure waveform impinging on the eardrum. These vibrations are encoded as spiking activity in auditory nerve, which in turn projects to the cochlear nuclei in the brain stem. Our driving question is: how does the brain interpret this activity as the complex auditory world around us?  And how do we do this especially when there are multiple overlapping sound sources?

At the level of the cochlear nucleus, different types of information are extracted by using distinct synaptic and cellular specializations that decode the nerve inputs.  How are timing and intensity cues are extracted at the auditory nerve to cochlear nucleus synapse? How might short-term synaptic plasticity contribute to encoding sound envelope or overall level? What role do the various intrinsic firing properties of different cell types have in encoding sound envelopes? How is the information about intensity passed along by ascending circuits?

We investigate fundamental aspects of auditiory physiology using whole-cell patch-clamp recordings from brain slices, in vivo electrophysiology, quantitive modeling of synaptic plasticity and biophysical membrane properties, and immunohistochemical techniques.

We have a number of ongoing projects related to these questions. More details can be found by clicking the Research tab.



Welcome to new NACS graduate student James! joined Fall 2018.

3/1/2019: We still have openings for lab members at multiple levels,including immediate opening for 1) funded postdoctoral fellow, and 2) undergraduate assistants.See full list of "Opportunities" page here .



Recent presentation: ARO 2019 was held in Baltimore MD on February 9-13th

MacLeod, K.M., Pandya, S. (2019) Differential Expression of Isoforms of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem.  Association for Research in Otolaryngology 40nd Mid-Winter Meeting