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Abstract

Heisenberg’s uncertainty relation can be written in terms of the step-up and step-down
operators in the harmonic oscillator representation. It is noted that the single-variable Heisen-
berg commutation relation contains the symmetry of the Sp(2) group which is isomorphic to
the Lorentz group applicable to one time-like dimension and two space-like dimensions, known
as the O(2, 1) group. This group has three independent generators. The one-dimensional step-
up and step-down operators can be combined into one two-by-two Hermitian matrix which
contains three independent operators. If we use a two-variable Heisenberg commutation re-
lation, the two pairs of independent step-up, step-down operators can be combined into a
four-by-four block-diagonal Hermitian matrix with six independent parameters. It is then
possible to add one off-diagonal two-by-two matrix and its Hermitian conjugate to complete
the four-by-four Hermitian matrix. This off-diagonal matrix has four independent generators.
There are thus ten independent generators. It is then shown that these ten generators can be
linearly combined to the ten generators for the Dirac’s two oscillator system leading to the
group isomorphic to the de Sitter group O(3, 2), which can then be contracted to the inhomo-
geneous Lorentz group with four translation generators corresponding to the four-momentum
in the Lorentz-covariant world. This Lorentz-covariant four-momentum is known as Einstein’s
E = mc2.

This paper is based on an invited paper presented by Young S. Kim at the 16th Internal
Conference on Squeezed States and Uncertainty Relations (Madrid, Spain, 2019).
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1 Introduction

Let us start with Heisenberg’s commutation relations

[xi, Pj ] = i δij , (1)

with

Pi = −i
∂

∂xi
, (2)

where i = 1, 2, 3, correspond to the x, y, z coordinates respectively.
With these xi and Pi, we can construct the following three operators,

Ji = ϵijkxjPk. (3)

These three operators satisfy the closed set of commutation relations:

[Ji, Jj ] = iϵijkJk. (4)

These Ji operators generate rotations in the three-dimensional space. In mathematics, this set
is called the Lie algebra of the rotation group. This is a direct consequence of Heisenberg’s
commutation relations.

In quantum mechanics, each Ji corresponds to the angular momentum along the i direction.
The remarkable fact is that it is also possible to construct the same Lie algebra with two-by-
two matrices. These matrices are of course the Pauli spin matrices, leading to the observable
angular momentum not seen in classical mechanics.

As the expression shows in Eq.(2), each Pi generates a translation along the ith direction.
Thus, the three translation generators, together with the three rotation generators constitute
the Lie algebra of the Galilei group, with the additional commutation relations:

[Ji, Pj ] = iϵijkPk. (5)

This set of commutation relations together with those of Eq.(4) constitute a closed set for
both Pi and Ji. This set is called the Lie algebra of the Galilei group. This group is the basic
symmetry group for the Schrödinger or non-relativistic quantum mechanics.

In the Schrödinger picture, the generator Pi corresponds to the particle momentum along
the i direction. In addition, the time translation operator is

P0 = i
∂

∂t
. (6)

This corresponds to the energy variable.
Let us go to the Lorentzian world. Here we have to take into account the generators of the

boosts. The generators thus include the time variable, and the generator of boosts along the
i direction is

Ki = i

(
xi

∂

∂t
+ t

∂

∂xi

)
. (7)

These generators satisfy the commutation relations

[Ki,Kj ] = −iϵijkJk. (8)

Thus, these three boost generators alone cannot constitute a closed set of commutation rela-
tions (Lie algebra).
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Dirac 1949                                                                       Dirac 1963 

Group contraction

      We can make this detour.

Impossible?

Figure 1: According to Dirac’s 1949 paper, the task of constructing quantum mechanics is essen-
tially constructing a representation of the inhomogeneous Lorentz group. In his 1963 paper, Dirac
constructed the Lie algebra of the O(3, 2) de Sitter group from the algebra of two harmonic os-
cillators, which is a direct consequence of Heisenberg’s uncertainty commutation relations. It is
possible to derive the Lie algebra of the inhomogeneous Lorentz group from that of O(3, 2) using
the group-contraction procedure of Inönü and Wigner [3].

With Ji, these boost generators satisfy

[Ji,Kj ] = i ϵijkKk. (9)

With Pi, they satisfy the relation
[Pi,Ki] = iδ0iP0. (10)

Thus, the commutation relations of Eqs.(4,5, 8,9,10) constitute a closed set of the ten genera-
tors. This closed set is commonly called the Lie algebra of the Poincaré symmetry.

The three rotation and three translation generators are contained in or derivable from
Heisenberg’s commutation relations, and the time translation operator is seen in the Schrödinger
equation. They are all Hermitian operators corresponding to dynamical variables. On the other
hand, the three boost generators of Eq.(7) are not derivable from the Heisenberg relations.
Furthermore, they do not appear to correspond to observable quantities [1].

The purpose of this paper is to show that the Lie algebra of the Poincaré symmetry is
derivable from the Heisenberg commutation relations. For this purpose, we first examine the
symmetry of the Heisenberg commutation relation using the Wigner function in the phase
space. It is noted that the single-variable relation contains the symmetry of the Lorentz group
applicable to two space-like and one time-like dimensions.

As Dirac noted in 1963 [2], two coupled oscillators lead to the symmetry of the O(3, 2) or
the Lorentz group applicable to the three space-like directions and two time-like directions. As
is illustrated in Fig. 3, it is possible to contract one of those two time variables of this O(3, 2)
group into the inhomogeneous Lorentz group consisting of the Lorentz group applicable to
the three space-like dimensions and one time-like direction, plus four translation generators
corresponding to the energy-momentum four-vector. This of course leads to Einstein’s energy-
momentum relation of E = mc2.

In Sec. 2, it is noted that the best way to study the symmetry of the Heisenberg commuta-
tion relation is to use the Wigner function for the Gaussian function for the oscillator state. In
the Wigner phase space, this function contains the symmetry for the Lorentz group applicable
to two space-like dimensions and one time-like dimension. This group has three generators.
This operation is equivalent to constructing a two-by-two block-diagonal Hermitian matrix
with quadratic forms of the step-up and step-down operators.
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In Sec. 3, we consider two oscillators. If these oscillators are independent, it is possible to
construct a four-by-four block diagonal matrix, where each block consists of the two-by-two
matrix for each operator defined in Sec. 2. Since the oscillators are uncoupled, this four-by-four
block-diagonal Hermitian matrix contains six independent generators.

If the oscillators are coupled, then to keep the overall four-by-four block-diagonal matrix
Hermitian, we need one off-diagonal block matrix, with four independent quadratic forms.
Thus, the overall four-by-four matrix contains ten independent quadratic forms of the creation
and annihilation operators.

It is shown that these ten independent generators can be linearly combined into the ten
generators constructed by Dirac for the the Lorentz-group applicable to three space-like di-
mensions and two time-like dimensions, commonly called O(3, 2) group.

In Sec. 4, using the boosts belonging to one of its time-like dimensions, we contract O(3, 2)
to produce the Lorentz group applicable to one time dimension and four translations leading to
the four-momentum. This Lorentz-covariant four-momentum is commonly known as Einstein’s
E = mc2.

This paper is basically based on Dirac’s paper published in 1949 and 1963 [1, 2]. As
is illustrated in Fig.1, we show here that the space-time symmetry of quantum mechanics
mentioned in his 1949 paper is derivable from his two-oscillator system discussed in 1963. The
route is the group contraction procedure of Inönü and Wigner [3].

Indeed, Dirac made his lifelong efforts to synthesize quantum mechanics and special rela-
tivity from 1927 [4]. In and before 1949, he treated quantum mechanics and special relativity
as two separate scientific disciplines, and he then attempted to synthesized them. Thus, it is
of interest to see how Dirac’s idea evolved during the period 1929-49. We shall give a brief
review of Dirac’s efforts during the period in the Appendix.

2 Symmetries of the Single-mode States

Heisenberg’s uncertainty relation for a single Cartesian variable takes the form

[x, p] = i. (11)

with

p = −i
∂

∂x
.

Very often, it is more convenient to use the operators

a =
1√
2
(x+ ip), a† =

1√
2
(x− ip) (12)

with [
a, a†

]
= 1. (13)

This aspect is well known.
The representation based on a and a† is known as the harmonic oscillator representation

of the uncertainty relation and is the basic language for the Fock space for particle numbers.
This representation is therefore the basic language for quantum optics.

Let us next consider the quadratic forms: aa, a†a†, aa†, and a†a. Then the linear combina-
tion

aa† − a†a = 1, (14)
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according to the uncertainty relation. Thus, there are three independent quadratic forms, and
we are led to the following two-by-two matrix:(

aa† + a†a
)
/2 aa

a†a†
(
aa† + a†a

)
/2

 . (15)

This matrix leads to the following three independent operators:

J2 =
1

2

(
aa† + a†a

)
, K1 =

1

2

(
a†a† + aa

)
, K3 =

i

2

(
a†a† − aa

)
. (16)

They produce the following set of closed commutation relations:

[J2,K1] = −iK3, [J2,K3] = iK1, [K1,K3] = iJ2. (17)

This set is commonly called the Lie algebra of the Sp(2) group, locally isomorphic to the
Lorentz group applicable to one time and two space coordinates.

The best way to study the symmetry property of these operators is to use the Wigner
function for the ground-state oscillator which takes the form [5, 6, 7, 8]

W (x, p) =
1

π
exp

[
−

(
x2 + p2

)]
. (18)

This distribution is concentrated in the circular region around the origin. Let us define the
circle as

x2 + p2 = 1. (19)

We can use the area of this circle in the phase space of x and p as the minimum uncertainty.
This uncertainty is preserved under rotations in the phase space and also under squeezing.
These transformations can be written as(

cos θ − sin θ
sin θ cos θ

)(
x
p

)
,

(
eη 0
0 e−η

)(
x
p

)
, (20)

respectively. The rotation and the squeeze are generated by

J2 = −i

(
x
∂

∂p
− p

∂

∂x

)
, K1 = −i

(
x
∂

∂x
− p

∂

∂p

)
. (21)

If we take the commutation relation with these two operators, the result is

[J2,K1] = −iK3, (22)

with

K3 = −i

(
x
∂

∂p
+ p

∂

∂x

)
. (23)

Indeed, as before, these three generators form the closed set of commutation which form the
Lie algebra of the Sp(2) group, isomorphic to the Lorentz group applicable to two space and
one time dimensions. This isomorphic correspondence is illustrated in Fig. 2.

Let us consider the Minkowski space of (x, y, z, t). It is possible to write three four-by-four
matrices satisfying the Lie algebra of Eq.(17). The three four-by-four matrices satisfying this
set of commutation relations are:

J2 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , K1 =


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 , K3 =


0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0

 . (24)
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p

x

boost along z

boost along x

Figure 2: Rotations and squeezes in the phase space produced by the Sp(2) transformations. The
squeeze along the x direction corresponds to the Lorentz boost along the z direction, while the
squeeze along the 45o degree corresponds to the boost along the x direction. The rotation by 45o

corresponds to the rotation by 90o around the y axis.

However, these matrices have null second rows and null second columns. Thus, they can
generate Lorentz transformations applicable only to the three-dimensional space of (x, z, t),
while the y variable remains invariant. Thus, this single-oscillator system cannot describe
what happens in the full four-dimensional Minkowski space.

Yet, it is interesting, the oscillator system can produce three different representations shar-
ing the same Lie algebra with the (2 + 1)-dimensional Lorentz group, as shown in Table 1.

3 Symmetries from Two Oscillators

In order to generate Lorentz transformations applicable to the full Minkowskian space, we may
need two Heisenberg commutation relations. Indeed, Paul A. M. Dirac started this program
in 1963 [2]. It is possible to write the two uncertainty relations using two harmonic oscillators
as [

ai, a
†
j

]
= δij , (25)

with

ai =
1√
2
(xi + ipi) , a†i =

1√
2
(xi − ipi) , (26)

and

xi =
1√
2

(
ai + a†i

)
, pi =

i√
2

(
a†i − ai

)
, (27)

where i and j could be 1 or 2.
As in the case of the two-by-two matrix given in Eq. 15, we can consider the following

four-by-four block-diagonal matrix if the oscillators are not coupled:

(
a1a

†
1 + a†1a1

)
/2 a1a1 0 0

a†1a
†
1

(
a1a

†
1 + a†1a1

)
/2 0 0

0 0
(
a2a

†
2 + a†2a2

)
/2 a2a2

0 0 a†2a
†
2

(
a2a

†
2 + a†2a2

)
/2

 . (28)
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Table 1: Transformation for the Gaussian function, in terms of harmonic oscillators, two-dimensional
phase space, and the four-dimensional Minkowski space.

Generators Oscillator Phase space Lorentz

J2
1
2

(
aa† + a†a

)
1
2
σ2


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0



K1
1
2i

(
a†a† + aa

)
i
2
σ1


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0



K3
1
2

(
a†a† − aa

)
, i

2
σ3


0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0
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There are six generators in this matrix.
We are now interested in coupling them by filling in the off-diagonal blocks. The most

general forms for this block are the following two-by-two matrix and its Hermitian conjugate: a†1a2 a1a2

a†1a
†
2 a1a

†
2

 (29)

with four independent generators. This leads to the following four-by-four matrix with ten
(6 + 4) generators:

(
a1a

†
1 + a†1a1

)
/2 a1a1 a†1a2 a1a2

a†1a
†
1

(
a1a

†
1 + a†1a1

)
/2 a†1a

†
2 a1a

†
2

a1a
†
2 a1a2

(
a2a

†
2 + a†2a2

)
/2 a2a2

a†1a
†
2 a†1a2 a†2a

†
2

(
a2a

†
2 + a†2a2

)
/2

 . (30)

With these ten elements, we can now construct the following four rotation-like generators:

J1 =
1

2

(
a†1a2 + a†2a1

)
, J2 =

1

2i

(
a†1a2 − a†2a1

)
,

J3 =
1

2

(
a†1a1 − a†2a2

)
, S0 =

1

2

(
a†1a1 + a2a

†
2

)
, (31)

and six squeeze-like generators:

K1 = −1

4

(
a†1a

†
1 + a1a1 − a†2a

†
2 − a2a2

)
,

K2 = +
i

4

(
a†1a

†
1 − a1a1 + a†2a

†
2 − a2a2

)
,

K3 = +
1

2

(
a†1a

†
2 + a1a2

)
, (32)

and

Q1 = − i

4

(
a†1a

†
1 − a1a1 − a†2a

†
2 + a2a2

)
,

Q2 = −1

4

(
a†1a

†
1 + a1a1 + a†2a

†
2 + a2a2

)
,

Q3 = +
i

2

(
a†1a

†
2 − a1a2

)
. (33)

There are now ten operators from Eqs.(31,32,33), and they satisfy the following Lie algebra
as was noted by Dirac in 1963 [2]:

[Ji, Jj ] = iϵijkJk, [Ji,Kj ] = iϵijkKk,

[Ji, Qj ] = iϵijkQk, [Ki,Kj ] = [Qi, Qj ] = −iϵijkJk,

[Ki, Qj ] = −iδijS0, [Ji, S0] = 0, [Ki, S0] = −iQi, [Qi, S0] = iKi. (34)
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Dirac noted that this set is the same as the Lie algebra for the O(3, 2) de Sitter group, with
ten generators. This is the Lorentz group applicable to the three-dimensional space with two
time variables. This group plays a very important role in space-time symmetries.

In the same paper, Dirac pointed out that this set of commutation relations serves as the
Lie algebra for the four-dimensional symplectic group commonly called Sp(4). For a dynamical
system consisting of two pairs of canonical variables x1, p1 and x2, p2, we can use the four-
dimensional phase space with the coordinate variables defined as [9]

(x1, p1, x2, p2) . (35)

Then the four-by-four transformation matrix M applicable to this four-component vector is
canonical if [10, 11]

MJM̃ = J, (36)

where M̃ is the transpose of the M matrix, with

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (37)

which we can write in the block-diagonal form as

J = i

(
I 0
0 I

)
σ2, (38)

where I is the unit two-by-two matrix.
According to this form of the J matrix, the area of the phase space for the x1 and p1

variables remains invariant, and the story is the same for the phase space of x2 and p2.
We can then write the generators of the Sp(4) group as [12]

J1 = −1

2

(
0 I
I 0

)
σ2, J2 =

i

2

(
0 −I
I 0

)
I, J3 =

1

2

(
−I 0
0 I

)
σ2,

S0 =
1

2

(
I 0
0 I

)
σ2, (39)

and

K1 =
i

2

(
I 0
0 −I

)
σ1, K2 =

i

2

(
I 0
0 I

)
σ3, K3 = − i

2

(
0 I
I 0

)
σ1,

Q1 = − i

2

(
I 0
0 −I

)
σ3, Q2 =

i

2

(
I 0
0 I

)
σ1, Q3 =

i

2

(
0 I
I 0

)
σ3. (40)

Among these ten matrices, six of them are in block-diagonal form. They are S0, J3,K1,K2, Q1,
and Q2. In the language of two harmonic oscillators, these generators do not mix up the first
and second oscillators. There are six of them because each operator has three generators for its
own Sp(2) symmetry. These generators, together with those in the oscillator representation,
are tabulated in Table 2.

The off-diagonal matrix J2 couples the first and second oscillators without changing the
overall volume of the four-dimensional phase space. However, in order to construct the closed
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Table 2: Transformation generators for the two-oscillator system.

Generators Two Oscillators Phase space

J1
1
2

(
a†1a2 + a†2a1

)
−1

2

(
0 I
I 0

)
σ2

J2
1
2i

(
a†1a2 − a†2a1

)
i
2

(
0 −I
I 0

)
I

J3
1
2

(
a†1a1 − a†2a2

)
, 1

2

(−I 0
0 I

)
σ2

S0
1
2

(
a†1a1 + a2a

†
2

)
, 1

2

(
I 0
0 I

)
σ2

K1 −1
4

(
a†1a

†
1 + a1a1 − a†2a

†
2 − a2a2

)
i
2

(
I 0
0 −I

)
σ1

K2 + i
4

(
a†1a

†
1 − a1a1 + a†2a

†
2 − a2a2

)
i
2

(
I 0
0 I

)
σ3

K3
1
2

(
a†1a

†
2 + a1a2

)
− i

2

(
0 I
I 0

)
σ1

Q1 − i
4

(
a†1a

†
1 − a1a1 − a†2a

†
2 + a2a2

)
− i

2

(
I 0
0 −I

)
σ3

Q2 −1
4

(
a†1a

†
1 + a1a1 + a†2a

†
2 + a2a2

)
i
2

(
I 0
0 I

)
σ1

Q3
i
2

(
a†1a

†
2 − a1a2

)
1
2

(
I 0
0 I

)
σ2
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set of commutation relations, we need the three additional generators: J1,K3, and Q3. The
commutation relations given in Eqs.(34) are clearly consequences of Heisenberg’s uncertainty
relations.

As for the O(3, 2) group, the generators are five-by-five matrices, applicable to (x, y, z, t, s),
where t and s are time-like variables. These matrices can be written as

J1 =


0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 0
0 0 0 0 0

 , J2 =


0 0 i 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , J3 =


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

K1 =


0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0
0 0 0 0 0

 , K2 =


0 0 0 0 0
0 0 0 i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

 , K3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 i 0
0 0 i 0 0
0 0 0 0 0

 ,

Q1 =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0

 , Q2 =


0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0

 , Q3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 i 0 0

 ,

S0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0

 . (41)

Next, we are interested in eliminating all the elements in the fifth row. The six generators
Ji and Ki are not affected by this operation, but Q1, Q2, Q3, and S0 become

P1 =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , P2 =


0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , P3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0

 ,

P0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0

 , (42)

respectively. While Ji and Ki generate Lorentz transformations on the four dimensional
Minkowski space, these Qi and S0 in the form of the Pi, P0 matrices generate translations
along the x, y, z, and t directions respectively. We shall study this aspect in detail in Sec. 4.
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4 Contraction of O(3,2) to the Inhomogeneous Lorentz

Group

We can contract O(3, 2) according to the procedure introduced by Inönü and Wigner [3].
They introduced the procedure for transforming the four-dimensional Lorentz group into the
three-dimensional Galilei group. Here, we shall contract the boost generators belonging to the
time-like s variable, Qi , along with the rotation generator between the two time-like variables,
S0.

Here, we illustrate the Inönü-Wigner procedure using the concept of squeeze transforma-
tions. For this purpose, let us introduce the squeeze matrix

C(ϵ) =


1/ϵ 0 0 0 0
0 1/ϵ 0 0 0
0 0 1/ϵ 0 0
0 0 0 1/ϵ 0
0 0 0 0 ϵ

 . (43)

This mtrix commutes with Ji and Ki. The story is different for Qi and S0.
For Q1,

C Q1 C−1 =


0 0 0 0 i/ϵ2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
iϵ2 0 0 0 0

 , (44)

which, in the limit of small ϵ, becomes

Q′
1 =


0 0 0 0 i/ϵ2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (45)

We then make the inverse squeeze transformation:

C−1 Q′
1 C =


0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (46)

Thus, we can write this contraction procedure as

P1 = lim
ϵ→0

(
ϵ2 C Q1 C−1

)
, (47)

where the explicit five-by-five matrix is given in Eq.(42). Likewise

P2 = lim
ϵ→0

(
ϵ2 C Q2 C−1

)
, P3 = lim

ϵ→0

(
ϵ2 C Q3 C−1

)
, P0 = lim

ϵ→0

(
ϵ2 C S0 C−1

)
. (48)

These four contracted generators lead to the five-by-five transformation matrix, as can be seen
from

exp {−i (aP1 + bP2 + cP3 + dP0)} (49)
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�g.(a) �g.(b)

Figure 3: The Inönü-Wigner contraction procedure interpreted as squeeze transformations. In
fig.(a), the square becomes a narrow rectangle during the squeeze process. When the rectangle
becomes narrow enough, the point A can be moved to the horizontal axis. Then, the inverse
squeeze brings back the rectangle to the original shape. The point A remains on the horizontal
axis. In fig.(b), both the hyperbola and the circle become flattened to the horizontal axis, during
the initial squeeze. The point on the curve moves to the horizontal axis. This point moves back to
its finite position during the inverse squeeze.
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performing translations in the four-dimensional Minkowski space:
1 0 0 0 a
0 1 0 0 b
0 0 1 0 c
0 0 0 1 −d
0 0 0 0 1




x
y
z
t
1

 =


x+ a
y + b
z + c
t− d
1

 . (50)

In this way, the space-like directions are translated and the time-like t component is short-
ened by an amount d. This means the group O(3, 2) derivable from the Heisenberg’s uncer-
tainty relations becomes the inhomogeneous Lorentz group governing the Poincaré symmetry
for quantum mechanics and quantum field theory. These matrices correspond to the differential
operators

Px = −i
∂

∂x
, Py = −i

∂

∂y
, Pz = −i

∂

∂z
, P0 = i

∂

∂t
, (51)

respectively. These translation generators correspond to the Lorentz-covariant four-momentum
variable with

p21 + p22 + p23 − p20 = constant. (52)

This energy-momentum relation is widely known as Einstein’s E = mc2.

Concluding Remarks

According to Dirac [1], the problem of finding a Lorentz-covariant quantum mechanics reduces
to the problem of finding a representation of the inhomogeneous Lorentz group. Again, ac-
cording to Dirac [2], it is possible to construct the Lie algebra of the group O(3, 2) starting
from two oscillators. We have shown in our earlier paper [12] that this O(3, 2) group can be
contracted to the inhomogeneous Lorentz group according to the group contraction procedure
introduced by Inönü and Wigner [3].

In this paper, we noted first that the symmetry of a single oscillator is generated by three
generators. Two independent oscillators thus have six generators. We have shown that there
are four additional generators needed for the coupling of the two oscillators. Thus there are
ten generators. These ten generators can then be linearly combined to produce ten generators
which were spelled out in Dirac’s 1963 paper.

For the two-oscillator system, there are four step-up and step-down operators. There are
therefore sixteen quadratic forms [9]. Among those, only ten of them are in Dirac’s 1963
paper [2]. Why ten? Dirac needed those ten to construct the Lie algebra for the O(3, 2) group.
At the end of the same paper, he stated that this Lie algebra is the same as that for the Sp(4)
group, which preserves the minimum uncertainty for each oscillator.

In this paper, we started with the block-diagonal matrix given in Eq.(28) for two totally
independent oscillators with six independent generators. We then added one two-by-two Her-
mitian matrix of Eq.(29) with four generators for the off-diagonal blocks. The result is the
four-by-four Hermitian matrix given in Eq.(30). This four-by-four Hermitian matrix has ten
independent operators which can be linearly combined to the ten operators chosen by Dirac.
Thus, in this paper, we have shown how the two-oscillators are coupled, and how this coupling
introduces additional symmetries.

Paul A. M. Dirac made his life-long efforts to make quantum mechanics consistent with
special relativity, starting from 1927 [4]. While we exploited the contents of his paper published
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Figure 4: Dirac’s three papers. His 1927 and 1945 papers can be described by a circle in the
longitudinal space-like and time-like coordinate. Dirac introduced the light-cone coordinate system
in 1959. In this system, the Lorentz boost is a squeeze transformation. It is then natural to
synthesize these two figures to a squeezed circle or an ellipse. Figure 6 will illustrate how this
elliptic squeeze manifests itself in the real world.

in 1963 [2], it is of interest to review his earlier efforts. In his earlier papers, Dirac started
with quantum mechanics and special relativity as two different branches of science based on
two different mathematical bases.

In this paper, based on Dirac’s two papers [1, 2], we concluded that both quantum me-
chanics and special relativity can be derived from the same mathematical base. A brief review
of Dirac’s earlier efforts is given in the Appendix.

Appendix

As we all know, quantum mechanics and special relativity were developed along two separate
routes. As early as 1927, Dirac was interested in understanding whether these two scientific
disciplines are compatible with each other. In his paper of 1927 [4], Dirac noted the the
existence of the time-energy uncertainty relation without excitations. He called this the “c-
number” time-energy uncertainty relation. Dirac pointed out that the space-time asymmetry
makes it difficult to construct the uncertainty relation in the Lorentz-covariant world.

In 1945, Dirac considered the four-dimensional harmonic oscillator wave functions applica-
ble to the four-dimensional space and time. In so doing, Dirac was considering localized bound
states. The space and time variables in his case are the separations between two constituents,
like the proton and electron in the hydrogen atom.

It was shown later that Dirac’s concern about the c-number time-energy uncertainty is not

15



Photo of Gell-Mann by Y.S.Kim (2010), all others photos are from the public domain.

100 years ago, Bohr was worrying about the orbit of 

the hydrogen atom.

Einstein was interested in how things look to moving 
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ques!on for them.

50 years ago,  the proton became a bound state of 

the quarks sharing the same quantum mechanics as 
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Figure 5: The Bohr-Einstein issue is 100 years old. Fifty years later, it became the quark-parton
puzzle, based on observations made in high-energy laboratories.

necessary in view of the fact that a massive particle at rest has only three space-like dimen-
sions [13]. According to Wigner [14], the little group for the massive particle is isomorphic to
O(3) [14]. With this understanding, we can use a circle in the z t plane as shown in Fig. 4,
where z and t are longitudinal and time separations respectively.

In his 1949 paper [15], Dirac introduced the light-cone coordinate system which tells us
that the Lorentz boost is a squeeze transformation. This aspect is also illustrated in Fig. 4. It
is then not difficult to see how the circle looks to a moving observer.

Next question is whether this elliptic squeeze has anything to do with the real world. One
hundred years ago, Niels Bohr and Albert Einstein met occasionally to discuss physics. Their
interests were different. Bohr was worrying about the electron orbit in the hydrogen atom.
Einstein was interested in how things look to moving observers. Then the question arises. How
would the hydrogen atom look to a moving observer? This was a metaphysical issue during
the period of Bohr and Einstein, because there were no hydrogen atoms moving fast enough
to exhibit this Einstein effect.

Fifty years later, the physics world was able to produce many protons from particle ac-
celerators. In 1964 [16], Gell-Mann observed that the proton is a bound state of the more
fundamental particles called “quarks” according to the quantum mechanics applicable also to
the hydrogen atom.

However, according to Feynman [17, 18], when the proton moves very fast, it appears as a
collection of a large number of free-moving light-like partons with a wide-spread momentum
distribution, as described in Fig. 6. Feynman’s parton picture was entirely based on what we
observe in laboratories.

Unlike the hydrogen atom, the proton can become accelerated, and its speed could be very
close to that of light. Thus the Bohr-Einstein issue became the Gell-Mann-Feynman issue, as
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illustrated in Fig. 5. The question is whether Gell-Mann’s quark model and Feynman’s parton
picture are two different aspects of one Lorentz-covariant entity. This question was addressed
by Kim and Noz 1977 [19] and was explained in detail by the present authors with a graphical
illustration given in Fig. 6.

Figure 6: In the harmonic-oscillator regime, the momentum-energy wave function takes the same
mathematical form as that of the space-time wave functions. This figure shows that the quark
model and the parton model are two different aspects of one Lorentz-covariant entity. In 1969 [17],
Feynman observed that the fast-moving proton appears as a collection of a large number of light-like
partons with a wide-spread momentum distribution, and short interaction time with the external
signal. This figure is a graphical illustration of the 1977 paper by Kim and Noz [19]. This figure is
from a recent book by the present authors [20].
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