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Chapter One: The Electric Field

(1.1) Coulomb’s Law –Two stationary electric charges repel or attract one another with a force given
by:
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(1.9) Potential Energy of a System of Charges –Factor of ½ is to account for counting each pair
twice. Superposition of the potential energies of each pair of particles (Total of N charges).
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(1.21) Gauss’s Law –The electric flux through a surface enclosing some charge is equal to four pi times
the enclosed charge, regardless of the geometry.
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(1.26) Electric field from a line of Charge –Wire with linear charge distribution lambda extending
infinitely in either direction a distance r away points in the radial direction outward with
magnitude:
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(1.38) The Energy of an Electric Field- The potential energy U of a system of charges which is the
total work required to assemble the system, can be calculated from the electric field itself by
simply assigning an amount of energy to every volume element and integrating over all space
where there is electric field.
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Chapter Two: The Electric Potential

(2.6) Electric Potential– Definition, independent of path:
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(2.20) Electric Potential of Uniformly Charged Disk located on the xz plane with uniform surface
charge density sigma.
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(2.39) Gauss’s Differential Form– relation between charge density and electric field.
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(2.56) Constraints of electrostatic field- Vector operator is known as Laplacian – this follows from
impossibility of constructing a confinement of a charge using just electrostatic fields. Also, the
curl of the electric field must be zero everywhere there is no charge.
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Chapter Three: Electric Fields Around Conductors

(3.11) Capacitance of conductor
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(3.16) Capacitance of various geometries: (1) Area of plates is A, separation of plates is s
(2) Radius of inner cylinder is a, outer is b, length L
(3) Radius of inner sphere is a, outer is b
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(3.25) Energy in a capacitor –Can be expressed in terms of capacitance and voltage or electric field
and volume.
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The electric field is always zero in a conductor and perpendicular to the surface when it leaves the
conductor. Capacitances add inversely in series and directly in parallel.



Chapter Four: Electric Currents

(4.5) Current Density –Assume some number of carriers of charge in a current are electrons moving
at an average velocity. The current density is given as:
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(4.6) Properties of the Current –An electric current going through an area is defined as the surface
integral. The divergence of the current density is also related to the charge density because of
charge conservation. Also note that in (2) the divergence is zero when there is no time
dependence.
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(4.12) Resistance of Material –The resistance of a material can be expressed in terms of Ohm’s law
(1), a constant electric field (2), conductivity (3), and resistivity (4). In each case the cross
sectional area is A, the length is L, the current density is J, and the voltage is V.
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(4.21) Relative Populations –The ratio of populations of energy levels at thermal equilibrium is related
to the energy difference, the temperature and Boltzman’s constant (k = 1.381e-16 erg/Kelvin).
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(4.22) Adding Resistors– Resistors add directly in series and inversely in parallel
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(4.23) Circuit laws –These laws can be used to simplify complex circuits.
1. The current through each element must equal the voltage across that element divided by

the resistance of the element.
2. At a node of the network, a point where three or more connect wires meet, the algebraic

sum of the currents into the node must be zero from charge conservation.
3. The sum of the potential differences taken in order around a loop of the network is zero.

(4.24) Power dissipated by a current –When current flows through a resistor, some power is lost to
heat.
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(4.33) RC Circuits –When a switch is thrown allowing a charged capacitor to dissipate its energy, the
system is characterized by a time constant tau in the following exponential equation.

RC=τ τ
t

eCVtQ
−

= 0)( τ
t

e
R

V
tI

−

= 0)(



Chapter Five: The Fields of Moving Charges

(5.1) The force on a moving charge –A test charge moving in electric and magnetic fields experiences
a force (where c, the speed of light, is 2.998e10 cm/s in cgs).
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(5.12) The field from a moving charge –Let theta prime denote the angle between this radius vector
and the velocity of the charge Q, which is moving in the positive x prime direction in the primed
frame.
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Chapter Six: The Magnetic Field

(6.3) Magnetic field from wire – The field direction is given by the right hand rule and is direction in
the theta direction.
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(6.7) The force on wires with parallel currents –The attractive / repulsive force on a length l of the
second wire from another. The sign is reversed if the currents are anti-parallel.
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(6.10) Ampere’s Law
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(6.20) Magnetic Vector Potential
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(6.38) Force on any charge carrying wire –We can integrate over the entire length of the wire in order
find the magnetic field.
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(6.42) Fields of Rings and Coils –The following are derived from Biot-Savart: current carrying ring of
radius b on axis (1), inside solenoid (2), where n is turns per unit length.
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(6.46) Magnetic Change at a Current Sheet –A magnetic field is changed when you move from one
side of a current sheet to the other based on how much current is going through the sheet.
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(6.60) Transformation of Fields –The following give the transformation to a frame moving at velocity
beta in a direction oriented with the associated fields in the following manner. To transform from
a moving frame, switch the primes and the plus/minus signs.
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(6.64) The Hall Effect –Suppose there are m mobile charge carriers per cubic centimeters and denote
the charge of each by q. Then the current density is nqv. If we now substitute in for the average
velocity, we can relate this transverse field to the directly measurable quantities J and B:
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Chapter Seven: Electromagnetic Induction

(7.7) Flux and Induced EMF –A coil with N turns that has a change in flux experiences an induced
voltage. The third formulation is an equivalent formulation.
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(7.38) Mutual Inductance and Reciprocity –Two circuits in a fixed configuration generate some
magnetic field and also have some area through which a changing magnetic field can flux. The
mutual inductance and the accompanying equivalence – for any configuration - of one inductance
of one circuit to the other are given below.
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(7.54) Self Induction -When the current is changing, there is a change in the flux through a circuit
itself, and there is an electromotive force that is induced whatever the source. This is called the
self inductance and is given by the following expressions: general form (1), toroidal coil of
rectangular cross section, inner radius a, height h, and outer radius b (2), and a solenoid of
radius a (3).
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(7.66) Transient Behavior of RL Circuits – the current in circuit with a resistor and inductor
disconnected from a battery that has created a current within the circuit is given by an
exponential expression with time constant R/L.
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(7.70) Energy in Magnetic Field –The inductor is the analog to the electric energy stored in a capacitor.
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Chapter Eight: Alternating Current Circuits

(8.10) Resonant Circuit –a LRC oscillates in a damped manner according to the following equations.
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(8.15) Resonant Frequency in LC circuit –in a circuit without a resistor the circuit oscillates with a
resonant frequency.
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(8.19) Driven LR circuit – A sinusoidal voltage epsilon is given to a circuit containing a resistor and an
inductor experiences the following current:

222
cos

LR

R

ω
φ

+
=

222

0
0

LR
I

ω
ε
+

= )cos()( 0 φω −= tItI

(8.41) Driven LRC circuit – Similarly, we can express the behavior of an LRC circuit in the same way.
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(8.57) Networks in Alternating Circuits – We can reduce the components in an AC circuit into their
complex impedances and then add the complex values as resistors obeying the circuit laws for DC
circuits. The impedance of common elements:
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(8.60) Power and Energy –Since the of cos-squared over many cycles is ½ and we have the voltage
proportional to V/R, the following expressions explain how energy is dissipated by an AC circuit.
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Chapter Nine: Maxwell’s Equations

(9.15) Maxwell’s Equations –The relationship between the electric, magnetic, charge density rho, and
current density J is given by the following equations.
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(9.27) Poynting Vector –The power density S is aligned withE x B, in the direction of propagation.
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(9.33) EM Wave Transformation – If a frame is moving in the x-direction with respect to a frame of an
observed EM wave propagating in x, then the electric and magnetic fields in y and z will be:
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Chapter Ten: Electric Fields in Matter

(10.10) The Dipole Moment– Even when the net charge of a distribution is zero, it can still create an
electric field because of the distribution of internal charges. This dipole distribution is
independent of where the coordinates are chose (always points from –q to +q).
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(10.15) Electric and Potential Fields –A dipole distribution creates both a potential and expressed
electric field. Since the electric field is somewhat complex, it is broken into radial and angular
components, where theta is measured from the alignment of the dipole vector.
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(10.18) Torque on Dipole –A dipole will want to align itself with an electric field. Thus, the torque
exerted on a dipole and its energy in a field is given by:
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(10.23) Force on Dipole– A dipole will not experience a force in a constant electric field. It will,
however, experience a force in a non-constant field. Note: we have a vector operator working on
E, not p times the gradient of E.
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(10.57) Electric Susceptibility –The polarization of matter can be characterized by a polarization
density, which is the dipole moment per unit volume. This P is also the product of the
susceptibility times the electric field.
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(10.58) Dielectric Constant –A dielectric in an electric field causes the electric field in the region to
decrease by a factor the constant, while the effective capacitance increases by the constant.
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(10.61) Bound-Charge Current –A changing polarization of a substance actually creates a movement of
charge within a polarized substance.
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(10.70) EM Wave in Dielectric –If there is an EM wave within a dielectric, it moves slower than if it
were in a vacuum. The following constraints apply:
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Chapter Eleven: Magnetic Fields in Matter

(11.9) Magnetic Dipole Moment –A magnetic dipole moment is a vector whose direction is normal to a
loop of current – i.e. aligned with the directed area vector a.
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(11.10) Magnetic Dipole Potential –We again define a potential function for the field produced by a
magnetic dipole.
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(10.15) Field, Force, Torque –The following are the same algebraically as for a dipole configuration.
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(11.32) Atom Moments –The change in the magnetic moment for an atom of mass M from an applied
magnetic field is:
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(11.39) Magnetic Susceptibility –An applied electric field creates a magnetic polarization, which in turn
creates a current density around the edge of the magnetized substance.
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(11.54) The H-Field –A field is created abstractly that is produced from currents under our control
which satisfies Ampere’s Law:
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(11.57) True B-Field –We want to know the true magnetic field within a substance, however, so we use
the relationship described in 11.39 (replacing B with H) and then we can derive an expression in
terms of the susceptibility as well as the permeability, mu.
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