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Introduction

Sketching: a more efficient way of storing
genomic data for similarity comparisons

Instead of storing entire data, store compact
representations that preserve distances

Useful for large data sets
=  Combining gene array experiments



Outline

¢ Theory

¢ System/Implementation

¢ Accuracy test: correlation and neighbors
¢ Accuracy test: GO prediction

* Proposed applications and extensions



Theory

¢ Metric embedding: given data in a complex
metric space, form a distance-preserving
embedding into a simpler metric space

¢ Sketching: turn real number vector to vector
of bits, where Hamming distance
approximates some distance measure

¢ Used for image similarity search: (Lv,
Charikar, Li 2004)
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Theory

¢ Work with the L1 distance:
d(v,w) = Zvl. - W,



Theory

¢ Work with the LL1 distance:
dLl (Va W) — Zvi — W,

¢ Need a function to convert to bits:

f:R",r > {0,1}" such that :
d, (v,w)=d, (f(v,r),f(w,r))



Theory

¢ Given two numbers in [0, 1], how can we
estimate their distance?
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Theory

¢ Algorithm: 1f we want to go from number vector of
dimension n to bit vector of dimension m, create seeding
information:

= Choose a random dimension d, from n
s Choose a random threshold t. from [0, 1]
s Seeding information is {d,t} fori=1tom

¢ To create m-bit sketch b given seeding information {d, t.}

and n-dimensional vector v:
lifv, 21,

i {O otherwise



Theory

¢ So, 1f a and b are sketches of v and w of size
m?
Prla, # b, ]ocd, (v,w)

¢ Distribution of Hamming Distance 1s

binomial: N N g
rao=( | ) [-%)

E[d, ]« mdLl
o, wm



Theory

Sketch approximation of L1 distance (1:8 compression)
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Theory

Sketch approximation of L1 distance (1:8 compression)
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Theory

¢+ What 1f we want another distance measure, 1e
correlation?

= Come up with a new sketcher

= Use old sketcher with modified input
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Theory

Sketch of Correlation
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Theory

¢ Claim: useful for genomic data
= [ots of data

= Data has noise

® Distance measures are uncertain

¢ Implementing a prototype system...



Infrastructure

* MySQL Database

¢ Java representations of original real-valued
vectors, sketch profiles, sketches

¢ Code to implement sketching algorithm

¢ Database accessors to take these
representations and store/retrieve them from
the database



Database Design

¢ Original Data
¢ Sketch Profile

EXP| EXPERIMENT NAME #COLS (BITS IO 1ColL  VALUE
¢ Sketches -

12 | [FULL]DED:ReporterDimens= | 20 | 500 3 | 0.1111111

11 | DED:ReporterDimension:ME | O | | D.1314234

EXP DATA SOURCE GENE 1D

11 | test.txt:6:R;A-SNGR-11:5504
11 | test.txt:7:R:A-SNGR-11:5324

T = E - — O

| SBFBEC1105.04C
SPBECLE61.02




{1] Python Script
, Genes Genes
Expression Data Reduce to D1 |Real Valued Vectors
common, tab
delimited form
{3| Python Script ) 2]  Sketchjava
Related
Gene Ontology |=T57rs Convert to SQL Produce bit-vector
database representation
commands
. ., w
Pairwise

Relationships

!

D2 | Bitvector Skeiches

D2 |HeEated Gene Pairs

r.;-_’ Test.java

Correlation and Performance
ROC analysis




Data Sources

* S. cerevisiae timeseries data (Hauser & Hoheisel)

from heatshock and saltshock response

¢ S. pombe cell cycle (Rustici)

Expression Data

Python Script )

Reduce to
common, tab

Genes
ﬂ DA

Real Valued Vectors

delimited form




Gene Ontology Information

¢ Yeast Gene Ontology:
+1 for matching depth-7

process ontology, -1 for reinted  [(2_Pyihon Script
. Gene Ontology TS Convert to SQL
non-matching, 0 for = ;" database J
commands

ambiguous annotation pa-msj(

Relationships

¢ Each non-ambiguous
pair 1s stored 1n the
database

D2 | Related Gene Pairs




Creating Sketches

¢ Code to implement L1

sketch
. . D1 Real Valued Vectors
¢ Stores information used to
create sketches so new \I/

Sketch.java Y

Produce bit-vector
representation

D2 Bitvector Sketches

query genes can be analyzed




Methods for Analysis

¢ Once we’ve stored the
sketches, we can
compare how well the
sketches reflect standard

D2 | Bitvector Sketches

dlstance measures D3 |Related Gene Pairs _l £
(2] Testjava

¢ In a real L Corretatioi and
. . ROC analysis

implementation, we ’

would not have this
redundancy




Assessing Accuracy

¢ Sketch 1s supposed to be a reasonable
estimate of original function

¢ Similarity to original function should
Increase as size of bit vector increases

¢ Tradeoff between size/speed and accuracy



Real vs. Hamming Distance
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Real vs. Hamming Distance

80 bit vector --> r=.85

Hamming Distance
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Real vs. Hamming Distance
180 b1t vector --> 1=.85
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Real vs. Hamming Distance
320 b1t vector --> 1=.89
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Real vs. Hamming Distance
500 b1t vector --> 1=.92

Hamming Distance
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Correlation of Hamming and
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Results are reasonable

¢ Correlation between hamming distance and
true L1 distance increases as sketch size
Increases

¢ Sketch size of 80 represents 640:80 = 8:1

compression ratio and achieves correlation of
.85 with true L1 distance



Can we use sketches to find
similar genes?

¢+ We have seen that sketches afford reasonably
good correlation with original distance
function

¢ Correlation 1s nice, but it’s not actually
useful. What if our task 1s to find the most
similar genes in the database - how effective
are sketches?



Task: find k% most similar genes

¢ (Given a query gene, find the k% most similar
genes based on L1 distance

+ Can we save time and space by using sketch
to find the k% most similar genes?

* We wrote a program to sort and assess
overlap between two sets of results



Task: find k% most similar genes

¢ Compute distance between query gene and
every other gene

¢ Sort by distance
¢ Choose the k% with the least distances

¢ Perform above for true L1 distance and
sketch approximation

¢ Compare results (want high overlap)



Experiment: Find 10% closest
genes

¢ Out of 2650 genes, find the nearest 265 to a
query gene

¢ See how many overlap between two distance
methods.

+ Only expect about 26 overlapping genes by
chance... 265 would be perfect



Overlap between two methods

Overlap (out of 2f
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Encouraging results

¢ Sketch size of 80 bits (8:1 compression)
generates 84/265 matches

¢ Sketch size of 320 bits (2:1 compression)
generates 158/265 matches

¢ Much, much better than random



Can we do even better?

* Yes - we can find the nearest 2k% genes
using sketch distance and then use true L1
distance to narrow down to nearest k%

¢ Assuming k << 50% this method still saves
significant ttme compared to traditional
approach. Does 1t work?
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using 2k% sketch trick

300
250 )
/m/”””"
200
| ad
!/,,,,,,,
: - - K% method
—l 2K% method
100 : -
L e
¢
0 | ‘ ‘ ‘ ‘
0 100 200 300 400 o o
Sketch size (bits)




Much better!

¢ Sketch size of 80 bits (8:1 compression)
generates 132/265 matches instead of 84/265

¢ Sketch size of 320 bits (2:1 compression)

generates 226/265 matches instead of
158/265

¢ Significant improvement in accuracy with
minimal performance loss for small k



Prediction of GO

¢ Gene array experiments often used to predict
biological function

¢ How well do L1 distance and correlation
predict GO 1n our case?

¢ (We used heat shock experiment, sampled
600 genes, which produced 167038
unknowns, 2582 matches, 10080 non-
matches 1n the GO)
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Prediction of GO

¢ Make sketches, and predictors of GO based
on sketches
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Prediction of GO

¢ How do the predictors deteriorate if we use
fewer bits for sketches?
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Genes

Conditions

Biclustering

¢ (Clustering:

= (Correlation between gene
expression levels across all
conditions in an experiment.

¢ Biclustering:

= (Clustering by row and
column simultaneously.

¢ QOutput:

m [ 1st of biclusters for each
gene.




Genes

Advantages of Biclustering

¢ [Integrate data from many sources.

Conditions .. .
®» [ndividual biclusters can

include conditions from

different experiments.

¢ Grouping of conditions.

= By algorithm, rather than
experimenter.

*¢ Noise reduction.

= Microarray data inherently
noisy.
= Uninformative conditions are

dropped out of cluster.



Genes

The Sketch Advantage

Conditions ¢ Biclustering 1s an NP

complete problem.

¢ Approximation
algorithms are used

¢ Sketches will allow:

1. Faster searching

».  Increased accuracy for
the time 1nvestment

3. Working with larger

datasets



Genes

Biological Realism

¢ Genes can be in multiple clusters.

Conditions .. .
= Real genes often participate in

different processes

(pleiotropy).

¢ (lusters may exist only for
subsets of conditions

= Biological processes often
operate under defined

conditions.

= Under other conditions genes
may be uncorrelated/involved

in other processes.




Biological Realism

¢ Gene regulation is dynamic
= Toolkits deployed in
response to changes.
e Internal.
* segmentation, DNA repair
e External environment.
* heatshock

:‘f',' b ““'f Xl T ® Coll Polarity ¢ Transcription FaCtor
e e Fraiss A= m.‘e,;:‘ ® Gell Wall Maintenance . ”
NS e binding often depends on
Srine E T e physiological conditions.
Tong et al. Science 294: 2364 ;_gz;;;m— n Differentlal gene I'egUIathIl

n response to environmental
change is crucial for life.




Application: Coregulation

Giohal behaviour
% ¢ Finding coregulated genes.
rnarent. TAIE R = Correlation of expression in
defined context points to
- coregulation in that context.
O

= Genes’ expression may be
i Sy under the control of the same

fa.g. MenZ) \/ condition-sensitive TFs.
= = Transcription Factor binding
T depends on physiological
v YOO ' YO condl.tlons. | |
RN TR ¢ Differential gene regulation
- in response to environmental
® change is crucial for life.
n.g. Ste12) - L



Annotation

¢ Correlation points to similar
function under conditions
included in bicluster.

¢ Annotate genes of unknown
function.

= Significantly enriched with
genes of particular function?

= Assign same function to
unknowns.

* Assign context dependent
function.
= Parallels our understanding of

the dynamic nature of regulatory
networks.



Extensions

¢ Optimized low level comparison functions
¢ Optimized database (structure, indexing)
¢ Detailed timing and memory analysis

¢ Heterogeneous data (e.g. combining
expression datasets)

¢ More varied and thorough tests against GO



Conclusion

¢ Sketching 1s a promising method for
applications that require similarity search on
large genomic datasets

* We created a usable implementation that
highlights advantages and possibilities
afforded by sketching

¢ The use of sketching for genomic data merits
further development



Acknowledgements

¢ Olga Troyanskaya
¢ Kai L1

¢ QmnlLv

¢ Chad Myers



