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Introduction

 Sketching: a more efficient way of storing 
genomic data for similarity comparisons

 Instead of storing entire data, store compact 
representations that preserve distances

 Useful for large data sets
 Combining gene array experiments



Outline

 Theory
 System/Implementation
 Accuracy test: correlation and neighbors
 Accuracy test: GO prediction
 Proposed applications and extensions



Theory

 Metric embedding: given data in a complex 
metric space, form a distance-preserving 
embedding into a simpler metric space

 Sketching: turn real number vector to vector 
of bits, where Hamming distance 
approximates some distance measure

 Used for image similarity search: (Lv, 
Charikar, Li 2004)
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Theory

 Work with the L1 distance:
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Theory

 Work with the L1 distance:

 Need a function to convert to bits:
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Theory

 Given two numbers in [0, 1], how can we 
estimate their distance?

0 1



Theory

 Given two numbers in [0, 1], how can we 
estimate their distance?

0 1



Theory

 Given two numbers in [0, 1], how can we 
estimate their distance?

0 1



Theory

 Given two numbers in [0, 1], how can we 
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Theory

 Algorithm: if we want to go from number vector of 
dimension n to bit vector of dimension m, create seeding 
information:
 Choose a random dimension di from n
 Choose a random threshold ti from [0, 1]
 Seeding information is {di, ti} for i = 1 to m

 To create m-bit sketch b given seeding information {di, ti} 
and n-dimensional vector v:
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Theory

 So, if a and b are sketches of v and w of size 
m, 

 Distribution of Hamming Distance is 
binomial:
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Theory

2
4

6
8

10
12

0

10

20

30

40

50

60

L1 distance

Sketch approximation of L1 distance (1:8 compression)

Hamming distance
 of sketch      



Theory
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Theory

 What if we want another distance measure, ie 
correlation?
 Come up with a new sketcher

 Use old sketcher with modified input



Correlation Sketcher

Theory

1.33 0.73 4.56 … L1 Sketcher 1  1  0  1  …

1.33 0.73 4.56 … Mean-var 
normalized L1 Sketcher 1  1  0  1  …
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Theory
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Theory

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

correlation

Sketch of Correlation

ha
m

m
in

g 
di

st
an

ce

0 5 10 15 20 25 30 35 40 45

Distribution for correlation = .2

hamming distance



Theory

 Claim: useful for genomic data
 Lots of data
 Data has noise
 Distance measures are uncertain

 Implementing a prototype system…



Infrastructure

 MySQL Database
 Java representations of original real-valued 

vectors, sketch profiles, sketches
 Code to implement sketching algorithm
 Database accessors to take these 

representations and store/retrieve them from 
the database



Database Design

 Original Data
 Sketch Profile
 Sketches
 GO





Data Sources

 S. cerevisiae timeseries data (Hauser & Hoheisel) 
from heatshock and saltshock response

 S. pombe cell cycle (Rustici) 



Gene Ontology Information

 Yeast Gene Ontology: 
+1 for matching depth-7 
process ontology, -1 for 
non-matching, 0 for 
ambiguous annotation

 Each non-ambiguous 
pair is stored in the 
database



Creating Sketches

 Code to implement L1 
sketch

 Stores information used to 
create sketches so new 
query genes can be analyzed



Methods for Analysis

 Once we’ve stored the 
sketches, we can 
compare how well the 
sketches reflect standard 
distance measures

 In a real 
implementation, we 
would not have this 
redundancy



Assessing Accuracy

 Sketch is supposed to be a reasonable 
estimate of original function

 Similarity to original function should 
increase as size of bit vector increases

 Tradeoff between size/speed and accuracy



Real vs. Hamming Distance
20 bit vector -->  r=.70



Real vs. Hamming Distance
80 bit vector -->  r=.85



Real vs. Hamming Distance
180 bit vector -->  r=.85



Real vs. Hamming Distance
320 bit vector -->  r=.89



Real vs. Hamming Distance
500 bit vector -->  r=.92



Correlation of Hamming and 
Real Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Sketch size (bits)

C
o
rr

e
la

ti
o
n



Results are reasonable

 Correlation between hamming distance and 
true L1 distance increases as sketch size 
increases

 Sketch size of 80 represents 640:80 = 8:1 
compression ratio and achieves correlation of 
.85 with true L1 distance



Can we use sketches to find 
similar genes?

 We have seen that sketches afford reasonably 
good correlation with original distance 
function

 Correlation is nice, but it’s not actually 
useful. What if our task is to find the most 
similar genes in the database - how effective 
are sketches? 



Task: find k% most similar genes

 Given a query gene, find the k% most similar 
genes based on L1 distance

 Can we save time and space by using sketch 
to find the k% most similar genes?

 We wrote a program to sort and assess 
overlap between two sets of results



 Compute distance between query gene and 
every other gene

 Sort by distance
 Choose the k% with the least distances
 Perform above for true L1 distance and 

sketch approximation
 Compare results (want high overlap)

Task: find k% most similar genes



Experiment: Find 10% closest 
genes

 Out of 2650 genes, find the nearest 265 to a 
query gene

 See how many overlap between two distance 
methods. 

 Only expect about 26 overlapping genes by 
chance… 265 would be perfect



Overlap between two methods
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Encouraging results

 Sketch size of 80 bits (8:1 compression) 
generates 84/265 matches

 Sketch size of 320 bits (2:1 compression) 
generates 158/265 matches

 Much, much better than random



Can we do even better?

 Yes - we can find the nearest 2k% genes 
using sketch distance and then use true L1 
distance to narrow down to nearest k%

 Assuming k << 50% this method still saves 
significant time compared to traditional 
approach. Does it work?



Overlap between two methods
using 2k% sketch trick
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Much better!

 Sketch size of 80 bits (8:1 compression) 
generates 132/265 matches instead of 84/265

 Sketch size of 320 bits (2:1 compression) 
generates 226/265 matches instead of 
158/265

 Significant improvement in accuracy with 
minimal performance loss for small k



Prediction of GO

 Gene array experiments often used to predict 
biological function

 How well do L1 distance and correlation 
predict GO in our case?

 (We used heat shock experiment, sampled 
600 genes, which produced 167038 
unknowns, 2582 matches, 10080 non-
matches in the GO)



Prediction of GO
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Prediction of GO

 Make sketches, and predictors of GO based 
on sketches



Prediction of GO
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Prediction of GO

 How do the predictors deteriorate if we use 
fewer bits for sketches?



Prediction of GO
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Biclustering

 Clustering:
 Correlation between gene 

expression levels across all 
conditions in an experiment.

 Biclustering:
 Clustering by row and 

column simultaneously.

 Output:
 List of biclusters for each 

gene.
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Advantages of Biclustering

 Integrate data from many sources.
 Individual biclusters can 

include conditions from 
different experiments.

 Grouping of conditions.
 By algorithm, rather than 

experimenter.

 Noise reduction.
 Microarray data inherently 

noisy.
 Uninformative conditions are 

dropped out of cluster.
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The Sketch Advantage

 Biclustering is an NP 
complete problem.

 Approximation 
algorithms are used

 Sketches will allow:
1. Faster searching
2. Increased accuracy for 

the time investment
3. Working with larger 

datasets
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Biological Realism

 Genes can be in multiple clusters.
 Real genes often participate in 

different processes 
(pleiotropy).

 Clusters may exist only for 
subsets of conditions
 Biological processes often 

operate under defined 
conditions.

 Under other conditions genes 
may be uncorrelated/involved 
in other processes.
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Biological Realism

 Gene regulation is dynamic
 Toolkits deployed in 

response to changes.
 Internal.

 segmentation, DNA repair
 External environment.

 heatshock

 Transcription Factor 
binding often depends on 
physiological conditions.
 Differential gene regulation 

in response to environmental 
change is crucial for life.



Application: Coregulation

 Finding coregulated genes.
 Correlation of expression in 

defined context points to 
coregulation in that context.

 Genes’ expression may be 
under the control of the same 
condition-sensitive TFs.

 Transcription Factor binding 
depends on physiological 
conditions.
 Differential gene regulation 

in response to environmental 
change is crucial for life.



Annotation

 Correlation points to similar 
function under conditions 
included in bicluster.

 Annotate genes of unknown 
function.
 Significantly enriched with 

genes of particular function?
 Assign same function to 

unknowns.

 Assign context dependent 
function.
 Parallels our understanding of 

the dynamic nature of regulatory 
networks.



Extensions

 Optimized low level comparison functions
 Optimized database (structure, indexing)
 Detailed timing and memory analysis
 Heterogeneous data (e.g. combining 

expression datasets)
 More varied and thorough tests against GO



Conclusion

 Sketching is a promising method for 
applications that require similarity search on 
large genomic datasets 

 We created a usable implementation that 
highlights advantages and possibilities 
afforded by sketching

 The use of sketching for genomic data merits 
further development
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