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Introduction

 Sketching: a more efficient way of storing 
genomic data for similarity comparisons

 Instead of storing entire data, store compact 
representations that preserve distances

 Useful for large data sets
 Combining gene array experiments



Outline

 Theory
 System/Implementation
 Accuracy test: correlation and neighbors
 Accuracy test: GO prediction
 Proposed applications and extensions



Theory

 Metric embedding: given data in a complex 
metric space, form a distance-preserving 
embedding into a simpler metric space

 Sketching: turn real number vector to vector 
of bits, where Hamming distance 
approximates some distance measure

 Used for image similarity search: (Lv, 
Charikar, Li 2004)
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Theory

 Work with the L1 distance:
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Theory

 Work with the L1 distance:

 Need a function to convert to bits:
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Theory

 Given two numbers in [0, 1], how can we 
estimate their distance?
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Theory

 Given two numbers in [0, 1], how can we 
estimate their distance?
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Theory

 Algorithm: if we want to go from number vector of 
dimension n to bit vector of dimension m, create seeding 
information:
 Choose a random dimension di from n
 Choose a random threshold ti from [0, 1]
 Seeding information is {di, ti} for i = 1 to m

 To create m-bit sketch b given seeding information {di, ti} 
and n-dimensional vector v:
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Theory

 So, if a and b are sketches of v and w of size 
m, 

 Distribution of Hamming Distance is 
binomial:

),(]Pr[
1

wvdba Lii 

m

mdd
T

d
T

d
d
m

dp

h

hh

d

Lh

dm
L

d
L

h
h



































1

11

][E

1)(



Theory
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Theory
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Theory

 What if we want another distance measure, ie 
correlation?
 Come up with a new sketcher

 Use old sketcher with modified input



Correlation Sketcher

Theory

1.33 0.73 4.56 … L1 Sketcher 1  1  0  1  …

1.33 0.73 4.56 … Mean-var 
normalized L1 Sketcher 1  1  0  1  …
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Theory
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Theory
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Theory

 Claim: useful for genomic data
 Lots of data
 Data has noise
 Distance measures are uncertain

 Implementing a prototype system…



Infrastructure

 MySQL Database
 Java representations of original real-valued 

vectors, sketch profiles, sketches
 Code to implement sketching algorithm
 Database accessors to take these 

representations and store/retrieve them from 
the database



Database Design

 Original Data
 Sketch Profile
 Sketches
 GO





Data Sources

 S. cerevisiae timeseries data (Hauser & Hoheisel) 
from heatshock and saltshock response

 S. pombe cell cycle (Rustici) 



Gene Ontology Information

 Yeast Gene Ontology: 
+1 for matching depth-7 
process ontology, -1 for 
non-matching, 0 for 
ambiguous annotation

 Each non-ambiguous 
pair is stored in the 
database



Creating Sketches

 Code to implement L1 
sketch

 Stores information used to 
create sketches so new 
query genes can be analyzed



Methods for Analysis

 Once we’ve stored the 
sketches, we can 
compare how well the 
sketches reflect standard 
distance measures

 In a real 
implementation, we 
would not have this 
redundancy



Assessing Accuracy

 Sketch is supposed to be a reasonable 
estimate of original function

 Similarity to original function should 
increase as size of bit vector increases

 Tradeoff between size/speed and accuracy



Real vs. Hamming Distance
20 bit vector -->  r=.70



Real vs. Hamming Distance
80 bit vector -->  r=.85



Real vs. Hamming Distance
180 bit vector -->  r=.85



Real vs. Hamming Distance
320 bit vector -->  r=.89



Real vs. Hamming Distance
500 bit vector -->  r=.92



Correlation of Hamming and 
Real Distance
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Results are reasonable

 Correlation between hamming distance and 
true L1 distance increases as sketch size 
increases

 Sketch size of 80 represents 640:80 = 8:1 
compression ratio and achieves correlation of 
.85 with true L1 distance



Can we use sketches to find 
similar genes?

 We have seen that sketches afford reasonably 
good correlation with original distance 
function

 Correlation is nice, but it’s not actually 
useful. What if our task is to find the most 
similar genes in the database - how effective 
are sketches? 



Task: find k% most similar genes

 Given a query gene, find the k% most similar 
genes based on L1 distance

 Can we save time and space by using sketch 
to find the k% most similar genes?

 We wrote a program to sort and assess 
overlap between two sets of results



 Compute distance between query gene and 
every other gene

 Sort by distance
 Choose the k% with the least distances
 Perform above for true L1 distance and 

sketch approximation
 Compare results (want high overlap)

Task: find k% most similar genes



Experiment: Find 10% closest 
genes

 Out of 2650 genes, find the nearest 265 to a 
query gene

 See how many overlap between two distance 
methods. 

 Only expect about 26 overlapping genes by 
chance… 265 would be perfect



Overlap between two methods
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Encouraging results

 Sketch size of 80 bits (8:1 compression) 
generates 84/265 matches

 Sketch size of 320 bits (2:1 compression) 
generates 158/265 matches

 Much, much better than random



Can we do even better?

 Yes - we can find the nearest 2k% genes 
using sketch distance and then use true L1 
distance to narrow down to nearest k%

 Assuming k << 50% this method still saves 
significant time compared to traditional 
approach. Does it work?



Overlap between two methods
using 2k% sketch trick
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Much better!

 Sketch size of 80 bits (8:1 compression) 
generates 132/265 matches instead of 84/265

 Sketch size of 320 bits (2:1 compression) 
generates 226/265 matches instead of 
158/265

 Significant improvement in accuracy with 
minimal performance loss for small k



Prediction of GO

 Gene array experiments often used to predict 
biological function

 How well do L1 distance and correlation 
predict GO in our case?

 (We used heat shock experiment, sampled 
600 genes, which produced 167038 
unknowns, 2582 matches, 10080 non-
matches in the GO)



Prediction of GO
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Prediction of GO

 Make sketches, and predictors of GO based 
on sketches



Prediction of GO
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Prediction of GO

 How do the predictors deteriorate if we use 
fewer bits for sketches?



Prediction of GO
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Biclustering

 Clustering:
 Correlation between gene 

expression levels across all 
conditions in an experiment.

 Biclustering:
 Clustering by row and 

column simultaneously.

 Output:
 List of biclusters for each 

gene.
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Advantages of Biclustering

 Integrate data from many sources.
 Individual biclusters can 

include conditions from 
different experiments.

 Grouping of conditions.
 By algorithm, rather than 

experimenter.

 Noise reduction.
 Microarray data inherently 

noisy.
 Uninformative conditions are 

dropped out of cluster.
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The Sketch Advantage

 Biclustering is an NP 
complete problem.

 Approximation 
algorithms are used

 Sketches will allow:
1. Faster searching
2. Increased accuracy for 

the time investment
3. Working with larger 

datasets
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Biological Realism

 Genes can be in multiple clusters.
 Real genes often participate in 

different processes 
(pleiotropy).

 Clusters may exist only for 
subsets of conditions
 Biological processes often 

operate under defined 
conditions.

 Under other conditions genes 
may be uncorrelated/involved 
in other processes.
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Biological Realism

 Gene regulation is dynamic
 Toolkits deployed in 

response to changes.
 Internal.

 segmentation, DNA repair
 External environment.

 heatshock

 Transcription Factor 
binding often depends on 
physiological conditions.
 Differential gene regulation 

in response to environmental 
change is crucial for life.



Application: Coregulation

 Finding coregulated genes.
 Correlation of expression in 

defined context points to 
coregulation in that context.

 Genes’ expression may be 
under the control of the same 
condition-sensitive TFs.

 Transcription Factor binding 
depends on physiological 
conditions.
 Differential gene regulation 

in response to environmental 
change is crucial for life.



Annotation

 Correlation points to similar 
function under conditions 
included in bicluster.

 Annotate genes of unknown 
function.
 Significantly enriched with 

genes of particular function?
 Assign same function to 

unknowns.

 Assign context dependent 
function.
 Parallels our understanding of 

the dynamic nature of regulatory 
networks.



Extensions

 Optimized low level comparison functions
 Optimized database (structure, indexing)
 Detailed timing and memory analysis
 Heterogeneous data (e.g. combining 

expression datasets)
 More varied and thorough tests against GO



Conclusion

 Sketching is a promising method for 
applications that require similarity search on 
large genomic datasets 

 We created a usable implementation that 
highlights advantages and possibilities 
afforded by sketching

 The use of sketching for genomic data merits 
further development
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