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Roadmap

Classification: machines labeling data for us

Last time: naïve Bayes and logistic regression

This time:
É Decision Trees

Æ Simple, nonlinear, interpretable
É SVMs

Æ (another) example of linear classifier
Æ State-of-the-art classification

É Examples in Rattle (Logistic, SVM, Trees)
É Discussion: Which classifier should I use for my problem?
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Outline

1 Decision Trees

2 Learning Decision Trees

3 Vector space classification

4 Linear Classifiers

5 Support Vector Machines

6 Recap
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Trees

Suppose that we want to construct a set of rules to represent the data

can represent data as a series of if-then statements

here, “if” splits inputs into two categories

“then” assigns value

when “if” statements are nested, structure is called a tree
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Trees

Ex: data (X1,X2,X3,Y ) with X1,X2,X3 are real, Y Boolean

First, see if X1 > 5:

if TRUE, see if X1 > 8
É if TRUE, return FALSE
É if FALSE, return TRUE

if FALSE, see if X2 <−2
É if TRUE, see if X3 > 0

Æ if TRUE, return
TRUE

Æ if FALSE, return
FALSE

É if FALSE, return TRUE
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Trees

X1	  >	  5	  

X1	  >	  8	   X2	  <	  -‐2	  

X3	  >	  0	   TRUE	  

TRUE	   FALSE	  

TRUE	  FALSE	  
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False	  
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True	  
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False	  
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Example 1: (X1,X2,X3) = (1,1,1)

Example 2: (X1,X2,X3) = (10,−3,0)
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Trees
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Example 1: (X1,X2,X3) = (1,1,1) → TRUE

Example 2: (X1,X2,X3) = (10,−3,0)
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Trees
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Trees

Terminology:

branches: one side of a split

leaves: terminal nodes that return values

Why trees?

trees can be used for regression or classification
É regression: returned value is a real number
É classification: returned value is a class

unlike linear regression, SVMs, naive Bayes, etc, trees fit local models
É in large spaces, global models may be hard to fit
É results may be hard to interpret

fast, interpretable predictions
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Example: Predicting Electoral Results

2008 Democratic primary:

Hillary Clinton

Barack Obama

Given historical data, how will a count vote?

can extrapolate to state level data

might give regions to focus on increasing voter turnout

would like to know how variables interact
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Example: Predicting Electoral Results

Figure 1: Classification tree for county-level outcomes in the 2008 Democratic Party

primary (as of April 16), by Amanada Cox for the New York Times.

3
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Decision Trees

Decision tree representation:

Each internal node tests an attribute

Each branch corresponds to attribute value

Each leaf node assigns a classification

How would we represent as a function of X ,Y :

X AND Y (both must be true)

X OR Y (either can be true)

X XOR Y (one and only one is true)
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When to Consider Decision Trees

Instances describable by attribute-value pairs

Target function is discrete valued

Disjunctive hypothesis may be required

Possibly noisy training data

Examples:

Equipment or medical diagnosis

Credit risk analysis

Modeling calendar scheduling preferences
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Top-Down Induction of Decision Trees

Main loop:
1 A← the “best” decision attribute for next node
2 Assign A as decision attribute for node
3 For each value of A, create new descendant of node
4 Sort training examples to leaf nodes
5 If training examples perfectly classified, Then STOP, Else iterate over new

leaf nodes

Which attribute is best?

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]
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Entropy: Reminder

En
tro
py
(S
)

1.0

0.5

0.0 0.5 1.0
p+

S is a sample of training examples
p⊕ is the proportion of positive examples in S
p	 is the proportion of negative examples in S
Entropy measures the impurity of S

Entropy(S)≡−p⊕ log2 p⊕−p	 log2 p	
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Entropy

How spread out is the distribution of S:

p⊕(− log2 p⊕) + p	(− log2 p	)

Entropy(S)≡−p⊕ log2 p⊕−p	 log2 p	
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Information Gain

Which feature A would be a more useful rule in our decision tree?

Gain(S,A) = expected reduction in entropy due to sorting on A

Gain(S,A)≡ Entropy(S) −
∑

v∈Values(A)

|Sv |
|S|

Entropy(Sv )

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]
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Training Examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Selecting the Next Attribute

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:
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ID3 Algorithm

Start at root, look for best attribute

Repeat for subtrees at each attribute outcome

Stop when information gain is below a threshold

Bias: prefers shorter trees (Occam’s Razor)

→ a short hyp that fits data unlikely to be coincidence
→ a long hyp that fits data might be coincidence
É Prevents overfitting (more later)
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Thinking Geometrically

Suppose you have two classes: vacations and sports

Suppose you have four documents

Sports

Doc1: {ball, ball, ball, travel}
Doc2: {ball, ball}

Vacations
Doc3: {travel, ball, travel}
Doc4: {travel}

What does this look like in vector space?
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Put the documents in vector space

Travel

3

2

1

0
1 2 3

Ball
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Vector space representation of documents

Each document is a vector, one component for each term.

Terms are axes.

High dimensionality: 10,000s of dimensions and more

How can we do classification in this space?
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Vector space classification

As before, the training set is a set of documents, each labeled with its class.

In vector space classification, this set corresponds to a labeled set of points
or vectors in the vector space.

Premise 1: Documents in the same class form a contiguous region.

Premise 2: Documents from different classes don’t overlap.

We define lines, surfaces, hypersurfaces to divide regions.
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Classes in the vector space

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Classes in the vector space

xx
x

x

!
! !!

!

!

China

Kenya

UK
!

Should the document ! be assigned to China, UK or Kenya?

Schütze: Support vector machines 12 / 55
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Classes in the vector space

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Classes in the vector space

xx
x

x

!
! !!

!

!

China

Kenya

UK
!

Find separators between the classes

Schütze: Support vector machines 12 / 55

Based on these separators: ? should be assigned to China
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Classes in the vector space

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Classes in the vector space

xx
x

x

!
! !!

!

!

China

Kenya

UK
!

Find separators between the classes

Schütze: Support vector machines 12 / 55

How do we find separators that do a good job at classifying new documents like ??
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Linear classifiers

Definition:
É A linear classifier computes a linear combination or weighted sum
∑

i wixi of the feature values.
É Classification decision:

∑

i wixi >θ?
É . . . where θ (the threshold) is a parameter.

(First, we only consider binary classifiers.)

Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane
(higher dimensionalities).

We call this the separator or decision boundary.

We find the separator based on training set.

Methods for finding separator: logistic regression, naïve Bayes, linear SVM

Assumption: The classes are linearly separable.

Before, we just talked about equations. What’s the geometric intuition?
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A linear classifier in 1D

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 1D

A linear classifier in 1D is
a point x described by the
equation w1d1 = θ

x = θ/w1

Schütze: Support vector machines 15 / 55

A linear classifier in 1D is a
point x described by the
equation w1d1 = θ

x = θ/w1

Points (d1) with w1d1 ≥ θ
are in the class c.

Points (d1) with w1d1 <θ

are in the complement class
c.
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A linear classifier in 2DRecap Vector space classification Linear classifiers Support Vector Machines Discussion
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Example for a 2D linear
classifier

Schütze: Support vector machines 16 / 55

A linear classifier in 2D is a
line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in the
class c.

Points (d1 d2) with
w1d1 + w2d2 <θ are in the
complement class c.

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 33 / 48



A linear classifier in 2DRecap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Schütze: Support vector machines 16 / 55

A linear classifier in 2D is a
line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in the
class c.

Points (d1 d2) with
w1d1 + w2d2 <θ are in the
complement class c.

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 33 / 48



A linear classifier in 2DRecap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in
the class c .

Schütze: Support vector machines 16 / 55

A linear classifier in 2D is a
line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in the
class c.

Points (d1 d2) with
w1d1 + w2d2 <θ are in the
complement class c.

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 33 / 48



A linear classifier in 2DRecap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in
the class c .

Points (d1 d2) with
w1d1 + w2d2 < θ are in
the complement class c .

Schütze: Support vector machines 16 / 55

A linear classifier in 2D is a
line described by the
equation w1d1 + w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in the
class c.

Points (d1 d2) with
w1d1 + w2d2 <θ are in the
complement class c.

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 33 / 48



A linear classifier in 3DRecap Vector space classification Linear classifiers Support Vector Machines Discussion

A linear classifier in 3D

A linear classifier in 3D is
a plane described by the
equation
w1d1 + w2d2 + w3d3 = θ

Schütze: Support vector machines 17 / 55

A linear classifier in 3D is a
plane described by the
equation
w1d1 + w2d2 + w3d3 = θ

Example for a 3D linear
classifier

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 ≥ θ are
in the class c.

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 <θ are
in the complement class c.
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Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

M
∑

i=1

widi = θ

where wi = log[P̂(ti |c)/P̂(ti |c̄)], di = number of occurrences of ti in d , and
θ =− log[P̂(c)/P̂(c̄)]. Here, the index i , 1≤ i ≤M, refers to terms of the
vocabulary.
Logistic regression is the same (we only put it into the logistic function to turn it
into a probability).

Takeway

Naïve Bayes, logistic regression and SVM (which we’ll get to in a second) are all
linear methods. They choose their hyperplanes based on different objectives: joint
likelihood (NB), conditional likelihood (LR), and the margin (SVM).
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Which hyperplane?
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Which hyperplane?

For linearly separable training sets: there are infinitely many separating
hyperplanes.

They all separate the training set perfectly . . .

. . . but they behave differently on test data.

Error rates on new data are low for some, high for others.

How do we find a low-error separator?
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Support vector machines

Machine-learning research in the last two decades has improved classifier
effectiveness.

New generation of state-of-the-art classifiers: support vector machines
(SVMs), boosted decision trees, regularized logistic regression, neural
networks, and random forests

Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision boundary
between two classes that is maximally far from any point in the training data
(possibly discounting some points as outliers or noise)
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Support Vector Machines

2-class training data

decision boundary→
linear separator

criterion: being
maximally far away
from any data point
→ determines
classifier margin

linear separator
position defined by
support vectors

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Support Vector Machines

2-class training data

Schütze: Support vector machines 29 / 55

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 40 / 48



Support Vector Machines

2-class training data

decision boundary→
linear separator

criterion: being
maximally far away
from any data point
→ determines
classifier margin

linear separator
position defined by
support vectors

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Support Vector Machines

2-class training data

decision boundary
→ linear separator

Schütze: Support vector machines 29 / 55

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 40 / 48



Support Vector Machines

2-class training data

decision boundary→
linear separator

criterion: being
maximally far away
from any data point
→ determines
classifier margin

linear separator
position defined by
support vectors

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Support Vector Machines

2-class training data

decision boundary
→ linear separator

criterion: being
maximally far away
from any data point
→ determines
classifier margin

Margin is
maximized

Schütze: Support vector machines 29 / 55

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 40 / 48



Support Vector Machines

2-class training data

decision boundary→
linear separator

criterion: being
maximally far away
from any data point
→ determines
classifier margin

linear separator
position defined by
support vectors

Recap Vector space classification Linear classifiers Support Vector Machines Discussion

Why maximize the margin?

Points near decision
surface → uncertain
classification decisions
(50% either way).
A classifier with a large
margin makes no low
certainty classification
decisions.
Gives classification
safety margin w.r.t slight
errors in measurement or
doc. variation

Support vectors

Margin is
maximized

Maximum
margin
decision
hyperplane

Schütze: Support vector machines 30 / 55
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Why maximize the margin?

SVM classifier: large margin
around decision boundary

compare to decision
hyperplane: place fat separator
between classes
É unique solution

decreased memory capacity

increased ability to correctly
generalize to test data
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Walkthrough example: building an SVM over the data set
shown in the figure

Working geometrically:

The maximum margin weight vector will be
parallel to the shortest line connecting
points of the two classes, that is, the line
between (1,1) and (2,3), giving a weight
vector of (1,2).

The optimal decision surface is orthogonal
to that line and intersects it at the halfway
point. Therefore, it passes through
(1.5,2).

The SVM decision boundary is:
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SVM extensions

Slack variables: not perfect line

Kernels: different geometries
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Loss functions: Different penalties for getting the answer wrong
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Text classification

Many commercial applications

There are many applications of text classification for corporate Intranets,
government departments, and Internet publishers.

Often greater performance gains from exploiting domain-specific text features
than from changing from one machine learning method to another.
(Homework 2)
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

None?

Very little?

A fair amount?

A huge amount
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

None? Hand write rules or use active learning

Very little? Naïve Bayes

A fair amount? SVM

A huge amount Doesn’t matter, use whatever works
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Recap

Is there a learning method that is optimal for all text classification problems?

No, because there is a tradeoff between bias and variance.

Factors to take into account:
É How much training data is available?
É How simple/complex is the problem? (linear vs. nonlinear decision

boundary)
É How noisy is the problem?
É How stable is the problem over time?

Æ For an unstable problem, it’s better to use a simple and robust
classifier.

Æ You’ll be investigating the role of features in HW2!
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