Classification II: Decision Trees and SVMs

Digging into Data: Jordan Boyd-Graber

February 25, 2013

COLLEGE OF **INFORMATION STUDIES**

Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah

Roadmap

- Classification: machines labeling data for us
- Last time: naïve Bayes and logistic regression
- This time:
	- \blacktriangleright Decision Trees
		- \star Simple, nonlinear, interpretable
	- \triangleright SVMs
		- \star (another) example of linear classifier
		- \star State-of-the-art classification
	- Examples in Rattle (Logistic, SVM, Trees)
	- **EXECUTE:** Discussion: Which classifier should I use for my problem?

Outline

[Decision Trees](#page-2-0)

- **[Learning Decision Trees](#page-16-0)**
- **[Vector space classification](#page-30-0)**
- **[Linear Classifiers](#page-41-0)**
- **[Support Vector Machines](#page-60-0)**

[Recap](#page-73-0)

Suppose that we want to construct a set of rules to represent the data

- can represent data as a series of if-then statements
- here, "if" splits inputs into two categories
- "then" assigns value
- when "if" statements are nested, structure is called a tree

Ex: data (X_1, X_2, X_3, Y) with X_1, X_2, X_3 are real, Y Boolean First, see if $X_1 > 5$:

- \bullet if TRUE, see if $X_1 > 8$
	- \triangleright if TRUE, return FALSE
	- \triangleright if FALSE, return TRUE
- **•** if FALSE, see if $X_2 < -2$
	- Fig. if TRUE, see if $X_3 > 0$
		- \star if TRUE, return TRUE
		- \star if FALSE, return FALSE
	- \triangleright if FALSE, return TRUE

Example 1: $(X_1, X_2, X_3) = (1, 1, 1)$

Example 2: $(X_1, X_2, X_3) = (10, -3, 0)$

Example 1: $(X_1, X_2, X_3) = (1, 1, 1) \rightarrow \text{TRUE}$

Example 2: $(X_1, X_2, X_3) = (10, -3, 0)$

Example 1: $(X_1, X_2, X_3) = (1, 1, 1) \rightarrow \text{TRUE}$

Example 2: $(X_1, X_2, X_3) = (10, -3, 0) \rightarrow \text{FALSE}$

Terminology:

- branches: one side of a split
- leaves: terminal nodes that return values ٠

Why trees?

- **•** trees can be used for regression or classification
	- \blacktriangleright regression: returned value is a real number
	- \triangleright classification: returned value is a class
- unlike linear regression, SVMs, naive Bayes, etc, trees fit *local models*
	- \triangleright in large spaces, global models may be hard to fit
	- \blacktriangleright results may be hard to interpret
- o fast, interpretable predictions

2008 Democratic primary:

- Hillary Clinton
- **A** Barack Obama

Given historical data, how will a count vote?

- can extrapolate to state level data
- \bullet might give regions to focus on increasing voter turnout
- would like to know how variables interact

Example: Predicting Electoral Results

Decision Tree: The Obama-Clinton Divide

Example: Predicting Electoral Results

Decision Tree: The Obama-Clinton Divide

Sources: Election results via The Associated Press; Census Bureau; Dave Leip's Atlas of U.S. Presidential Elections

AMANDA 0 THE NEW YORK TI

Decision Trees

Decision tree representation:

- **Each internal node tests an attribute**
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent as a function of *X*,*Y*:

- *X* AND *Y* (both must be true)
- *X* OR *Y* (either can be true)
- *X* XOR *Y* (one and only one is true)

When to Consider Decision Trees

- Instances describable by attribute-value pairs \bullet
- Target function is discrete valued
- \bullet Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Outline

[Decision Trees](#page-2-0)

[Learning Decision Trees](#page-16-0)

[Vector space classification](#page-30-0)

[Linear Classifiers](#page-41-0)

[Support Vector Machines](#page-60-0)

[Recap](#page-73-0)

Top-Down Induction of Decision Trees

Main loop:

- **¹** *A* ← the "best" decision attribute for next *node*
- **2** Assign *A* as decision attribute for *node*
- **3** For each value of *A*, create new descendant of *node*
- **4** Sort training examples to leaf nodes
- **5** If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Entropy: Reminder

• *S* is a sample of training examples

How spread out is the distribution of *S*:

$$
\rho_\oplus(-\log_2 \rho_\oplus) + \rho_\ominus(-\log_2 \rho_\ominus)
$$

$$
\mathsf{Entropy}(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}
$$

Information Gain

Which feature *A* would be a more useful rule in our decision tree? *Gain*(*S*,*A*) = expected reduction in entropy due to sorting on *A*

$$
Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)
$$

Digging into Data: Jordan Boyd-Graber () [Classification II: Decision Trees and SVMs](#page-0-0) February 25, 2013 19/48

$$
H(S) = -\frac{29}{54} \lg \left(\frac{29}{54} \right) - \frac{35}{64} \lg \left(\frac{35}{64} \right)
$$

$$
=
$$

$$
H(S) = -\frac{29}{54} \lg \left(\frac{29}{54} \right) - \frac{35}{64} \lg \left(\frac{35}{64} \right)
$$

$$
= 0.96
$$

$$
H(S) = -\frac{29}{54} \lg \left(\frac{29}{54} \right) - \frac{35}{64} \lg \left(\frac{35}{64} \right)
$$

$$
= 0.96
$$

$$
Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]
$$

$$
- \frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]
$$

$$
=
$$

$$
H(S) = -\frac{29}{54} \lg \left(\frac{29}{54} \right) - \frac{35}{64} \lg \left(\frac{35}{64} \right)
$$

$$
= 0.96
$$

$$
Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]
$$

$$
- \frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]
$$

$$
= 0.96 - 0.28 - 0.44 = 0.24
$$

$$
H(S) = -\frac{29}{54} \lg \left(\frac{29}{54} \right) - \frac{35}{64} \lg \left(\frac{35}{64} \right) = 0.96
$$

Gain(S, A₁) = 0.96 -
$$
\frac{26}{64}
$$
 $\left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$
- $\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$
= 0.96 - 0.28 - 0.44 = 0.24

Gain(S, A₂) = 0.96 -
$$
\frac{51}{64}
$$
 $\left[-\frac{18}{51} \lg \left(\frac{18}{51} \right) - \frac{33}{51} \lg \left(\frac{33}{51} \right) \right]$
- $\frac{13}{64} \left[-\frac{11}{13} \lg \left(\frac{11}{13} \right) - \frac{2}{13} \lg \left(\frac{2}{13} \right) \right]$

=

$$
H(S) = -\frac{29}{54} \lg \left(\frac{29}{54} \right) - \frac{35}{64} \lg \left(\frac{35}{64} \right) = 0.96
$$

Gain(S, A₁) = 0.96 -
$$
\frac{26}{64}
$$
 $\left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$
- $\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$
= 0.96 - 0.28 - 0.44 = 0.24

Gain(S, A₂) = 0.96 -
$$
\frac{51}{64}
$$
 $\left[-\frac{18}{51} \lg \left(\frac{18}{51} \right) - \frac{33}{51} \lg \left(\frac{33}{51} \right) \right]$
- $\frac{13}{64}$ $\left[-\frac{11}{13} \lg \left(\frac{11}{13} \right) - \frac{2}{13} \lg \left(\frac{2}{13} \right) \right]$
= 0.96 - 0.75 - 0.13 = 0.08

Training Examples

Selecting the Next Attribute

Which attribute is the best classifier?

- Start at root, look for best attribute
- Repeat for subtrees at each attribute outcome о.
- Stop when information gain is below a threshold ٠
- Bias: prefers shorter trees (Occam's Razor) ۰
	- \rightarrow a short hyp that fits data unlikely to be coincidence
	- \rightarrow a long hyp that fits data might be coincidence
		- \blacktriangleright Prevents overfitting (more later)

Outline

[Decision Trees](#page-2-0)

- **[Learning Decision Trees](#page-16-0)**
- **[Vector space classification](#page-30-0)**
- **[Linear Classifiers](#page-41-0)**
- **[Support Vector Machines](#page-60-0)**

[Recap](#page-73-0)

- Suppose you have two classes: vacations and sports
- Suppose you have four documents

What does this look like in vector space?

Put the documents in vector space

Travel

Ball

Vector space representation of documents

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 10,000s of dimensions and more
- \bullet How can we do classification in this space?
- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points ۰ or vectors in the vector space.
- Premise 1: Documents in the same class form a **contiguous region**.
- Premise 2: Documents from different classes **don't overlap**.
- ٠ We define lines, surfaces, hypersurfaces to divide regions.

Classes in the vector space Classes in the vector space

Classes in the vector space Classes in the vector space

Should the document *** be assigned to China, UK or Kenya?
Should the Principles Part of the assigned to China, UK or Kenya?

Digging into Data: Jordan Boyd-Graber () [Classification II: Decision Trees and SVMs](#page-0-0) February 25, 2013 29 / 48

Classes in the vector space Classes in the vector space

Find separators between the classes Find separators between the classes

Classes in the vector space Classes in the vector space of the vector space of

Find separators between the classes Find separators between the classes

Classes in the vector space Classes in the vector space

Classes in the vector space Classes in the vector space

– Main topic of today **Digging into Data: Jordan Boyd-Graber () [Classification II: Decision Trees and SVMs](#page-0-0) February 25, 2013 29 / 48**

Outline

[Decision Trees](#page-2-0)

- **[Learning Decision Trees](#page-16-0)**
- **[Vector space classification](#page-30-0)**

[Linear Classifiers](#page-41-0)

[Support Vector Machines](#page-60-0)

[Recap](#page-73-0)

Linear classifiers

- Definition:
	- \triangleright A linear classifier computes a linear combination or weighted sum $\sum_{i} w_i x_i$ of the feature values.
	- **•** Classification decision: $\sum_{i} w_i x_i > \theta$?
	- \blacktriangleright ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane ۰ (higher dimensionalities).
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, naïve Bayes, linear SVM О.
- Assumption: The classes are **linearly separable**.

Linear classifiers

- Definition:
	- \triangleright A linear classifier computes a linear combination or weighted sum $\sum_{i} w_i x_i$ of the feature values.
	- **•** Classification decision: $\sum_{i} w_i x_i > \theta$?
	- \blacktriangleright ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane ۰ (higher dimensionalities).
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, naïve Bayes, linear SVM 0
- Assumption: The classes are **linearly separable**.
- \bullet Before, we just talked about equations. What's the geometric intuition?

$$
\bullet \ \ x = \theta / w_1
$$

● A linear classifier in 1D is a point *x* described by the equation $w_1 d_1 = \theta$

$$
\bullet \ \ x = \theta/w_1
$$

 \odot Points (d_1) with $w_1 d_1 \geq \theta$ are in the class *c*.

- \bullet A linear classifier in 1D is a point *x* described by the equation $w_1d_1 = \theta$ are in the complement
- $\bullet \ \ x = \theta / w_1$
	- \odot Points (d_1) with $w_1 d_1 \geq \theta$ are in the class *c*.
- external are in the complement class \odot Points (d_1) with $w_1 d_1 < \theta$ *c*.

A linear classifier in 2D is a contract of the \bullet A linear classifier in 2D is a line described by the equation $w_1d_1+w_2d_2=\theta$

- A linear classifier in 2D is a contract of the \bullet A linear classifier in 2D is a line described by the equation $w_1d_1+w_2d_2=\theta$
	- Example for a 2D linear classifier

A linear classifier in 2D R_{R} vector space classifiers \mathbf{S}

- A linear classifier in 2D is A linear classifier in 2D is a a line described by the line described by the $\frac{1}{2}$ equation $w_1d_1 + w_2d_2 = \theta$
- classifiers. classifier Example for a 2D linear
- \bullet Points $(d_1 \ d_2)$ with $w_1 d_1 + w_2 d_2 > \theta$ are in the class *c*.

- A linear classifier in 2D is \bullet A linear classifier in 2D is a line described by the equation $w_1 d_1 + w_2 d_2 = \theta$
- \bullet Example for a 2D linear classifier
- \bullet Points $(d_1 d_2)$ with \mathbf{v} $w_1d_1+w_2d_2\geq\theta$ are in the class *c*.
	- Points (d_1, d_2) with $w_1 d_1 + w_2 d_2 < \theta$ are in the complement class *c*.

 α A linear \bullet A linear classifier in 3D is a equation plane described by the *w*₁ $d_1 + w_2d_2 + w_3d_3 = \theta$

- \bullet A linear classifier in 3D is a $\frac{1}{2}$ $\frac{1}{2}$ + was defined as equation plane described by the *w*₁ $d_1 + w_2d_2 + w_3d_3 = \theta$
	- Example for a 3D linear classifier

 \blacktriangleright A inicar c a plane described by the plane described by the $\frac{d}{dx}$ $\frac{d}{dx}$ A linear classifier in 3D is a equation

 $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

- elassifier wassiner Example for a 3D linear
- \bullet Points $(d_1 \ d_2 \ d_3)$ with $w_1 d_1 + w_2 d_2 + w_3 d_3$ > θ are in the class *c*.

 \bullet A linear classifier in 3D is a plane described by the equation

*w*₁ $d_1 + w_2d_2 + w_3d_3 = \theta$

- Points (d¹ d² d3) with \bullet Example for a 3D linear classifier
- Points (d¹ d² d3) with \bullet Points $(d_1\ d_2\ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 \geq \theta$ are in the class *c*.
- \bullet Points $(d_1 \ d_2 \ d_3)$ with $w_1 d_1 + w_2 d_2 + w_3 d_3 < \theta$ are in the complement class *c*.

Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$
\sum_{i=1}^M w_i d_i = \theta
$$

where $w_i = \log[\hat{P}(t_i | c) / \hat{P}(t_i | \bar{c})],$ $d_i =$ number of occurrences of t_i in d , and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index *i*, $1 \le i \le M$, refers to terms of the vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it into a probability).

Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$
\sum_{i=1}^M w_i d_i = \theta
$$

where $w_i = \log[\hat{P}(t_i | c) / \hat{P}(t_i | \bar{c})],$ $d_i =$ number of occurrences of t_i in d , and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index *i*, $1 \le i \le M$, refers to terms of the vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it into a probability).

Takeway

Naïve Bayes, logistic regression and SVM (which we'll get to in a second) are all linear methods. They choose their hyperplanes based on different objectives: joint likelihood (NB), conditional likelihood (LR), and the margin (SVM).

Which hyperplane?

Which hyperplane?

- For linearly separable training sets: there are **infinitely** many separating hyperplanes.
- They all separate the training set perfectly ...
- \bullet ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?

Outline

[Decision Trees](#page-2-0)

- **[Learning Decision Trees](#page-16-0)**
- **[Vector space classification](#page-30-0)**
- **[Linear Classifiers](#page-41-0)**

[Recap](#page-73-0)

Support vector machines

- Machine-learning research in the last two decades has improved classifier effectiveness.
- New generation of state-of-the-art classifiers: support vector machines (SVMs), boosted decision trees, regularized logistic regression, neural networks, and random forests
- Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision boundary between two classes that is maximally far from any point in the training data (possibly discounting some points as outliers or noise)

Support Vector Machines

2-class training data

Support Vector Machines

- 2-class training data
- \bullet decision boundary \rightarrow **linear separator**

Support Vector Machines

- 2-class training data
- \bullet decision boundary \rightarrow linear separator
- criterion: being maximally far away from any data point \rightarrow determines classifier **margin**

Support Vector Machines Classification Linear classification Linear classifiers Support Vector Machines Discussion Linear control of the United Support Order Classifiers Order Classifiers Order Classifiers Order Classifie

- 2-class training data classification decisions iss training data
- decision boundary \rightarrow **linear separator** α separator
- criterion: being maximally far away f from any data point \rightarrow determines classifier **margin** arry data point
- **o** linear separator position defined by ${\sf support\ vectors}$

Why maximize the margin? Why maximize the margin?

- Points near decision surface \rightarrow uncertain classification decisions (50% either way). is near decision decisions. Gives classification
- A classifier with a large margin makes no low certainty classification decisions. r margin mai
- Gives classification Sch¨utze: Support vector machines 30 / 55 safety margin w.r.t slight errors in measurement or documents variation

Why maximize the margin?

- SVM classifier: large margin around decision boundary
- compare to decision hyperplane: place fat separator between classes
	- \blacktriangleright unique solution
- \bullet decreased memory capacity
- increased ability to correctly generalize to test data

Working geometrically:

Working geometrically:

• The maximum margin weight vector will be parallel to the shortest line connecting points of the two classes, that is, the line between $(1,1)$ and $(2,3)$, giving a weight vector of $(1,2)$.

Working geometrically:

- The maximum margin weight vector will be parallel to the shortest line connecting points of the two classes, that is, the line between $(1,1)$ and $(2,3)$, giving a weight vector of $(1,2)$.
- The optimal decision surface is orthogonal to that line and intersects it at the halfway point. Therefore, it passes through $(1.5, 2).$

Working geometrically:

- The maximum margin weight vector will be parallel to the shortest line connecting points of the two classes, that is, the line between $(1,1)$ and $(2,3)$, giving a weight vector of $(1,2)$.
- The optimal decision surface is orthogonal to that line and intersects it at the halfway point. Therefore, it passes through $(1.5, 2).$
- The SVM decision boundary is:

$$
0 = \frac{1}{2}x + y - \frac{11}{4} \Longleftrightarrow 0 = \frac{2}{5}x + \frac{4}{5}y - \frac{11}{5}
$$

SVM extensions

- Slack variables: not perfect line
- Kernels: different geometries

Loss functions: Different penalties for getting the answer wrong

Outline

[Decision Trees](#page-2-0)

- **[Learning Decision Trees](#page-16-0)**
- **[Vector space classification](#page-30-0)**
- **[Linear Classifiers](#page-41-0)**
- **[Support Vector Machines](#page-60-0)**

- Many commercial applications
- There are many applications of text classification for corporate Intranets, government departments, and Internet publishers.
- Often greater performance gains from exploiting domain-specific text features than from changing from one machine learning method to another. (Homework 2)

- None?
- Very little?
- A fair amount?
- A huge amount

- None? **Hand write rules or use active learning**
- Very little?
- A fair amount?
- A huge amount

- None? **Hand write rules or use active learning**
- Very little? **Naïve Bayes**
- A fair amount?
- A huge amount

- None? **Hand write rules or use active learning**
- Very little? **Naïve Bayes**
- A fair amount? **SVM**
- A huge amount

- None? **Hand write rules or use active learning**
- Very little? **Naïve Bayes**
- A fair amount? **SVM**
- A huge amount **Doesn't matter, use whatever works**

Recap

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance. ۰
- Factors to take into account:
	- \blacktriangleright How much training data is available?
	- \blacktriangleright How simple/complex is the problem? (linear vs. nonlinear decision boundary)
	- \blacktriangleright How noisy is the problem?
	- \blacktriangleright How stable is the problem over time?
		- \star For an unstable problem, it's better to use a simple and robust classifier.
		- \star You'll be investigating the role of features in HW2!