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Roadmap

@ Classification: machines labeling data for us
@ Last time: naive Bayes and logistic regression
@ This time:
> Decision Trees
* Simple, nonlinear, interpretable
» SVMs

* (another) example of linear classifier
* State-of-the-art classification

» Examples in Rattle (Logistic, SVM, Trees)
> Discussion: Which classifier should | use for my problem?
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Outline

o Decision Trees
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Trees

Suppose that we want to construct a set of rules to represent the data
@ can represent data as a series of if-then statements
@ here, “if” splits inputs into two categories
@ “then” assigns value
@ when “if” statements are nested, structure is called a tree

True, < \False
True, True , \ False

/ \ /
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el
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Trees

Ex: data (X1, X2, X3, Y) with X1, X, X3 are real, Y Boolean
First, see if X; > 5:
o if TRUE, seeif X; > 8

» if TRUE, return FALSE
» if FALSE, return TRUE ST ae
o if FALSE, see if Xp < —2 * m
> if TRUE, see if X3 >0 e/ " \j‘se
* if TRUE, return [ﬁ] [M x>0 [TRue ]
True 7N False
TRUE A
* if FALSE, return
FALSE

» if FALSE, return TRUE
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Trees

X, >5
True, \False
True, True/ False

/

| FALSEI | TRUE I | X%>O I | TRUE I

True N False

Y \

Example 1: (X1, X2, X3) =(1,1,1)

Example 2: (X, X2, X3) = (10,—3,0)
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Trees

X, >5
True, \False
True, True/ False

/

| FALSEI | TRUE I | X%>O I | TRUE I

True N False

Y \

Example 1: (X1, Xz, X3) = (1,1,1) — TRUE

Example 2: (X, X2, X3) = (10,—3,0)
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Trees

X, >5
True, \False
True, True/ False

/

| FALSEI | TRUE I | X%>O I | TRUE I

True N False

Y \

Example 1: (X1, Xz, X3) = (1,1,1) — TRUE

Example 2: (X1, X2, X3) = (10,—3,0) — FALSE
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Trees

Terminology:
@ branches: one side of a split

@ leaves: terminal nodes that return values

Why trees?
@ trees can be used for regression or classification

> regression: returned value is a real number
» classification: returned value is a class

@ unlike linear regression, SVMs, naive Bayes, etc, trees fit local models

> in large spaces, global models may be hard to fit
» results may be hard to interpret

o fast, interpretable predictions
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Example: Predicting Electoral Results

2008 Democratic primary:
@ Hillary Clinton
@ Barack Obama
Given historical data, how will a count vote?
@ can extrapolate to state level data
@ might give regions to focus on increasing voter turnout

@ would like to know how variables interact
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Example: Predicting Electoral Results

Decision Tree: The Obama-Clinton Divide
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Example: Predicting Electoral Results

Decision Tree: The Obama-Clinton Divide

In the nominating Is a county
contests so far, Senator more than
Barack Obama has won the 20 percent black?
vast majority of counties l
with large black or highly
educated populations. NO There are not YES This county
Senator Hillary Rodham many African- has a large
Clinton has a commanding Americans in this African-American
lead in less-educated county population.

counties dominated by
whites. Follow the arrows
for a more detailed split.

And is the high school

graduation rate higher
than 78 percent? E
| i

— NO Thisisacounty YES Thisisa .
4 with less-aducated  county with mare
\ :, volers, educated volers 383 to 70.
And is the high school
Clinton wins graduation rate higher
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l volers, educated volers 1 =28 R
| And is the high school

Clinton wins graduation rate higher
these counties than 87 percent?
704 to 89. |

NO 78 to 87 YES Thisis a

parcent have  highly educated
a diploma. county. i

Obama wins
these counties
185 to 36.

And where is the county?
Mortheast or South l West or Midwest

2|

In 2000, were many

Clinton wins households poor?
these counties i
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YES At least NO Al least
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Decision Trees

Decision tree representation:
@ Each internal node tests an attribute
@ Each branch corresponds to attribute value

@ Each leaf node assigns a classification

How would we represent as a function of X, Y:
@ X AND Y (both must be true)
@ X ORY (either can be true)
@ X XOR Y (one and only one is true)
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When to Consider Decision Trees

@ Instances describable by attribute-value pairs
@ Target function is discrete valued
@ Disjunctive hypothesis may be required

@ Possibly noisy training data

Examples:
@ Equipment or medical diagnosis
@ Credit risk analysis

@ Modeling calendar scheduling preferences
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Outline

Q Learning Decision Trees
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Top-Down Induction of Decision Trees

Main loop:
@ A~ the “best” decision attribute for next node
O Assign A as decision attribute for node
© For each value of A, create new descendant of node
@ Sort training examples to leaf nodes

© If training examples perfectly classified, Then STOP, Else iterate over new
leaf nodes

Which attribute is best?

[29+,35-] A1=" [29+,35-] A2="

t t f

[21+,5-] [8+,30-] [18+,33-] [11+,2-]
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Entropy: Reminder

10T
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@ Sis a sample of training examples
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Entropy

How spread out is the distribution of S:

Po(—10g; Po) + po(—log, po)

Entropy(S) = —pe 109, Pe — Pe 109, e

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 18/48



Information Gain

Which feature A would be a more useful rule in our decision tree?

Gain(S, A) = expected reduction in entropy due to sorting on A

S
Gain(S, A) = Entropy(S) — Z ||S‘/||Entropy(8v)
veValues(A)
[29+,35-] A1="? [29+,35-] A2="
t f t f
[21F,5-]  [B+,30-] [18%,33-] [I1+,2-]

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 19/48



i) — 21 (2) - B (%
“ " 5249\54) 629\ 6a

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 20/48



i) — 21 (2) - B (%
“ " 5249\54) 629\ 6a

=0.96
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i) — 21 (2) B (%
~ " 529\54) 649\ 6a
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=0.96

Gain(, 1) — 096~ 28 [ 3 (5) 21 (21
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a ‘ 64 | 269 9| 26
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=0.96—-0.28—0.44=0.24
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Gain(S, Ar) = 0.96 26 5|(5) 21 (21
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Gain(S, Ar) = 0.96 26 5|(5) 21 (21
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Training Examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3  Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7  Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal  Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal  Weak Yes

D14 Rain Mild High Strong No
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Selecting the Next Attribute

Which attribute is the best classifier?

S: [9+.5-] S: [9+.5-]
E =0.940 E=0.940
Humidity Wind
High Normal Weak Strong
[3+4-] [6+,1-] [6+,2-] [3+3-]
E=0985 E=0.592 E=0811 E=1.00
Gain (S, Humidity ) Gain (S, Wind)

=.940 - (7/14).985 - (7/14).592 940 - (8/14).811 - (6/14)1.0
=.151 048
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ID3 Algorithm

@ Start at root, look for best attribute

@ Repeat for subtrees at each attribute outcome
@ Stop when information gain is below a threshold
@ Bias: prefers shorter trees (Occam’s Razor)

— a short hyp that fits data unlikely to be coincidence
— along hyp that fits data might be coincidence
> Prevents overfitting (more later)
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Outline

O Vector space classification
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Thinking Geometrically

@ Suppose you have two classes: vacations and sports

@ Suppose you have four documents

Sports Vacations
Docy: {ball, ball, ball, travel} Docg: {travel, ball, travel}
Docy: {ball, ball} Docy: {travel}

@ What does this look like in vector space?
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Put the documents in vector space

Travel

w
'V
I

\

Ball

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 26/48



Vector space representation of documents

@ Each document is a vector, one component for each term.
@ Terms are axes.
@ High dimensionality: 10,000s of dimensions and more

@ How can we do classification in this space?
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Vector space classification

©

As before, the training set is a set of documents, each labeled with its class.

©

In vector space classification, this set corresponds to a labeled set of points
or vectors in the vector space.

(4]

Premise 1: Documents in the same class form a contiguous region.

(4]

Premise 2: Documents from different classes don’t overlap.

©

We define lines, surfaces, hypersurfaces to divide regions.
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Classes in the vector space

Kenya
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Classes in the vector space

Kenya

Should the document x be assigned to China, UK or Kenya?
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Classes in the vector space

Kenya

Find separators between the classes
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Classes in the vector space

Kenya

Find separators between the classes
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Classes in the vector space

Based on these separators: x should be assignedto China
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Classes in the vector space

Kenya

How do we find separators that do a good job at classifying new documents like x?
Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs February 25, 2013 29/48



Outline

@ Linear Classifiers
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Linear classifiers

@ Definition:
> A linear classifier computes a linear combination or weighted sum
> wix; of the feature values.
> Classification decision: Y wix; > 0?
» ...where 6 (the threshold) is a parameter.

©

(First, we only consider binary classifiers.)

©

Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane
(higher dimensionalities).

We call this the separator or decision boundary.
We find the separator based on training set.

Methods for finding separator: logistic regression, naive Bayes, linear SVM

© © o o

Assumption: The classes are linearly separable.
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Linear classifiers

@ Definition:
> A linear classifier computes a linear combination or weighted sum
> wix; of the feature values.
> Classification decision: Y wix; > 0?
» ...where 6 (the threshold) is a parameter.

©

(First, we only consider binary classifiers.)

©

Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane
(higher dimensionalities).

We call this the separator or decision boundary.
We find the separator based on training set.
Methods for finding separator: logistic regression, naive Bayes, linear SVM

Assumption: The classes are linearly separable.

®© © 6 o o

Before, we just talked about equations. What's the geometric intuition?
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A linear classifier in 1D

° @ Alinear classifierin 1D is a
point x described by the
equation wydy = 6
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A linear classifier in 1D

° @ Alinear classifierin 1D is a
point x described by the
equation wydy = 6

o x=0/w
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A linear classifier in 1D

@ Alinear classifierin 1D is a
point x described by the
equation wydy = 6

o x=0/w

@ Points (d) with wyd; > 6
are in the class c.
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A linear classifier in 1D

@ Alinear classifierin 1D is a
point x described by the
equation wydy = 6

A
[ ]

o x=0/w

@ Points (d) with wyd; > 6
are in the class c.

@ Points (d) with wyd; < 6
are in the complement class

C.
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A linear classifier in 2D

@ A linear classifier in 2D is a
line described by the

/ equation wyd; + wodo = 0
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A linear classifier in 2D

@ A linear classifier in 2D is a
line described by the

equation wyd; + wodo = 0
@ Example for a 2D linear

classifier
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A linear classifier in 2D

@ Alinear classifierin 2D is a
line described by the
equation wyd; + wodo = 0

@ Example for a 2D linear
classifier

| @ Points (dj do) with
widi + wodb > 60 are in the
class c.
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A linear classifier in 2D

@ Alinear classifierin 2D is a
line described by the
equation wydy + wado = 6

@ Example for a 2D linear
classifier

! @ Points (dy do) with

widi + wodb > 60 are in the
class c.

@ Points (dy db) with
widy + wodb < 6 are in the
complement class c.
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
w10y + wodz + wads = 0
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
w10y + wodz + wads = 0

@ Example for a 3D linear
classifier
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
w10y + wodz + wads = 0

@ Example for a 3D linear
classifier

@ Points (d1 b d3) with
wydiy + Wodb + wzds > 0 are
in the class c.
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A linear classifier in 3D

@ Alinear classifierin 3D is a
plane described by the
equation
w10y + wodz + wads = 0

@ Example for a 3D linear
classifier

@ Points (d1 b d3) with
wydiy + Wodb + wzds > 0 are
in the class c.

@ Points (d1 b dg) with
widy + wodb + wads < 0 are
in the complement class c.
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Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

M
Z W,'O',‘ = 0
i=1

where w; = log[P(ti|c)/P(t|c)], d; = number of occurrences of ; in d, and

0 = —log[P(c)/P(T)]. Here, the index i, 1 < i < M, refers to terms of the
vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it
into a probability).
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Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

M
Z W,'O',‘ = 0
i=1

where w; = log[P(ti|c)/P(t|c)], d; = number of occurrences of ; in d, and

0 = —log[P(c)/P(T)]. Here, the index i, 1 < i < M, refers to terms of the
vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it
into a probability).

Takeway

Naive Bayes, logistic regression and SVM (which we’ll get to in a second) are all
linear methods. They choose their hyperplanes based on different objectives: joint
likelihood (NB), conditional likelihood (LR), and the margin (SVM).
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Which hyperplane?
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Which hyperplane?

@ For linearly separable training sets: there are infinitely many separating
hyperplanes.

@ They all separate the training set perfectly ...
@ ...but they behave differently on test data.
@ Error rates on new data are low for some, high for others.

@ How do we find a low-error separator?
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Outline

Q Support Vector Machines
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Support vector machines

@ Machine-learning research in the last two decades has improved classifier
effectiveness.

@ New generation of state-of-the-art classifiers: support vector machines
(SVMs), boosted decision trees, regularized logistic regression, neural
networks, and random forests

@ Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision boundary
between two classes that is maximally far from any point in the training data
(possibly discounting some points as outliers or noise)
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Support Vector Machines

@ 2-class training data

AN A
A A
= A
°
e A
e o
°
°
P ) °
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Support Vector Machines

@ 2-class training data

@ decision boundary —
linear separator
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Support Vector Machines

@ 2-class training data

@ decision boundary —
linear separator

@ criterion: being
maximally far away
from any data point
— determines
classifier margin

. Margin is
maximized
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Digging into Data: Jordan Boyd-Graber ()

Support Vector Machines

@ 2-class training data

@ decision boundary —
linear separator

@ criterion: being
maximally far away
from any data point
— determines
classifier margin

@ linear separator
position defined by
support vectors

Classification II: Decision Trees and SVMs

Maximum
margin

decision
hyperplane ™\

Support vectors

N .
<« Margin is
maximized
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Why maximize the margin?

@ Points near decision
surface — uncertain
classification
decisions (50% either
way).

@ A classifier with a
large margin makes
no low certainty
classification
decisions.

@ Gives classification
safety margin w.r.t
slight errors in
measurement or
documents variation

Digging into Data: Jordan Boyd-Graber () Classification IlI: Decision Trees and SVMs

Maximum
margin

decision
hyperplane ™y

Support vectors

N L
<« Margin is
maximized

February 25, 2013

41/48



Why maximize the margin?

@ SVM classifier: large margin
around decision boundary

@ compare to decision
hyperplane: place fat separator

[} @
between classes R
> unique solution o
@ decreased memory capacity O

@ increased ability to correctly
generalize to test data
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Walkthrough example: building an SVM over the data set
shown in the figure

Working geometrically:

3 AN
2
1 O
0
1 2 3
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Walkthrough example: building an SVM over the data set
shown in the figure

Working geometrically:

@ The maximum margin weight vector will be
parallel to the shortest line connecting 2
points of the two classes, that is, the line
between (1,1) and (2,3), giving a weight
vector of (1,2). 0
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Working geometrically:

@ The maximum margin weight vector will be
parallel to the shortest line connecting 2
points of the two classes, that is, the line
between (1,1) and (2,3), giving a weight
vector of (1,2). 0
@ The optimal decision surface is orthogonal
to that line and intersects it at the halfway

point. Therefore, it passes through
(1.5,2).
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Walkthrough example: building an SVM over the data set
shown in the figure

Working geometrically:

@ The maximum margin weight vector will be
parallel to the shortest line connecting 2
points of the two classes, that is, the line
between (1,1) and (2,3), giving a weight
vector of (1,2). 0
@ The optimal decision surface is orthogonal
to that line and intersects it at the halfway
point. Therefore, it passes through
(1.5,2).
@ The SVM decision boundary is:
1 11 2 4 11

0= oxdy— 0= Sxp oy
XY 55755
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SVM extensions

@ Slack variables: not perfect line

@ Kernels: different geometries

@ Loss functions: Different penalties for getting the answer wrong
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Text classification

@ Many commercial applications
@ There are many applications of text classification for corporate Intranets,
government departments, and Internet publishers.

@ Often greater performance gains from exploiting domain-specific text features
than from changing from one machine learning method to another.
(Homework 2)
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

@ None?

o Very little?

@ A fair amount?

@ A huge amount
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Choosing what kind of classifier to use

When building a text classifier, first question: how much training data is there
currently available?

@ None? Hand write rules or use active learning

@ Very little? Naive Bayes

@ A fair amount? SVM

@ A huge amount Doesn’t matter, use whatever works
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Recap

@ Is there a learning method that is optimal for all text classification problems?
@ No, because there is a tradeoff between bias and variance.
@ Factors to take into account:
» How much training data is available?
» How simple/complex is the problem? (linear vs. nonlinear decision
boundary)
> How noisy is the problem?
» How stable is the problem over time?
* For an unstable problem, it's better to use a simple and robust
classifier.
* You'll be investigating the role of features in HW2!
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