Classification II: Decision Trees and SVMs

Digging into Data: Jordan Boyd-Graber

February 25, 2013

COLLEGE OF INFORMATION STUDIES

Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah

Roadmap

- Classification: machines labeling data for us
- Last time: naïve Bayes and logistic regression
- This time:
 - Decision Trees
 - * Simple, nonlinear, interpretable
 - SVMs
 - * (another) example of linear classifier
 - ★ State-of-the-art classification
 - Examples in Rattle (Logistic, SVM, Trees)
 - Discussion: Which classifier should I use for my problem?

Outline

Decision Trees

- 2 Learning Decision Trees
- 3 Vector space classification
- Linear Classifiers
- 5 Support Vector Machines

Recap

Suppose that we want to construct a set of rules to represent the data

- can represent data as a series of if-then statements
- here, "if" splits inputs into two categories
- "then" assigns value
- when "if" statements are nested, structure is called a tree

Ex: data (X_1, X_2, X_3, Y) with X_1, X_2, X_3 are real, Y Boolean First, see if $X_1 > 5$:

- if TRUE, see if $X_1 > 8$
 - ▶ if TRUE, return FALSE
 - ▶ if FALSE, return TRUE
- if FALSE, see if $X_2 < -2$
 - ▶ if TRUE, see if X₃ > 0
 - ★ if TRUE, return TRUE
 - ★ if FALSE, return FALSE
 - ▶ if FALSE, return TRUE

Example 1: $(X_1, X_2, X_3) = (1, 1, 1)$

Example 2: $(X_1, X_2, X_3) = (10, -3, 0)$

Example 1: $(X_1, X_2, X_3) = (1, 1, 1) \rightarrow \text{TRUE}$

Example 2: $(X_1, X_2, X_3) = (10, -3, 0)$

Example 1: $(X_1, X_2, X_3) = (1, 1, 1) \rightarrow \text{TRUE}$

Example 2: $(X_1, X_2, X_3) = (10, -3, 0) \rightarrow \text{FALSE}$

Terminology:

- branches: one side of a split
- leaves: terminal nodes that return values

Why trees?

- trees can be used for regression or classification
 - regression: returned value is a real number
 - classification: returned value is a class
- unlike linear regression, SVMs, naive Bayes, etc, trees fit local models
 - in large spaces, global models may be hard to fit
 - results may be hard to interpret
- fast, interpretable predictions

Example: Predicting Electoral Results

2008 Democratic primary:

- Hillary Clinton
- Barack Obama

Given historical data, how will a count vote?

- can extrapolate to state level data
- might give regions to focus on increasing voter turnout
- would like to know how variables interact

Example: Predicting Electoral Results

Example: Predicting Electoral Results

Decision Tree: The Obama-Clinton Divide

Sources: Election results via The Associated Press; Census Bureau; Dave Leip's Atlas of U.S. Presidential Elections

AMANDA C

Decision Trees

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent as a function of *X*, *Y*:

- X AND Y (both must be true)
- X OR Y (either can be true)
- X XOR Y (one and only one is true)

When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Outline

Decision Trees

Learning Decision Trees

Vector space classification

Linear Classifiers

5 Support Vector Machines

Recap

Top-Down Induction of Decision Trees

Main loop:

- $A \leftarrow$ the "best" decision attribute for next *node*
- Assign A as decision attribute for node
- Sor each value of A, create new descendant of node
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Classification II: Decision Trees and SVMs

Entropy: Reminder

• S is a sample of training examples

How spread out is the distribution of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Information Gain

Which feature *A* would be a more useful rule in our decision tree? Gain(S, A) = expected reduction in entropy due to sorting on *A*

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Digging into Data: Jordan Boyd-Graber () Class

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right) =$$

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right) = 0.96$$

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right)$$
$$= 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right] \\ -\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right] \\ =$$

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right) \\ = 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$$
$$-\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$$
$$= 0.96 - 0.28 - 0.44 = 0.24$$

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right) \\ = 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$$
$$-\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$$
$$= 0.96 - 0.28 - 0.44 = 0.24$$

$$Gain(S, A_2) = 0.96 - \frac{51}{64} \left[-\frac{18}{51} \lg \left(\frac{18}{51} \right) - \frac{33}{51} \lg \left(\frac{33}{51} \right) \right]$$
$$- \frac{13}{64} \left[-\frac{11}{13} \lg \left(\frac{11}{13} \right) - \frac{2}{13} \lg \left(\frac{2}{13} \right) \right]$$

=

Digging into Data: Jordan Boyd-Graber ()

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right) \\ = 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$$
$$- \frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$$
$$= 0.96 - 0.28 - 0.44 = 0.24$$

$$Gain(S, A_2) = 0.96 - \frac{51}{64} \left[-\frac{18}{51} \lg \left(\frac{18}{51} \right) - \frac{33}{51} \lg \left(\frac{33}{51} \right) \right]$$
$$- \frac{13}{64} \left[-\frac{11}{13} \lg \left(\frac{11}{13} \right) - \frac{2}{13} \lg \left(\frac{2}{13} \right) \right]$$
$$= 0.96 - 0.75 - 0.13 = 0.08$$

Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Which attribute is the best classifier?

- Start at root, look for best attribute
- Repeat for subtrees at each attribute outcome
- Stop when information gain is below a threshold
- Bias: prefers shorter trees (Occam's Razor)
 - \rightarrow a short hyp that fits data unlikely to be coincidence
 - $\rightarrow~$ a long hyp that fits data might be coincidence
 - Prevents overfitting (more later)

Outline

Decision Trees

- 2 Learning Decision Trees
- Vector space classification
- Linear Classifiers
- 5 Support Vector Machines

Recap

- Suppose you have two classes: vacations and sports
- Suppose you have four documents

Sports

Doc₁: {ball, ball, ball, travel} Doc₂: {ball, ball}

Vacations

Doc₃: {travel, ball, travel} Doc₄: {travel}

What does this look like in vector space?

Put the documents in vector space

Travel

Ball

Vector space representation of documents

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 10,000s of dimensions and more
- How can we do classification in this space?

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Classes in the vector space

Should the document * be assigned to China, UK or Kenya?

Digging into Data: Jordan Boyd-Graber ()

Classification II: Decision Trees and SVMs

Find separators between the classes

Find separators between the classes

February 25, 2013 29 / 48

Digging into Data: Jordan Boyd-Graber ()

Classification II: Decision Trees and SVMs

February 25, 2013 29 / 48

Outline

Decision Trees

- 2 Learning Decision Trees
- 3 Vector space classification

Linear Classifiers

Support Vector Machines

Recap

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_{i} w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities).
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, naïve Bayes, linear SVM
- Assumption: The classes are linearly separable.

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_{i} w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities).
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, naïve Bayes, linear SVM
- Assumption: The classes are linearly separable.
- Before, we just talked about equations. What's the geometric intuition?

•
$$x = \theta / w_1$$

• A linear classifier in 1D is a point *x* described by the equation $w_1 d_1 = \theta$

•
$$x = \theta / w_1$$

• Points (d_1) with $w_1 d_1 \ge \theta$ are in the class *c*.

• A linear classifier in 1D is a point *x* described by the equation $w_1 d_1 = \theta$

•
$$x = \theta / w_1$$

- Points (d_1) with $w_1 d_1 \ge \theta$ are in the class *c*.
- Points (d_1) with $w_1 d_1 < \theta$ are in the complement class \overline{c} .

• A linear classifier in 2D is a line described by the equation $w_1 d_1 + w_2 d_2 = \theta$

- A linear classifier in 2D is a line described by the equation $w_1 d_1 + w_2 d_2 = \theta$
- Example for a 2D linear classifier

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points $(d_1 \ d_2)$ with $w_1 d_1 + w_2 d_2 \ge \theta$ are in the class *c*.

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points $(d_1 \ d_2)$ with $w_1 d_1 + w_2 d_2 \ge \theta$ are in the class *c*.
- Points $(d_1 \ d_2)$ with $w_1 d_1 + w_2 d_2 < \theta$ are in the complement class \overline{c} .

• A linear classifier in 3D is a plane described by the equation $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

Digging into Data: Jordan Boyd-Graber () Classification II: Decision Trees and SVMs

• A linear classifier in 3D is a plane described by the equation $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

• Example for a 3D linear

classifier

 A linear classifier in 3D is a plane described by the equation

 $w_1d_1+w_2d_2+w_3d_3=\theta$

- Example for a 3D linear classifier
- Points $(d_1 \ d_2 \ d_3)$ with $w_1 d_1 + w_2 d_2 + w_3 d_3 \ge \theta$ are in the class *c*.

 A linear classifier in 3D is a plane described by the equation

 $w_1d_1+w_2d_2+w_3d_3=\theta$

- Example for a 3D linear classifier
- Points $(d_1 d_2 d_3)$ with $w_1 d_1 + w_2 d_2 + w_3 d_3 \ge \theta$ are in the class *c*.
- Points $(d_1 \ d_2 \ d_3)$ with $w_1 d_1 + w_2 d_2 + w_3 d_3 < \theta$ are in the complement class \overline{c} .

Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$\sum_{i=1}^{M} w_i d_i = \theta$$

where $w_i = \log[\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})]$, $d_i =$ number of occurrences of t_i in d, and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index i, $1 \le i \le M$, refers to terms of the vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it into a probability).

Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$\sum_{i=1}^{M} w_i d_i = \theta$$

where $w_i = \log[\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})]$, $d_i =$ number of occurrences of t_i in d, and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index i, $1 \le i \le M$, refers to terms of the vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it into a probability).

Takeway

Naïve Bayes, logistic regression and SVM (which we'll get to in a second) are all linear methods. They choose their hyperplanes based on different objectives: joint likelihood (NB), conditional likelihood (LR), and the margin (SVM).

Which hyperplane?

Which hyperplane?

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?

Outline

Decision Trees

- 2 Learning Decision Trees
- 3 Vector space classification
- Linear Classifiers

) Recap

- Machine-learning research in the last two decades has improved classifier effectiveness.
- New generation of state-of-the-art classifiers: support vector machines (SVMs), boosted decision trees, regularized logistic regression, neural networks, and random forests
- Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision boundary between two classes that is maximally far from any point in the training data (possibly discounting some points as outliers or noise)

2-class training data

- 2-class training data
- decision boundary →
 linear separator

- 2-class training data
- decision boundary →
 linear separator
- criterion: being maximally far away from any data point
 → determines classifier margin

- 2-class training data
- decision boundary →
 linear separator
- criterion: being maximally far away from any data point
 → determines classifier margin
- linear separator position defined by support vectors

Why maximize the margin?

- Points near decision surface → uncertain classification decisions (50% either way).
- A classifier with a large margin makes no low certainty classification decisions.
- Gives classification safety margin w.r.t slight errors in measurement or documents variation

Why maximize the margin?

- SVM classifier: large margin around decision boundary
- compare to decision hyperplane: place fat separator between classes
 - unique solution
- decreased memory capacity
- increased ability to correctly generalize to test data

Working geometrically:

Working geometrically:

 The maximum margin weight vector will be parallel to the shortest line connecting points of the two classes, that is, the line between (1,1) and (2,3), giving a weight vector of (1,2).

Working geometrically:

- The maximum margin weight vector will be parallel to the shortest line connecting points of the two classes, that is, the line between (1,1) and (2,3), giving a weight vector of (1,2).
- The optimal decision surface is orthogonal to that line and intersects it at the halfway point. Therefore, it passes through (1.5,2).

Working geometrically:

- The maximum margin weight vector will be parallel to the shortest line connecting points of the two classes, that is, the line between (1,1) and (2,3), giving a weight vector of (1,2).
- The optimal decision surface is orthogonal to that line and intersects it at the halfway point. Therefore, it passes through (1.5,2).
- The SVM decision boundary is:

$$0 = \frac{1}{2}x + y - \frac{11}{4} \iff 0 = \frac{2}{5}x + \frac{4}{5}y - \frac{11}{5}$$

SVM extensions

- Slack variables: not perfect line
- Kernels: different geometries

Loss functions: Different penalties for getting the answer wrong

Outline

Decision Trees

- 2 Learning Decision Trees
- 3 Vector space classification
- Linear Classifiers
- Support Vector Machines

- Many commercial applications
- There are many applications of text classification for corporate Intranets, government departments, and Internet publishers.
- Often greater performance gains from exploiting domain-specific text features than from changing from one machine learning method to another. (Homework 2)

- None?
- Very little?
- A fair amount?
- A huge amount

- None? Hand write rules or use active learning
- Very little?
- A fair amount?
- A huge amount

- None? Hand write rules or use active learning
- Very little? Naïve Bayes
- A fair amount?
- A huge amount

- None? Hand write rules or use active learning
- Very little? Naïve Bayes
- A fair amount? SVM
- A huge amount

- None? Hand write rules or use active learning
- Very little? Naïve Bayes
- A fair amount? SVM
- A huge amount Doesn't matter, use whatever works

Recap

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the problem?
 - How stable is the problem over time?
 - ★ For an unstable problem, it's better to use a simple and robust classifier.
 - * You'll be investigating the role of features in HW2!