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Roadmap

What are probabilities
É Discrete
É Continuous

How to manipulate probabilities

Properties of probabilities
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Preface: Why make us do this?

Probabilities are the language we use to describe data

A reasonable (but geeky) definition of data science is how to get probabilities
we care about from data

Later classes will be about how to do this for different probability models and
different types of data

But first, we need key definitions of probability

So pay attention!

Also, ya’ll need to get your environments set up
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Outline

1 Properties of Probability Distributions

2 Working with probability distributions

3 Combining Probability Distributions

4 More Examples

5 Continuous Distributions

6 Expectation and Entropy
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Card problem (from David MacKay)

There are three cards
É Red/Red
É Red/Black
É Black/Black

I go through the following process.
É Close my eyes and pick a card
É Pick a side at random
É Show you that side

Suppose I show you red. What’s the probability the other side is red too?
(Write down your answer!)
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Random variable

Probability is about random variables.

A random variable is any “probabilistic” outcome.

For example,
É The flip of a coin
É The height of someone chosen randomly from a population

We’ll see that it’s sometimes useful to think of quantities that are not strictly
probabilistic as random variables.
É The temperature on 11/12/2013
É The temperature on 03/04/1905
É The number of times “streetlight” appears in a document
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Random variable

Random variables take on values in a sample space.

They can be discrete or continuous:
É Coin flip: {H,T }
É Height: positive real values (0,∞)
É Temperature: real values (−∞,∞)
É Number of words in a document: Positive integers {1,2, . . .}

We call the outcomes events.

Denote the random variable with a capital letter; denote a realization of the
random variable with a lower case letter.

E.g., X is a coin flip, x is the value (H or T ) of that coin flip.
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Discrete distribution

A discrete distribution assigns a probability
to every event in the sample space

For example, if X is an (unfair) coin, then

P(X = H) = 0.7

P(X = T ) = 0.3

The probabilities over the entire space must sum to one
∑

x

P(X = x) = 1

And probabilities have to be greater than 0

Probabilities of disjunctions are sums over part of the space. E.g., the
probability that a die is bigger than 3:

P(D > 3) = P(D = 4) + P(D = 5) + P(D = 6)
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Events

An event is a set of outcomes to which a probability is assigned, for example,
getting a card with Red on both sides.
Intersections and unions:

Intersection: P(A∩B)
Union: P(A∪B) = P(A) + P(B)−P(A∩B)

Ω	  

A	  

B	  

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 10 / 44



Joint distribution

Typically, we consider collections of random variables.

The joint distribution is a distribution over the configuration of all the random
variables in the ensemble.

For example, imagine flipping 4 coins. The joint distribution is over the space
of all possible outcomes of the four coins.

P(HHHH) = 0.0625

P(HHHT ) = 0.0625

P(HHTH) = 0.0625

. . .

You can think of it as a single random variable with 16 values.
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Visualizing a joint distribution

x

~x

~x, y x, ~yx, y

~x, ~y
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Marginalization

If we are given a joint distribution, what if we are only interested in the distribution
of one of the variables?

We can compute the distribution of P(X) from P(X ,Y ,Z) through marginalization:

∑

y

∑

z

P(X ,Y = y ,Z = z) =
∑

y

∑

z

P(X)P(Y = y ,Z = z |X)

= P(X)
∑

y

∑

z

P(Y = y ,Z = z |X)

= P(X)
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny .10 .20 .10
W=Cloudy .05 .35 .20

Marginalization allows us to compute
distributions over smaller sets of
variables:

P(X ,Y ) =
∑

z P(X ,Y ,Z = z)

Corresponds to summing out a
table dimension

New table still sums to 1

Marginalize out weather

Marginalize out temperature
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Marginalize out weather
T=Hot T=Mild T=Cold

.15 .55 .30

Marginalize out temperature
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Conditional Probabilities

The conditional probability of event A given event B is the probability of A when B
is known to occur,

P(A |B) =
P(A∩B)

P(B)
.

Ω	  

A	  

B	   A	  

B	  New	  outcome	  
space!	  
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

A≡ First die

B ≡ Second die

B=1 B=2 B=3 B=4 B=5 B=6
A=1 2 3 4 5 6 7
A=2 3 4 5 6 7 8
A=3 4 5 6 7 8 9
A=4 5 6 7 8 9 10
A=5 6 7 8 9 10 11
A=6 7 8 9 10 11 12

P(A> 3∩B+A= 6)=
2

36

P(B > 3)=
3

6

P(A> 3 |B+A= 6)=
2
36
3
6

=
2

36

6

3

=
1

9
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The chain rule

The definition of conditional probability lets us derive the chain rule, which
let’s us define the joint distribution as a product of conditionals:

P(X ,Y ) = P(X ,Y )
P(Y )

P(Y )

= P(X |Y )P(Y )

For example, let Y be a disease and X be a symptom. We may know
P(X |Y ) and P(Y ) from data. Use the chain rule to obtain the probability of
having the disease and the symptom.

In general, for any set of N variables

P(X1, . . . ,XN) =
N
∏

n=1

P(Xn|X1, . . . ,Xn−1)
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Bayes’ Rule

What is the relationship between P(A |B) and P(B |A)?

P(B |A) =
P(A |B)P(B)

P(A)

1 Start with P(A |B)

2 Change outcome space from B to Ω

3 Change outcome space again from Ω to A

A	  

B	  P(A|B)	  
Ω	  

A	  

B	  

P(A|B)	  P(B)	  =	  P(A,B)	  	   A	  

B	  

P(A|B)	  P(B)/P(A)	  =	  P(A,B)/P(A)	  =	  P(B|A)	  	  
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Independence

Random variables X and Y are independent if and only if
P(X = x ,Y = y) = P(X = x)P(Y = y).

Conditional probabilities equal unconditional probabilities with independence:

P(X = x |Y ) = P(X = x)

Knowing Y tells us nothing about X

Mathematical examples:

If I draw two socks from my (multicolored) laundry, is the color of the first sock
independent from the color of the second sock?

If I flip a coin twice, is the first outcome independent from the second
outcome?
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Independence

Intuitive Examples:

Independent:
É you use a Mac / the Green line is on schedule
É snowfall in the Himalayas / your favorite color is blue

Not independent:
É you vote for Mitt Romney / you are a Republican
É there is a traffic jam on the Beltway / the Redskins are playing
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Independence

Are these independent?

the values of two dice

the value of the first die and the sum of the values

whether it is raining and the number of taxi cabs

whether it is raining and the amount of time it takes me to hail a cab

the first two words in a sentence
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Independence

Example: two coins, C1, C2 with

P(H |C1) = 0.5, P(H |C2) = 0.3

Suppose that I randomly choose a number Y ∈ {1,2} and take coin CZ . I flip it
twice, with results (X1,X2)

are X1 and X2 independent?

what about if I know Y?
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Conditional Independence

Two random variables (or events) X and Y are conditionally independent given Z if
and only if

P(X = x ,Y = y |Z) = P(X = x |Z)P(Y = y |Z)

Graphical model notation:

Z	  

X	   Y	  
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Returning to the card problem

Now we can solve the card problem.

Let X1 be the random side of the random card I chose

Let X2 be the other side of that card

Compute P(X2 = red|X1 = red)

P(X2 = red|X1 = red) =
P(X1 = R,X2 = R)

P(X1 = R)
(1)

Numerator is 1/3: Only one card has two red sides.

Denominator is 1/2: There are three possible sides of the six that are red.
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Conditional Probabilities

I have 5 socks in my dryer: 3 gray, 2 blue.

pull one out

pull second one out

possible outcomes: GG, GB, BG, BB

Socks:
P(2nd Sock G | 1st Sock G) =

Dice: I roll 2 dice, look at total:
P(Total = 7 | Total ≤ 7) =
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pull one out
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3/5 = 1
2
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Conditional Probabilities

I have 5 socks in my dryer: 3 gray, 2 blue.

pull one out

pull second one out

possible outcomes: GG, GB, BG, BB

Socks:
P(2nd Sock G | 1st Sock G) = 3/5·2/4

3/5 = 1
2

Dice: I roll 2 dice, look at total:
P(Total = 7 | Total ≤ 7) = 6/36

21/36 = 6
21
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Joint Probability Distributions

A joint probability distribution is a probability distribution over a set of random
variables.

Example: let X be the color of the first sock, Y the color of the second. I have 5
socks in my dryer: 3 gray, 2 blue.

Y
G B

X
G
B

Can extend conditional probabilities to conditional distributions: P(Y |X = G) or
P(X |Y = B)
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Continuous random variables

We’ve only used discrete random variables so far (e.g., dice)

Random variables can be continuous.

We need a density p(x), which integrates to one.
E.g., if x ∈R then

∫ ∞

−∞
p(x)dx = 1

Probabilities are integrals over smaller intervals. E.g.,

P(X ∈ (−2.4,6.5)) =

∫ 6.5

−2.4

p(x)dx

Notice when we use P, p, X , and x .

Integrals? I didn’t sign up for this!
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Integrals?
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The Gaussian distribution

The Gaussian (or Normal) is a continuous distribution.

p(x |µ,σ) =
1

p
2πσ

exp

�

−
(x −µ)2

2σ2

�

The density of a point x is proportional to the negative exponentiated half
distance to µ scaled by σ2.

µ is called the mean; σ2 is called the variance.
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Gaussian density

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

N(1.2, 1)

x

p(
x)

The mean µ controls the location of the bump.

The variance σ2 controls the spread of the bump.
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Expectation

An expectation of a random variable is a weighted average:

E[f (X)] =
∞
∑

x=1

f (x)p(x) (discrete)

=

∫ ∞

−∞
f (x)p(x)dx (continuous)

Alternate formulation for positive random variables:

E[X ] =
∞
∑

x=1

P(X > x) (discrete)

=

∫ ∞

0

P(X > x)dx (continuous)
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Expectation

Expectations of constants or known values:

E[a] = a

E[Y |Y = y] = y

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 36 / 44



Expectation

Example: Gaussian distribution X ∼N(µ,σ2)

E[X ] =

∫ ∞

−∞
x

1
p

2πσ2
e−

1
2σ2 (x−µ)

2

dx

=
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Expectation

Example: Gaussian distribution X ∼N(µ,σ2)

E[X ] =

∫ ∞

−∞
x

1
p

2πσ2
e−

1
2σ2 (x−µ)

2

dx

=µ
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Expectation of die / dice

What is the expectation of the roll of die?

One die

1 · 1
6 + 2 · 1

6 + 3 · 1
6 + 4 · 1

6 + 5 · 1
6 + 6 · 1

6 = 3.5

What is the expectation of the sum of two dice?

Two die

2· 1
36 +3· 2

36 +4· 3
36 +5· 4

36 +6· 5
36 +7· 6

36 +8· 5
36 +9· 4

36 +10· 3
36 +11· 2

36 +12· 1
36 = 7
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Entropy

Measure of disorder in a system

In the real world, entroy in a system tends to
increase

Can also be applied to probabilities:
É Is one (or a few) outcomes certain (low

entropy)
É Are things equiprobable (high entropy)

In data science
É We look for features that allow us to

reduce entropy (decision trees)
É All else being equal, we seek models

that have maximum entropy (Occam’s
razor)
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Aside: Logarithms

lg(x) = b⇔ 2b = x

Makes big numbers small

Way to think about them: cutting a
carrot

lg(1)=0

lg(2)=1

lg(4)=2

lg(8)=3
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Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a
random variable:

H(X) =−E [lg(p(X))]

=−
∑

x

p(x) lg(p(x)) (discrete)

=−
∫ ∞

−∞
p(x) lg(p(x))dx (continuous)

Does not account for the values of the random variable, only the spread of the
distribution.

H(X)≥ 0

uniform distribution = highest entropy, point mass = lowest

suppose P(X = 1) = p, P(X = 0) = 1−p and
P(Y = 100) = p, P(Y = 0) = 1−p: X and Y have the same entropy
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Entropy of a die / dice

What is the entropy of a roll of a die?

One die
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What is the entropy of the sum of two die? Tricky question: will it be higher or lower
than the first one?
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Whew!

That’s it for now

You don’t have to be an expert on this stuff (there are other classes for that)

This is to get your feet wet and to know the concepts when you see the math
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First assignment

Find some data

Find interesting relationships in your data (next week!)

Use Rattle to display those relationships (be creative and thorough!)
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