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Roadmap

@ What are probabilities

> Discrete
» Continuous

@ How to manipulate probabilities

@ Properties of probabilities
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Preface: Why make us do this?

@ Probabilities are the language we use to describe data

@ A reasonable (but geeky) definition of data science is how to get probabilities
we care about from data

@ Later classes will be about how to do this for different probability models and
different types of data

@ But first, we need key definitions of probability
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Preface: Why make us do this?

©

Probabilities are the language we use to describe data

©

A reasonable (but geeky) definition of data science is how to get probabilities
we care about from data

©

Later classes will be about how to do this for different probability models and
different types of data

©

But first, we need key definitions of probability

(4]

So pay attention!
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Preface: Why make us do this?

@ Probabilities are the language we use to describe data

@ A reasonable (but geeky) definition of data science is how to get probabilities
we care about from data

@ Later classes will be about how to do this for different probability models and
different types of data

@ But first, we need key definitions of probability
@ So pay attention!

@ Also, ya'll need to get your environments set up
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Outline

o Properties of Probability Distributions
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Card problem (from David MacKay)

@ There are three cards
» Red/Red
» Red/Black
» Black/Black
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Card problem (from David MacKay)

@ There are three cards
» Red/Red
» Red/Black
» Black/Black

@ | go through the following process.

» Close my eyes and pick a card
> Pick a side at random
» Show you that side
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Card problem (from David MacKay)

@ There are three cards

> Red/Red
» Red/Black
» Black/Black

@ | go through the following process.

» Close my eyes and pick a card
> Pick a side at random
» Show you that side

@ Suppose | show you red. What's the probability the other side is red too?
(Write down your answerl)
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Random variable

@ Probability is about random variables.
@ A random variable is any “probabilistic” outcome.
@ For example,
> The flip of a coin
» The height of someone chosen randomly from a population
@ We'll see that it's sometimes useful to think of quantities that are not strictly
probabilistic as random variables.

» The temperature on 11/12/2013
» The temperature on 03/04/1905
» The number of times “streetlight” appears in a document
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Random variable

(4]

Random variables take on values in a sample space.

(4]

They can be discrete or continuous:
» Coin flip: {H, T}
» Height: positive real values (0, 00)
» Temperature: real values (—00,00)
> Number of words in a document: Positive integers {1,2,...}

We call the outcomes events.

(4]

(4]

Denote the random variable with a capital letter; denote a realization of the
random variable with a lower case letter.

@ E.g., X'is acoin flip, x is the value (H or T) of that coin flip.
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Discrete distribution

@ A discrete distribution assigns a probability
to every event in the sample space

@ For example, if X is an (unfair) coin, then

P(X=H) = 07
P(X=T) = 03

@ The probabilities over the entire space must sum to one
D P(x=x)=1
X

@ And probabilities have to be greater than 0

@ Probabilities of disjunctions are sums over part of the space. E.g., the
probability that a die is bigger than 3:

P(D>3)=P(D=4)+P(D=5)+P(D=86)
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Outline

© Working with probability distributions
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Events

An eventis a set of outcomes to which a probability is assigned, for example,
getting a card with Red on both sides.
Intersections and unions:

@ Intersection: P(ANB)

@ Union: P(AUB) = P(A)+ P(B)— P(ANB)
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Joint distribution

@ Typically, we consider collections of random variables.

@ The joint distribution is a distribution over the configuration of all the random
variables in the ensemble.

@ For example, imagine flipping 4 coins. The joint distribution is over the space
of all possible outcomes of the four coins.

P(HHHH) = 0.0625
P(HHHT) = 0.0625
P(HHTH) = 0.0625

@ You can think of it as a single random variable with 16 values.

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 11/44



Visualizing a joint distribution

~X

~X, ~y
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Marginalization

If we are given a joint distribution, what if we are only interested in the distribution
of one of the variables?

We can compute the distribution of P(X) from P(X, Y, Z) through marginalization:

ZZPXY y,Z=2) ZZP P(Y=y,Z=2z|X)
XZZP (Y=y,Z=2z|X)
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10
W=Cloudy | .05 35 20

Marginalization allows us to compute @ Marginalize out weather

distributions over smaller sets of
variables:
o P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ Marginalize out temperature

@ New table still sums to 1

February 4, 2013
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny | .10 20 10
W=Cloudy | .05 35 20

7 o Marginalize out weather
T=Hot T=Mild T=Cold
15 .55 .30
@ Marginalize out temperature

Marginalization allows us to compute
distributions over smaller sets of
variables:

o P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ New table still sums to 1

February 4, 2013
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny .10 .20 .10 Marainali t "
@ Marginalize out weather
W=ClI .05 .35 .20
Cloudy > T=Hot T=Mild T=Cold
Marginalization allows us to compute 15 55 -30
distributions over smaller sets of @ Marginalize out temperature
variables: W=Sunny | .40
W=Cloudy | .60

o P(X,Y) :Zz P(X,Y,Z=2z)
@ Corresponds to summing out a
table dimension

@ New table still sums to 1
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Conditional Probabilities

The conditional probability of event A given event B is the probability of A when B
is known to occur,
P(ANB)

P(A|B) = P(B)

(o] New outcome
space!
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 16/44



Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die
@ B= Second die
B=1 B=2 B=3 B=4 B=5 B=6

A=1 2 3 4 5 6 7
A=2 3 4 5 6 7 8
A=3 4 5 6 7 8 9
A=4 5 6 7 8 9 10
A=5 6 7 8 9 10 11
A=6 7 8 9 10 11 12
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Conditional Probabilities

Example

What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die
@ B= Second die
B=1 B=2 B=3 B=4 B=5 B=6

A=1 2 3 4 5 6 7
A=2 3 4 5 6 7 8
A=3 4 5 6 7 8 9
A=4 5 6 7 8 9 10
A=5 6 7 8 9 10 11
A=6 7 8 9 10 11 12
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Conditional Probabilities

Example
What is the probability that the sum of two dice is six given that the first is greater
than three?

@ A= First die 5
@ B= Second die P(A>3”B+A:6):£
B=i B=2 B=3 B=4 B=5 B=6 P(B>3)= >

A1 | 2 3 4 5 6 7 62
A28 45 6T 8 pasgirA=6) =B =2
A3 | 4 5 6 7 8 9 ¢ 363
A4 | 5 6 7 8 9 10 1
A5 | 6 7 8 9 10 11 =5
A6 | 7 8 9 10 11 12
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Outline

© combining Probability Distributions
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The chain rule

@ The definition of conditional probability lets us derive the chain rule, which
let’s us define the joint distribution as a product of conditionals:
P(Y)
P(X,Y) = P(X,Y)=—=
(xY) = PV
= P(XIY)P(Y)

~—

@ For example, let Y be a disease and X be a symptom. We may know
P(X|Y) and P(Y) from data. Use the chain rule to obtain the probability of
having the disease and the symptom.

@ In general, for any set of N variables

N
P(Xi,.... Xw) = [ [P(XalX1, ..., Xo1)
n=1
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Bayes’ Rule

What is the relationship between P(A|B) and P(B|A)?

P(AlB)P(B)

P(BIA) =5

@ Start with P(A|B)
@ Change outcome space from Bto 2

© Change outcome space again from 2 to A

aQ P(A|B) P(B)/P(A) = P(A,B)/P(A) = P(B|A)

P(A]B)

AN PIAIE) P(E) = P(R5) / AN
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Independence

Random variables X and Y are independent if and only if
P(X=x,Y=y)=P(X=x)P(Y =y).
Conditional probabilities equal unconditional probabilities with independence:
o P(X=x|Y)=P(X=x)
@ Knowing Y tells us nothing about X

Mathematical examples:

@ If | draw two socks from my (multicolored) laundry, is the color of the first sock
independent from the color of the second sock?

@ If I flip a coin twice, is the first outcome independent from the second
outcome?
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Independence

Intuitive Examples:
@ Independent:

» you use a Mac / the Green line is on schedule
> snowfall in the Himalayas / your favorite color is blue

@ Not independent:

» you vote for Mitt Romney / you are a Republican
> there is a traffic jam on the Beltway / the Redskins are playing
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Independence

Are these independent?
the values of two dice

(4]

the value of the first die and the sum of the values

°
@ whether it is raining and the number of taxi cabs

@ whether it is raining and the amount of time it takes me to hail a cab
°

the first two words in a sentence
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Independence

Example: two coins, Cq, Co with
P(H| C1) =0.5, P(HI Cg) =0.3

Suppose that | randomly choose a number Y € {1, 2} and take coin Cz. | flip it
twice, with results (X1, X2)

@ are X; and Xz independent?
@ what about if | know Y?
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Conditional Independence
Two random variables (or events) X and Y are conditionally independent given Z if
and only if

P(X=x,Y=y|Z)=P(X=x|Z)P(Y =y|2)
Graphical model notation:
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Outline

O More Examples
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Returning to the card problem

@ Now we can solve the card problem.

@ Let Xj be the random side of the random card | chose
@ Let X be the other side of that card

@ Compute P(Xo =red|X; =red)

P
P(Xo =red|X; =red) =
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Returning to the card problem

Now we can solve the card problem.

Let Xi be the random side of the random card | chose
Let X be the other side of that card

Compute P(X, =red|X; =red)

®© © o o

P
P(Xo =red|X; =red) =

©

Numerator is 1/3: Only one card has two red sides.

*]

Denominator is 1/2: There are three possible sides of the six that are red.
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Conditional Probabilities

I have 5 socks in my dryer: 3 gray, 2 blue.
@ pull one out
@ pull second one out
@ possible outcomes: GG, GB, BG, BB
@ Socks:
P(2nd Sock G | 1st Sock G) =

@ Dice: I roll 2 dice, look at total:
P(Total = 7 | Total < 7)=
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Conditional Probabilities

I have 5 socks in my dryer: 3 gray, 2 blue.
@ pull one out
@ pull second one out
@ possible outcomes: GG, GB, BG, BB

@ Socks:

P(2nd Sock G | 1st Sock G) = % =1

@ Dice: I roll 2 dice, look at total:
P(Total = 7 | Total < 7)=
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Conditional Probabilities

| have 5 socks in my dryer: 3 gray, 2 blue.
@ pull one out
@ pull second one out
@ possible outcomes: GG, GB, BG, BB

@ Socks:

P(2nd Sock G | 1st Sock G) = % =1

@ Dice: | roll 2 dice, look at total:

P(Total = 7| Total < 7)= 261/%:%
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Joint Probability Distributions

A joint probability distribution is a probability distribution over a set of random
variables.

Example: let X be the color of the first sock, Y the color of the second. | have 5
socks in my dryer: 3 gray, 2 blue.

Y
G B

G
X
B ‘

Can extend conditional probabilities to conditional distributions: P(Y|X = G) or
P(X|Y=B)
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Joint Probability Distributions

A joint probability distribution is a probability distribution over a set of random
variables.

Example: let X be the color of the first sock, Y the color of the second. | have 5
socks in my dryer: 3 gray, 2 blue.

1%
G B
G ‘ 3/5-2/4=3/10
B

X

Can extend conditional probabilities to conditional distributions: P(Y|X = G) or
P(X|Y=B)
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Joint Probability Distributions

A joint probability distribution is a probability distribution over a set of random
variables.

Example: let X be the color of the first sock, Y the color of the second. | have 5
socks in my dryer: 3 gray, 2 blue.

1%
G B
G ‘ 3/5-2/4=3/10 3/5-2/4=3/10
B

X

Can extend conditional probabilities to conditional distributions: P(Y|X = G) or
P(X|Y=B)
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Joint Probability Distributions

A joint probability distribution is a probability distribution over a set of random
variables.

Example: let X be the color of the first sock, Y the color of the second. | have 5
socks in my dryer: 3 gray, 2 blue.
Y
G B

G | 3/5-2/4=3/10 3/5-2/4=3/10
B | 2/5-3/4=3/10

X

Can extend conditional probabilities to conditional distributions: P(Y|X = G) or
P(X|Y=B)
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Joint Probability Distributions

A joint probability distribution is a probability distribution over a set of random
variables.

Example: let X be the color of the first sock, Y the color of the second. | have 5
socks in my dryer: 3 gray, 2 blue.
Y
G B

G | 3/5-2/4=3/10 3/5-2/4=3/10
B |2/5-3/4=3/10 2/5-1/4=1/10

X

Can extend conditional probabilities to conditional distributions: P(Y|X = G) or
P(X|Y=B)
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Outline

0 Continuous Distributions
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Continuous random variables

©

We’ve only used discrete random variables so far (e.g., dice)

(4]

Random variables can be continuous.

(4]

We need a density p(x), which integrates to one.

J p(x)dx =1

@ Probabilities are integrals over smaller intervals. E.g.,
6.5
P(Xe€(—2.4,6.5)) :f p(x)dx
—24

*]

E.g., if x€R then

Notice when we use P, p, X, and x.
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Continuous random variables

@ We've only used discrete random variables so far (e.g., dice)
@ Random variables can be continuous.

@ We need a density p(x), which integrates to one.

E.g., if x€R then
o0
J p(x)dx =1

—00

@ Probabilities are integrals over smaller intervals. E.g.,

6.5

P(X €(—2.4,6.5)) = f p(x)ax

—24

@ Notice when we use P, p, X, and x.

@ Integrals? | didn’t sign up for this!
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Integrals?

Marmal PDF

a4

a3

a2

Probabllity

el 1.0000

-1 -3 2 -1 a 1 2 k| 4
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Integrals?

Marmal PDF

a4

a3 -
- |
=
B g2
o
o

a1 -

i T
=i -3 2 -1 a 1 2 3 4
b
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Integrals?
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The Gaussian distribution

@ The Gaussian (or Normal) is a continuous distribution.

p(xlu, o) = \/g—m exp{—w}

202

@ The density of a point x is proportional to the negative exponentiated half
distance to u scaled by o2.

@ u is called the mean; o2 is called the variance.
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Gaussian density

N(1.2, 1)

0.3
|

p(x)
0.2

0.1

0.0

@ The mean u controls the location of the bump.
@ The variance o2 controls the spread of the bump.
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Outline

Q Expectation and Entropy
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Expectation
An expectation of a random variable is a weighted average:
o0
E[f(X)] = >_f(x)p(x) (discrete)
x=1

= J f(x) p(x) dx (continuous)

—00

Alternate formulation for positive random variables:

E[X] = i P(X > x) (discrete)
= JOO P(X > x) dx (continuous)
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Expectation

Expectations of constants or known values:
o E[g|=a
o E[y|y=y]=y
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Expectation

Example: Gaussian distribution X ~ N(u, 02)

o0
1 1 2
E[X]:f X e 202 1) gy
e V2mo?
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Expectation

Example: Gaussian distribution X ~ N(u, 02)

o0
1 1 2
E[X]:f X e 202 1) gy
e V2mo?

=u
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Expectation of die / dice

What is the expectation of the roll of die?
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Expectation of die / dice

What is the expectation of the roll of die?

One die
1 1 1 1 1 1 _
1-g+2-5+3-5+4-5+5-5+6-g— J
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Expectation of die / dice

What is the expectation of the roll of die?

One die
1 1 1 1 1 1_
1-g+2'g+3'6+4'g+5'6+6'g—3.5 J
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Expectation of die / dice

What is the expectation of the roll of die?
One die

1 1 1 1 1 1 _
1-g+2-g—|—3'6—|—4'g+5'6+6'g—3.5 J

What is the expectation of the sum of two dice?

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 38/44



Expectation of die / dice

What is the expectation of the roll of die?
One die

1 1 1 1 1 1 _
1.g+2:-g+3-5g+4-5+5-5+6-5=35 J

What is the expectation of the sum of two dice?
Two die

1 2 3 4 5 6 5 4 3 2 1
2ias+3 g+ g +5 55 +6-p +7 55 +8: 5 +9- o +10- 5o +11- - +-12- - = J

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 38/44



Expectation of die / dice

What is the expectation of the roll of die?
One die

1 1 1 1 1 1 _
1.g+2:-g+3-5g+4-5+5-5+6-5=35 J

What is the expectation of the sum of two dice?
Two die

1 2 3 4 5 6 5 4 3 2 1
Loz e e e gs e s e o e e -l e e - e s g T e e T2 2 _7J
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Entropy

@ Measure of disorder in a system S
@ In the real world, entroy in a system tends to
increase
@ Can also be applied to probabilities:
> |Is one (or a few) outcomes certain (low

entropy)
> Are things equiprobable (high entropy)

@ In data science

» We look for features that allow us to
reduce entropy (decision trees)

> All else being equal, we seek models
that have maximum entropy (Occam’s
razor)

DR PHILPA
BOLTZM:
GEB. CHIAI
1891-197
ARTHUF
BOLTZM/
DIPL.ING. Dk PHIL
1881-1951
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Aside: Logarithms

0 lg(x)=be20=x

@ Makes big numbers small

@ Way to think about them: cutting a lg(4)=2
carrot

I9(8)=3
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Aside: Logarithms

9(=0 | |
n
lg(2)=1 | l |
0 lg(x)=be=2b=x
@ Makes big numbers small
@ Way to think about them: cutting a '
carrot lg(4)=2 | : |
=
@ Negative numbers?
98)=3 [ ag
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Aside: Logarithms

0 lg(x)=be20=x

@ Makes big numbers small

@ Way to think about them: cutting a
carrot Ig(4)=2
@ Negative numbers?

@ Non-integers?

{

Ig(8)=3
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Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a
random variable:

H(X) =—E[lg(p(X))]

= _Zp(x) l9(p(x)) (discrete)
= —J p(x) lg(p(x)) dx (continuous)

Does not account for the values of the random variable, only the spread of the
distribution.

@ H(X)>0
@ uniform distribution = highest entropy, point mass = lowest
@ suppose P(X=1)=p, P(X=0)=1—pand
P(Y=100)=p, P(Y=0)=1—p: X and Y have the same entropy
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Entropy of a die / dice

What is the entropy of a roll of a die?
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Entropy of a die / dice

What is the entropy of a roll of a die?

One die

“(0(2)+ () +10() -6 () -1+ o) =2 |
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Entropy of a die / dice

What is the entropy of a roll of a die?

One die

~(519(z) +519(s) +510(5) +510(5) +510(3) + 510 (5)) =258

What is the entropy of the sum of two die? Tricky question: will it be higher or lower
than the first one?
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Entropy of a die / dice

What is the entropy of a roll of a die?
One die
(D) +bo(2) + 0 (8)+ a2+ Ha(t) + e =258 |

What is the entropy of the sum of two die? Tricky question: will it be higher or lower
than the first one?

Two die

3 +4| 4 +5|(5)
36 36g 36 36g 36

2
%
S (8) S (L) (L) 20(2)
36 36 36 36 36 36 36 36
2
%

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 42 /44



Whew!

@ That’s it for now
@ You don’t have to be an expert on this stuff (there are other classes for that)

@ This is to get your feet wet and to know the concepts when you see the math
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First assignment

@ Find some data
@ Find interesting relationships in your data (next week!)

@ Use Rattle to display those relationships (be creative and thorough!)

Digging into Data: Jordan Boyd-Graber (UMD) Probabilities and Data February 4, 2013 44/ 44



	Properties of Probability Distributions
	Working with probability distributions
	Combining Probability Distributions
	More Examples
	Continuous Distributions
	Expectation and Entropy

