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ABSTRACT: In the pursuit of higher-energy-density lithium-ion batteries, one
major challenge is the stability of high-capacity or high-voltage cathodes with
electrolytes. An understanding of how different chemistries interact with high-
energy cathodes is required to enable the rational design of coatings or solid
electrolyte materials that offer long-term stability with the cathode. Here, we
systematically evaluated the thermodynamic stability among a broad range of
solid-state chemistries with common cathodes. Our thermodynamic analyses
confirmed that the strong reactivity of lithiated and delithiated cathodes greatly
limits the possible choice of materials that are stable with the cathode under
voltage cycling. Our computation reaffirmed previously demonstrated coating
and solid electrolyte chemistries and suggested several new stable chemistries. In
particular, the lithium phosphates and lithium ternary fluorides, which have high
oxidation limits, are promising solid-state chemistries stable with high-voltage
cathodes. Our study provides guiding principles for selecting materials with long-
term stability with high-energy cathodes for next-generation lithium-ion batteries.

Strong demand for rechargeable energy storage requires
further increase in the energy density of lithium-ion
batteries. Currently pursued directions to achieve higher

energy density include enabling Li metal anodes and increasing
the capacity and voltage of cathode materials.1,2 Ni-rich layered
oxide materials such as LiNi1−x−y MnxCoyO2 (NMC) and
LiNi1−x−y CoxAlyO2 (NCA) have been widely adopted to
increase cathode capacity and energy density compared to
layered LiCoO2.

2−4 In addition, increasing the operating
voltage of cathode materials, by using high-voltage cathode
materials such as spinel LiNi0.5Mn1.5O4 and olivine LiCoPO4,
is another strategy to increase the energy density of the
lithium-ion battery.5,6 However, the key challenge in employ-
ing these high-energy cathode materials is their poor stability
and strong reactivity with the electrolyte. The high operating
voltages greater than 4.5 V for many cathodes are above the
oxidation limit of the electrolyte, leading to deleterious side
reactions between the cathode and electrolyte.7,8 The
application of coating layers on cathode surfaces blocks direct
contact with the electrolyte and is an effective strategy for
preventing undesirable side reactions with the electrolyte9 or
the dissolution of transition metal10,11 from the cathode into
the liquid electrolyte. Coating layers such as Al2O3,

12,13 TiO2,
10

and SiO2
14,15 on a cathode are demonstrated in improving the

Coulombic efficiency, cyclability, and cycle life of the
battery.9,16 Recently, the use of solid electrolytes in all-solid-
state batteries has also been proposed as a promising route for
high-voltage cathodes and high-energy batteries,17 but side

reactions between the cathode and solid electrolytes were
reported.18−21 In order to achieve long-term stable battery
performance, materials such as coatings or solid electrolytes
that exhibit good electrochemical stability with these high-
energy-density cathodes during electrochemical cycling need to
be developed.
In order to design and predict coating materials, computa-

tional techniques21−23 powered by large materials data-
bases24,25 were proposed to investigate the thermodynamic
stability of electrode and electrolyte materials and the interface
stability between them.26 Such computational studies were
performed to identify novel coating layer materials for
protecting the Li metal anode,27 serving as scavengers for
hydrogen fluoride,28 and improving the compatibility between
sulfide solid electrolytes and oxide cathodes in all-solid-state
batteries.21,29,30 Beyond direct computational screening, the
rational design and prediction of materials that are stable with
high-energy cathodes requires a comprehensive, systematic
understanding of the interaction between different solid-state
chemistries and cathodes.
Our study aims to provide a comprehensive theoretical

understanding about how thermodynamic stability varies
between different solid-state chemistries and cathode materials
under voltage cycling. To assess long-term materials stability,
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our evaluation criterion is the thermodynamic stability of the
materials with the cathodes at charged (delithiated) and
discharged (lithiated) states. When this criterion is not met,
potential side reactions may happen, causing deterioration of
the cathode and decline of the battery performance. In this
study, we aim to answer the following questions: (1) what
factors affect the stability of the materials in contact with the
cathode and (2) what types of materials are stable with given
cathodes under high-voltage cycling. This knowledge of solid-
state chemistry can guide the selection, design, and discovery
of novel coatings or solid electrolyte materials that have long-
term stability with high-energy or high-voltage cathodes.
In this study, using high-throughput analyses of thermody-

namic materials data, we illustrated the reaction and
compatibility of a wide range of solid-state chemistries with
common high-energy cathodes to guide future development of
solid materials stable with cathodes under high-voltage cycling.
We examined the interface stability and potential reactions
between current common cathodes and contacting materials,
such as lithium ternary oxides, binary oxides, lithium polyanion
oxides, and lithium halides. Our calculations focus on the
commercialized cathodes LiCoO2 (LCO), layered LiNiO2
(LNO) as a proxy for Ni-rich layered oxides such as NMC
and NCA, and the high-voltage cathodes spinel LiNi0.5Mn1.5O4
(LMNO) and olivine LiCoPO4 (LCP). Both lithiated and
delithated cathodes were evaluated corresponding to the
discharged and charged states of the battery, respectively
(Figure 1). Using the thermodynamic scheme established in

previous studies, the interface of the contacting material (such
as the coating or solid electrolyte) with the cathode was
considered a pseudobinary mixture of the two materials.21

Under this scheme, the reaction of the cathode and the
contacting material to form the most favorable phase equilibria
was identified (Figure 1b).21,31 The decomposition energy, Ed,
is defined as the minimum of the mutual decomposition energy
between two phases, where the metastability (i.e., energy above

hull) of the reactant phases is excluded from the decom-
position energy, as defined in a previous study,21 and was
evaluated using density functional theory (DFT) energies from
the Materials Project database.24 More details on the
computation methods are provided in the Supporting
Information (SI). This scheme has also been effectively
demonstrated in the prediction of solid-state chemistries that
are stable in highly reducing conditions against Li metal.27

Stability of Cathodes with Lithium Ternary Oxides. We first
examined the lithium ternary oxides, many of which were
demonstrated as coating layers32−35 and investigated as solid
electrolytes,36,37 for their interface stability with cathodes
(Figure 2). Different lithium ternary oxides exhibit different
stabilities with cathodes. For example, Li3PO4 is stable with
both lithiated LCO and delithiated Li0.5CoO2 (L0.5CO), but
LiPO3 exhibits a favorable reaction of −71 meV/atom with
LCO and −19 meV/atom with L0.5CO (Figure 1). In addition,
within the Li−Ta−O materials, LCO is stable (i.e., no possible
low energy reaction) with LiTaO3, Li3TaO4, or Li5TaO5 but
exhibits a low-energy phase equilibrium with LiTa3O8

+ → + +

= −E

LiCoO LiTa O Co O Li CoO LiTaO

( 19 meV/atom)
2 3 8 3 4 0.5 2 3

d (1)

forming the delithiated phases L0.5CO and spinel Co3O4 due to
the loss of Li from the cathode. In experiments, LCO particles
were observed to form Co3O4 at the surface after cycling

38 or
at high voltages,39 an environment that corresponds to low Li
chemical potential. Thus, a coating material that may
potentially degrade the cathode should be avoided.
By contrast, the delithiated cathode L0.5CO has a tendency

to react with the compounds with higher Li content, drawing
Li out from the contacting material into the delithiated
cathode. For example, Li5TaO5, which is stable with LCO, has
a low-energy phase equilibrium with L0.5CO

+ → +

+ = −E

Li CoO Li TaO Li TaO Li Co O

Li Co O ( 33 meV/atom)
0.5 2 5 5 3 4 5 3 8

7 5 12 d (2)

forming Li-rich lithium cobalt oxide phases and a lithium
tantalum oxide with lower lithium content. In general, among
all lithium ternary oxides, delithiated cathode L0.5CO is stable
with fewer compounds and reacts with a greater magnitude of
Ed than LCO (Figure S1), suggesting that the delithiated
cathode or the charged state of the battery imposes greater
stability problems on the cathode side. This stability trend is in
agreement with theoretical calculations40 and experimental
thermal stability analysis.41 In general, for ternary oxides,
delithiated L0.5CO tends to react with materials with high Li
content (Figure 2), and lithiated LCO tends to react with
materials with low Li content, causing the loss of Li from the
cathode. These opposite stability trends in the reactions of
LCO and L0.5CO indicate the importance of finding a suitable
material that is stable with both lithiated and delithiated states
of the cathode in order to achieve long-term stability of the
cathode with repeated cycling.
Ni-Rich Layered Oxide Cathodes. We studied Ni-based

layered oxide cathodes using layered LNO as a proxy for
commercial Ni-rich layered materials such as NMC and NCA.
We found that LNO exhibits poorer stability with lithium
ternary oxides compared to LCO, as shown by more favorable
reaction energies Ed (Figure 2 and Table S1). For example,
LNO mixed with LiTa3O8 shows a low-energy phase

Figure 1. Thermodynamic analysis of the stability between cathode
and contacting materials. (a) Illustration of cathode particles
coated with Li3PO4 at lithiated and delithiated states. (b) Mutual
reaction energy of LiPO3−LiCoO2 (red), LiPO3−Li0.5CoO2
(orange), Li3PO4−LiCoO2 (green), and Li3PO4−Li0.5CoO2
(green) as a function of the mixing fraction in the pseudobinary.
The minimum mutual reaction energy (star) corresponds to the
possible reaction with lowest energy. (c) Heatmap of the minimum
mutual reaction energies of different compositions of lithium
phosphates with lithiated and delithiated LCO.
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equilibrium with a lower decomposition energy Ed of −39
meV/atom

+ → + +

= −E

LiNiO LiTa O LiTaO Li NiO Ni O

( 39 meV/atom)
2 3 8 3 0.5 2 3 4

d (3)

Similar to delithiated L0.5CO (eq 2), delithiated Li0.5NiO2
(L0.5NO) tends to react with the oxides with higher Li content
to form Li-rich nickel oxide phases such as Li2NiO3

42 and the
rock salt phase NiO (Figure S2). For example, the low-energy
phase equilibrium of L0.5NO with Li5TaO5 is

+ → + +

= −E

Li NiO Li TaO Li NiO Li TaO NiO

( 32 meV/atom)
0.5 2 5 5 2 3 3 4

d (4)

The formation of the rock salt NiO phase in delithiated Ni-rich
cathodes is in agreement with experimental findings.42−44 The
greater reactivity of LNO than LCO may be attributed to the
poorer stability of LNO than LCO in the layered structure and
the stronger preference of LNO to form rock salt NiO
compared to the preference of LCO to form cobalt oxides such
as Co3O4. Ni-rich layered oxides, such as NCA and NMC, are
expected to have the same behavior as LNO (Figure S3). The
instability of the LNO and Ni-rich layered oxide cathodes
compared to LCO is consistent with experimental reports41

and indicates the challenge of finding suitable coating layers
stable with Ni-rich cathode materials.

High-Voltage Cathodes. High-voltage cathodes such as
LMNO and LCP were found to be even more unstable with
the lithium ternary oxides compared to layered cathodes LCO
and LNO, as shown by a greater magnitude of Ed with a greater
number of materials. Similar to the delithiated layered
cathodes, the delithiated high-voltage cathodes CoPO4 (CP)
and Ni0.5Mn1.5O4 (MNO) are also less stable with lithium
ternary oxides as the Li content of the oxide increases. The
poor stability of the high-voltage cathodes is due to their
stronger reactivity and tendency to attract Li at delithiated
states. In the chemical space of lithium ternary oxides, few
materials are stable with high-voltage cathodes.
General Trends among Cathodes. Among these lithium

ternary oxides, we found that the lithium content of the
material affects its stability with the cathode. In general,
delithiated cathodes have the poorest stability with materials
with high Li content because the oxidizing, Li-poor delithiated
cathode has a tendency to extract Li from the contacting
material. In contrast, lithiated cathodes, although generally
more stable with lithium ternary oxides than delithiated
cathodes, tend to be more stable with materials with higher Li
content. These conflicting requirements illustrate the challenge
of finding a single material that is stable with the cathode in
both lithiated and delithiated states. Because delithiated
cathodes are more reactive with a stronger driving force,
protecting the delithiated cathode should be considered a
priority.

Figure 2. Decomposition energies of lithium ternary oxides with cathodes at lithiated and delithiated states. The color of each square in the
heatmap corresponds to the minimum decomposition energy (Ed) of the cathode and contacting material. Groups of materials with the same
elemental composition are ordered by increasing lithium content down the column. Only compositions where M is at its highest common
oxidation state are considered.
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Binary Oxides. To explore materials with better stability with
delithiated cathodes, we next analyzed binary oxides, which do
not contain Li (Figure 3). In agreement with the trend above
about Li content, binary oxides in general are more stable with
the delithiated layered cathodes (L0.5CO and L0.5NO) and the
high-voltage cathodes (LMNO/MNO and LCP/CP) because
they do not contain Li to be extracted. For example, some
common oxide coatings, such as Al2O3, SiO2, ZrO2, MgO, and
ZnO,16 are observed to be stable with L0.5CO. In addition, the
stabilities of materials classes of the binary oxides were found
to exhibit major differences (Figures S4 and S5). The binary
oxides that contain alkali metals, alkaline earth metals, and
nonmetals (except BeO, MgO, and SiO2) are largely unstable
with the cathodes (Figure S6). In contrast, many transition
metal oxides and p-block binary oxides showed good stability
with LMNO and LCP. Consistent with this computational
result, many of these materials, such as Al2O3, SiO2, and
Ta2O5, were experimentally implemented as coating layers for
LMNO10,45−47 and LCP.48 Although the binary oxides exhibit
good stability, their lack of Li may cause them to have limited
Li-ion conductivity. The conduction mechanism in these

materials may be mediated by Li+ interstitials, which may have
a high formation energy at high voltage.49−52 As suggested by
our thermodynamic computation, minor reactions may be
favorable between some binary oxides (such as SiO2 and
Al2O3) and the cathode, which may beneficially introduce
some Li into the material to improve Li-ion transport53 and
form strong chemical bonding between the coating and
cathode. In experiments, an Al2O3 coating on LCO was
found to form LiAlO2 on LCO particle surfaces, consistent
with our calculation.54

Polyanion Oxides. Polyanion chemistries, such as lithium
borates, silicates, and phosphates, have been explored as
promising materials classes for coatings and as solid electro-
lytes. We found that all of the polyanion chemistries exhibit
better cathode stability with delithiated L0.5CO and L0.5NO
cathodes (Figure S5) compared to the lithium ternary oxides.
In particular, among all materials considered, the lithium
phosphates exhibit the best stability with lithiated and
delithiated high-voltage cathodes LMNO and LCP (Figures
4 and 5b). Consistent with our computation, lithium
phosphate coatings have been reported to improve the cycle

Figure 3. Heatmap of decomposition energies Ed of binary oxides with cathodes, similar to Figure 2.

Figure 4. Heatmap of decomposition energies Ed of selected lithium polyanion compounds (composition Li−M−X−O, where X = B, Si, or
P) with cathodes, similar to Figure 2.
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life and capacity retention of both LNMO55 and LCP56,57

cathodes. In addition, some lithium phosphates such as
NASICON are solid electrolyte materials58,59 and are reported
to exhibit excellent oxidation stability31 and good cycling
stability with oxide cathodes.60−62 The stability of the
phosphates may be attributed to their high oxidation limits
matching those of delithiated high-voltage cathodes (Figure
S7). Therefore, we find that lithium borates and silicates
provide a large number of compounds stable with layered
oxide cathodes, and lithium phosphates are promising coating
or solid electrolyte chemistries for good stability with high-
voltage cathodes.
Lithium Ternary Fluorides. Because materials with high

oxidation limits tend to exhibit better cathode stability, we
further explored and examined the stability of lithium fluoride
compounds, which are known to have high oxidation
limits.23,63 We found reversed trends from those seen in the
lithium ternary oxides (Figure 5a). A majority of lithium
ternary fluorides exhibit better stability with high-voltage
cathodes LMNO/MNO and LCP/CP than those with layered
LNO and LCO. While many oxides have stability problems
with delithated L0.5CO, fluorides generally exhibit better
stability with delithiated L0.5CO but exhibit poorer stability
with lithiated LCO. In addition, fluorides with high Li content
still exhibit good stability with delithiated cathodes, in contrast
to the tendency of delithiated cathodes and lithium ternary
oxides to react as the Li content of the oxide increases.
Therefore, lithium ternary fluorides are promising chemistries
because they are stable with high-voltage cathodes while also
containing sufficient Li carriers for transport at high voltages.
In experiments, a number of fluorides such as CeF3 and AlF3
have been reported as cathode coating layers.64,65 In addition,
lithium chlorides such as Li3YCl6 were recently reported as

solid electrolytes with high Li+ conductivity and good stability
with LCO cathodes.63,66

In this computational study, we investigated the thermody-
namic stability between a broad range of solid-state chemistries
and current cathode materials in Li-ion batteries. The
thermodynamic analyses of high-energy and high-voltage
cathodes quantified and emphasized their strong reactivity, in
particular, at delithiated or charged states, which causes
undesirable side reactions and deterioration in battery
performance. Our results suggest that the thermodynamic
stabilities of the lithiated and delithiated cathode with the
contacting material are effective criteria for identifying
promising coatings or solid electrolytes that can exhibit long-
term stability with the cathode. Indeed, many experimentally
demonstrated coating materials for oxide cathodes16 such as
ZrO2,

39,67 Al2O3,
12 and SiO2

15 on layered cathodes and
Li3PO4, LiNbO3, and LiTaO3 in all-solid-state batteries68

were confirmed by our thermodynamic criteria for their good
stability with the cathode at all states of charge. For the binary
oxides, minor reactions, for example, between Al2O3 and
lithiated LCO, may provide enhanced interfacial binding
between the coating and LCO and introduce lithium into the
coating to provide Li+ transport.53 The good agreement
between experimental work and computation results suggests
that the new chemistries identified in this study can guide
future development of coatings or solid electrolytes stable with
high-voltage cathodes.
Our thermodynamic analyses illustrated that the stability of

the cathode and a given material varies with the Li content,
cation, and anion chemistries of both the cathode and the
contacting materials. Thus, the interface stability or compati-
bilities should be individually evaluated for each distinct pair of
cathode and coating/solid electrolyte compositions. For

Figure 5. (a) Heatmap of decomposition energies Ed of lithium ternary fluorides with cathodes, similar to Figure 2. (b) Grouped boxplot of
decomposition energies of all cathodes with lithium ternary oxides, binary oxides, lithium polyanion phosphates, and lithium ternary
fluorides. The center line of each box indicates the median of the data set, the outer edges represent the first and third quartiles, and the end
points are marked by either the most extreme value on either end or 1.5 times the interquartile range, whichever is smaller. Data outside of
the end points are marked individually as gray circles.
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example, lithium phosphates are more stable with high voltage
cathodes (LMNO and LCP) and less stable with layered oxide
cathodes (LCO and LNO), and lithium borates and silicates
by contrast are more stable with the layered oxide cathodes.
While the type of metal cation in the cathodes and coatings
greatly affects their stability, the poor stability between the
coating layer and cathode can in general be attributed to the
high oxidation potential of delithiated cathodes (4.5 V or
greater), often beyond the oxidation limit (3.5−4 V) of most
oxides (Figures S9 and S10). Therefore, many reported oxide
coatings have low or no Li content and correspondingly high
oxidation limits. Because Li content is desired for Li-ion
transport, in order to simultaneously achieve good ionic
conductivity and high-voltage stability, lithium polyanion
phosphates, which have naturally high oxidation limits, are a
promising chemistry for coatings or solid electrolytes. Recently,
a NMC cathode coated with Li1.4Al0.4Ti1.6(PO4)3 phosphate, a
well-known solid electrolyte, was demonstrated with improved
rate capability and cycling stability.62 In addition, lithium
fluorides have high oxidation limits and can serve as a
promising chemistry beyond oxides for stability with cathodes
at high voltage.
Ion transport across the interface or interphase layer is

known to be crucially important for battery performance. Poor
chemical stability at the interface is indicative of the potential
exchange of ions between the two materials and the formation
of interphase layers, leading to higher interfacial resistance.
While direct atomistic modeling of the ion transport at
interfaces is challenging, Li-ion migration in the coating layer
or solid electrolyte can be evaluated using the nudged-elastic-
band method and molecular dynamics simulations.23 In
addition, the formation of Li-ion vacancies or interstitials
within the materials is important for high ionic conductivity
and can be evaluated by first-principles calculations for defect
formation energies.51,69 The effects of dopants and defects can
be computationally assessed and leveraged to enhance the
conductivity in materials.70,71 Given the importance of Li-ion
transport for battery performance, detailed computation may
be performed to further evaluate Li-ion conduction in
promising chemistries.
In summary, our study provides a thermodynamic scheme

and guiding principles for selecting solid-state chemistries that
are stable with highly reactive cathodes for Li-ion batteries.
Our results provide guidance for the future selection of solid-
state chemistries for cathode coatings or solid electrolyte
materials that have good cathode stability over the cycling
voltage range, states of charge, and operating lifetime. This
thermodynamic scheme can be extended to investigating other
solid-state devices, such as dielectric gates72 or neuromorphic
devices, where the interface stability and compatibility under
applied voltage are relevant.
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