

Nanoscale Stabilization of Sodium Oxides: Implications for Na-O₂ Batteries

ShinYoung Kang, Yifei Mo, Shyue Ping Ong, and Gerbrand Ceder*

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Supporting Information

ABSTRACT: The thermodynamic stability of materials can depend on particle size due to the competition between surface and bulk energy. In this Letter, we show that, while sodium peroxide (Na_2O_2) is the stable bulk phase of Na in an oxygen environment at standard conditions, sodium superoxide (NaO_2) is considerably more stable at the nanoscale. As a consequence, the superoxide requires a much lower nucleation energy than the peroxide, explaining why it can be observed as the discharge product in some Na–O₂ batteries. As the superoxide can be recharged (decomposed) at much lower overpotentials than the peroxide, these findings are important to create highly reversible Na–O₂ batteries. We derive the specific

electrochemical conditions to nucleate and retain Na-superoxides and comment on the importance of considering the nanophase thermodynamics when optimizing an electrochemical system.

KEYWORDS: Size-dependent stability, Na-air batteries, NaO₂, Na₂O₂, sodium superoxide, sodium peroxide

It is known that the particle size dependent stability of polymorphs can influence their nucleation, growth, and phase transformation.^{1–5} In this paper we investigate the size, temperature, and P_{O_2} dependence of the phase stability of sodium oxides and the role that this phase selection at the nanoscale plays in the operation of Na–O₂ batteries. Besides the recent interest in sodium oxides for batteries with high specific energy, these oxides are important as they have broad applications in glasses (Na₂O) and as oxidizing agents (Na₂O₂). Recently, the relative stability of Na–O compounds has drawn attention in the battery community as the performance of Na–O₂ batteries depends strongly on which particular oxide is formed as the discharge product.^{6–14}

Although the discharge products of Na-O₂ batteries have a somewhat lower theoretical specific energy (1.6 kWh/kg when Na₂O₂ is formed, and 1.1 kWh/kg when NaO₂ is formed) than that in $Li-O_2$ batteries (3.5 kWh/kg when Li_2O_2 is formed), the chemical difference between the two alkali metals differentiates the properties of Na-O2 and Li-O2 electrochemistry in a substantial way. In the Na-O system, NaO₂ as well as Na₂O₂ are stable compounds, while in the Li–O system LiO_2 is not a stable compound at standard state conditions (300 K and 1 atm).^{15,16} The phase stability of the metal superoxide is significant, because when the superoxide ion goes in solution, it is very reactive against solvent molecules and carbon support.^{17–19} Preventing the electrolyte reactivity with the superoxide ions is one of the hardest challenges in $Li-O_2$ batteries. On the other hand, because a stable state of NaO₂ is accessible, the superoxide ions can react with Na ions to form solid NaO₂ in a Na-O₂ battery, as was observed by Hartmann et al.13,14

However, there are remaining questions in $Na-O_2$ electrochemistry—some studies^{13,14} reported NaO_2 as the main discharge product, while others⁶⁻¹² reported Na₂O₂. When Na₂O₂ is formed as a discharge product the cells show poor reversibility (<10 cycles) and high overpotentials (from 0.3 V to higher than 1.0 V),⁶⁻¹¹ similar to the problems when recharging Li–O₂ cells. On the other hand, the charge and discharge overpotentials are reduced to less than 200 mV when NaO₂ forms,^{13,14} offering prospects for highly reversible Na–O₂ batteries. Currently, there is no understanding of how reaction conditions control the formation of either peroxide or superoxide.

In this work, we investigate the thermodynamic stability of Na–O compounds as a function of temperature, O₂ partial pressure, and particle size using first-principles calculations. We calculate the energy of bulk Na–O compounds, and combine them with environmentally equilibrated surface energies, to construct phase diagrams as function of particle size and O₂ partial pressure. Using this thermodynamic information in a nucleation model, we find that the superoxide NaO₂ is the preferred nanoparticle product at large P_{O_2} or at small discharge overpotential, indicating that it is the most likely phase to nucleate first, even when Na₂O₂ is the thermodynamically preferred bulk state. Hence, our results show that understanding the particle-size dependence of phase stability is crucial for understanding nucleation.

We considered all Na–O compounds and polymorphs reported by Wriedt:¹⁵ Na₂O, Na₂O₂, NaO₂, and NaO₃.^{20,21} The structures of these compounds are displayed in Figure 1. The stable structure of NaO₂ below 196 K has the *Pnnm* space group, which is shown in Figure 1d. Between 196 and 223 K,

```
Received:December 9, 2013Revised:January 9, 2014Published:January 13, 2014
```

Nano Letters

Figure 1. Structures of (a) $Im\overline{3}m$ Na metal, (b) $Fm\overline{3}m$ Na₂O, (c) $P\overline{6}2m$ Na₂O₂, NaO₂ polymorphs; (d) *Pnnm*, (e) $Pa\overline{3}$ (ordered form of $Fm\overline{3}m$), and (f) $R\overline{3}m$, and (g) Imm2 NaO₃. Yellow spheres are Na ions, and red spheres are O ions with their bonds marked as red bars.

the $Pa\overline{3}$ structure is the stable form of NaO₂. This structure is derived from the NaCl rocksalt structure with O₂ dimers centered on the "Cl" lattice positions and aligned along the $\langle 111 \rangle$ directions as shown in Figure 1e. Above 223 K, O₂ bonds freely rotate, leading to the $Fm\overline{3}m$ space group.^{20,21} More information on these compounds can be found in the Supporting Information (SI).

We performed total energy calculations using the Vienna ab initio simulation package $(VASP)^{22}$ and the projector augmented-wave (PAW) approach²³ within the generalized gradient approximation (GGA) to density functional theory (DFT). We calculated the ground state energies of O_2 gas and the Na-O compounds in Figure 1. For Na, the 2p and 3s states were treated as valence states using an Na pv $(2p^6 3s^1)$ pseudopotential. The O $(2s^2 2p^4)$ pseudopotential was used for oxygen. The energy cutoff for plane-waves was set to 520 eV, and the energies and forces were converged within 10^{-6} eV and 10^{-3} eV/Å per formula unit, respectively. The spacing of the Γ centered k-point meshes was set to less than 0.05 Å⁻¹. It is known that standard semilocal DFT significantly overbinds the O2 molecule, which in turn leads to large errors in the calculated formation energies of oxides (O^{2-}) , peroxides (O_2^{2-}) and superoxides (O_2^{-}) , due to the different degrees in which the O=O double bond is broken in these systems and the different number of electrons transferred.²⁴⁻²⁶ To make the comparison of the relative stability of Na-O compounds more accurate, we calculated and applied an oxidation energy correction E_{oxd} in the spirit of Wang et al.²⁷ The correction is different for oxides, peroxides, and superoxides; we believe this is a more accurate reflection of the underlying physical limitations of DFT, as compared to having a single correction for all oxygen compounds.²⁸ These corrections are obtained by calculating the formation energy of various nontransition metal oxides as

$$\Delta E_{\text{form}} = E_{M_x O_y} - x E_M - \frac{y}{2} E_{O_2} \tag{1}$$

where E_i is the total energy calculated in DFT for compound *i*. These calculated formation energies are plotted versus the experimental formation enthalpies at 300 K and 1 atm²⁹ in Figure 2. We used Li₂O, Na₂O, MgO, CaO, Al₂O₃, K₂O for

Figure 2. Formation energy (in eV/O_2) calculated in GGA at 0 K versus the formation enthalpy measured at 300 K and 1 atm for oxides (blue triangles), peroxides (red squares), and superoxides (green circles).²⁹ The data points corresponding to Li₂O₂ and SrO₂ overlap on this scale. The inset shows zoomed-in formation energies for superoxides. The oxidation energy correction is the *y*-intercept of each line.

oxides, Li₂O₂, Na₂O₂, K₂O₂, SrO₂ for peroxides, and NaO₂, KO₂, RbO₂ for superoxides. From this plot, the corrections, $E_{oxd\nu}$ for the calculated oxidation energy are obtained as 1.33, 0.85, and 0.23 eV/O₂ for oxides, peroxides, and superoxides, respectively. As no experimental formation enthalpies are known for solid ozonides, no correction energy for O₃⁻ containing solids was obtained. These "corrections", $E_{oxd\nu}$ correct for the error of standard DFT, as well as for the difference in energy between 0 and 300 K.

While it would have been possible to simply shift the calculated formation energy of Na–O compounds to their experimental values, as the formation enthalpies of Na₂O, Na₂O₂, and NaO₂ are known, our approach achieves a correction energy that is applicable to a broader range of oxides, as well as to nonbulk states.

To assess the vibrational entropy in the solid states, we performed phonon calculations using the small displacement method within the harmonic approximation. The force constant matrix was constructed using the PHON software³ based on the Hellman-Feynman forces calculated in GGA when symmetrically distinct atomic displacements were imposed in the structures. The Gibbs free energy is approximated by the Helmholtz free energy as pressure effects on solids can be neglected. The calculated phonon spectrum of $Pa\overline{3}$ NaO₂ exhibited imaginary phonon frequencies, indicating that the structure is dynamically unstable (Figure S5 in the SI). Instead we calculated the phonons for the $R\overline{3}m$ NaO₂ structure, where all O₂ bonds are aligned in one [111] direction (Figure 1f). To represent the rotation of O_2 molecules in $Fm\overline{3}m$ NaO₂ (disordered form of the $Pa\overline{3}$ structure), we started from the phonon energy and entropy of $R\overline{3}m$ NaO₂ and added a fraction of the energy and entropy contributions of a rigid rotor.³¹ The fraction was determined so as to reproduce the phase transition temperature between the NaO2 polymorphs, and the equilibrium temperature between Na_2O_2 and NaO_2 at P_{O_2} = 1 atm (see the SI). We also found imaginary frequencies in the phonon spectrum of NaO_3 and will not consider this phase further in this paper. Computational details and results of the phonon computations and approximations can be found in the SI.

The chemical potential of O_2 gas as a function of O_2 partial pressure and temperature is obtained as follows:

$$\mu_{O_2}(T, P_{O_2}) = E_{O_2}^{\text{total}} + \Delta H_{O_2}(T) - TS_{O_2}^{\text{expt}}(T) + k_B T(P_{O_2}/P_{O_2}^{\circ})$$
(2)

where $E_{O_2}^{\text{total}}$ is the total energy of O_2 gas calculated in DFT, ΔH_{O_2} is the enthalpy difference of O_2 gas between 0 K and a given temperature *T*, for which we used the diatomic ideal gas approximation $7/2k_BT$, and $S_{O_2}^{\text{expt}}$ is the temperature-dependent entropy of O_2 gas at 1 atm as obtained from experiments.²⁹ The last term is the partial pressure dependence of the entropy of the ideal gas, where $P_{O_2}^o$ is set to 1 atm. We calculate the formation free energies ΔG_{form} of sodium oxides as a function of *T* and P_{O_2} by combining the phonon energy of solids, the (*T*, P_{O_2})-dependent chemical potential of oxygen (eq 2), and the oxidation energy correction as in eq S7. The calculated free energies agree well with experimental values (Table 1). Furthermore, our computational results successfully predict the trends in ΔG_{form} with respect to temperature and the relative stability of Na–O compounds (Figure S8 in the SI).

Table 1. Calculated Formation Free Energies of Na–O Compounds (Experimental Values²⁹ in Parentheses) at 0 and 300 K at 1 atm^a

	$\Delta G_{\rm form}~({\rm eV/Na})$	
compound	0 K	300 K
Na ₂ O	-2.17(-2.14)	-2.00 (-1.96)
Na ₂ O ₂	-2.60(-2.63)	-2.31 (-2.33)
Pnnm NaO ₂	-2.75(-2.74)	-2.26 (-)
$Fm\overline{3}m$ NaO ₂	-2.69 (-)	-2.28(-2.26)
^{<i>a</i>} Stable phases at each temperature are marked in bold.		

Using these free energies, and their P_{O_2} and temperature dependence, we can now calculate the equilibrium $T-P_{O_2}$ phase diagram of Na–O compounds (Figure 3). The phase diagram

Figure 3. Phase diagram of Na–O as function of temperature and O₂ partial pressure. Red domain indicates the region where Na₂O₂ is stable, yellow domain for *Pnnm* NaO₂, and green domain for *Fm*3*m* NaO₂. The *Pnnm* NaO₂ structure transforms to the *Fm*3*m* NaO₂ at 230–240 K when $P_{O_2} = 1$ atm, and Na₂O₂ is in equilibrium with *Fm*3*m* NaO₂ at 8.5 atm when T = 300 K. The horizontal dashed line denotes $P_{O_2} = 1$ atm, and the vertical dashed line denotes T = 300 K.

shows that Na₂O₂ is the thermodynamically favored phase under standard conditions ($P_{O_2} = 1$ atm and T = 300 K) and under high temperature or low oxygen pressure. At 300 K, the superoxide NaO₂ in the *Fm* $\overline{3}m$ structure becomes stabilized at a P_{O_2} higher than 8.5 atm, which is much higher than the typical operating conditions of Na–O₂ batteries. Therefore, Na₂O₂ has been observed as the dominant discharge product in most experiments.^{6–9,11} Note that Na₂O is not stable in the *T* and P_{O_2} range considered, which is consistent with its high experimentally measured formation energy when expressed per Na atom (representing "open O₂" conditions (Figure S8 in the SI)).

To understand the relative stability at the nanoscale, where these oxides nucleate, we expand our study to include the surface energies of the relevant polymorphs. We consider the low-index surfaces of Na₂O₂ and $Fm\overline{3}m$ NaO₂ as they are the competing compounds near room temperature. As $Fm\overline{3}m$ NaO₂ has the O₂ dimer orientations disordered, we approximate its surface energies by those of ordered $Pa\overline{3}$ NaO2. The surface slab method was used to calculate the surface energies.^{4,32} All possible terminations in three low-index surface orientations, $\{0001\}$, $\{1\overline{1}00\}$, and $\{11\overline{2}0\}$ for Na₂O₂, and four orientations, $\{100\}$, $\{110\}$, $\{111\}$, and $\{211\}$ for $Pa\overline{3}$ NaO₂ were calculated. The lattice parameters of the surfaces slabs were fixed to the bulk values, while all of the internal parameters were fully relaxed. At the most oxidizing $(O_2 \text{ gas})$ limit) and reducing (Na₂O limit) conditions for Na₂O₂, the lowest energy surfaces are either oxygen-rich or stoichiometric, showing shortened surface O₂ bonds (1.36–1.51 Å for oxygenrich terminations and 1.52-1.54 Å for stoichiometric terminations) compared to the O2 bonds lengths in bulk (1.54-1.55 Å). For the surfaces of NaO₂, the {100} stoichiometric surface has the lowest energy at both the most oxidizing (O₂ gas limit) and reducing (Na₂O₂ limit) conditions, and the surface O_2 bonds are very slightly extended (1.36 Å) compared to the bulk O₂ bonds (1.35 Å). Detailed results of the surface energies and the phase boundary of Na-O compounds can be found in the SI.

From the surface energies, the Wulff shapes and normalized total surface energies per unit volume of particle, $\overline{\gamma}$, can be obtained. The lowest surface energies of Na_2O_2 are in the range of 30–45 meV/Å², and the normalized total surface energies $\overline{\gamma}$ are 0.178 and 0.196 $eV/Å^3$ at the most oxidizing amd reducing conditions for Na_2O_2 , respectively (see the SI for the details on the calculation of $\overline{\gamma}$). The Wulff shape of $Pa\overline{3}$ NaO₂ is cubic at both the most oxidizing and reducing conditions. The NaO₂ cube is comprised of stoichiometric {100} facets with surface energy of 12 meV/Å², in good agreement with the shape of NaO2 particles seen in SEM pictures by Hartmann et al.^{13,14} The normalized total surface energy $\overline{\gamma}$ of NaO₂ is 0.070 eV/Å³, much lower than the Na2O2 surface energies. This lower surface energy is expected to stabilize NaO2 over Na2O2 at small particle sizes. Although we did not consider possible surface reconstruction in this study, we note that the computed Wulff shape of NaO₂ is in good agreement with experimental observations, which indicates that relative surface energies are correct. We therefore do not expect reconstructions to change the fundamental result that the NaO₂ surfaces are much lower in energy than the Na₂O₂ surfaces.

Figure 4 shows the calculated phase diagram as a function of particle size and oxygen partial pressure. The phase diagram is calculated at the O_2 gas limit, but the phase diagrams under

Figure 4. Phase diagram of Na₂O₂ (red) and NaO₂ (green) at 300 K as a function of particle size and P_{O_2} at the O₂ gas limit. The particle size is defined as $(V^0)^{1/3}$, where V^0 is the total volume of the particle.

other conditions share the same features. Like the bulk phases, Na₂O₂ is stable at lower P_{O_2} , while NaO₂ becomes stabilized at higher P_{O_2} . When the particle size decreases, the formation of NaO₂ is preferred due to the lower surface energies of NaO₂. The particle size at which Na₂O₂ becomes more stable than NaO₂ at $P_{O_2} = 1$ atm is ~6 nm at the O₂ gas limit. In addition, higher P_{O_2} promotes the stability of bigger NaO₂ particles. For example, at $P_{O_2} = 4$ atm the size of stable NaO₂ particle is more than 20 nm.

To further evaluate the initial stage of nucleation during discharge of a Na–O₂ battery, we calculated the critical nucleus size d^* and the critical nucleation energy barrier ΔG^* of NaO₂ and Na₂O₂ particles (see the SI for details). The critical nucleus size, $(d^*)^3$, represents the particle volume beyond which the particle growth is energetically favorable; ΔG^* is the free energy required to form this critical nucleus size. We calculated d^* and ΔG^* as a function of P_{O_2} when the applied potential is 2.1 V versus Na/Na⁺ corresponding to 0.21 and 0.18 V below the calculated equilibrium potentials for the formation of both Na₂O₂ and NaO₂, respectively (Table 1). Under this condition, the critical nucleus size for NaO₂ is smaller than that for Na₂O₂ at P_{O_2} higher than ~0.005 atm (Figure 5a). In addition, the nucleation energy barrier for Na₂O₂ is consistently much higher

Figure 5. (a, c) The critical nucleus size and (b, d) critical nucleation energy barrier of Na₂O₂ and NaO₂ particles as a function of P_{O_2} at $\phi =$ 2.1 V vs Na/Na⁺ (a and b) and as a function of voltage at $P_{O_2} =$ 1 atm (c and d). The applied potential 2.1 V for a and b is 0.21 and 0.18 V lower than the calculated equilibrium potentials of Na₂O₂ and NaO₂, respectively. These equilibrium potentials of Na₂O₂ and NaO₂ are marked by vertical lines in c and d.

than that of NaO₂ (Figure Sb). Therefore, NaO₂ particles are more likely to nucleate because of their smaller critical nucleus size and lower nucleation energy barrier than Na₂O₂. The fact that NaO₂ nucleates with much lower energy barrier and smaller critical nucleus size than Na₂O₂ holds for all discharge potentials, as shown in Figure 5c and d. Furthermore, higher P_{O_2} significantly reduces the critical nucleus size and critical energy barrier for NaO₂ particles; the critical nucleus size is less than 1 nm at $P_{O_2} = 1$ atm (Figure 5a).

We are now in a position to shed light on what controls the formation of either NaO₂ or Na₂O₂ during discharge of Na-O₂ batteries. Considering the formation energy of bulk phases, one can expect that Na₂O₂ will be the dominant product at the standard condition (300 K and 1 atm), and NaO₂ will form only at extremely high P_{O_2} (>8.5 atm) (Figure 3). However, when the effect of surface energy is taken into account, our computational results reveal that the lower surface energy of NaO₂ stabilizes small NaO₂ particles over Na₂O₂ particles, resulting in the preferred nucleation of NaO2 nanoparticles at any given temperature, O2 pressure, and chemical potential (Figure 4). Given the distinct structure of NaO_2 and Na_2O_2 , and the fact that the energy difference between NaO₂ and Na_2O_2 is small (20 meV/Na at d = 20 nm, and 30 meV/Na in bulk), these particles may never transform to Na₂O₂, remaining metastable. We believe that this may explain the observation of micrometer-sized NaO₂ particles by Hartmann et al.^{13,14} The formation of Na₂O₂ may be favored by poor oxygen transport in electrode caused by, for example, pore clogging. Pore clogging interrupts the O₂ supply to nucleation sites and lowers the formation free energy of bulk Na2O2. For example, when the local P_{O_2} decreases to 10^{-3} atm, Na₂O₂ particles bigger than 1.5 nm become energetically stable (Figure 4), and when they reach their critical nucleus size, 2.1 nm, there is no obstacle in nucleation of Na₂O₂. Thus, to promote NaO₂ formation, it is critical to ensure O₂ supply by deploying cathode microstructures with high pore-density and/or suitable electrolytes rendering appropriate O₂ solubility and diffusion.³³⁻³⁵

The thermodynamic stability and formation of the superoxide are significant in controlling the performance of different metal-O₂ battery systems. In Li-O₂ batteries, the dominant discharge product is Li₂O₂, which is difficult to recharge. The overpotential needed to decompose this phase is as high as 1 V, which causes electrolyte decomposition and the formation of byproducts.^{36,37} In addition, it is possible that unstable LiO_2 is an intermediate state,²⁶ which creates free superoxide species that attack the electrolyte and carbon support. NaO₂ and KO₂ are significantly more stable as superoxides. NaO₂ formed in a $Na-O_2$ battery can be recharged with small overpotentials (less than 200 mV).^{13,14} On the other hand, when Na_2O_2 is formed as the discharge product, the discharge and charge overpotentials are high, just as in the $\text{Li}-\text{O}_2$ system.^{6–9} In the K– O_2 system, KO_2 is even more stable relative to K_2O_2 and K_2O_3 and the overpotentials needed to charge it are correspondingly lower at 50 mV.³⁸ The fact that the formation of the superoxide is a one-electron reduction/oxidation process, as opposed to the two-electron process associated with peroxide, may lead to more facile kinetics, less susceptible to side reactions, and may account for the better kinetics of superoxide charging. These observations indicate that the stability of the superoxide is possibly a key parameter to design viable metal $-O_2$ batteries. Hence, our finding that the formation of superoxide is controlled by its substantially lower nucleation energy at the nanoscale over peroxide may be particularly important for designing reversible Na-air systems as well as other air batteries.

In summary, we investigated the relative phase stability of Na_2O_2 and NaO_2 as a function of temperature, O_2 partial pressure, and particle size. Our results confirm that in bulk Na_2O_2 is stable and NaO_2 is metastable at standard conditions. As the superoxide NaO_2 has much lower surface energy than the peroxide, it is stabilized when particle size is in the nanometer regime where nucleation takes place. Our results furthermore reveal that the O_2 partial pressure is a significant parameter to determine the formation and growth of a particular sodium oxide phase: For higher O_2 pressure, the energy barrier to nucleate NaO_2 is reduced, and the superoxide remains thermodynamically stable up to larger particle sizes, thereby reducing the possibility that it transforms to the peroxide upon growing.

We expect our findings to direct efforts toward understanding and controlling the formation of desired Na–O compounds in battery operation and furthermore invigorate interest on the potential of Na–O₂ batteries.

ASSOCIATED CONTENT

Supporting Information

Properties of Na–O compounds, computational details on the phonon calculations, formation free energy formulas, chemical potential ranges, and surface energy calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: gceder@mit.edu.

Present Addresses

Y.M.: Department of Materials Science, Engineering, University of Maryland, College Park, Maryland 20742, United States. S.P.O.: Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially supported by the Department of Energy (DOE)'s Basic Energy Sciences program under grant no. EDCBEE; DOE-Chicago under grant no. DE-FG02-96ER45571; and US China Clean Energy Research Center-Clean Vehicle Consortium of DOE under grant no. DE-PI0000012. The computing resources for this work were provided through TeraGrid by the Texas Advanced Computing Center (TACC) under grant no. TG-DMR970008S.

REFERENCES

(1) McHale, J. M.; Auroux, A.; Perrotta, A. J.; Navrotsky, A. Science **1997**, 277 (5327), 788–791.

- (2) Navrotsky, A.; Mazeina, L.; Majzlan, J. Science 2008, 319 (5870), 1635–1638.
- (3) Zhang, H.; Banfield, J. F. J. Phys. Chem. B 2000, 104 (15), 3481–3487.
- (4) Ramamoorthy, M.; Vanderbilt, D.; King-Smith, R. D. *Phys. Rev. B* **1994**, 49 (23), 16721–16727.
- (5) Navrotsky, A. ChemPhysChem 2011, 12 (12), 2207-2215.
- (6) Liu, W.; Sun, Q.; Yang, Y.; Xie, J.-Y.; Fu, Z.-W. Chem. Commun. **2013**, 49 (19), 1951–1953.

- (7) Li, Y.; Yadegari, H.; Li, X.; Norouzi Banis, M.; Li, R.; Sun, X. Chem. Commun. **2013**, 49 (100), 11731–11733.
- (8) Sun, Q.; Yang, Y.; Fu, Z.-W. Electrochem. Commun. 2012, 16 (1), 22–25.
- (9) Das, S. K.; Xu, S.; Archer, L. A. Electrochem. Commun. 2013, 27, 59-62.
- (10) Peled, E.; Golodnitsky, D.; Mazor, H.; Goor, M.; Avshalomov, S. J. Power Sources **2011**, *196* (16), 6835–6840.
- (11) Kim, J.; Lim, H.-D.; Gwon, H.; Kang, K. Phys. Chem. Chem. Phys. 2013, 15 (10), 3623-3629.
- (12) Jian, Z.; Chen, Y.; Li, F.; Zhang, T.; Liu, C.; Zhou, H. J. Power Sources 2014, 251 (0), 466-469.
- (13) Hartmann, P.; Bender, C. L.; Sann, J.; Durr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P. *Phys. Chem. Chem. Phys.* **2013**, *15* (28), 11661– 11672.
- (14) Hartmann, P.; Bender, C. L.; Vracar, M.; Durr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. *Nat. Mater.* **2013**, *12* (3), 228–232.
- (15) Wriedt, H. A. Bull. Alloy Phase Diagrams 1987, 8 (3), 234-246.
- (16) Sangster, J.; Pelton, A. D. J. Phys. E 1992, 13 (3), 296-299.
- (17) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2009, 113 (46), 20127-20134.
- (18) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114 (19), 9178-9186.
- (19) Bryantsev, V. S.; Giordani, V.; Walker, W.; Blanco, M.; Zecevic, S.; Sasaki, K.; Uddin, J.; Addison, D.; Chase, G. V. *J. Phys. Chem. A* **2011**, *115* (44), 12399–12409.
- (20) Carter, G. F.; Templeton, D. H. J. Am. Chem. Soc. 1953, 75 (21), 5247-5249.
- (21) Templeton, D. H.; Dauben, C. H. J. Am. Chem. Soc. 1950, 72 (5), 2251–2254.
- (22) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54 (16), 11169–11186.
- (23) Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953-17979.
- (24) Mo, Y. F.; Ong, S. P.; Ceder, G. Phys. Rev. B 2011, 84 (20), 1-9.
- (25) Radin, M. D.; Rodriguez, J. F.; Tian, F.; Siegel, D. J. J. Am. Chem. Soc. 2012, 134 (2), 1093–1103.
- (26) Kang, S.; Mo, Y.; Ong, S. P.; Ceder, G. Chem. Mater. 2013, 25 (16), 3328–3336.
- (27) Wang, L.; Maxisch, T.; Ceder, G. Phys. Rev. B 2006, 73 (19), 1-6.
- (28) Hummelshøj, J. S.; Luntz, A. C.; Nørskov, J. K. J. Chem. Phys. 2013, 138 (3), 034703-034712.
- (29) Chase, M. W. NIST-JANAF thermochemical tables; American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology: Washington, DC, 1998.
- (30) Alfe, D. Comput. Phys. Commun. 2009, 180 (12), 2622–2633.
 (31) McQuarrie, D. A. Statistical Mechanics; University Science
- Books: South Orange, NJ, 2000.
- (32) Reuter, K.; Scheffler, M. Phys. Rev. B 2001, 65 (3), 035406.
- (33) Song, M.-K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. Mater. Sci. Eng. R 2011, 72 (11), 203–252.
- (34) Xiao, J.; Mei, D.; Li, X.; Xu, W.; Wang, D.; Graff, G. L.; Bennett, W. D.; Nie, Z.; Saraf, L. V.; Aksay, I. A.; Liu, J.; Zhang, J.-G. *Nano Lett.* **2011**, *11* (11), 5071–5078.
- (35) Read, J. J. Electrochem. Soc. 2002, 149 (9), A1190-A1195.
- (36) Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. J. Electrochem. Soc.
- **2012**, *159* (2), R1–R30. (37) Lee, J.-S.; Tai Kim, S.; Cao, R.; Choi, N.-S.; Liu, M.; Lee, K. T.; Cho, J. Adv. Energy Mater. **2011**, *1* (1), 34–50.
- (38) Ren, X.; Wu, Y. J. Am. Chem. Soc. 2013, 135 (8), 2923-2926.