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Scaling in

t

Renormalized probability, Pt(x)exp(pox)/N

Pi(x) — Pi(z) = KlT(Z), where z = a\/xQ + (ct)?

the long-time lIimit,

Dow-Jones data, 1982-2001

vt > 1
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The simplest model: stock price S; obeys the stochastic
differential equation of a
dS; = Sy dt + oSy dw L,

where W; is a Wiener process, o is called volatility.

The distribution of log-returns r; = In(S¢/Sp) is Gaussian

exp{—[r — (u + 02/2)t]%}
V2ot 7

and the distribution of prices P;(S) is log-normal.

Pi(r) =

T he tails of real data are heavier than Gaussian.
Volatility o is not constant, but stochastic.
Limited success of the Black-Scholes model for option

pricing.



Multiplicative Brownian motion 4 stochastic variance
doy = —% dt 4+ o dW Y >
dv; = —~ (v — 0) dt + ky/o7 AW,

The model is truly 2D #= 1D + 1D.
The transition probability Pi(x,v|wv;) satisfies the Fokker-

Planck equation

o0 10 o
—P = —(vP — —0)P
ot 2(9:13(v2 )+ fyﬁv [(; . )P
10 K< O
I Eazx(vp) : 2 820(UP)

with the initial condition Pi—g(x,v|v;) = §(x)d(v — v;).

Take two Fourier transforms

Pt(il?, v | vi) — ?t,px(v | vi) — ﬁt,p:c(pv | vi)'



The transformed PDE is of the first order

5, K2 ip2 5,
{ +(7pv+pgl px_l_px)
3}9@

——

P = —in0p, P,

ot 2 2

with the initial condition Pi—q ,,(pv|v;) = exp(—ipyv;).

T he solution is obtained using the method of characteristics

or path integrals

— .~ . t ~
Ptapa:(p’l) | Ui) = €Xp <—’va(0)”07; o 2’79/0 dr p?)<7_)> )

where the function p,(7) is the solution of the characteristic
equation

dpy (7')
dr

ip% + Px

= vpu(7T) + —pv( ) with  py(t) = po



Averaging over variance

We integrate Pi(x,v|wv;) over the final variance v

—+ o0
Pz |v) = [ dv Py, 0] v;).
— 0

Assuming that v; to has the stationary distribution My (v;),

we average over the initial variance

Pi(w) = [, dv; Mi(v;) Pi(a| 7).



T he final result

The probability distribution of returns is given by the Fourier

iIntegral
—+ o0
dpy
Pi(z) = / 27:7 0Pz + ¢ (pz)
where
2 2 2
v<0t  2~60 Qt Q4+~ . QU
F — - In |cosh | sinh —
(pe) =~ 5 =5 > 20 >

and the frequency Q = /72 + k2(p2 — ips).



Asymptotic behavior for long time ¢
In the limit vt > 2, Fi(pz) = 1—9;(7 — Q).

The Fourier integral can be taken analytically, and the prob-

ability distribution has the scaling form

K1(2)

)

Pi(z) = Nye %2P(2), P.u(z) =

Z

where K1(z) is the first-order modified Bessel function, and

0 2
L _wo | 2 (L) 2 wo=\/72+f<:2/4

==\



For z > 1, the Bessel function is K1(z) ~ e %\/nw/2z,

92
|nPt(a:)%—g—z=—§—@ x2+(l> t2,

Y

0]

e When |z| > ~0t/k, InPy(z)~ -5 —22|x|.
The probability distribution has exponential tails in x with

time-independent slope.

o When |z| < v0t/k, InP(z)~ -5 — %ﬂ,
T he probability distribution for small x is Gaussian. For long

time ¢, the probability weight in the Gaussian part tends to

one.
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Singularities of Fi(p;) in the complex plane of p,

Im(p,)




Quantum-mechanical analogy

Define the momentum operator 5, = —i % conjugate to v.

The Fokker-Planck PDE is a Schrodinger equation in imag-

inary time
o
t°P=_AP
ot
with “Hamiltonian”
2 2
= %ﬁga 1 inpu (5 — ) + 22 2”’%.

Notice that the “Hamiltonian” H is linear in v.



Path Integral Solution: Integrate over all trajectories
Ptp,(vg|vi) = [ Do(r) [ Dpy(r)esPr(n)w(]
where the action S[py(7),v(7)] for a given path is

S = [ dr {ipo(r)i(r) — Hpo(r),v(r)]}.

The action is linear in v(7). First take the integral over

Dv(7). The result is a delta-functional

2

2 .
: K Py — D
pv(T) — ”YPU(T) — —p%(T) — == & -

0
2 2

Taking the integral over Dpy(7) replaces py(7) by py(7),
which is the solution of characteristic ordinary differential

equation.



