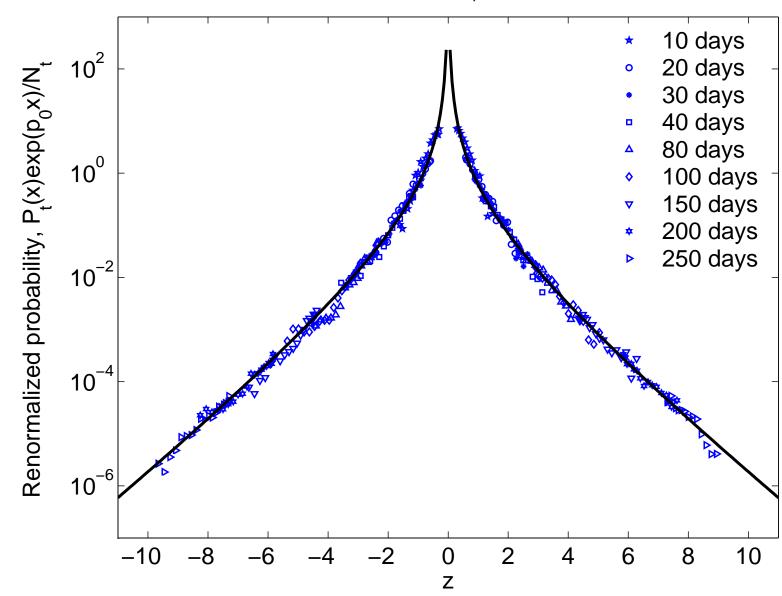


Scaling in the long-time limit, $\gamma t \gg 1$

Dow-Jones data, 1982-2001



$$P_t(x) \to P_*(z) = \frac{K_1(z)}{z}$$
, where $z = a\sqrt{x^2 + (ct)^2}$

The simplest model: stock price S_t obeys the stochastic differential equation of a multiplicative Brownian motion

$$dS_t = \mu S_t dt + \sigma S_t dW_t^{(1)},$$

where W_t is a Wiener process, σ is called volatility.

The distribution of log-returns $r_t = \ln(S_t/S_0)$ is Gaussian

$$P_t(r) = \frac{\exp\{-[r - (\mu + \sigma^2/2)t]^2\}}{\sqrt{2\pi\sigma^2t}},$$

and the distribution of prices $P_t(S)$ is log-normal.

Shortcomings of multiplicative Brownian model:

- The tails of real data are heavier than Gaussian.
- Volatility σ is not constant, but stochastic.
- Limited success of the Black-Scholes model for option pricing.

Multiplicative Brownian motion + stochastic variance

$$\begin{cases} dx_t = -\frac{v_t}{2}dt + \sqrt{v_t}dW_t^{(1)} \\ dv_t = -\gamma(v_t - \theta)dt + \kappa\sqrt{v_t}dW_t^{(2)} \end{cases} \qquad v = \sigma^2$$

The model is truly $2D \neq 1D + 1D$.

The transition probability $P_t(x,v\,|\,v_i)$ satisfies the Fokker-Planck equation

$$\frac{\partial}{\partial t}P = \frac{1}{2}\frac{\partial}{\partial x}(vP) + \gamma \frac{\partial}{\partial v}[(v-\theta)P] + \frac{1}{2}\frac{\partial^2}{\partial^2 x}(vP) + \frac{\kappa^2}{2}\frac{\partial^2}{\partial^2 v}(vP)$$

with the initial condition $P_{t=0}(x, v | v_i) = \delta(x)\delta(v - v_i)$.

Take two Fourier transforms

$$P_t(x,v\,|\,v_i) o \overline{P}_{t,p_x}(v\,|\,v_i) o \widetilde{P}_{t,p_x}(p_v\,|\,v_i).$$

The transformed PDE is of the first order

$$\left[\frac{\partial}{\partial t} + \left(\gamma p_v + \frac{i\kappa^2}{2}p_v^2 + \frac{ip_x^2 + p_x}{2}\right)\frac{\partial}{\partial p_v}\right]\widetilde{P} = -i\gamma\theta p_v\widetilde{P},$$

with the initial condition $\widetilde{P}_{t=0,p_x}(p_v | v_i) = \exp(-ip_v v_i)$.

The solution is obtained using the method of characteristics or path integrals

$$\widetilde{P}_{t,p_x}(p_v | v_i) = \exp\left(-i\widetilde{p}_v(0)v_i - i\gamma\theta\int_0^t d\tau \,\widetilde{p}_v(\tau)\right),$$

where the function $\tilde{p}_v(au)$ is the solution of the characteristic equation

$$\frac{d\tilde{p}_v(\tau)}{d\tau} = \gamma \tilde{p}_v(\tau) + \frac{i\kappa^2}{2} \tilde{p}_v^2(\tau) + \frac{ip_x^2 + p_x}{2} \quad \text{with} \quad \tilde{p}_v(t) = p_v$$

Averaging over variance

We integrate $P_t(x, v | v_i)$ over the final variance v

$$P_t(x \mid v_i) = \int_{-\infty}^{+\infty} dv \, P_t(x, v \mid v_i).$$

Assuming that v_i to has the stationary distribution $\Pi_*(v_i)$, we average over the initial variance

$$P_t(x) = \int_0^\infty dv_i \, \Pi_*(v_i) \, P_t(x \mid v_i).$$

The final result

The probability distribution of returns is given by the Fourier integral

$$P_t(x) = \int_{-\infty}^{+\infty} \frac{dp_x}{2\pi} e^{ip_x x + F_t(p_x)}$$

where

$$F_t(p_x) = \frac{\gamma^2 \theta t}{\kappa^2} - \frac{2\gamma \theta}{\kappa^2} \ln \left[\cosh \frac{\Omega t}{2} + \frac{\Omega^2 + \gamma^2}{2\gamma \Omega} \sinh \frac{\Omega t}{2} \right]$$

and the frequency $\Omega = \sqrt{\gamma^2 + \kappa^2(p_x^2 - ip_x)}$.

Asymptotic behavior for long time t

In the limit
$$\gamma t \gg 2$$
, $F_t(p_x) \approx \frac{\gamma \theta t}{\kappa^2} (\gamma - \Omega)$.

The Fourier integral can be taken analytically, and the probability distribution has the scaling form

$$P_t(x) = N_t e^{-x/2} P_*(z), \quad P_*(z) = \frac{K_1(z)}{z},$$

where $K_1(z)$ is the first-order modified Bessel function, and

$$z = \frac{\omega_0}{\kappa} \sqrt{x^2 + \left(\frac{\gamma\theta}{\kappa}\right)^2 t^2}, \quad \omega_0 = \sqrt{\gamma^2 + \kappa^2/4}$$

For $z\gg 1$, the Bessel function is $K_1(z)\approx e^{-z}\sqrt{\pi/2z}$,

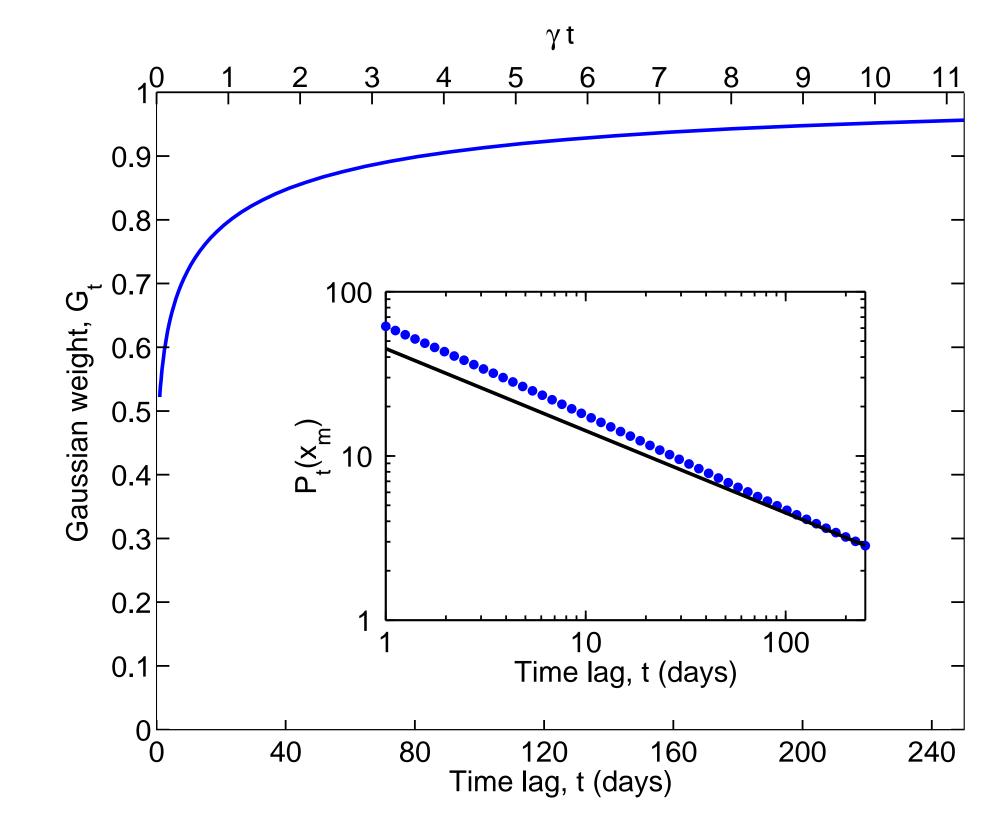
$$\ln P_t(x) \approx -\frac{x}{2} - z = -\frac{x}{2} - \frac{\omega_0}{\kappa} \sqrt{x^2 + \left(\frac{\gamma \theta}{\kappa}\right)^2 t^2}.$$

• When $|x| \gg \gamma \theta t/\kappa$, $\ln P_t(x) \approx -\frac{x}{2} - \frac{\omega_0}{\kappa} |x|$.

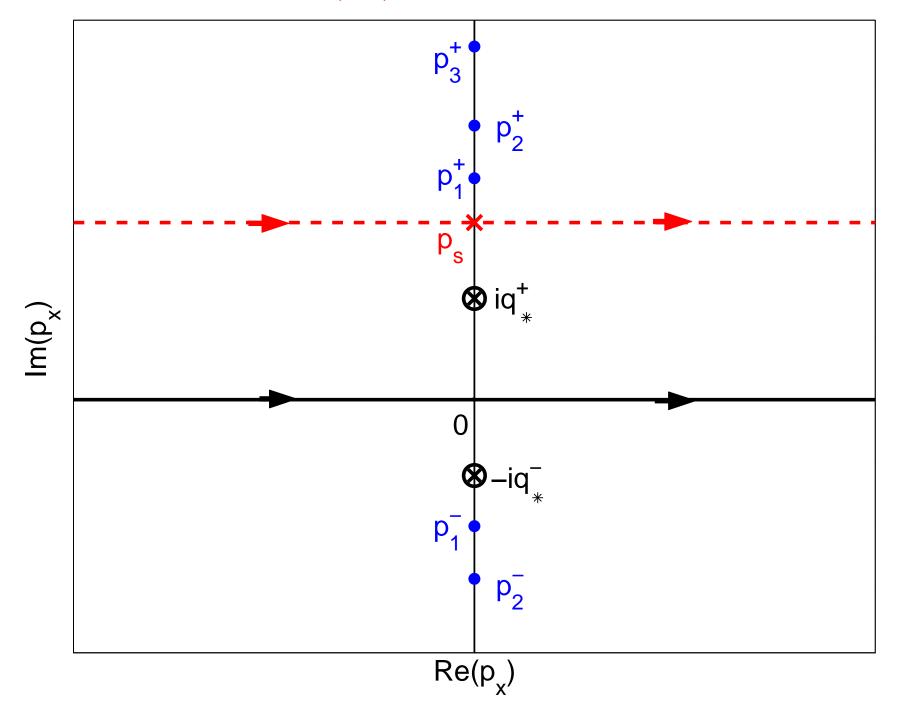
The probability distribution has exponential tails in x with time-independent slope.

• When $|x| \ll \gamma \theta t/\kappa$, In $P_t(x) \approx -\frac{x}{2} - \frac{\omega_0}{2\gamma \theta t} x^2$,

The probability distribution for small x is Gaussian. For long time t, the probability weight in the Gaussian part tends to one.



Singularities of $F_t(p_x)$ in the complex plane of p_x



Quantum-mechanical analogy

Define the momentum operator $\hat{p}_v = -i\frac{d}{dv}$ conjugate to v. The Fokker-Planck PDE is a Schrödinger equation in imaginary time

$$t\frac{\partial}{\partial t}\overline{P} = -\widehat{H}\overline{P}$$

with "Hamiltonian"

$$\widehat{H} = \frac{\kappa^2}{2}\widehat{p}_v^2\widehat{v} + i\gamma\widehat{p}_v(\widehat{v} - \theta) + \frac{p_x^2 - ip_x}{2}\widehat{v}.$$

Notice that the "Hamiltonian" \hat{H} is linear in v.

Path Integral Solution: Integrate over all trajectories

$$\overline{P}_{t,p_x}(v_f | v_i) = \int \mathcal{D}v(\tau) \int \mathcal{D}p_v(\tau) e^{S[p_v(\tau),v(\tau)]},$$

where the action $S[p_v(\tau), v(\tau)]$ for a given path is

$$S = \int_0^t d\tau \left\{ ip_v(\tau)\dot{v}(\tau) - H[p_v(\tau), v(\tau)] \right\}.$$

The action is linear in $v(\tau)$. First take the integral over $\mathcal{D}v(\tau)$. The result is a delta-functional

$$\delta \left[\dot{p}_v(\tau) - \gamma p_v(\tau) - \frac{\kappa^2}{2} p_v^2(\tau) - \frac{p_x^2 - i p_x}{2} \right].$$

Taking the integral over $\mathcal{D}p_v(\tau)$ replaces $p_v(\tau)$ by $\tilde{p}_v(\tau)$, which is the solution of characteristic ordinary differential equation.