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Abstract

We compare the probability distribution of returns for the three major stock-market indexes
(Nasdaq, S&P500, and Dow-Jones) with an analytical formula recently derived by Dr3agulescu
and Yakovenko for the Heston model with stochastic variance. For the period of 1982–1999,
we 8nd a very good agreement between the theory and the data for a wide range of time lags
from 1 to 250 days. On the other hand, deviations start to appear when the data for 2000–2002
are included. We interpret this as a statistical evidence of the major change in the market from
a positive growth rate in 1980s and 1990s to a negative rate in 2000s.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Models of multiplicative Brownian motion with stochastic volatility have been a
subject of extensive studies in 8nance, particularly in relation with option pricing [1].
One of the popular models is the so-called Heston model [2], for which many exact
mathematical results can be obtained. Recently, Dr3agulescu and Yakovenko (DY) [3]
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derived a closed analytical formula for the probability distribution function (PDF) of
log-returns in the Heston model. They found an excellent agreement between the for-
mula and the empirical data for the Dow-Jones index for the period of 1982–2001.
(Discussion of other work on returns distribution and references can be found in
Ref. [3].)
In the present paper, we extend the comparison by including the data for Nasdaq and

S&P500. We 8nd that the DY formula agrees very well with the data for the period of
1982–1999. However, when the data for 2000–2002 are included, systematic deviations
are observed, which reHect a switch of the market from upward to downward trend
around 2000.

2. Probability distribution of log-returns in the Heston model

In this section, we brieHy summarize the results of the DY paper [3]. Let us consider
a stock, whose price St , as a function of time t, obeys the stochastic diKerential equation
of multiplicative Brownian motion

dSt = �St dt + �tSt dW
(1)
t : (1)

Here the subscript t indicates time dependence, � is the drift parameter, W (1)
t is a

standard random Wiener process, and �t is the time-dependent volatility. Changing the
variable in (1) from price St to log-return rt = ln(St=S0) and eliminating the drift by
introducing xt = rt − �t, we 8nd

dxt =−vt
2
dt +

√
vt dW

(1)
t (2)

where vt = �2t is the variance.
Let us assume that the variance vt obeys the following mean-reverting stochastic

diKerential equation

dvt =−�(vt − �) dt + 
√vt dW (2)
t : (3)

Here � is the long-time mean of v, � is the rate of relaxation to this mean, W (2)
t is a

standard Wiener process, and 
 is the variance noise. In general, the Wiener process
in (3) may be correlated with the Wiener process in (1):

dW (2)
t = � dW (1)

t +
√
1− �2 dZt ; (4)

where Zt is a Wiener process independent of W (1)
t , and �∈ [− 1; 1] is the correlation

coeMcient.
The coupled stochastic processes (2) and (3) constitute the Heston model [2]. In

a standard manner [4], the Fokker–Planck equation can be derived for the transition
probability Pt(x; v | vi) to have log-return x and variance v at time t given the initial
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log-return x = 0 and variance vi at t = 0:

9
9t P = �

9
9v [(v− �)P] +

1
2
9
9x (vP)

+ �

92
9x 9v (vP) +

1
2
92
9x2 (vP) +


2

2
92
9v2 (vP) : (5)

A general analytical solution of Eq. (5) for Pt(x; v | vi) was obtained in Ref. [3]. Then
Pt(x; v | vi) was integrated over the 8nal variance v and averaged over the stationary
distribution �∗(vi) of the initial variance vi:

Pt(x) =
∫ ∞

0
dvi

∫ ∞

0
dv Pt(x; v | vi)�∗(vi) : (6)

The function Pt(x) in Eq. (6) is the PDF of log-returns x after the time lag t. It can
be directly compared with 8nancial data. It was found in Ref. [3] that data 8ts are
not very sensitive to the parameter �, so below we consider only the case � = 0 for
simplicity.
The 8nal expression for Pt(x) at � = 0 (the DY formula [3]) has the form of a

Fourier integral

Pt(x) =
e−x=2

x0

∫ +∞

−∞

dp̃
2�

eip̃x̃+Ft̃(p̃) ; (7)

Ft̃(p̃) =
�t̃
2

− � ln
[
cosh

�̃t̃
2

+
�̃2 + 1

2�̃
sinh

�̃t̃
2

]
; (8)

�̃ =
√
1 + p̃2; t̃ = �t; x̃ = x=x0; x0 = 
=�; �= 2��=
2 : (9)

In the long-time limit t̃�2, Eqs. (7) and (8) exhibit scaling behavior, i.e., Pt(x) be-
comes a function of a single combination z of the two variable x and t (up to the
trivial normalization factor Nt and unimportant factor e−x=2):

Pt(x) = Nt e−x=2P∗(z); P∗(z) = K1(z)=z; z =
√
x̃2 + Ot2 ; (10)

Ot = �t̃=2 = t�=x20 ; Nt = OteOt =�x0 ; (11)

where K1(z) is the 8rst-order modi8ed Bessel function.

3. Comparison between the DY theory and the data

We analyzed the data for the three major stock-market indexes: Dow-Jones, S&P500,
and Nasdaq. From the Yahoo Web site [5], we downloaded the daily closing values
of Dow-Jones and S&P500 from 1 January 1982 to 22 October 2002 and all available
data for Nasdaq from 4 October 1984 to 22 October 2002. The downloaded time series
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Fig. 1. Historical evolution of the three major stock-market indexes, shown in the log-linear scale. The
Nasdaq curve is shifted up by the factor of 1.5 for clarity. The vertical line separates the regions with the
average positive and negative growth rates.

{S�} are shown in the left panel of Fig. 1. It is clear that during 1980s and 1990s
all three indexes had positive exponential growth rates, followed by negative rates in
2000s. For comparison, in the right panel of Fig. 1, we show the time series from
1930 to 2002. Contrary to the mutual-funds propaganda, stock market does not always
increase. During 1930s (Great Depression) and 1960s–1970s (Stagnation), the average
growth rate was zero or negative. One may notice that such fundamental changes of
the market trend occur on a very long time scale of the order of 15–20 years.
Using the procedure described in Ref. [3], we extract the PDFs P(data)

t (r) of log-
returns r for diKerent time lags t from the time series {S�} for all three indexes. In
the DY theory [3], the actual (empirically observed) growth rate O� is related to the
bare parameter � by the following relation: O� = � − �=2, and P(data)

t (x) is obtained by
replacing the argument r → x + �t. The parameters O� were found by 8tting the time
series in the left panel of Fig. 1 to straight lines. With the constraint � = O� + �=2,
the other parameters of the Heston model (�, �, 
) were obtained by minimizing the
mean-square deviation

∑
x; t |ln P(data)

t (x)− ln Pt(x)|2 between the empirical data and the
DY formula (7) and (8), with the sum taken over all available x and the time lags t=1,
5, 20, 40, and 250 days. This procedure was applied to the data from 1982 (1984 for
Nasdaq) to 31 December 1999, and the values of the obtained parameters are shown
in Table 1. The model parameters for Dow-Jones and S&P500 are similar, whereas
some parameters for Nasdaq are signi8cantly diKerent. Namely, the variance relaxation
time 1=� is much shorter, the variance noise 
 is much bigger, and the parameter � is
much smaller for Nasdaq. All of this is consistent with the general notion that Nasdaq
is more volatile than Dow-Jones and S&P500. On the other hand, the average growth
rates O� of all three indices are about the same, so the greater risk in Nasdaq does not
result in a higher average return.
Fig. 2 compares the 1984–1999 data for Nasdaq (points) with the DY theory

(curves). The left panel shows the PDFs Pt(x) (7) for several time lags t, and the
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Table 1
Parameters of the Heston model obtained from the 8ts of the Nasdaq, S&P500, and Dow-Jones data from
1982 to 1999 using � = 0 for the correlation coeMcient

� 1=� � 
 � O� � x0
1

year day 1
year

1
year

1
year

1
year

Nasdaq 114 2.2 3.6% 5.3 16% 14% 0.3 4.7%
S&P500 17 15 1.8% 0.67 13% 12% 1.36 4.0%
Dow-Jones 24 10 2% 0.94 14% 13% 1.1 3.9%

Fig. 2. Comparison between the 1984 and 1999 Nasdaq data (points) and the Dr3agulescu–Yakovenko theory
[3] (curves). Left panel: PDFs Pt(x) of log-returns x for diKerent time lags t shifted up by the factor of 10
each for clarity. Right panel: Renormalized PDF Pt(x)ex=2=Nt plotted as a function of the scaling argument
z given in Eq. (10). The solid line is the scaling function P∗(z) = K1(z)=z from Eq. (10), where K1 is the
8rst-order modi8ed Bessel function.

right panel demonstrates the scaling behavior (10). The overall agreement is quite
good. Particularly impressive is the scaling plot, where the points for diKerent time
lags collapse on a single nontrivial scaling curve spanning 10 (!) orders of magnitude.
On the other hand, when we include the data up to 22 October 2002, the points visi-
bly run oK the theoretical curves, as shown in Fig. 3. We use the same values of the
parameters (�, �, �, 
) in Fig. 3 as in Fig. 2, because attempts to adjust the parameters
do not reduce the discrepancy between theory and data. The origin of the discrepancy
is discussed in Section 4.
Similarly to Nasdaq, the S&P500 data for 1982–1999 agree well with the theory, as

shown in Fig. 4. However, when the data up to 2002 are added (Fig. 5), deviations
occur, albeit not as strong as for Nasdaq. For Dow-Jones 1982–1999 (Fig. 6), the data
agrees very well with the theory. The PDFs for 1982–2002, shown in the left panel
of Fig. 7, still agree with the theory, but deviations are visible in the scaling plot in
the right panel of Fig. 7. They come from the time lags between 40 and 150 days not
shown in the left panel.
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Fig. 3. The same as in Fig. 2 for 1984–2002.
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Fig. 4. The same as in Fig. 2 for S&P500 for 1982–1999.

4. Discussion and conclusions

We conclude that, overall, the PDFs of log-returns, Pt(x), agree very well with the
DY formula [3] for all three stock-market indices for 1982–1999. It is important to
recognize that the single DY formula (7) and (8) 8ts the whole family of empirical
PDFs for time lags t from one day to one year (equal to 252.5 trading days). The
agreement with the nontrivial Bessel scaling function (10) extends over the astonishing
ten orders of magnitude. These facts strongly support the notion that Huctuations of
stock market are indeed described by the Heston stochastic process.
On the other hand, once the data for 2000s are included, deviations appear. They are

the strongest for Nasdaq, intermediate for S&P500, and the smallest for Dow-Jones.
The origin of the deviations can be recognized by looking in Fig. 1. Starting from
2000, Nasdaq has a very strong downward trend, yet we are trying to 8t the data
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Fig. 5. The same as in Fig. 4 for 1982–2002.

Fig. 6. The same as in Fig. 4 for Dow-Jones.

using a constant positive growth rate �. Obviously, that would cause disagreement.
For S&P500 and Dow-Jones, the declines in 2000s are intermediate and small, so are
the deviations from the DY formula. We think these deviations are not an argument
against the Heston model. They rather indicate the change of � from a positive to a
negative value around 2000. Our conclusion about the change of regime is based on
the statistical properties of the data for the last 20 years. The situation is very diKerent
from the crash of 1987. As our plots show, the crash of 1987 did not have signi8cant
statistical impact on the PDFs of log-returns for 1980s and 1990s, because the market
quickly recovered and resumed overall growth. Thus, the crash of 1987 was just a
Huctuation, not a change of regime. To the contrary, the decline of 2000s (which is
characterized by a gradual downward slide, not a dramatic crash on any particular
day) represents a fundamental change of regime, because the statistical probability



310 A.C. Silva, V.M. Yakovenko / Physica A 324 (2003) 303–310

Fig. 7. The same as in Fig. 6 for 1982–2002.

distributions have changed. These conclusions are potentially important for investment
decisions.
The average growth rate � is an exogenous parameter in the Heston model and is

taken to be constant only for simplicity. In a more sophisticated model, it could be a
smooth function of time �, reHecting the long-term trend of the market of the scale
of 15–20 years. Using a properly selected function ��, one could attempt to analyze
the stock-market Huctuations on the scale of a century. That would be the subject of
a future work.
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