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A B S T R A C T

Disturbance and regrowth are vital processes in determining the roles of forest ecosystem in the carbon and
biogeochemical cycles. Using time series observations, the vegetation change tracker (VCT) algorithm was de-
signed to map the location, timing, and spectral magnitudes of forest disturbance events. While these spectral
disturbance magnitudes are indicative of physical changes in tree cover or biomass, their quantitative re-
lationships have yet to be established. This study focuses on estimating disturbance intensity as measured by
percent basal area removal using spectral indices from the VCT algorithm over North and South Carolina. Repeat
measurements on Forest Service Forest Inventory Analysis (FIA) ground plots, which provide changes in basal
area between multiple dates at precise locations, are used for training and validation of the model. The overall R2

between predicted disturbance intensity and reference data is 0.66, and cross-validation prediction uncertainty
is 14% in North Carolina. Possible causes of this uncertainty could be site heterogeneity and the temporal offset
between ground measurements and satellite observations. Results show the area of stand clearing disturbances
remains relatively stable around 1143 km2 yr−1 in North and South Carolina throughout the period of ob-
servations (1985–2015). The average amount of forest area affected by partial disturbance is much higher at
3287 km2 yr−1. The area of partial disturbances has strong inter-annual variability with a high value of
6000 km2 in 2007 and a low value of 1919 km2 in 2013.

1. Introduction

Forests play important roles in many physical, chemical, and bio-
logical processes that affect hydrology, energy balance, carbon fluxes,
and biogeochemical cycling of nutrients (Bonan, 2008), and provide a
broad range of socio-ecological services important to the human being
(Myers, 1997; Patterson and Coelho, 2009). While their distribution,
structure, and composition have been and will continue to be shaped by
disturbances (Burton et al., 2008), the impact of those disturbance
events, such as carbon emission (Birdsey and Lewis, 2003; Houghton
et al., 2012), habitat loss (Bengtsson et al., 2000; Slade et al., 2011), soil
erosion or degradation (Bari and Smettem, 2006; Petranka et al., 1993;
Schofield and Ruprecht, 1989), among others, can differ greatly de-
pending on disturbance type and intensity (Chambers et al., 2007;
Stueve et al., 2011). The nature of disturbance events in turn drives
post-disturbance recovery and associated carbon source-sink dynamics
(Frolking et al., 2009; Goetz et al., 2012; Meng et al., 2015). In North

Carolina, for example, the amount of carbon transferred to the wood
products pool can be modeled based on the area and intensity of forest
harvest (Huang et al., 2015; Ling et al., 2016), which had large varia-
tions across North America (Masek et al., 2011). Improved assessment
of forest disturbance is therefore important for advancing studies of
climate change and other pressing environmental issues (Goward et al.,
2008).

Since the launch of the first Landsat in 1972, Landsat imagery has
been a major data source for disturbance analysis, providing sub-hec-
tare details needed to characterize many natural and human driven
change processes. Numerous algorithms have been developed for de-
tecting disturbance occurrence using satellite observations acquired at
multi-year intervals (Coppin et al., 2004; Hussain et al., 2013; Lu et al.,
2004; Singh, 1989; Tewkesbury et al., 2015), and a number of forest
change products have been generated at national (Huang et al., 2009c),
continental (Masek et al., 2008), and global scales (Kim et al., 2014;
Sexton et al., 2015; Townshend et al., 2012).
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A comprehensive mapping approach that utilizes as many points in
time as possible and characterizes disturbance magnitude and duration
is ideal for earth science applications (Kennedy et al., 2014; Senf et al.,
2015). The opening of the Landsat archive for no-cost access in 2008
(Woodcock et al., 2008) made it financially feasible to assemble bien-
nial, annual, or even denser Landsat time series over large areas. It
ushered a new era characterized by booming development of time
series based disturbance mapping algorithms (Devries et al., 2015;
Healey et al., 2018; Hermosilla et al., 2015a; Hermosilla et al., 2015b;
Huang et al., 2010; Kennedy et al., 2010; Schmidt et al., 2015; Senf
et al., 2017; Wulder et al., 2016; Zhu et al., 2012), some of which have
demonstrated success at state (Hermosilla et al., 2015b; Li et al., 2009a,
2009b), regional (Kennedy et al., 2012), national (Goward et al., 2015;
Hermosilla et al., 2016), and global scales (Hansen et al., 2013). Re-
views of these new developments have been provided by (Banskota
et al., 2014; Gómez et al., 2016). Compared with disturbance products
derived using temporally sparse observations, use of dense time series
observations can improve the precision of the timing of mapped dis-
turbance events and reduce omission errors that may arise when the
spectral signal of a disturbance event fades quickly due to rapid post-
disturbance recovery (Lunetta et al., 2004; Masek et al., 2008). Further,
use of time series analysis methods together with machine learning or
other analytical algorithms may also allow determining the type or
causal agent of disturbance events (Hermosilla et al., 2015b; Kennedy
et al., 2015; Moisen et al., 2016; Schroeder et al., 2011; Zhao et al.,
2015).

While rapid progress has been made in determining the occurrence
and causal agent of disturbance events, quantifying their intensity is
more challenging (Schroeder et al., 2011). Although calculating the
spectral signal of a disturbance event using pre- and post-disturbance
observations is relatively straightforward, linking these spectral
changes to measures of physical changes requires reference data on
those physical changes. It has been demonstrated that given reference
data, burn severity could be estimated based on normalized burn ratio
or other measures of spectral changes or radiative transfer models
(RTMs) (De Santis et al., 2009; Escuin et al., 2008; Soverel et al., 2010).
In the Pacific Northwest region, Healey et al. (2006) showed that log-
ging intensity as measured by basal area removal or canopy cover
change was correlated with several measures of spectral changes. While
reference data derivation for land cover studies is expensive and time
consuming in general, deriving reference data on disturbance intensity
is substantially more difficult, as determining the intensity of a dis-
turbance event typically requires two measurements, one made before
that event and the other after. This is exacerbated by the fact that under
most circumstances only small fractions (1–2% or less) of the forests in
a region are subject to measurable disturbances within a given time
period (e.g., a year). Consequently, the chance of obtaining both pre-
and post-disturbance measurements for an actual disturbance event
using probability based sampling methods is low. Intensified sampling
targeting disturbed areas could be allocated when the timing and lo-
cation of certain disturbance events are known beforehand (e.g.,
planned harvest) so that resources (if available) can be allocated for
collecting needed ground measurements before and after those events.

The Forest Inventory and Analysis (FIA) program of the US Forest
Service has been continuously collecting one of the most valuable da-
tasets for quantifying forest disturbance intensity using ground mea-
surements. To meet its congressional mandate to provide routine as-
sessment of the nation's forests, FIA has developed a large network of
permanent plots distributed across the nation and sends field crew to
measure these plots periodically (Smith, 2002). For plots that experi-
enced disturbances, the intensity of those disturbances could be quan-
tified using the field measurements made before and after those dis-
turbances. The primary goal of this study is to develop an approach that
integrate the FIA dataset with Landsat based disturbance products for
annual mapping of forest disturbance intensity and use this approach to
produce annual forest disturbance intensity maps for North and South

Carolina. In the following sections, we first describe the data and
methods and then present the derived results. A summary of the derived
conclusions is provided after a discussion of the strength and limitations
of this work and implications for future study.

2. Data and methods

2.1. Study area

The study area included the states of North and South Carolina, both
of which had long histories of logging activities. South Carolina extends
across the Piedmont (in the northwest) and Coastal Plain (in the
southeast) physiographic provinces. More than two thirds (68.5% or
53,013.8 km2) of South Carolina's land was forested in 2011 with 1.2%
considered reserved or protected from commercial forestry (Rose,
2016). Of the 88% of South Carolina forest land in private ownership in
2011, only 2.9% (1359.7 km2) was owned by industrial owners who are
incorporated and own a primary wood processing mill. Loblolly-short-
leaf pine group is the dominant forest group in South Carolina (42%)
followed by Oak-Hickory (22.1%), and Oak-Gum-Cypress (15.3%).

North Carolina contains three main physiographic provinces
moving from Mountain in the western border in Tennessee to Piedmont
in the center of the state and finally Coastal Plain out towards the
Atlantic coast. In 2007, 60% (75,199.3 km2) of North Carolina's land
base was forest land with only 2% reserved from commercial forestry
(Brown et al., 2014). 88% of the states' industrial timberland
(5665.5 km2 in total) is located in the Coastal Province. Oak-Hickory is
the dominant forest type on timberland at 40%, followed by Loblolly-
shortleaf pine types (29%), Oak-pine (13%) and Oak-Gum-Cypress
(10%). Province level species distributions vary and do not correspond
to the state averages. For example, in the Coastal Plain province, Lo-
blolly-shortleaf pine types are the dominant species type (> 40%). The
study region is covered by 16 World Reference System 2 (WRS2) path/
row tiles, including path 14–19/row 35–36, path 15–17/row 37, and
path 16/row 38 (Fig. 1).

2.2. Approach overview

The overall methodology was built upon the progress in forest dis-
turbance analysis using time series Landsat observations. It seeks to
establish relationships between physical measures of disturbance in-
tensity and Landsat disturbance products based on reference data de-
rived using repeat measurements collected through the FIA program,
and uses those relationships to convert spectral changes to disturbance
intensity measures for each disturbance pixel. This was achieved
through a processing flow that consisted of three major components: 1)
generation of forest disturbance products, 2) reference data derivation,
and 3) model development and map generation (Fig. 2). The required
datasets are discussed in the following sections where details on each
processing component are provided.

2.3. Production of disturbance and spectral change products

The disturbance products used in this study were generated through
a recent phase of the North American Forest Dynamics (NAFD) study
(Goward et al., 2008). A major goal of the NAFD study was to map
forest disturbances annually from 1980s onward for the conterminous
US (CONUS) using Landsat data (Zhao et al., 2018). The derived map
products for the 1986–2010 period are distributed through a web portal
of the Oak Ridge National Laboratory's Distributed Active Archive
Center (Goward et al., 2015). These map products were generated using
the vegetation change tracker (VCT) algorithm (Huang et al., 2010) and
annual Landsat time series stack (LTSS), where each LTSS consisted of
one clear view or near clear view image or image composite per year for
each WRS2 path/row tile (Huang et al., 2009a). Details about the LTSS-
VCT approach have been provided in several publications (Huang et al.,

X. Tao et al. Remote Sensing of Environment 221 (2019) 351–362

352



2011; Huang et al., 2010; Huang et al., 2009b). Prior to its use to
produce the CONUS-wide NAFD products, it was tested extensively
across the US (Li et al., 2009a, 2009b), with many of the derived pro-
ducts having been validated (Huang et al., 2011; Thomas et al., 2011),
including some located within the study region of this work (Huang
et al., 2009b; Huang et al., 2015). For this study, the NAFD record over
North and South Carolina was extended to 2015.

For each disturbance event mapped by VCT, the algorithm calcu-
lated a suite of spectral changes using several spectral indices, including
the normalized difference vegetation index (NDVI) (Tucker, 1979),
normalized burn ratio (NBR) (Miller and Thode, 2007), normalized
difference moisture index (NDMI) (Jin and Sader, 2005), an integrated

forest z-score (IFZ), and forest z-scores (FZ) calculated using Landsat
bands 4 (B4FZ) and 5 (B5FZ) (Huang et al., 2010). These indices have
been used in many vegetation, surface water, and disturbance studies
(Jin and Sader, 2005; Wilson and Sader, 2002). They were defined as
follows:
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+

NDVI B B
B B

4 3
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NBR B B
B B

4 7
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= −
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NDMI B B
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4 5

4 5 (3)

Fig. 1. Location of the study region and the Landsat path/row tiles covering the study region. The Landsat path/row tiles are in PP0RR format. Note that the coverage
of some path/row tiles, such as 16036, spans both South and North Carolina.

Fig. 2. Processing flow of the proposed approach for mapping forest disturbance intensity.
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where Bi is the reflectance value of a 30m pixel in Landsat band i, and
Bi and SDi the mean and standard deviation of dark dense forest sam-
ples identified by VCT in each image. These indices were used to cal-
culate absolute (delta variables) and relative (normalized before/after
ratio, NBA ratio) spectral changes following the equations listed in
Table 1, where the subscript value 1 and 2 refer to pre- and post-dis-
turbance observations, respectively.

2.4. Reference data derivation

Reference disturbance intensity data were derived based on repeat
measurements over FIA plot locations. The intensity of disturbance
events and their impacts can be measured in different ways. The in-
tensity of fire disturbances, for example, has been quantified using burn
severity indices (Chen et al., 2011; Soverel et al., 2010) or heat release
(Lentile et al., 2006). The intensity of weather/climate events could be
measured by the strength of wind, amount of precipitation, or ice ac-
cumulation (Chambers et al., 2007; Peterson, 2007; Proulx and Greene,
2001). For logging, basal area or canopy cover removal has been used
(Healey et al., 2006). Since logging is a dominant disturbance type in
the study area, basal area removal was used in this study. It may be
used to infer biomass and other structure changes as basal area has been
used to calculate biomass and is directly related to other forest prop-
erties such as height and canopy cover (Gill et al., 2000; Jenkins et al.,
2003)

FIA has over 125,000 Tier 2 plots distributed across contiguous U.S.
with a nominal spacing of approximately 5 km (or 2500 ha) per plot
(Smith, 2002). Those on forestland are visited periodically by field
crews to collect ground measurements. Following the 1998 Farm Bill
FIA adopted an annual inventory strategy that incorporated a nationally
consistent, spatially and temporally balanced sampling design
(Gillespie, 1999; Smith, 2002). In the eastern states, such as North and
South Carolina, the Tier 2 plots are divided into 5 panels, each of which
is remeasured in a year. This approach ensures that there is a constant
rollout of remeasured plot data annually, and a full remeasurement
cycle for all plots is completed in 5 years. By the time of this study,
three full cycles of measurements collected following the annual in-
ventory strategy were available in South Carolina (2006, 2011, and
2016) and two in North Carolina (2007 and 2012).

The two states have 3789 plots with unique geographic locations.
Only those that had been measured at least twice since 1999 and were
disturbed between those measurements could be used to calculate dis-
turbance intensity. Pre-1999 FIA data were not used in this study as
they might not be completely consistent with post-1999 measurements

due to changes made to the inventory strategy following the 1998 Farm
Bill. South Carolina had 152 plots that met these requirements and
North Carolina had 264.

For each plot visited (some plots may not be sampled during a panel
due to adverse conditions or denied access), FIA field crews measured
diameter at-breast-height (dbh) for each tree located on the plot that
had a dbh of at least 12.7 cm. Basal area was calculated from dbh di-
rectly. Each site tree record was identified using a unique sequence
number. When a tree measured in a previous annual inventory was
remeasured, the individual tree sequence number from both cycles
were linked, making it possible to track the trees removed due to dis-
turbance and hence the total basal area removed during a remeasure-
ment cycle.

Following a definition used by (Healey et al., 2006), “disturbance
intensity” was measured by percent basal area removal (PBAR), i.e., the
amount of basal area removed by disturbance, normalized to the pre-
disturbance value. Because trees over an FIA plot can grow sub-
stantially during the years between two consecutive FIA measurements,
a simple difference between such measurements does not provide a
direct measure of basal area removed by disturbances. It is the net
change between basal area loss caused by disturbances and gain re-
sulting from the growth of unremoved trees plus newly added trees that
met the minimum measurement size requirement (i.e., dbh≥ 12.7 cm)
at time 2 but did not exist or were too small to measure at time 1.

To calculate basal area removal due to disturbances occurred be-
tween two FIA measurements, we tracked the individual trees that were
measured at both time 1 and time 2 using the tree identification
number. Those that existed at time 1 but not at time 2 were assumed to
be removed by disturbances occurred between two measurements. Let
TBA1 be the total basal area of all live trees measured at time 1 and
BA21 the basal area of trees that existed at both time 1 and time 2
measured at time 1, then the basal area removal (BAR) caused by dis-
turbances occurred immediately after the time 1 measurement is:

= −BAR TBA BA1 21 (7)

BAR caused by a disturbance occurred one or more years after time
1 measurement likely will be different from that calculated using Eqs.
(7), as the removed and unremoved trees likely will grow at different
rates between time 1 and the occurrence of the disturbance. Given the
limited amount of growth that can occur within such short temporal
intervals (< 5 years in this study area), however, these differences
should be small in general, and can be further reduced by normalizing
Eq. (7) by the time 1 total basal area TBA1 to calculate the percent basal
area removal (PBAR):

= −PBAR TBA BA
TBA
1 21

1 (8)

A flowchart of the procedure for calculating PBAR using remeasured
FIA plot data is provided in Fig. 2.

2.5. Model development

With the above derived reference data, we explored the relation-
ships between PBAR and spectral change measures listed in Table 1 in
several ways. First, the ordinary least square linear regression method
was used to examine relationships between PBAR and each individual
spectral change measure. The Random Forest (RF) regression tree al-
gorithm was then used to establish more robust models. RF has been
used to derive land cover and other biophysical variables using remote
sensing data in numerous studies (Belgiu and Drăguţ, 2016; Cutler
et al., 2007). It is built as an ensemble of regression trees (Breiman,
2001), where each tree partitions the explanatory variables into a series
of boxes that contain the most homogeneous collection of outcome
possible. An RF tree is developed by selecting a small random sample of
explanatory variables at the root node, based on which the best split is
made. At each subsequent node, another small sample of explanatory

Table 1
Experiment design for estimating disturbance intensity from different groups of
spectral disturbance magnitude data.

Scenario 1 Scenario 2 Scenario 3

Delta variables:
IFZ2− IFZ1,
NDVI2−NDVI1,
NBR2−NBR1,
B4FZ2− B4FZ1,
B5FZ2− B5FZ1

Normalized before/
after ratio:
1− IFZ1 / IFZ2,
1−NDVI2 / NDVI1,
1−NBR2 / NBR1,
1−NDMI2 /
NDMI1,
1− B5FZ1 / B5FZ2

Delta variables+Normalized
before/after ratio
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variables is chosen and the best split is made. The tree continues to
grow until it reaches its largest possible size.

To assess the usefulness of different spectral change measures for
PBAR modeling, three groups of RF models were evaluated. The first
and second groups were developed using the delta and NBA ratio
variables listed in Table 1, respectively, and the third was developed by
combining the two variable types. These model groups were evaluated
using a five-fold cross validation method. In this method, the reference
samples were divided into five equal sized subsets in a random way.
Four of those subsets were used to train the RF algorithm to build a
model and the remaining subset was used to evaluate that model. This
was repeated five times such that each subset was used to evaluate the
model generated by the other four subsets. The results from all five
experiments were pooled together to calculate the root mean square
difference between the predicted values and the FIA data and the
coefficient of determination (R2) of their relationships as measures of
model performance. The cross-validation results derived this way
should be considered reasonably unbiased and equivalent to what could
be derived using independent validation datasets, because in each of
the five folds of the cross-validation, the test samples were selected
randomly and had essentially no spatial autocorrelations with the
training samples (Friedl et al., 1999; Huang et al., 2003).

2.6. Map products generation and assessment

Based on the cross-validation, the model that had the best perfor-
mance was used to produce PBAR maps for all disturbances mapped by
VCT. As discussed earlier, the cross-validation results for this model
should provide a reasonably realistic assessment of these maps not
biased by spatial autocorrelation, as the FIA plots used in model de-
velopment and cross validation were located at least 5 km apart from
each other and hence had minimal, if any, spatial autocorrelation.
Further evaluation included comprehensive visual assessments of the
mapped PBAR values against the input Landsat images. By the time of
this study, Google Earth had two or more high resolution images in
some areas within the study region. Those images were examined to
provide visual verification of the derived PBAR maps. Finally, the va-
lidated PBAR maps were used to evaluate the distribution, spatial
variability and temporal dynamics of disturbance intensity across the
entire study region.

3. Results

3.1. Relationships between PBAR and spectral change variables

Relationships between PBAR and individual spectral change vari-
ables are weak (Fig. 3). 4 of the 10 variables listed in Table 1, including
two delta variables and two normalized ratio variables, explained about
20% of the total PBAR variance of the selected FIA plots. The other 6
variables had weaker relationships with PBAR, suggesting that use of
spectral changes from a single band or spectral index would not allow
robust mapping of PBAR in North and South Carolina.

3.2. Effectiveness of PBAR modeling using multiple variables

Despite the weak relationships between PBAR and individual
spectral change variables, the Random Forest algorithm allowed more
robust modeling of PBAR when multiple variables were used, which is
probably because of the contribution of combined information from
multiple variables. The cross-validation assessment results revealed that
the RF model developed using the five delta variables explained 67% of
the total PBAR variance (Fig. 4(a)) while that developed using the
normalized ratio variables explained 62% (Fig. 4(b)). Use of both
variable types explained nearly 70% of the total PBAR variance
(Fig. 4(c)). All three models over predicted towards the low end and
under predicted towards the high end.

Since the RF model developed using both variable groups performed
better than those developed using one group alone, that model was used
to produce the final PBAR maps across the Carolinas at the native
Landsat 30m spatial resolution for all years from 1986 to 2015. The
following were observed based on comprehensive visual assessments
using the input Landsat images and high resolution satellite images
available from Google Earth.

The spatial variations of mapped PBAR values within disturbance
patches were confirmed by available post-disturbance high resolution
Google Earth images. Visually identifiable cleared patches typically had
high PBAR values. Landsat pixels with lower PBAR values often had
some trees left that could be identified using post-disturbance high
resolution images. Higher disturbance magnitudes are observed in the
center of the disturbed patch, with a decreasing trend towards the
edges. A further examination of the spatial pattern reveals that the
boundary of a patch is often composed of both forest and nonforest, the
heterogeneity of which causes a smaller value of disturbance intensity
compared with that in the center of a patch. Some edge pixels of stand
clearing patches also had low PBAR values because of the mixed pixels.

While most of the differences between predicted PBAR values and
the reference data likely due to model errors, some of them could arise
from differences between FIA measurement date and the acquisition
date of Landsat image. Even when an FIA re-measurement and a dis-
turbance event occurred in the same year, the field crew could visit
before that disturbance event. Consequently, the FIA based PBAR would
be much lower than the estimate derived using pre- and post-dis-
turbance Landsat observations. The underestimation of high dis-
turbance intensity, especially the underestimation of some stand
clearing disturbance as partial disturbance, could be a result of the FIA
plots located near the edge of the disturbed patches. The heterogeneity
along the boundary of the disturbed patch could lead to large dis-
crepancy between mapped and observed values if high and low in-
tensity values are close to each other in the map. Because of the scale
difference between FIA plots and Landsat pixels, the validation results
at heterogeneous sites are expected to have a lower accuracy than those
at homogenous sites (Tao et al., 2018; Tao et al., 2016; Tao et al., 2015;
Tao et al., 2009; Xu et al., 2009).

3.3. Spatial-temporal patterns of disturbance intensity in the Carolinas

As expected, the PBAR maps revealed that forest disturbance in-
tensity varied greatly across space and through time in the study region
(Huang et al., 2015). Locally, most disturbance patches had variable
PBAR values within each patch, although stand clearing events typi-
cally resulted in more homogenous patches with high PBAR values. A
spatial-temporal synopsis map showing the PBAR values of dis-
turbances during the period 1986–2015 revealed that across the region,
high intensity disturbances occurred mostly in the Middle Atlantic
Coastal Plain, Southeastern Plains, and Piedmont ecoregions, while the
Southern Coastal Plain ecoregion had lower disturbances in general
(Fig. 5). Home to the Great Smoky Mountains National Park and several
national forests, the Blue Ridge ecoregion was dominated by mid to low
intensity disturbances. The relative proportions of disturbances that
had high PBAR values (e.g., > 65%) were lower in North Carolina than
those in South Carolina in Fig. 6. This was largely due to the dominance
of low PBAR values in the Blue Ridge ecoregion, which was mostly
located within North Carolina in the study region (Fig. 5). In the
Piedmont and Southeastern Plains ecoregions, North Carolina appeared
to have more mid to low intensity disturbances than South Carolina.

PBAR had multi-modal distributions that differed substantially from
year to year. The histogram of the 2007 PBAR map, for example, had
one major peak and two minor years (Fig. 7(b)).while the 1995 histo-
gram had two major peaks (Fig. 7(a)) and the 2009 histogram three
(Fig. 7(c)). Over the 30-year observing period, the PBAR values as re-
presented by the spatial-temporal synopsis map shown in Fig. 6 had a
distribution skewed towards the high end with two obvious peak
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Fig. 3. Relationships between PBAR and individual spectral change variables.
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located between 80% and 100% and two less obvious ones centered
around 60% and 40% (Fig. 7(d)). PBAR histograms of the two states
had similar peaks, but their relative magnitudes were different between
the two states.

The derived PBAR maps allowed calculation of disturbance area at
different intensity levels. Following the FIA's use of an 80% basal area
removal threshold to separate clearcutting harvest from partial harvest
(Birdsey and Lewis, 2003), the time series maps revealed that only
about a quarter of the disturbances in the Carolinas as mapped using
the presented LTSS-VCT approach were clearcutting. The average an-
nual disturbance areas for clearcutting and partial disturbance events
were 1143 km2 and 3287 km2, respectively (Fig. 8). The total area
subject to clearcutting was relatively stable over time, but that for
partial disturbances had substantial interannual variability, fluctuating
between 1919 km2 and 6000 km2. Some of the large increases in dis-
turbance area were associated with severe damages caused by hurri-
canes and other tropical storms that often passed through the Carolinas
or made landfall in the coastal areas (Huang et al., 2015). Some were
associated with human activities, such as urbanization and logging. We
also observed a lot of selective logging activities, which is an effective
way for forest management.

4. Discussion

The impact of a disturbance event is largely determined by its in-
tensity. A stand-clearing event could result in large changes in surface

properties such as roughness and albedo and near complete transfer of
carbon from the standing biomass pool to other carbon pools, whereas
the impact of a partial canopy removal event could be much smaller.
When a forest stand is cleared, its age is reset to 0, but if only a fraction
of trees in the stand are removed, the remaining trees determine its age.
While great progress has been made in mapping forest disturbances at
scales ranging from local to global, determining the intensity of mapped
disturbance events is more challenging. This study demonstrates an
approach designed to address this challenge. It builds on the VCT al-
gorithm to map forest disturbances using annual Landsat time series
and relies on field inventory data to derive reference data. The derived
results revealed large spatial-temporal variations in forest disturbance
intensity, which would likely cause large uncertainties if not considered
in assessing the impact of forest disturbances.

In the states of North and South Carolina, PBAR values derived
using this approach explained about two thirds of the variance of PBAR
values calculated using FIA plot data. Further improvements might be
achievable through integrated use of spectral and spatial information
(Wulder, 1998). While synthetic aperture radar (SAR) measurements
have saturation problems for forest monitoring, which is wavelength
dependent (Balzter, 2001; Lucas et al., 2004), they are generally more
sensitive to forest structure than optical data, and hence can be used to
improve the characterization of disturbance intensity. Now that the
Sentinel-1 constellation is already in orbit providing systematic acqui-
sition of time series SAR images across the globe, and more SAR systems
with similar or better capabilities are being developed, integrated use of

Fig. 4. Scatterplots between the modeled disturbance intensity and the FIA data in North Carolina using training data of delta variables in Scenario 1, normalized
before/after radio in Scenario 2, or a combination in Scenario 3.
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optical and SAR time series to improve the characterization of dis-
turbance intensity and other key attributes of vegetation dynamics will
become increasingly more feasible.

Better spatial-temporal match between the reference data and
Landsat observations could also help. Given the large geographic area
of the two states and the 30-year span of this study, there is no doubt
that the FIA data is by far the best for deriving the reference PBAR data
needed by this study. However, the spatial coverage of an FIA plot may
not match that of the closest 30-m Landsat pixel. An FIA plot consists of
four equal-sized circular subplots covering a total area of 672.5 m2.
These subplots are arranged such that they represent an area with a
radius of about 44m or larger. Since the spatial coverage of a Landsat
pixel may not match that of an FIA plot or subplot exactly, the vali-
dation results are generally better in relatively homogenous sites.

Temporal mismatch between FIA data and Landsat observations
could also introduce errors. For example, when an FIA remeasurement
is available in the same year as a disturbance detected by the VCT

algorithm over a plot location, by algorithm design the Landsat image
used in that year were acquired after the occurrence of the disturbance.
But the FIA crew might visit that plot before the occurrence, or for a
gradual process that took weeks or longer to complete, during the early
stage of the disturbance event. Consequently, the plot should have a
predicted PBAR value that matches the intensity of the disturbance
event at the time when the Landsat image was acquired, but the value
from the FIA data could be near 0. Further, the 5-year remeasurement
interval of the FIA data might introduce uncertainties in determining
the PBAR value for a disturbance occurred in a specific year, especially
for plots that had multiple disturbance within the 5-year period. Such
temporal mismatches could cause problems for model development and
validation. When a plot with temporal mismatch problem is used as a
validation point, it will inflate the error estimate. When it is used as part
of the training data, it constitutes an error in the training data, and
hence could affect model performance.

Despite the limitations discussed above, the successful use of this
approach to quantify forest disturbance intensity as measured by per-
cent basal area removal for the entire North and South Carolina over a
30-year period spanning from 1985 to 2015 is a demonstration of its
robustness over large study regions where both Landsat time series
observations and FIA-like inventory data exist. Annual Landsat ob-
servations have been available since 2000 across the globe and much
earlier for many regions (Goward et al., 2006; Wulder et al., 2016). FIA-
like forest inventory data have been collected across CONUS and in
many other countries. While FIA-like inventory data are typically not
publicly available, they could be reached through special agreements
among relevant parties. Therefore, the approach developed through this
study could be used to generate forest disturbance products for other
regions of CONUS as well as countries with at least one set of FIA-like
repeat measurements.

To improve the robustness of model development and product va-
lidation in such studies, it may be necessary to collect more ground-
based reference data in addition to available inventory data. Because
determining the intensity of a disturbance event requires at least two

Fig. 5. Temporal integrated PBAR map (only the highest value is depicted if a pixel had more than one disturbance over the 30-year observing period) showing the
general patterns of disturbance intensity over the Carolinas.

Fig. 6. Histogram of disturbance intensity in North Carolina and South
Carolina.

X. Tao et al. Remote Sensing of Environment 221 (2019) 351–362

358



Fig. 7. Histograms of disturbance intensity in 1995, 2007, 2009, and 30-year overall.

Fig. 8. Areas of stand clearing, partial disturbance, and the total over time.
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measurements, one made before that event and the other after, in most
regions there are far fewer samples that can provide information on
disturbance intensity than on the status of forest at a specific time point.
In the Carolinas, only 416 of the 3789 plots with unique geographic
locations had valid information on disturbance intensity. Such a small
number of reference samples limited our ability to use a portion (e.g.,
40%) of the dataset to provide an independent assessment of a final
model trained using the remaining samples, because doing so might
result in an inadequately trained model due to insufficient training
samples or unrepresentative validation results due to insufficient test
samples, or both. Therefore, accuracy estimates derived through such
an independent assessment might be unrepresentative of the final
products produced in this study.

Given the fact that under most circumstances only small fractions
(1–2% or less) of forests in a region are subject to measurable dis-
turbances within a given time period (e.g., a year), the chance of ob-
taining both pre- and post-disturbance measurements for an actual
disturbance event using probability-based sampling methods is low.
Intensified sampling targeting disturbed areas will be needed to in-
crease the amount of reference data on disturbance intensity. Given
available resources, this could be achieved through well-coordinated
field campaigns for cases when the timing and location of certain dis-
turbance events (e.g., planned harvest) are known before the occur-
rence of the events. For natural disturbances whose occurrences are
often unknown beforehand, conducting fieldwork immediately after
those events over areas that had pre-event measurements will be highly
valuable.

5. Conclusions

The disturbance intensity could be predicted from spectral dis-
turbance magnitude with an uncertainty of 14% in North Carolina.
Overall, the R2 between the predicted disturbance intensity and the
reference data is around 0.66. Results show that the relative propor-
tions of disturbances that had high PBAR values were lower in North
Carolina than those in South Carolina. This was largely due to the
dominance of low PBAR values in the Blue Ridge ecoregion, which was
mostly located within North Carolina in the study region. The area of
stand clearing disturbances remains relatively stable around
1143 km2 yr−1 in North and South Carolina throughout the period of
observations (1985–2015). The average amount of forest area affected
by partial disturbance is much higher at 3287 km2 yr−1. The area of
partial disturbances has strong inter-annual variability with a high
value of 6000 km2 in 2007 and a low value of 1919 km2 in 2013. Due to
the dominance of partial disturbance, the total disturbance area has
similar pattern as partial disturbance area in the two regions. Future
work could be integrated use of optical and SAR time series and col-
lection of more ground-based reference data through intensified sam-
pling targeting disturbed areas to improve the characterization of dis-
turbance intensity.
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