
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 4, APRIL 2018 2107

Improving Satellite Estimates of the Fraction
of Absorbed Photosynthetically Active
Radiation Through Data Integration:
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Abstract— The fraction of absorbed photosynthetically active
radiation (FAPAR) is a critical input in many climate and ecolog-
ical models. The accuracy of satellite FAPAR products directly
influences estimates of ecosystem productivity and carbon stocks.
The targeted accuracy of FAPAR products is 10% or 0.05 for
many applications. However, most current FAPAR products do
not meet such requirements, and further improvements are
still needed. In this paper, a data fusion scheme based on the
multiple resolution tree (MRT) approach is developed to integrate
multiple satellite FAPAR estimates at site and regional scales.
MRT was chosen because of the superior computational efficiency
compared with other fusion methods. The fusion scheme removed
the bias in FAPAR estimates and resulted in a 15% increase in the
R2 and 3% reduction in the root-mean-square error compared
with the average of individual FAPAR estimates. The regional-
scale fusion filled in the missing values, and provided spatially
consistent FAPAR distributions at different resolutions. Overall,
MRT can be used to efficiently and accurately generate spatially
and temporally continuous FAPAR data across both site and
regional scales.

Index Terms— Data fusion, fraction of absorbed photo-
synthetically active radiation (FAPAR) integration, Landsat,
Moderate Resolution Imaging Spectroradiometer (MODIS),
Multi-angle Imaging SpectroRadiometer (MISR), multiple res-
olution tree (MRT).

I. INTRODUCTION

THE fraction of absorbed photosynthetically active radia-
tion (FAPAR) is the fraction of incoming solar radiation

absorbed by plants in the 400–700 nm spectral range [1], [2].
It is one of the 50 essential climate variables recognized
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by the UN Global Climate Observing System [3], and is a
critical input parameter in biogeophysical and biogeochemical
processes described in many climate and ecological models,
e.g., community land model, community earth system model,
and crop growth models [4]–[7]. FAPAR can be derived from
field measurements at the point scale, but the monitoring
network of in situ measurements is insufficient for global
coverage. Satellite sensors efficiently acquire land surface
information at regional and global scales, providing new
opportunities for monitoring biophysical parameters [1].

An accuracy of 10% or 0.05 in FAPAR is considered accept-
able in agronomical and other applications [3]. Some FAPAR
products, such as those derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) and Multi-angle Imag-
ing SpectroRadiometer (MISR), have accuracies approaching
0.1 [8]–[11]. The accuracy of the MODIS Collection-5 FAPAR
product has been improved from Collection-4, i.e., from
0.2 to 0.1 [8], [12]–[15]. The MISR FAPAR product has an
accuracy of 0.14 over crops and forests and 0.11 over grassland
and savannas [16], [17]. Currently, none of these products meet
the accuracy requirement of 0.05.

New sophisticated models could be developed to improve
the accuracy of FAPAR estimates, but the temporal and spatial
coverages of FAPAR from a single sensor are often limited
by the availability of clear view observations [18]–[21]. For
example, Tao et al. [19] estimated FAPAR from Landsat with
detailed spatial distribution information but estimates were
limited by the few available clear images due to the long
revisit time of Landsat. An alternative is to integrate multiple
data products with different characteristics and accuracies.
Data fusion could overcome the problems of a single satellite
product, such as missing data when clouds contaminate the
scene or when instruments malfunction. It combines the advan-
tages of different data sources, and the fusion results provide
continuous spatial and temporal coverages. The uncertainty in
integrated data is expected to be lower than the uncertainties
in individual estimates [22].

Various data fusion methods have been developed, such
as optimal interpolation (OI), empirical orthogonal func-
tion (EOF), hierarchical Bayesian model, Markov random
field method, and multiple resolution tree (MRT) [23]–[27].
OI estimates the observation-to-background error variance for
the noise. The method is called “optimal” because it yields
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TABLE I

LIST OF THE AMERIFLUX EXPERIMENTAL SITES USED IN THIS PAPER

a linear estimate with the least expected error when the
estimated noise accurately reflects the level of actual noise
in the data [28]. The disadvantage of OI is that it cannot
handle large volumes of data well. It requires the inversion
of the covariance matrix to consider the contributions from
adjacent spatio–temporal observations, which can be very
time-consuming when applied over large areas. As an alter-
native to geostatistical methods, methods based on EOFs have
been extensively used within the geosciences. However, most
existing EOF methods do not address the issues of large data
sets and incompatible temporal resolutions across multiple
data sets [27]. Hierarchical Bayesian models have also gained
considerable traction, in part because of the advances made
in overcoming computational difficulties in implementing the
procedure. However, this method tends to yield wide credible
intervals, which may result in ambiguity in the choice of
priors, and can be computationally cumbersome [29].

Another commonly used method for image analysis is the
Markov random field method, which provides a rich structure
for multidimensional modeling; however, it is computationally
intensive. Chou et al. [30] and Fieguth et al. [31] introduced a
recursive estimator consisting of a multiscale Kalman filter and
smoother over a Markov tree data structure that accommodates
multiple observations with differing resolutions. At each node
in the tree, the MRT method optimally blends the available
observations with respect to the least mean squared error
according to the Kalman gain and error characteristics of each
sensor type [32]. The original MRT fills the void regions with
the nearest estimated values from a coarser scale, resulting in
a blocky effect. In this paper, an overlapping MRT method is
utilized to interpolate values from a coarser scale to reduce
the blocky effect.

Although some of these data fusion algorithms have been
applied to remote sensing data, they have not been applied to
integrate FAPAR products. This paper focuses on applying a
data fusion method to FAPAR estimation at both the temporal
and spatial domains. The aim is to improve FAPAR estimates
to achieve spatial and temporal continuities with higher accura-
cies. The green FAPAR under both direct and diffuse radiation
is considered in this paper, and the estimates are validated with
in situ green and total FAPAR measurements [17], [19].

II. DATA

The data used in this paper include in situ measured FAPAR
and FAPAR estimates from satellite surface reflectance data.
The in situ measured FAPAR from four AmeriFlux sites,
including one forest site and three crop sites, is collected
to validate FAPAR estimates and integrations [33], [48].
We select surface reflectance data at different resolutions to
estimate FAPAR, which serve as inputs in the MRT.

A. In Situ Measured FAPAR
The AmeriFlux sites can be used for temporal validation

of FAPAR estimates and integrations, due to their continuous
FAPAR measurements. The geolocation and land cover infor-
mation of the AmeriFlux sites are listed in Table I.

Four components are measured to compute FAPAR at
AmeriFlux sites, including incoming and outgoing solar flux,
and the flux from and to the ground. Incoming (outgoing)
solar flux is measured with Li-Cor point quantum sensors
aimed upward (downward), and placed approximately 6 m
above the ground. Flux transmitted through the canopy to
the ground is measured with Li-Cor line quantum sensors
placed approximately 2 cm above the ground, pointing upward.
Flux reflected by the ground is measured with Li-Cor line
quantum sensors placed approximately 12 cm above the
ground, pointing downward [34]. FAPAR is calculated hourly
as the ratio of absorbed photosynthetically active radiation
and incoming solar flux. All daytime radiation values are
computed by integrating the hourly measurements during a
day when incoming solar flux exceeds 1 μmol/m2/s, and daily
FAPAR is then calculated. The spatial footprint of AmeriFlux
sites is about 1 km2. Total FAPAR measurements are used as
the main validation data in this paper, considering its spatial
and temporal continuities. Green FAPAR is calculated by
multiplying total FAPAR with the ratio between green leaf
area index (LAI) and total LAI, and is used as supplemental
validation data.

B. Surface Reflectance Data

MISR, MODIS, Landsat Thematic Mapper (TM), and
Enhanced TM Plus (ETM+) reflectance data are listed in
Table II, and are used to estimate FAPAR based on the
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TABLE II

CHARACTERISTICS OF SATELLITE SURFACE REFLECTANCE PRODUCTS USED IN THIS PAPER

algorithm presented and validated in [18] and [19]. The MISR
and MODIS FAPAR estimates are green FAPAR at 10:30 A.M.
local time (LT), considering both direct and diffuse radia-
tion absorbed by green elements. Similarly, Landsat FAPAR
estimates correspond to the white-sky FAPAR by green ele-
ments between 9:30 and 10:00 A.M. LT. Overall, the satellite
FAPAR estimates correspond to instantaneous FAPAR around
10:15 A.M. LT, considering both direct and diffuse radiation
absorbed by the green components. The instantaneous FAPAR
from satellite around 10:15 A.M. LT is often assumed to
approximate the daily integrated FAPAR value [13], [35], [36].
FAPAR is assumed to remain relatively stable within a half an
hour so that the integration of the satellite FAPAR estimates
around 10:15 A.M. LT is reasonable. Spatial resolutions of
satellite FAPAR estimates vary from 1000 to 30 m, and the
temporal resolutions vary from 8 to 16 days.

III. METHOD

A. Overview of the MRT

Satellite FAPAR estimates are integrated using the MRT
method to improve the accuracy of FAPAR at site and regional
scales. The MRT is chosen because of its computational
efficiency compared with other fusion methods, such as OI.
MRT considers data continuity at multiple scales and generates
multiscale data simultaneously. It is useful for making optimal
predictions at multiple resolutions [37]. Here, we assume that
the data at different spatial resolutions are autoregressive and
can be organized in a tree structure (Fig. 1). The relationship
between two adjacent layers in a tree is

yu = Au ypa(u) + wu (1)

where yu is the variable used for estimating at scale u, and
ypa(u) is the variable at its parent node. wu is a spatial
stochastic process following a Gaussian normal distribution
with a variance of Wu . Au is a state conversion matrix to
estimate the variable at scale u from its parent node. There is

Fig. 1. Overlapping MRT algorithm. The root node is at the top and the
leaves nodes are at the bottom. Coarse resolution data serve as root, and
fine resolution data serve as leaves. There are two steps to implement the
algorithm: Kalman filtering from leaves to root and Kalman smoothing from
root to leaves. The overlapping tree structure in the Kalman smoothing process
is designed to mitigate the blocky effect in the data. ch(u) denotes child node
and pa(u) denotes parent node. The numbers are the weight for um,n in the
Kalman smoothing process.

a similar formulation that transfers from the child node ch(u)
to the variable at scale u. To determine the state conversion
matrix, the “change-of-support” problem has been widely
discussed [37]–[39]. In this paper, y is the satellite product
of FAPAR. An observation model is used to link the satellite
product to the “ground truth” data

zu = Cu yu + εu (2)

where zu is the satellite product with white noise following
a zero-mean Gaussian distribution with a variance of �u .
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Cu is the observation matrix that converts the variable of
interest to satellite data. Both the variable and the satellite
data are FAPAR, and hence, the observation matrix Cu is set
as the identity matrix.

The MRT algorithm involves two steps: Kalman filtering
from leaves to root and Kalman smoothing from root to leaves.
One assumption in the MRT algorithm is that the tree structure
follows a Markov chain process, which implies that the state
variable is only related to its instant child and parent nodes.
The first step is filtering from high to low resolution

ŷu = E(yu |Zu, Zch(u)). (3)

The major purpose of this step is to fill the data gaps at coarser
resolutions with information from high-resolution data. The
second step is smoothing from low to high resolution to update
the state variable with information at a coarser resolution

ŷu = E(yu |Zu, Zpa(u)). (4)

The data gaps in the high-resolution data could be filled with
a conventional tree method, which would result in a blocky
effect in the gaps. The overlapping tree structure is designed
to apply the Kalman smoothing process to generate smooth
estimates [40]. The values for the overlapping child nodes are
the average of the neighboring nodes from coarser resolution.
Suppose the values are interpolated from scale u to its child
scale ch(u), then there will be overlapping child nodes for
neighboring variables um,n , um+1,n , um,n+1, and um+1,n+1
(Fig. 1). For the child nodes located near the horizontal
boundary, there will be contributions from both top and bottom
variables. For example, for the horizontally overlapped child
nodes of variables um,n and um+1,n , (5) is used to determine
the child node value, where li is the weight for um,n and (1−li )
is the weight for um+1,n

ch(u)i = li um,n + (1 − li )um+1,n. (5)

We set the buffer zone to a size of 4, and the values of li to
0.8, 0.6, 0.4, and 0.2 from top to bottom, respectively (Fig. 1).
Similarly, there are contributions from both left and right
variables for the child nodes located near the vertical boundary,
e.g., um,n and um,n+1. Equation (6) is used to determine the
child node values of variables um,n and um,n+1, where s j is
the weight for um,n and (1 − s j ) is the weight for um,n+1

ch(u) j = s j um,n + (1 − s j )um,n+1. (6)

After the Kalman smoothing step, the data sets at different
scales become smooth and consistent. More details of the two
steps are available in [37].

B. Satellite-Based FAPAR
The surface reflectance images were converted to FAPAR

by inverting a radiative transfer (RT) model, which assumes
that vegetation is continuous and horizontally homogeneous.
The full approach is described in [19]. The image selection,
preprocessing, and FAPAR estimation steps are described in
detail as follows.

We selected MISR, MODIS, and Landsat scenes around the
four AmeriFlux sites on close imaging dates and with high
image qualities. The image qualities are strictly controlled

Fig. 2. Flowchart for implementing overlapping MRT algorithm. The
numbers denote the sections where the corresponding data or methods are
described.

so that the scenes have little or no cloud contamination.
The Landsat reflectance data were atmospherically corrected
using the Landsat ecosystem disturbance adaptive processing
system (LEDAPS) preprocessing code [41]. Missing scan lines
in the ETM+ image were filled with values from the nearest
pixels.

FAPAR estimates should have the same definition and
hierarchical spatial resolutions before integration [26]. In this
paper, we chose to estimate FAPAR based on the same
algorithm instead of using the MISR and MODIS official
products for two reasons. First, there are differences in the
official MISR and MODIS product definitions regarding the
inclusion or exclusion of diffuse radiation [17]. The conversion
to a common definition would bring some uncertainty. Second,
the spatial resolutions of the MISR and MODIS FAPAR
products are 1.1 and 1 km, respectively, which renders the
generation of multiscale images more difficult or the corre-
sponding statistical analysis much more complex [37], [42].
Therefore, the MISR and MODIS FAPAR estimates from the
same algorithm facilitate integration in terms of consistent
product definition and hierarchical spatial resolutions.

The MISR, MODIS, and Landsat images were classified
into evergreen forest, deciduous forest, urban, grass, crops,
barren soil, and water body. The classified images and sur-
face reflectance images were combined to estimate vegetation
FAPAR values using the model in [19]. The FAPAR estima-
tion model is based on RT for a horizontally homogeneous
continuous canopy. The spatially explicit parameterization of
leaf-scattering and soil background reflectance is derived from
a 13-year MODIS albedo database. The LAI input is estimated
using a hybrid geometric optical-RT model suitable for both
continuous and discrete vegetation canopies. The output of the
model is green FAPAR, considering both direct and diffuse
radiation. The general uncertainty is 0.1 when validating with
total FAPAR measurements and 0.08 when validating with
green FAPAR measurements, although the specific uncertainty
changes at different sites. More details of the FAPAR model
are available in [19].
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Fig. 3. Time series of in situ FAPAR measurements and satellite FAPAR estimates at four AmeriFlux sites. Green FAPAR measurements are depicted in
blue dashed line in the first panel, and total FAPAR measurements are depicted in black line in all panels. The shaded area is the 10% accuracy requirement.
The Landsat, MODIS, MISR FAPAR estimates, and FAPAR integrations are depicted in asterisks, crosses, diamonds, and circles, respectively.

C. Application of MRT to Integrate FAPAR

The MISR data were resampled to a spatial resolution
of 960 m, and the MODIS 500- and 250-m data were
resampled to 480 and 240 m, respectively, to construct a
multiscale tree-structured model. In this case, one 960-m pixel
corresponds to 2×2 480-, 4×4 240-, and 32×32 30-m pixels.
The FAPAR estimates in this paper have the same definition
and hierarchical spatial resolutions, so they can be directly
used for integration.

The FAPAR estimates are first validated with in situ mea-
surements to evaluate their accuracy. Because the retrieval
algorithm is nonlinear, the different spatial scales between the
FAPAR product pixels and in situ measurements induce an
FAPAR scaling effect over heterogeneous surfaces [43], [44].
Therefore, validation results at more homogeneous sites are
expected to have better FAPAR accuracy. We evaluate the
heterogeneity around the validation sites by calculating their
homogeneity index [17], which is calculated as the standard
deviation divided by the mean of the simple ratio of the
Landsat data in the 1 × 1 km extent around the sites. Because
the distance between Mead Irrigated and Mead Irrigated rota-
tion sites is less than 1 km, they are combined for this analysis.
The impact of site heterogeneity on the accuracy of FAPAR
is explored.

A flowchart that implements the overlapping MRT algo-
rithm on multiscale FAPAR data is shown in Fig. 2. The
surface reflectance data are used to estimate FAPAR based on
the algorithm presented and validated in [18] and [19]. The
multiscale FAPAR products are validated with in situ data for
accuracy. A zero-mean variable is assumed in the MRT spatial
process, thus the data sets are then detrended. Based on the
detrended data sets, the variance Wu for child nodes linked to
the same node can be calculated. For the observational error
εu of the leaves node, the variance �u can be estimated from
the standard deviation of the relative difference between the
fine resolution data and “ground truth.” For the observational
error of the nodes at all other scales, we use the standard
deviation of the relative difference between the nodes and
aggregated values from their child nodes. The multiscale
FAPAR anomaly data are then used for integration using the
MRT algorithm in two steps: Kalman filtering from high-
resolution to low-resolution data and Kalman smoothing from
low-resolution to high-resolution data. The updated spatial
residual is added back to the trend surface to obtain the
integrated product at multiple scales. Finally, the integrated
product is validated with in situ measurements to obtain the
integration accuracy. The validation statistics include bias,
the mean of the deviations from the reference data, R2 (coeffi-
cient of determination), and root-mean-square error (RMSE).
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Fig. 4. FAPAR maps derived from the MISR, MODIS, and TM scenes in Case 1. (a)–(d) MISR, MODIS 480 m, MODIS 240 m, and TM FAPAR estimates
before fusion are shown. (e)–(h) FAPAR after fusion is shown. The lighter areas in the map refer to nonvegetation or sparse vegetation with FAPAR values
smaller than 0.01. (i)–(k) Differences of the MISR, MODIS 480 m, and MODIS 240 m FAPAR to the TM FAPAR before fusion are shown. (l)–(n) Differences
after fusion are shown.

TABLE III

SPATIAL COVERAGE AND IMAGING DATE INFORMATION OF THE MODIS, MISR, AND LANDSAT DATA USED IN THE TWO REGIONAL CASES

FAPAR estimates were integrated at both site and regional
scales. The MRT was applied at the site scale for three
consecutive years for the MISR, MODIS, and Landsat data.
To make the temporal values continuous, we interpolated the
satellite estimates of FAPAR at the temporal scale before
integration. The temporal resolution was set to eight days
so that there were 138 records of satellite FAPAR estimates
in the three-year period. Table III lists the images used for
the application of MRT at the regional scale. Two study
regions covering the four AmeriFlux sites are selected. The
imaging dates of the products differed within four days. The
vegetation likely remained relatively stable within this short
period and therefore, the integration of FAPAR from these
different sensors is reliable. We have chosen the best quality

images, but some gaps may still exist in the MISR scene
because of missing values in the surface reflectance data. This
is due to the strict data control on MISR surface reflectance
products, including radiance angle-to-angle smoothness and
image angle-to-angle correlation tests; thus, there may be large
gaps in the MISR level 2 surface reflectance product [16].

IV. RESULTS

A. Site-Scale Validation

The three FAPAR estimates have similar seasonality profiles
and magnitudes (Fig. 3). The FAPAR at the Mead Irrigated,
Mead Irrigated Rotation, and Mead Rainfed sites reaches zero
before early April and after mid-November, which is a result
of crop harvesting at those locations. The biases in the MISR,
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TABLE IV

STATISTICAL ANALYSIS OF COMPARISONS BETWEEN In Situ AND SATELLITE-BASED FAPAR ESTIMATES
OR INTEGRATIONS AT THE FOUR AMERIFLUX SITES DURING 2005–2008

MODIS, and Landsat FAPAR estimates are within 0.01 overall
(Table IV). The MISR FAPAR has the highest accuracy at
two crop sites and the forest site. The MODIS and the MISR
FAPAR agree better with the in situ measurements at two
crop sites and the forest site with respect to the magnitude
than the Landsat FAPAR. The MODIS FAPAR has the lowest
mean error at the Mead Irrigated Rotation site. The validation
accuracy of FAPAR estimates improves from an average
of 0.165 to 0.122, when using green FAPAR measurements
as validation data.

The comparisons of the time-series curves of the integrated
FAPAR and in situ measurements at the four sites are shown
in Fig. 3. The time-series curves demonstrate crop or forest
seasonality profiles and are smooth over a certain period
of time. The RMSE reduces to an average of 0.109 and
standard deviation of 0.024 for all four sites. For comparison,
the average RMSE are 0.126, 0.128, and 0.186, and the
standard deviations are 0.041, 0.016, and 0.043 for the MISR,
MODIS, and Landsat FAPAR, respectively. The biases reduce
to an average of −0.039, and the R2 improves to around
0.874 for the four sites (Table IV). The integrated FAPAR has
higher accuracy than that of the Landsat FAPAR estimates at
the four sites. The integrated FAPAR has better accuracy than
that of the MISR and MODIS FAPAR estimates at three sites,
and its accuracy is comparable with that of the MISR and
MODIS FAPAR estimates at the Mead Rainfed site.

Analysis of the spatial scaling effect on FAPAR estimates
reveals that FAPAR accuracy tends to be higher in more
homogeneous sites with a lower homogeneity index value.
We evaluated the site homogeneity during the vegetation
growing season and other seasons using Landsat images at
30-m high resolution [17]. The values for the Mead Irrigated
region are 0.586 and 0.573 during the vegetation growing
season and other seasons, respectively; the values for the
Mead Rainfed region are 0.747 and 0.381, and the values
for the Barlett region are 0.162 and 0.147, respectively. The
average homogeneity indices of the two Mead regions are very
close, but the homogeneity index of the Mead Irrigated region
remains relatively stable.

B. Application of MRT at the Regional Scale
The FAPAR estimates are consistent across different scales

in the MISR, MODIS, TM, and ETM+ images for the two
cases [Figs. 4(a)–(d) and 5(a)–(d), respectively]. The values
have similar distribution patterns across scales, in which the
highest values are observed in evergreen forests, followed by
deciduous forests and crops. Rivers and central urban areas
have FAPAR estimates close to zero.

The MRT method fills the gaps in the original
FAPAR estimates in the MISR data, as shown in
Figs. 4(e)–(h) and 5(e)–(h) for Cases 1 and 2, respectively.
Therefore, image quality is greatly improved in terms of spatial
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Fig. 5. FAPAR maps derived from the MISR, MODIS, and ETM+ scenes in Case 2. (a)–(d) MISR, MODIS 480 m, MODIS 240 m, and ETM+ FAPAR
estimates before fusion are shown. (e)–(h) FAPAR after fusion is shown. The lighter areas in the map refer to nonvegetation or sparse vegetation with FAPAR
values smaller than 0.01. (i)–(k) Differences of the MISR, MODIS 480 m, and MODIS 240 m FAPAR to the ETM+ FAPAR before fusion are shown.
(l)–(n) Differences after fusion are shown.

continuity. The FAPAR distributions become more homoge-
neous and continuous after data fusion, which is desirable in
terms of continuity among multiple-scale data. Some pixels
with low values of FAPAR, less than 0.1, exist along the
boundary between the vegetation and nonvegetation regions
in the map after applying MRT. They are caused by the
sparse vegetation observed near the river or urban area at a
higher resolution. The differences become much smaller after
applying the MRT method across scales for the two cases
[Figs. 4(i)–(n) and 5(i)–(n), respectively].

The frequency histograms show that the standard devi-
ation of the regional mean among the scales decreases
from 0.04 to 0.03, indicating that FAPAR values agree
better across scales after fusion for the two cases
[Fig. 6(a) and (b) and (c) and (d), respectively]. More
vegetation pixels were detected in coarse resolution images

after fusion due to integration of the high-resolution Landsat
data into the coarse resolution images. The improvements
are even greater when there are gaps in the original
FAPAR estimates. Generally, the differences between scales
in FAPAR become sufficiently small (<0.05) in both regions
after fusion. Therefore, the FAPAR distributions at coarse
resolutions, 960, 480, and 240 m, are closer to the distribution
at the finest resolutions after data fusion.

V. DISCUSSION

This paper presents a method to integrate multiple FAPAR
products at different spatial resolutions. The FAPAR integra-
tions were validated over four validation sites, and the method
was applied in two regions. The results show that the integrated
FAPAR values have comparable and often improved accuracy
over individual FAPAR estimates. The integrated FAPAR has
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Fig. 6. FAPAR frequency histograms of the MISR, MODIS, and TM scenes in Case 1. (a) Before fusion. (b) After fusion. The frequency histograms of the
MISR, MODIS, and ETM+ scenes in Case 2. (c) Before fusion. (d) After fusion. The numbers are the regional mean and standard deviation.

a reduced uncertainty, ∼0.109 when compared with some
existing FAPAR products, such as MODIS, ∼0.154 and
GEOV1, ∼0.113, at the validation sites [17]. The algorithm
is readily available for application in regions where multiple
FAPAR products are available. The existing global satellite-
based FAPAR products have coarse spatial resolution, and for
applications that require higher spatial resolution, such as crop
growth monitoring and precision agriculture, the overlapping
MRT can be used to improve data resolution, continuity, and
accuracy.

The integrated FAPAR in this paper is different from some
existing FAPAR products regarding definition, data require-
ment, and algorithm. For example, the MODIS FAPAR prod-
uct is the total FAPAR at 10:30 A.M. LT, considering direct
radiation absorbed by the whole canopy. The GEOV1 FAPAR
product corresponds to the instantaneous black-sky FAPAR
by green components around 10:15 A.M. LT. The integrated
FAPAR in this paper is green FAPAR around 10:15 A.M. LT,
considering both direct and diffuse radiation absorbed by
green elements. In terms of data requirements and processing
algorithm, the MODIS FAPAR product uses the lookup table
method built on the 3-D stochastic RT model for different
biomes from MODIS reflectance data [11]. GEOV1 applies
a neural network to relate the fused products to the top
of canopy SPOT/VEGETATION reflectance [8]. This paper
applies MRT to fuse MODIS, MISR, and Landsat FAPAR

products estimated from corresponding surface reflectance data
at multiple scales. Overall, most current FAPAR products do
not consider absorption by diffuse radiation, and no official
green FAPAR product including both direct and diffuse radi-
ation is available [17]. Therefore, this paper serves as a
good complement to the current FAPAR products. Moreover,
it actively integrates high-resolution Landsat FAPAR prod-
ucts to provide unprecedented continuous FAPAR values at
30-m scale.

In the implementation of the method, observational errors
were obtained separately for forest and crops because satellite-
based FAPAR estimates perform differently across different
land covers. The observational error for the AmeriFlux sites
was obtained temporally considering the continuous measure-
ments, whereas the observational error for satellite products
could also be obtained spatially in a large region with a
sufficient number of validation sites.

Individual FAPAR estimates and the integrated FAPAR
perform better during the middle of the growing season
than the beginning and end of the growing seasons. Some
underestimates are generated in the latter half of the year,
and specifically at the end of the growing season. The dis-
crepancy between FAPAR estimates and in situ measurements
at the beginning and end of the growing seasons can be
attributed to two causes. One is the time difference between
the MODIS and Landsat FAPAR data imaging and in situ mea-
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surements. The temporal resolutions of MODIS and Landsat
are 8 or 16 days, which may not overlap perfectly with in situ
measurements. Therefore, the resulting FAPAR difference
between satellite products and in situ measurements is large at
the beginning and end of the vegetation growing seasons when
the vegetation changes quickly. However, the time-shift issue is
not a serious issue during the middle of the vegetation growing
season when the vegetation remains relatively stable. Another
reason for the discrepancy is the senescence and leaves turning
yellow and the absorption of nonphotosynthesizing woody
stems [17], [45], [46]. This results in the difference between
green FAPAR and in situ total FAPAR measurements which
includes the absorptions of both leaves and stems. This paper
focusing on generating integrated FAPAR to improve the data
accuracy and increasing the spatial and temporal continuities
of the data. Both of the integrated FAPAR and the individual
FAPAR estimates are green FAPAR. However, both green
FAPAR and total FAPAR are used for validation, considering
the limited number of in situ measured FAPAR data.

Regarding the impact of site heterogeneity on FAPAR accu-
racy, the vegetation in the Barlett region is more homogeneous
than that in the two Mead regions; therefore, FAPAR is
expected to have higher validation accuracy and lower RMSE
in the former than in the latter two regions (Table IV).
The averages of the homogeneity index of the two Mead
regions are very close, but the homogeneity index of the Mead
Irrigated region remains relatively stable. Therefore, higher
validation accuracy is expected in the Mead Irrigated region
than in the Mead Rainfed region. The difference between the
Mead Irrigated and Mead Irrigated Rotation sites could be
explained by the different crop types.

In the regional-scale fusion experiments, the FAPAR dis-
tributions before the fusion vary significantly across scales.
This could be a result of the differences between the surface
reflectance data arising from the differences in satellite over-
pass time, calibration, cloud masks, and atmospheric correc-
tion processes [47]. The differences in the FAPAR distributions
are especially large when there are missing values in the
images at some scales. However, the differences in FAPAR
values for vegetation pixels across scales are smaller than as
demonstrated in the frequency histograms in Fig. 6, which
show the FAPAR distributions in the whole image, regardless
of the pixel classified as vegetation. The histograms agree
better across scales if the distributions of FAPAR for only
vegetation pixels are displayed (see histograms shown in
[19, p. 554]).

Compared with a conventional MRT method, overlapping
MRT generates smooth estimations in the Kalman smoothing
process. The improvement is especially significant when there
are data gaps in the original high-resolution data before
Kalman smoothing. The gaps were filled with values from
two or four of the neighboring parent nodes instead of just
one parent node. The results were more reliable and the maps
were smoother than those of the conventional tree method.
Due to the long satellite revisit time, such as for Landsat, there
are few clear images available. The overlapping MRT method
provides a mechanism for generating spatially continuous data,
especially in the gaps and in high-resolution maps. With

increased data availability from some new satellites, such as
Sentinel-2, the integration with these new data may help to
further improve data continuity. Additionally, because more
details are available in higher resolution images, the results
at the finer scale are considered close to the truth. Therefore,
FAPAR distributions at coarse scales are improved after data
fusion in terms of image quality and accuracy as well. Further
improvements on FAPAR should focus on improving the
accuracy of individual FAPAR products and increasing the
temporal resolution of individual products to enhance temporal
matching.

VI. CONCLUSION

This paper integrated satellite FAPAR values using the MRT
data fusion scheme at site and regional scales. The integrated
FAPAR is a green FAPAR that considers both direct and
diffuse radiation, as a complement to current FAPAR products.
The overlapping MRT used in this paper improves FAPAR
data accuracy, resolution, and continuity. It actively integrates
high-resolution Landsat FAPAR products to provide unprece-
dented continuous FAPAR values at the 30-m scale, which
can facilitate applications requiring higher spatial resolution,
such as crop growth monitoring and precision agriculture. The
integrated FAPAR reduced the biases from MODIS (−0.062)
and Landsat (−0.046) to −0.019. The R2 was improved to
around 0.87, a 15% increase over the average R2 of the
individual FAPAR estimates. The integrated FAPAR values
became continuous and more consistent at multiple resolutions
with improved quality.
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