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Abstract—Mixed pixel separation has always been a hotspot issue 
of quantitative remote sensing and is especially important for 
hyperspectral imagery. A new method based on independent 
component analysis is proposed in this paper to blind separate 
component information including the signature and the weight 
from the spectrum of mixed pixels. The extra information is 
obtained from the statistical characters of the signatures. To 
evaluate the performance of the algorithm some computer 
numerical simulations are conducted and a method to choose a 
best band coverage of the spectrum using for blind signal 
separation is proposed. Finally the algorithm is applied on the 
HYPERION imagery of Henshan, Shanxi Provience and the 
result showed that the method is effective. 
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I.  INTRODUCTION 
The obstacle to precisely getting the ground information 

from remote sensing images is the widely existing mixed pixels 
[1]. Unfortunately, due to the high spectral resolution and the 
relatively low spatial resolution of hyperspectral imaging 
sensors, most hyperspectral pixel is possible to be mixed by 
several substances [2]. So it becomes so useful to do the mixed 
spectral separation that more ground information can be gained 
from the hyperspectral data, which is also a difficulty in the 
field of hyperspectral remote sensing. This paper focuses on 
solving the problem by introducing a new method called 
independent component analysis based blind signal separation 
algorithm (ICA-BSS). 

ICA-BSS is based on the linear spectral mixing model that 
the signature matrix of the pixels can be expressed by the 
product of the weight matrix and the signature matrix of the 
components. Its purpose is to simultaneously get the two 
matrixes while only the signatures of the pixels are given, 
which is accomplished by using the statistical character of the 
signatures [3-6]. 

The main contents of this paper are as follows. Section 2 
introduces the idea of the proposed ICA-BSS approach. 
Section 3 conducts computer simulations to validate the 
algorithm. Section 4 applies the algorithm on real hyperspectral 
imagery. Finally, section 5 concludes some remarks. 

II. BLIND SIGNAL SEPARATION BASED ON INDEPENDENT 
COMPONENT ANALYSIS (ICA-BSS) 

Suppose the band number of the hyperspectral data is M, 
the number of the components is N and the number of the 
mixed pixels is J (J≥N). For simplicity, we further suppose that 
J=N or this can be achieved by principle component analysis 
(PCA). Suppose the spectral information of the pixels is 
expressed by the matrix N M×X , of which the data in a row is the 
spectrum signature data of a pixel; N N×A  is the component 
proportion matrix of the pixels, of which the data in a row is 
the proportions of the N components in a pixel; and 

( )1 2, , , T
N M N× =S s s s"  is the signature matrix of the 

components, of which the data in a row is the spectrum 
signature data of a component. If the signatures of the N pixels 
are linearly mixed by the signature of N components, we have 
the equation as follows: 

N M N N N M× × ×=X A S                               (1) 

If the matrix X is linear transformed by W, further 
supposing 1−=W A , then the resulting matrix WX is actually 
the component signature matrix S. Thus, the main task of BSS 
is to find the required W, which is accomplished by making use 
of the statistical character of the linear transformed matrix WX. 

The Central Limit Theorem tells that the distribution of a 
sum of independent random variables tends forward a Gaussian 
distribution under certain conditions. Thus, the row vectors of 
X usually have distributions that are closer to Gaussian than 
those of S. Denote the linear transformed matrix 
by Y = WX = WAS , let Z = WA , then Y = ZS , which means 
that each row vector iy of Y is a linear combination of the row 
vectors is of S with weights given by iz . Since a linear 
combination of S is more Gaussian than S, iy is more Gaussian 
than any of the is , and becomes least Gaussian when it in fact 
equals one of the is . Therefore, the required W is taken when it 
maximizes the non-Gaussianity of the linear trans-formed 
matrix Y [4]. 

The non-Gaussianity of the probability density function 
(pdf) of a random variable could be described by kurtosis or 
negentropy. The kurtosis of a random variable y is defined by 
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( ) { } { }( )24 23kurt y E y E y= −  where E represents the 
expectation; kurt = 0 for Gaussian pdf, kurt > 0 for super-
Gaussian pdf, kurt < 0 for sub-Gaussian pdf. The negentropy of 
y is defined by )()()( yHyHyJ gauss −=  where gaussy is a 
Gaussian random variable of the same variance as y and H 
represents the entropy ( ) ( ) log ( )H y f y f y dy= −∫ ; the 
fundament for negentropy is that a Gaussian variable has the 
largest entropy among all random variables of equal variance. 

The fast fixed-point algorithm using negentropy is chosen 
to implement BSS. The algorithm is as follows [5]: 

1. Center and whiten the matrix X 

2. Randomly choose an initial mixing matrix W and 
orthogonalize it as in step 4. 

3. For every 1,...,i N= , let T ' T
i i i iE{ g( )} E{g ( )}+ = −w X w X w X w  

4. Do a symmetric orthogonalization of the matrix +W  
by ( ) 1/ 2T −+ + +=W W W W  

5. If not converged, go back to step 3 

The function g commonly has two forms: 
1( ) tanh( )g u au= , where 1 2a≤ ≤  is some suitable constant; 

2
2 ( ) exp( / 2)g u u u= − . Here we choose 2g  to do the later 

work. 

Several preconditions are needed to make sure the 
algorithm run well: (1) the signature of the pixels is linearly 
mixed by the signature of the components and the matrix A is 
constant, (2) the components must be statistically independent, 
(3) the probability density functions (pdf) of the component 
signatures must be non-Gaussian, at most one signature of the 
components is Gaussian. 

It is important to note that due to the property of neg-
entropy that it is scale-invariant, i.e., multiplication of a 
random variable by a constant does not change its negentropy, 
if W is a solution, ΛW is also a solution where Λ is a constant 
diagonal matrix, which means that the amplitude of the 
component signature is uncertain if only the negentropy 
information is used. Fortunately, by adding the constraint that 
the sum of each row in ( ) ( )1 1* − −

= *A = W Λ W (where *W is 
the actual solution) must equal to unity, the problem can be 
easily solved. In more details, it is done by first expressing the 
matrix ( ) 1−ΛW as: 

( )
1 1 1
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1 1 1

1 1 1
1 1 11
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where ( , 1, , )ijc i j N= … is the element of 1−W and then 
solving the equations 1 1

11 11 1 1N NNc c− −Λ + + Λ =" ,…, 1 1
1 11 1N NN NNc c− −Λ + + Λ ="  

for *
11Λ  ,…, *

NNΛ . 

III. THE COMPUTER NUMERICAL SIMULATION 
In order to quantitatively evaluate the effectiveness of ICA-

based blind signal separation, some computer numerical 
simulations are conducted in this section to separate two or 
more components from the hyperspectral data. The spectral 
data of grass, soil, some minerals and water for the experiment 
is obtained from the spectral library of ENVI. The band 
coverage of the spectral signatures is chosen from 0.4µm to 
2.56µm and the spectral data is interpolated with a step size of 
0.001µm. 

A. Separation of two components 
The spectral signatures of grass and soil are used in the 

simulation of two components. Suppose one mixed pixel is 
composed of 20% of grass and 80% of soil and the other is 
composed of 90% of grass and 10% of soil, the signatures of 
them are shown in Fig. 1. 

After the signatures of two pixels are simulated, ICA-BSS 
is performed on them to get the signatures of the components 
and their corresponding proportions in the two pixels. 
Comparisons of the retrieved signatures and the original 
signatures are shown in Fig. 2 and comparisons of the retrieved 
proportions and the actual proportions are shown in table I. 

As shown in Fig. 2, the two curves of the retrieved 
signatures are nearly the same as the original curves. Table I 
shows that the error of the component proportions retrieved is 
less than 2% of the pixel area. Further experiments show that 
when the original proportion of the components are changed, 
the retrieved signatures remain almost the same and the errors 
of the component proportions retrieved maintain small, 
concluding that the component proportion has little effect on 
the separating result. 

It is worth noting that the band coverage of this BSS 
experiment is 0.59-2.28µm (different from the band coverage 
chosen from the spectral library (0.4-2.56µm)), as better results 
could be obtained by adjusting the band coverage used. Some 
experiments were done to investigate a best band coverage. In 
each experiment different band coverage was chosen and the 
kurtosis of the signatures of the two components was also 
calculated. We discover some relationship between the 
inversion error and the difference of the kurtosis of the two 
component signatures, which was depicted in Fig. 3. 

As shown in Fig. 3, when the difference is large enough, 
the error is low and could be restricted within an extent; 
additionally, experiment data also show that in most of such 
cases, one kurtosis is positive and the other negative and their 
values are far from zero. However, when the kurtosis between 
the two component signatures has little difference, it becomes 
difficult for the algorithm to precisely recover the two 
components, and sometimes the inversion error could be very 
high. Thus we figure out from these experiments a method for 
choosing a best band coverage is to maximize the non-
Gaussianity of the signature of the components in the chosen 
spectral coverage and the non-Gaussianity at best to be 
different (one is super-Gaussian, and the other sub-Gaussian). 



 

Figure 1. The spectral curve of two mixed pixels (the first pixel is composed 
of 20% of grass and 80% of soil; the second pixel is composed of 90% of grass 
and 10% of soil). 

 

Figure 2. Comparisons of the retrieved signatures and the original signatures. 

 

Figure 3. The relationship between the relative error and the difference of the 
kurtosis of the two signatures. 

The ICA-BSS method is based on the statistical character of 
the data and thus the sample number may have some effects on 
the experiment error. The relationship between the variance of 
the recovered and original signatures of the components and 
the band number is shown in Fig. 4.  

 

Figure 4. The relationship between the variance of the recovered and original 
signatures of the components and the band number 

TABLE I.  THE RETRIEVED RESULT OF COMPONENT PROPORTIONS 
BY ICA-BSS, COMPARED WITH ORIGINAL DATA. 

Pixel I Pixel II Component proportion (%) 

Original Retrieved Original Retrieved

Grass 20 18.5 90 89.3 

Soil 80 81.5 10 10.7 

As shown in Fig. 4, as the band number increases from a 
small value, the variance decreases sharply in the beginning, 
gradually slows down the rate and eventually approaches a 
constant. 

To know the error sensitivity of the fast fixed-point 
algorithm using negentropy, random errors of 5%, 10% and 
20% are added to the signature matrix of pixels. Table II shows 
the result of ICA-BSS. It is obvious that the method of BSS is 
not sensitive with errors; Even if 20% input errors are added, 
the inversion error can also be restricted within 10%. As a 
result of the influences of random noises, the inversion curves 
are filled with random high frequency fluctuations; the 
inversion results are obviously improved filtering by B-Spline 
function [1].  

B. Separation of more than two components 
The spectral signatures of grass, soil, water and some 

minerals are used in the simulation of ICA-BSS of N (N≥3) 
components. Experiment results show the algorithm also 
effective in such cases. Due to the coherence among the 
signatures of some components, the inversion error augments  

TABLE II.  THE INVERSION RESULT OF THE COMPONENT 
SIGNATURES WHEN ERRORS ARE ADDED (Σ REPRESENTS STANDARD 

DEVIATION). 

100 * Grass signature 100 * Soil signature Error(%)

Maximum Minimum Average σ Maximum Minimum Average σ 

5 5.1092 0.0006 1.6997 0.037 3.614 0 0.83 0.011

10 8.483 0.002 2.0573 0.063 6.389 0 1.6047 0.04

20 15.727 0.002 3.9966 0.245 17.424 0.002 4.0094 0.253



 

Figure 5. The inversion result when the mixed pixels are composed of grass, 
soil and water. 

as the components increases but is still tolerable. Fig. 5 shows 
the inversion result when the mixed pixels are composed of 
grass, soil and water. 

IV. FIELD VALIDATIONS 
It is used in this experiment the HYPERION imagery of the 

distinct in Shanxi Province (37.7-37.9°N，109.1-109.3°E) on 
July 7, 2005 to compute the compositions of the pixels by the 
ICA-BSS method and the SPOT5 imagery of the same distinct 
at the same period is used to validate the result. The spatial 
resolution of HYPERION is 30m and that of SPOT5 is 10m. 

After doing corrections to the two imageries so that each 
pixel in HYPERION imagery corresponds to 3*3 pixels in 
SPOT5 imagery, choose an area of 10*10 pixels from the 
HYPERION imagery processed and run the algorithm of two 
components to each pair of two pixels. Therefore each pixel 
has to do 99 times of BSS and the result is averaged. The result 
of vegetation proportions in all pixels is shown in Fig. 5(a). 

To validate the result of HYPERION, we also calculate the 
proportion of vegetation in each of the 10*10 pixels by using 
the SPOT5 imagery data. The result of SPOT5 is shown in Fig. 
5(b). 

The result shows that the vegetation and soil proportion 
inversed by BSS is close to the result of the SPOT5 imagery. 
The errors are due to the following reasons: (a) the error caused 
by the process of geometry correction; (b) the components in 
some pixels are quite different from those in other pixels. The 
latter causes the invalidation of the algorithm of two 
components on these pixels. 

V. CONCLUSIONS 
This paper presents an ICA-based BSS algorithm to 

separate component information including their spectrum and 
proportions in the mixed pixels from hyperspectral imagery  

 
(a)                                                 (b) 

Figure 6. The proportion of vegetation inversed by ICA-BSS in HYPERION 
image (a).For comparison, the proportion of vegetation in SPOT5 image (b). 

data. The simulation shows that this method is robust and can 
be effectively implied on real hyperspectral imagery. The real-
hyperspectral-image experiment demonstrates that the result by 
BSS is close to the result obtained from an imagery of higher 
resolution. However the relative error for the experiment is 
about 20%, which is difficult to satisfy the request of 
pplication. It is not only because of the error caused by the 
process of corrections, but also due to the problem existing in 
the BSS method itself. The accuracy of the method is affected 
when the components in some pixels are inhomogeneous. 
Therefore the algorithm needs further improving to reduce the 
error. 
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