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Abstract—Mixed pixel separation has always been a hotspot issue
of quantitative remote sensing and is especially important for
hyperspectral imagery. A new method based on independent
component analysis is proposed in this paper to blind separate
component information including the signature and the weight
from the spectrum of mixed pixels. The extra information is
obtained from the statistical characters of the signatures. To
evaluate the performance of the algorithm some computer
numerical simulations are conducted and a method to choose a
best band coverage of the spectrum using for blind signal
separation is proposed. Finally the algorithm is applied on the
HYPERION imagery of Henshan, Shanxi Provience and the
result showed that the method is effective.
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1. INTRODUCTION

The obstacle to precisely getting the ground information
from remote sensing images is the widely existing mixed pixels
[1]. Unfortunately, due to the high spectral resolution and the
relatively low spatial resolution of hyperspectral imaging
sensors, most hyperspectral pixel is possible to be mixed by
several substances [2]. So it becomes so useful to do the mixed
spectral separation that more ground information can be gained
from the hyperspectral data, which is also a difficulty in the
field of hyperspectral remote sensing. This paper focuses on
solving the problem by introducing a new method called
independent component analysis based blind signal separation
algorithm (ICA-BSS).

ICA-BSS is based on the linear spectral mixing model that
the signature matrix of the pixels can be expressed by the
product of the weight matrix and the signature matrix of the
components. Its purpose is to simultaneously get the two
matrixes while only the signatures of the pixels are given,
which is accomplished by using the statistical character of the
signatures [3-6].

The main contents of this paper are as follows. Section 2
introduces the idea of the proposed ICA-BSS approach.
Section 3 conducts computer simulations to validate the
algorithm. Section 4 applies the algorithm on real hyperspectral
imagery. Finally, section 5 concludes some remarks.
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II.  BLIND SIGNAL SEPARATION BASED ON INDEPENDENT
COMPONENT ANALYSIS (ICA-BSS)

Suppose the band number of the hyperspectral data is M,
the number of the components is N and the number of the
mixed pixels is J (J=N). For simplicity, we further suppose that
J=N or this can be achieved by principle component analysis
(PCA). Suppose the spectral information of the pixels is

expressed by the matrix X, ,, , of which the data in a row is the

spectrum signature data of a pixel; A,,, is the component

proportion matrix of the pixels, of which the data in a row is
the proportions of the N components in a pixel; and

Syur = (8,8,,,8,) is the signature matrix of the
components, of which the data in a row is the spectrum
signature data of a component. If the signatures of the N pixels

are linearly mixed by the signature of N components, we have
the equation as follows:

Xyrr = Ay Syur 1)

If the matrix X is linear transformed by W, further
supposing W = A™', then the resulting matrix WX is actually
the component signature matrix . Thus, the main task of BSS
is to find the required W, which is accomplished by making use
of the statistical character of the linear transformed matrix WX.

The Central Limit Theorem tells that the distribution of a
sum of independent random variables tends forward a Gaussian
distribution under certain conditions. Thus, the row vectors of
X usually have distributions that are closer to Gaussian than
those of §. Denote the linear transformed matrix
byY=WX=WAS , let Z=WA , thenY = ZS , which means
that each row vector y,of Y is a linear combination of the row

vectors §; of § with weights given by z, . Since a linear

combination of § is more Gaussian than S, y,is more Gaussian
than any of the s, , and becomes least Gaussian when it in fact

equals one of the s, . Therefore, the required W is taken when it

maximizes the non-Gaussianity of the linear trans-formed
matrix ¥ [4].

The non-Gaussianity of the probability density function
(pdf) of a random variable could be described by kurtosis or
negentropy. The kurtosis of a random variable y is defined by
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where E

kurt(y) = E{y4}—3(E{y2})2
expectation; kurt = 0 for Gaussian pdf, kurt > 0 for super-
Gaussian pdf, kurt <0 for sub-Gaussian pdf. The negentropy of
y is defined by J(y)=H(y,,,)—H(y) where y,, is a
Gaussian random variable of the same variance as y and H

represents the entropy H(y)= —If(y) log f(y)dy ; the

fundament for negentropy is that a Gaussian variable has the
largest entropy among all random variables of equal variance.

represents the

The fast fixed-point algorithm using negentropy is chosen
to implement BSS. The algorithm is as follows [5]:

1. Center and whiten the matrix X

2. Randomly choose an initial mixing matrix W and
orthogonalize it as in step 4.

3. Forevery i=1,..N, let w’ = E{ Xg(w/ X )}-E{g (/X )jw,

4. Do a symmetric orthogonalization of the matrix W
byWw =(ww) wr

5. Ifnot converged, go back to step 3

The function g commonly has two forms:
g,(u) =tanh(au) , where 1<qs<2 is some suitable constant;

g,(w)=uexp(—u’/2) . Here we choose g, to do the later
work.

Several preconditions are needed to make sure the
algorithm run well: (1) the signature of the pixels is linearly
mixed by the signature of the components and the matrix A is
constant, (2) the components must be statistically independent,
(3) the probability density functions (pdf) of the component
signatures must be non-Gaussian, at most one signature of the
components is Gaussian.

It is important to note that due to the property of neg-
entropy that it is scale-invariant, i.e., multiplication of a
random variable by a constant does not change its negentropy,
if W is a solution, AW is also a solution where A is a constant
diagonal matrix, which means that the amplitude of the
component signature is uncertain if only the negentropy
information is used. Fortunately, by adding the constraint that

the sum of each row in A4 =(W*)71 :(A*W)f1 (where W' is
the actual solution) must equal to unity, the problem can be
easily solved. In more details, it is done by first expressing the
matrix (AW )" as:

-1 -1 -1
11 1IN A] 1 Cl ]A] 1 Cl A’\’AA’\’A’\’

(AW)' =w'at=| + S R 6]
A e\, Ay

1
NN NN 1 Gy

C,
C
,N) is the element of W™ and then

solving the equationsc A+ +c Ak =1s--wrcy AT+t ey A7 =1
*
for Ay, ..., A

where ¢;(i,j =1,...

*
NN *
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III. THE COMPUTER NUMERICAL SIMULATION

In order to quantitatively evaluate the effectiveness of ICA-
based blind signal separation, some computer numerical
simulations are conducted in this section to separate two or
more components from the hyperspectral data. The spectral
data of grass, soil, some minerals and water for the experiment
is obtained from the spectral library of ENVI. The band
coverage of the spectral signatures is chosen from 0.4um to
2.56um and the spectral data is interpolated with a step size of
0.001pm.

A.  Separation of two components

The spectral signatures of grass and soil are used in the
simulation of two components. Suppose one mixed pixel is
composed of 20% of grass and 80% of soil and the other is
composed of 90% of grass and 10% of soil, the signatures of
them are shown in Fig. 1.

After the signatures of two pixels are simulated, I[CA-BSS
is performed on them to get the signatures of the components
and their corresponding proportions in the two pixels.
Comparisons of the retrieved signatures and the original
signatures are shown in Fig. 2 and comparisons of the retrieved
proportions and the actual proportions are shown in table 1.

As shown in Fig. 2, the two curves of the retrieved
signatures are nearly the same as the original curves. Table I
shows that the error of the component proportions retrieved is
less than 2% of the pixel area. Further experiments show that
when the original proportion of the components are changed,
the retrieved signatures remain almost the same and the errors
of the component proportions retrieved maintain small,
concluding that the component proportion has little effect on
the separating result.

It is worth noting that the band coverage of this BSS
experiment is 0.59-2.28um (different from the band coverage
chosen from the spectral library (0.4-2.56pum)), as better results
could be obtained by adjusting the band coverage used. Some
experiments were done to investigate a best band coverage. In
each experiment different band coverage was chosen and the
kurtosis of the signatures of the two components was also
calculated. We discover some relationship between the
inversion error and the difference of the kurtosis of the two
component signatures, which was depicted in Fig. 3.

As shown in Fig. 3, when the difference is large enough,
the error is low and could be restricted within an extent;
additionally, experiment data also show that in most of such
cases, one kurtosis is positive and the other negative and their
values are far from zero. However, when the kurtosis between
the two component signatures has little difference, it becomes
difficult for the algorithm to precisely recover the two
components, and sometimes the inversion error could be very
high. Thus we figure out from these experiments a method for
choosing a best band coverage is to maximize the non-
Gaussianity of the signature of the components in the chosen
spectral coverage and the non-Gaussianity at best to be
different (one is super-Gaussian, and the other sub-Gaussian).
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Figure 1. The spectral curve of two mixed pixels (the first pixel is composed
of 20% of grass and 80% of soil; the second pixel is composed of 90% of grass
and 10% of soil).
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Figure 2. Comparisons of the retrieved signatures and the original signatures.
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Figure 3. The relationship between the relative error and the difference of the
kurtosis of the two signatures.

The ICA-BSS method is based on the statistical character of
the data and thus the sample number may have some effects on
the experiment error. The relationship between the variance of
the recovered and original signatures of the components and
the band number is shown in Fig. 4.
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Figure 4. The relationship between the variance of the recovered and original
signatures of the components and the band number

THE RETRIEVED RESULT OF COMPONENT PROPORTIONS
BY ICA-BSS, COMPARED WITH ORIGINAL DATA.

TABLE L.

Component proportion (%) Pixel I Pixel 11

Original  Retrieved  Original  Retrieved

Grass 20 18.5 90 89.3
Soil 80 81.5 10 10.7

As shown in Fig. 4, as the band number increases from a
small value, the variance decreases sharply in the beginning,
gradually slows down the rate and eventually approaches a
constant.

To know the error sensitivity of the fast fixed-point
algorithm using negentropy, random errors of 5%, 10% and
20% are added to the signature matrix of pixels. Table II shows
the result of ICA-BSS. It is obvious that the method of BSS is
not sensitive with errors; Even if 20% input errors are added,
the inversion error can also be restricted within 10%. As a
result of the influences of random noises, the inversion curves
are filled with random high frequency fluctuations; the
inversion results are obviously improved filtering by B-Spline
function [1].

B.  Separation of more than two components

The spectral signatures of grass, soil, water and some
minerals are used in the simulation of ICA-BSS of N (N=>3)
components. Experiment results show the algorithm also
effective in such cases. Due to the coherence among the
signatures of some components, the inversion error augments

TABLE II. THE INVERSION RESULT OF THE COMPONENT
SIGNATURES WHEN ERRORS ARE ADDED (X REPRESENTS STANDARD
DEVIATION).

Error(%) 100 * Grass signature 100 * Soil signature

Maximum Minimum Average ¢ Maximum Minimum Average o

5 5.1092  0.0006 1.6997 0.037 3.614 0 0.83 0.011
10 8.483 0.002 2.0573 0.063 6.389 0 1.6047 0.04
20 15.727  0.002 3.9966 0.245 17.424  0.002 4.0094 0.253
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Figure 5. The inversion result when the mixed pixels are composed of grass,
soil and water.

as the components increases but is still tolerable. Fig. 5 shows
the inversion result when the mixed pixels are composed of
grass, soil and water.

IV. FIELD VALIDATIONS

It is used in this experiment the HYPERION imagery of the
distinct in Shanxi Province (37.7-37.9°N, 109.1-109.3°E) on
July 7, 2005 to compute the compositions of the pixels by the
ICA-BSS method and the SPOT5 imagery of the same distinct
at the same period is used to validate the result. The spatial
resolution of HYPERION is 30m and that of SPOTS is 10m.

After doing corrections to the two imageries so that each
pixel in HYPERION imagery corresponds to 3*3 pixels in
SPOTS5 imagery, choose an area of 10*10 pixels from the
HYPERION imagery processed and run the algorithm of two
components to each pair of two pixels. Therefore each pixel
has to do 99 times of BSS and the result is averaged. The result
of vegetation proportions in all pixels is shown in Fig. 5(a).

To validate the result of HYPERION, we also calculate the
proportion of vegetation in each of the 10*10 pixels by using
the SPOTS5 imagery data. The result of SPOTS is shown in Fig.
5(b).

The result shows that the vegetation and soil proportion
inversed by BSS is close to the result of the SPOTS imagery.
The errors are due to the following reasons: (a) the error caused
by the process of geometry correction; (b) the components in
some pixels are quite different from those in other pixels. The
latter causes the invalidation of the algorithm of two
components on these pixels.

V. CONCLUSIONS

This paper presents an ICA-based BSS algorithm to
separate component information including their spectrum and
proportions in the mixed pixels from hyperspectral imagery
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(b)

Figure 6. The proportion of vegetation inversed by ICA-BSS in HYPERION
image (a).For comparison, the proportion of vegetation in SPOTS image (b).

data. The simulation shows that this method is robust and can
be effectively implied on real hyperspectral imagery. The real-
hyperspectral-image experiment demonstrates that the result by
BSS is close to the result obtained from an imagery of higher
resolution. However the relative error for the experiment is
about 20%, which is difficult to satisfy the request of
pplication. It is not only because of the error caused by the
process of corrections, but also due to the problem existing in
the BSS method itself. The accuracy of the method is affected
when the components in some pixels are inhomogeneous.
Therefore the algorithm needs further improving to reduce the
error.
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