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A B S T R A C T

Forest aboveground biomass (AGB) assessments are essential for accurate understanding of carbon accounting
under forest disturbance effects and climate change. We mapped AGB data (from 1986 to 2016) by combining
the forest inventories and multisource remotely sensed data, including the Ice, Cloud, and Land Elevation
Satellite data and Landsat dense time series imagery, and L-band Synthetic Aperture Radar (PALSAR) mosaic
data in Guangdong, China. We used random forest (RF) and stochastic gradient boosting (SGB) algorithms to
determine the optimal variables of statistical models for mapping and validation of the AGB purpose. Our results
showed that the Geoscience Laser Altimeter System (GLAS)-based AGB correlated well (R2

adj= 0.89, n=277,
p < 0.001, RMSE=21.24t/ha) with those obtained using the field-based method that used an RF-based ap-
proach, although inevitably, there is a saturation problem. The combined remotely sensed optical and radar
imagery and ancillary data sets for mapping AGB using the RF algorithm yielded a stronger (R2

adj= 0.86,
n= 558, p < 0.001, RMSE=11.35t/ha) linear correlation with those produced using the GLAS waveform data
than that produced using the SGB algorithm. The overall accuracy and Kappa coefficient of mapping forests
based on the PALSAR-forest/non-forest Landsat-based phenology for AGB masking were approximately 92.1%
and 0.83, respectively. Additionally, the total amount of AGB had increased from 1986 to 2016 by 55.9%. The
same increasing trend was observed for total AGB in both mid-subtropical (from 42% to 62%) and south-sub-
tropical (from 38% to 57%) evergreen broadleaved forests, whereas a decreasing trend was witnessed in the
tropical forest, particularly after 2010. There was an upward trend of total AGB among the four economic zones
of Guangdong; the mountainous area had the highest AGB value distribution, accounting for 58%–70%, followed
by the Pearl River Delta region (20%–30%), the western coast of Guangdong (3%–9%), and the eastern coast of
Guangdong (2%–7%). The resulting provincial continuous forest AGB maps will provide a better evaluation of
carbon dynamic in southern China.

1. Introduction

Accurate forest biomass assessments are important for evaluating
forest carbon stocks and terrestrial carbon dynamics (Fang et al., 2001;

Houghton et al., 2009; Le Toan et al., 2011; Tian et al., 2017). Tradi-
tional forest inventories (Lu, 2006) or field-based allometric equations
(Lucas et al., 2006) have been conducted for the calculation of forest
aboveground biomass (AGB). A major barrier to quantifying AGB has
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been identified as being the ground-based inventory that lacks time-
liness and spatial coverage (Lu, 2006), especially for large-scale AGB
measurements. For this reason, remotely sensed data have been widely
applied in detecting forest biomass (Dong et al., 2003; Foody et al.,
2003; Lefsky et al., 2002; Lu, 2006; Lu et al., 2016).

Integration of both optical data (e.g., HJ-1, MODIS, and Landsat)
and radar data (Synthetic Aperture Radar (SAR); e.g., Phased Array L-
band Synthetic Aperture Radar (PALSAR) on the Advanced Land
Observing Satellite (ALOS) satellite) captures more useful information
from canopy cover and canopy structure (Guo et al., 2010; Shen et al.,
2016; Xing et al., 2016). Additionally, full-waveform, large-footprint,
satellite-based Geoscience Laser Altimeter System (GLAS) data (Schutz
et al., 2005) overcomes both the cost intensiveness of airborne LIDAR
(light detection and ranging) data or high-resolution images, and the
spatial limitations of field-based techniques. The GLAS-based waveform
can be used to estimate large-scale forest structures, such as height and
AGB (Chi et al., 2015; Duncanson et al., 2010; Huang et al., 2017;
Lefsky et al., 2005; Mitchard et al., 2012; Saatchi et al., 2011; Simard
et al., 2011; Sun et al., 2008; Yu et al., 2015).

Many studies have found the value of gaining high-quality field
measurements when monitoring and validating AGB (Chen, 2013; Su
et al., 2016; Wulder et al., 2008). A direct geolocation linkage between
the field inventories and GLAS waveforms is the most straightforward
approach to solve the spatially discontinuous GLAS footprints (its
footprints with a nominal diameter of 70m are spaced at 170m along
tracks and tens of kilometers across tracks) (Schutz et al., 2005) and
ultimately estimate AGB (Baccini et al., 2012; Chi et al., 2015, 2017;
Saatchi et al., 2011; Zhang et al., 2014b). Two major field measurement
sources called National Forest Inventory(NFI) (Shen et al., 2016; Zhao
et al., 2012) and Forest Management Planning Inventory (FMPI) (Lei
et al., 2009; Xie et al., 2011) in China can be applied to estimate GLAS
waveform-based AGB, excluding the different resolution sizes of air-
borne LIDAR data (Nelson et al., 2017).

Extrapolating GLAS-based biomass estimates to MODIS has been
successfully utilized over the past few years (Chi et al., 2015; Hu et al.,
2016; Margolis et al., 2015; Su et al., 2016; Zhang et al., 2014b). The
disadvantage of this approach is the mismatch in spatial resolutions
between MODIS and field measurements, and inability to capture multi-
year biomass dynamic changes evaluation. Landsat data of 30m spatial
resolution could match a majority of plots to predict spectrally forest
biomass (Lu et al., 2016; Main-Knorn et al., 2013; Powell et al., 2010);
for example, a study with two cloudless Landsat data from two different
years for GLAS-based AGB extrapolation (Chi et al., 2017). The PALSAR
image pixels are similar to the size of Landsat pixels and plot (Yu and
Saatchi, 2016). The trend is to use multi-sensor remote-sensing systems
integration, including optical, radar, and space-borne LIDAR data (i.e.,
GLAS), in view of the weakness of a single sensor, which indicates the
great potential of GLAS-based forest biomass estimation.

Various approaches could be used to derive GLAS-based AGB from
the field plot observations, including stepwise regression, SR; partial
least-squares regression, PLSR; ordinary least squares, OLS; support
vector regression, SVR; k nearest neighbors, kNN (Duncanson et al.,
2010; Guo et al., 2010; Margolis et al., 2015; Zhang et al., 2014b). SR
provided the widest range of biomass estimates, but with the greatest
uncertainty in overfitting (Chi et al., 2017; Zhang et al., 2014a, b); poor
validation performance of SR and PLSR was found (Zhang et al.,
2014b). Few studies, however, have explored the random forest (RF)
approach in GLAS-derived AGB. RF and stochastic gradient boosting
(SGB) are both nonparametric modeling techniques. RF outperformed
other regression methods (Coulston et al., 2012), although previous
studies looking at individual year continuous models for AGB estima-
tion pointed out that the SGB approach outperformed the RF, or both
approaches showed extremely similar performance (Dube et al., 2014;
Freeman et al., 2015). There has been little direct comparison of RF and

SGB for continuous GLAS waveform-extrapolated footprint AGB.
The specific objectives of the current study were as follows: (ⅰ)

constructing RF-based GLAS waveform-derived AGB model from field
inventory data; (ⅱ) capturing GLAS waveform- extrapolated footprint
AGB to the scene level based on Landsat time-series data (1986–2016)
and PALSAR data (2007–2016); (ⅲ) exploring and validating the ability
of RF and SGB for quantifying AGB; and (ⅳ) identify and map of annual
forests for AGB masking from 1986 to 2016 based on the integration of
the PALSAR-based forest/non-forest (FNF) and Landsat-based phe-
nology variables.

2. Materials and data

2.1. The study area

Guangdong Province (17.97× 104 km2) is located at 20°13′N to
25°31′N and from 109°39′E to 117°19′E (Fig. 1). Most of the areas have
a mid-subtropical or south-subtropical monsoon climate–southern
coastal region being a tropical monsoon climate. Its mean annual pre-
cipitation and temperature ranges from 1300 to 2500mm and 19 to
24 °C, respectively. According to the Chinese climatic zones and geo-
graphic characteristics of forests (Ren et al., 2013), from north to south,
Guangdong Province is divided into three forest zones (Fig. 1(b)): mid-
subtropical typical evergreen broadleaved forest region, south-sub-
tropical monsoon evergreen broadleaved forest region, and tropical
monsoon forest or rainforest region (Zhou et al., 2017). Guangdong has
a wet season from April to September and a dry season from November
to January. February, March, and October are transition months (Wang
et al., 2009). During these months, the wetness conditions can differ
substantially across the province. For example, in March and April, the
northern region is often wet, but the south is dry. In September, the
pattern is reversed. According to the status of economic development,
Guangdong Province has four economic regions, including the Pearl
River Delta economic zone (PRD), the east coast economic zone (East-
ernGD), the west coast economic zone (WesternGD), and the northern
Guangdong mountainous zone (Mountainous). Northern Guangdong is
located in the valley basin and is surrounded by mountains, the PRD
mainly consists of hilly lands and plains, the WesternGD is a large
platform area, and the EasternGD is mostly plains.

2.2. Data acquisition and preprocessing

2.2.1. Forest inventory plots
China has a three-tiered inventory system: the first level is the NFI,

the second level is the FMPI, and the third level is the Forest Operation
Design Inventory (FODI) (Xie et al., 2011). A subcompartment or forest
stand in FMPI is a contiguous trees region that is quite homogeneous or
contains a bunch of forest features, such as species, age, site quality,
average stand height, average stand diameter at breast height, and stem
volume. Two years (2002 and 2007) of NFI data for the entire province
and five years (2005–2009) of subcompartment data (“xiaoban” (XB))
from five cities (Guangzhou, Heyuan, Huizhou, Qingyuan, and Shao-
guan) located within the study area were available for use in this study.
NFI AGB (25.82m×25.82m in size) was calculated from the dominant
trees AGB by using the allometric equations (Shen et al., 2016). Forest
stand (XB) (a range between 0.006 ha and 68 ha in size) AGB was de-
rived from stand volume based on a biomass expansion factor devel-
oped by the Guangdong Provincial Center for Forest Resources Mon-
itoring. GLAS footprints were overlaid onto the subcompartments and
NFI data to derive the field inventory-based AGB (Fig. 2). The overall
data processing and analysis workflow was summarized in Fig. 3.

2.2.2. ICESat GLAS data
The GLAS's laser footprint on the surface is elliptical, with an
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equivalent circular area of 70m in diameter, and the space between
footprints is 172m (Schutz et al., 2005). A detailed description of GLAS
can be found in Schutz et al. (2005) and Harding and Carabajal (2005).
Table 1 lists GLAS waveform parameters that are sensitive to forest
biomass resulting from GLA14 data. The relative heights (rh10 to
rh100) are frequently used as AGB estimation indexes (Hayashi et al.,
2015).

2.2.3. Landsat-based data
We used more than 1000 radiometrically and geometrically cor-

rected Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper plus (ETM+), and Landsat 8 Operational Land Imager (OLI)

images (30m) collected from the USGS/EROS Landsat archive, span-
ning from 1986 to 2016 (Fig. 4). Guangdong province is covered by 12
Landsat path/row tiles (Fig. 1(b)). Our goal was to use the highest
quality cloud-free images; however, about 60 selected images had
substantial (≤50% cloud cover) cloud contamination because of the
lack of better images. Multiple images were composited to remove
cloud and phenology effects (Shen et al., 2016). Landsat 5/7 and
Landsat 8 images were radiometrically and atmospherically calibrated
to surface reflectance based on the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithm (Masek et al., 2006)
and the Landsat 8 surface reflectance code (LaSRC) (Vogelmann et al.,
2017), respectively. ETM+ scan-line-off (SLC) gap filling was con-
ducted based on the gdal_fillnodata tool, which uses an inverse distance
weighting (IDW) interpolation by interpolating the missing values at
gaps using existing values (Alexandridis et al., 2013).

2.2.4. ALOS PALSAR-based data
This study used 25m resolution ALOS PASAR (HH, HV polariza-

tions) mosaic image data sets (off-Nadir 34.3°) from 2007–2010 and
2015–2016; they have been corrected and normalized geometrically
and radiometrically according to topography (Shimada et al., 2014).
We processed the PALSAR data by converting digital number to the
backscatter coefficient in decibels for the HH and HV polarization
components (Shimada et al., 2014). The enhanced Lee filter with a
window size of 5×5 pixels was implemented to reduce speckles. The
variables derived incorporated HH, HV polarizations, HH/HV (ratio),
and HH-HV (difference). The PALSAR data were re-projected with the
GLAS data for matching 70m spatial resolution.

Fig. 2. Boxplot of AGB derived by relating field plots to GLAS footprints
showing the mean (star), median (thick black line), and the lower and upper 25
percentiles (thin lines), and maximum and minimum values (black point).

Fig. 1. Overview of the study area (a), including climatic zone-based forest zones and Landsat footprints intersecting with PALSAR forest/non-forest map at the
spatial resolution of 70m for 2015 in Guangdong (b), the location and numbers of all available GLAS footprints divided by four economic zones (c), and the location,
numbers, and sources of relating the field plots AGB to GLAS footprints (d).
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2.2.5. Auxiliary data
Topography variables (elevation and slope) from the NASA Shuttle

Radar Topographic Mission (SRTM) digital elevation model (DEM) data
were re-projected from 30m resolution to 70m spatial resolution with
nearest neighbor resampling. WorldClim-based bioclimatic variables
(annual mean temperature, annual temperature seasonality, annual
precipitation, and annual precipitation seasonality, 1 km resolution)
were prepared (Hijmans et al., 2005). This study used global land cover
(China’s 30m GlobeLand30, GLC) product with 10 classes of mapping
for the years 2000 and 2010 (Chen et al., 2015). These data were re-
sampled from different resolutions to 70m spatial resolution with
nearest neighbor interpolation to make them consistent with 70m in
diameter of the GLAS footprint.

3. Methodology

3.1. Linking field-based AGB to GLAS waveform parameters

GLAS data acquired during several periods from 2003 to 2009 over

Guangdong was used in the research. To identify and eliminate spurious
GLAS observations due to cloud contamination, terrain effects, and
other factors, we removed GLAS footprints whose slopes were greater
than 10° or were located over a non-forest area based on the MODIS
land cover product (Los et al., 2012). After removal, this study used a
total of 2788 GLAS footprints (Fig. 1(c)), of which 553 could be linked
with field plots (Figs. 1(d) and 2). We used GLAS waveform-based
parameters (Table 1) and plot-based AGB data as the input data in a
random forest regression model to build a GLAS waveform parameters-
based AGB prediction model (50% for training, 276). We then used
GLAS waveform-based AGB models to calculate the remaining foot-
prints.

3.2. Stochastic models

RF and SGB are two ensemble modeling techniques where the forest
consists of a large number of regression trees. An observation passes
down the tree through a series of splits, or nodes, at which a decision is
made as to which direction to proceed based on values of the

Table 1
The commonly used GLAS waveform parameters for predicting forest AGB.

Parameters Definition

rh25, rh50, rh75, rh98 Quartiles heights for waveform energy to reach 25%, 50%,75%, and 98% of total energy starting from the signal end
gamp1, gamp2,…, gamp6 Amplitude of Gaussian peaks in G14 data (amplitude of up to six Gaussians)
gcnt1, gcnt2,…, gcnt6 Centroid range increment for up to six peaks (centroid of the Gaussian fit to the last peak)
gsig1, gsig2,…, gsig6 Sigma of Gaussian fits in G14 product (sigma of up to six Gaussians) standard deviation of the fit
pct_cover The ratio of canopy return energy to the total energy of the waveform
ht Top tree height (the distance between the signal beginning and the last Gaussian peak) from waveform

Fig. 3. Workflow diagram.
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explanatory variables. Ultimately, a terminal node, or leaf, is reached
and a predicted response is given, which is typically the mean of ob-
servations in the terminal node for a continuous response (Freeman
et al., 2015). We used an RF and SGB regression tree implemented via
the ModelMap package (Freeman, 2009) in R (R Development Core
Team, 2008), respectively, to (1) identify important predictor variables
in the optimal approach, (2) model the relationship between the GLAS
waveform parameters and AGB, and (3) apply the model to the re-
maining footprints for deriving AGB as well as generating the GLAS
waveform-extrapolated footprint AGB.

3.2.1. The implementation of RF modeling
Two tuning parameters, such as ntrees and mtry, were required to

implement RF (Freeman et al., 2015). "ntrees" controls the total number
of independent trees, or the number of trees required to stabilize
variable importance and variable interaction (Breiman, 2001; Liaw and
Matthew, 2002). "mtry" controls the number of predictor variables
randomly sampled to determine each split (Freeman et al., 2015). Here,
the RF model had 500 ntrees and a mtry default calculation (the square
root of the total number of predictor variables) used for modeling, in
which each tree was built from one half of the training data's random
sampling (Breiman, 2001). The higher the percent increase in mean
square error (MSE) (PercentIncMSE) and increase in NodePurity (In-
cNodePurity), the stronger the importance of these predictor variables
(Freeman et al., 2015).

3.2.2. The implementation of SGB
Several tuning parameters (shrinkage, bagging fraction, interaction

depth, and number of trees) were required to implement SGB (Freeman
et al., 2015). Like RF, SGB also provides variable importance measures
(Friedman, 2001). An advantage of SGB is that it is not necessary to
preselect or transform predictor variables. Unlike RF, in SGB, the use of
too many trees may lead to overfitting and affect model performance.
To help improve model accuracy, model-fitting parameters were se-
lected (shrinkage: 0.01; n.trees: 2500; v.fold: 1; interaction.depth: 10;
bag.fraction: 0.5; n.minobsinnode: 10) in the current analysis.

Variable selection is based on "variable selection using random
forests" (VSURF) (Genuer et al., 2015). The most important objects are
varselect.thres (VI mean, VI standard deviation), varselect.interp (OOB
error), and varselect.pred (OOB error), which contain the set of vari-
ables selected after the thresholding, interpretation, and prediction
steps, respectively (Genuer et al., 2015). The less important predictor
variables were then removed, and the optimal predictor variables were
selected to produce the final model and predict AGB based on seven
years' field observations-based RF and SGB model. The gbm package
(Ridgeway, 2007) calculates the relative influence of the reduction of
squared error attributable to each variable (decrease in squared error)
(Friedman, 2001, 2002). In this study, we compared the importance
ranking between the RF model and the SGB model based on the optimal
predictor variables and derived the best model for AGB mapping
(Freeman et al., 2015).

Fig. 4. Statistics of the number of Landsat images used by (a)12 paths/rows, (b) 12 months, (c) 3 sensors, and (d) dry season and wet season.
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3.3. Extrapolating GLAS-derived AGB estimates to Landsat and PALSAR
data

Similar to the GLAS waveform parameters modeling for AGB, after
AGB was obtained for footprints, we explored RF and SGB regression
models to extrapolate the AGB from the GLAS footprints to the scene
level based on Landsat, PALSAR and ancillary data sets-based predictor
variables (Appendix Table A1). Since GLAS was not a mapping data, we
produced an annual AGB map with 70m resolution covering the entire
study area (4/5 samples were for training).

3.3.1. Explanatory variables based on image data
Numerous spectral, phenology, climate, topography, land cover type,

texture measurements, and PALSAR polarizations were used for AGB as-
sessment (Appendix Table A1). Spectral indices and tasseled cap trans-
formations (R package RStoolbox, http://bleutner.github.io/RStoolbox)
were acquired from seven years of the best quality wet season/dry season
Landsat imagery that matched with field observations acquisition years.
Dry or wet season normalized difference vegetation index (NDVI) time
series are defined as consisting of near monthly NDVI images from Sep-
tember or October of the previous year, to March or April of the current
year, and March or April to August or September of the current year, re-
spectively (Gessner et al., 2013), based on the feature of local dry and wet
climate (Fig. 4(d), Appendix Table A1). The phenology variables, in-
cluding maximum, mean, median, minimum, range, and standard devia-
tion from time-series NDVI data in the dry season, were then derived to
distinguish forest from crops and grasses based on photosynthetic activity

(Karlson et al., 2015). Only images during the dry season were used be-
cause most of them had little to no cloud cover. We used the gray level co-
occurrence matrix approach (3×3 pixels, offset ([1,1]), and a 32 gray
level quantization) implemented in the R package glcm (Zvoleff, 2015) to
produce eight texture variables from the six Landsat bands. HH, HV, and
HH/HV were also included in the textural analysis.

3.3.2. Model assessment and validation
We conducted the reduced predictor variables data sets for the GLAS

waveform AGB estimation model by using RF modeling. Both RF and
SGB modeling were for a provincial scale AGB extrapolation. Regarding
the GLAS footprints, we assessed the predictive accuracy of the model
based on validation data sets (1/2, 277/553) by OOB predictions on the
training data. Regarding extrapolation, the remaining 20% of the
samples (558) were reserved for imagery extrapolation validation, and
the independent validation data sets approach was based on the data set
in Table 2. We calculated the adjusted R-squared (R2

adj), the root mean
square error (RMSE), the normalized root-mean-square error (NRMSE
%), and the mean absolute error (MAE) to assess the model perfor-
mance. In this study, we validated the linear regression relationships
between the predicted data based on AGB extrapolation results from RF
and SGB and the observed data from GLAS waveform predictions. RF-
based mapping quality was also determined by uncertainty maps de-
rived from calculating the mean, standard deviation, and the coefficient
of variation (CV) for each pixel from the predictions of each of the
independent randomly generated trees from the RF model (Freeman
et al., 2015). The uncertainty was highest when the modeled trees were

Table 2
Validation data set of the imagery extrapolation.

Year 2003 2004 2005 2006 2007 2008 2009

No. of pixels 85 119 75 74 94 91 20
Field plots Obs. AGB(t/ha) 10.9–175.3 4.1–344.0 3.0–337.9 3.2–289.7 3.6–256.6 3.9–371.9 26.1–247.1

Obs. Mean (t/ha) 47.0 48.5 50.1 47.6 46.3 53.9 55.6
RF (reduced) Pred. AGB (t/ha) 28.9–130.3 25.5–171.6 19.6–186.4 19.8–182.9 20.7–161.6 20.4–209.2 33.9–164.5

Pred. Mean (t/ha) 50.2 51.8 51.8 49.1 47.8 54.1 54.6
SGB+RF (reduced) Pred. AGB (t/ha) 25.1–139.2 26.5–151.3 28.0–142.1 27.0–137.6 28.0–149.8 25.9–142.5 34.8–106.7

Pred. Mean (t/ha) 55.2 52.6 65.0 54.4 65.4 65.3 52.2
SGB Pred. AGB (t/ha) 52.3–114.3 78.3–119.8 53.4–113.8 59.3–118.1 55.2–115.0 54.8–111.2 56.8–86.1
(reduced) Pred. Mean (t/ha) 86.9 92.6 83.6 85.2 85.2 83.3 83.3

Fig. 5. Workflow for PALSAR-FNF/Landsat-based forest mapping to mask AGB.
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not in agreement; for example, some trees predicting low AGB when
others predicted high (Freeman et al., 2015). In SGB, the trees were not
independent, thus, the SGB uncertainty map was not included.

3.4. Forest distribution mapping based on Landsat and PALSAR

3.4.1. PALSAR-forest/non-forest(FNF)/Landsat-based forest mapping
The global FNF map was generated by using the region-dependent

threshold of backscatter with an accuracy of more than 84% (http://
www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm). Here, forest was
defined as a unit of land (> 0.5 ha) with forest cover over 10% (FAO,
2012). The FNF image data sets produced from global 25m PALSAR
mosaic products from 2007 to 2010, 2015 (Fig. 1(b)), and 2016 (Fig. 5)
were used. Then, all of the FNF maps were resampled to 70m to match
AGB spatial resolution.

We developed a pixel-based approach to produce annual forest
maps for AGB masking from 1986 to 2016, using the integration of the
PALSAR-based FNF and Landsat images. For example, the highest NDVI
value was used to further differentiate PALSAR-based forests from other
land cover types (Fig. 6). Here, cloud-free wet season Landsat images
were limited, and most of the tree species were considered evergreen.
The maximum NDVI value of dry season Landsat images was NDVImax.

The NDVImax Gaussian kernel density (Silverman,1986) for training
ROIs (2030) of the forest (750 polygons, 7,801,180 pixels), other types
(short for others) (912 polygons, 24,777 pixels), and water (368 poly-
gons, 54,615 pixels) was plotted (Fig. 6). Finally, the threshold (0.645)
of NDVImax (solid line) was used to separate 80% of the forest pixels
from 99% of the others' pixels, and 95% of the forest pixels from 99% of
the water pixels. To reduce speckle noise effects (e.g., salt-and-pepper
noise), we subsequently used a median filter (window size, 5× 5). The
2007 and 2015 PALSAR data were used to detect forest maps before
2007, and from 2011 to 2015, respectively, because there were no long
time series PALSAR data. The hypothesis that the 2007 and 2015
PALSAR data produced the maximum forest area based on the national
forestry yearbook of China (8.27× 106 ha, 9.06×106 ha), respec-
tively, during 1986–2007 and 2011–2015, has been adopted. We used
the PALSAR-FNF/Landsat-based forest mapping algorithm to generate
annual forest maps in 1986–2016 (Fig. 5).

3.4.2. Validation and accuracy assessment of forest maps
We assessed the PALSAR-FNF/Landsat-based forest maps using a

confusion matrix based on the validation plots. We acquired 507 plots
of forests and non-forests based on these materials (Google Earth, NFI,
and subcompartment data in 2007) (Fig. 5).

3.5. Mapping forest biomass

The PALSAR-FNF/Landsat-based annual forest maps provided
baseline forest masks to overlay onto the annual AGB maps to extract
the AGB patterns just for forest pixels (Fig. 5). All of the AGB prediction
maps in different paths/rows were composited after they were re-pro-
jected from the corresponding Universal Transverse Mercator projec-
tion to the latitude/longitude coordinates. The final annual AGB maps
were clipped by the Guangdong Province administrative boundary.

4. Results

4.1. AGB estimates from GLAS waveform parameters

Variable selection based on random forests gives a plot of the results
in four graphs showing numbers of selected variables (Fig. 7). First, the
four variables with negative importance (variables gcnt1, gamp6, gsig5
and gsig6) based on VI mean and VI standard deviation were elimi-
nated. Then, the model with five variables based on OOB error, which

Fig. 6. Density plots of forest/non-forest (water/others) in 2007 PALSAR in the
maximum NDVI during the dry season.

Fig. 7. Variable selection based on random forests for the
GLAS waveform AGB data. The top graphs illustrate the
thresholding for removing negative importance variables
based on VI mean and VI standard deviation; bottom left and
bottom right graphs are associated with interpretation and
prediction showing the number of selected variables based on
OOB error, respectively.
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contained all of the most important variables, was selected. Also, three
variables (gcnt4, gamp3, and pct_cover) were used for the GLAS wa-
veform AGB mapping. Ultimately, the reduced variables for the pre-
diction of GLAS waveform AGB included the following: ht, rh98, gcnt5,
gcnt3, gcnt6, pct-cover, gcnt4, and gamp3 (Fig. 8(a)). The GLAS wa-
veform-derived AGB correlated well with ground-based AGB

(R2
adj = 0.89, RMSE=21.24 t/ha, NRMSE=4.83%, MAE=42.77 t/

ha, p-value < 0.001; Fig. 8(b)).

4.2. PALSAR-FNF/Landsat forest map in Guangdong

Table 3 presents the accuracy assessment of the PALSAR-FNF/
Landsat forest maps with ground truth based regions of interest (ROI).
We used a total of 209 (1,560,236 pixels) ground truth forest polygon
ROIs and 298 (53,065 pixels) non-forest ROIs in 2007 for validation.
The overall accuracy, user accuracy, producer accuracy and Kappa
coefficient for the forest classification was 92.1%, 99.4%, 81.3%, and
0.83 (95% confidence interval (CI): 0.8941, 0.943), respectively. The
assessment results demonstrated that the FNF/Landsat forest map had
reasonably good accuracy.

4.3. Assessment of AGB retrieval performance

Table 4 shows the prediction statistics results from the selected
variables according to RF and SGB. We ranked the predictor variables
on the basis of the PercentIncMSE and IncNodePurity. Through re-
moving the least important predictor variables based on VSURF func-
tion, OOB error was reduced, and 15 variables still remained. The de-
rived reduced variables from a test set with OOB predictions (Fig. 9(a))
included the following: DEM, annual mean temperature (AMT), annual
precipitation (AP), temperature seasonality (TS), precipitation season-
ality (PS), PALSAR HV, slope, EVI, NDMI, the mean and median of dry
season NDVI, TCW, TCG, Landsat SWIR, and SWIR2. Combining the
imagery and other geospatial data estimated AGB yielded a strong
correlation with the GLAS waveform-extrapolated footprint AGB
(R2

adj = 0.858, RMSE=11.35 t/ha, NRMSE=3.22%, MAE=9.02 t/
ha, p-value < 0.001) (Fig. 9 (c)). To make comparisons with RF, we
selected 15 predictor variables in SGB1. Fig. 9(b) indicates that TS, AP,
ndvi_dryrange, slope, elevation, HH, AMT, SWIR1, NIR, HV, SAVI,
NDMI, blue, TCW, and TCB from the entire data sets are ranked high in
predicting AGB, according to the variable relative importance de-
termined by the SGB algorithm. The reduced variables yielded an R2

adj

of −0.0001 and RMSE of 30.1 t/ha, NRMSE of 9.42%, MAE of 43.92 t/
ha, and p-value> 0.001 (Fig. 9(d)). Meanwhile, the comparison of
relative variable importance in RF and SGB2 based on the same reduced
variables was presented in Fig. 10. Based on these variables used in RF,
the AGB estimation of SGB2 was slightly improved (R2

adj = 0.03,
RMSE=29.63 t/ha, NRMSE=8.54%, MAE=25.48 t/ha, p-value <
0.001) compared with that of the SGB1 model using the optimal
variables (Fig. 9(e)).

One pixel per plot for 2003–2009 was prepared for validation,
producing 20–120 reference pixels for predicting AGB (Table 2). The
distribution of the observed and the predicted AGB were shown in
Table 2. The SGB model produced the least accurate results among all of
the methods (Fig. 9). Overall, the RF model was superior to the other
models according to the validation R2

adj and RMSE. Without regard to
some prediction errors, RF-based reduced variables could bring the
most accurate AGB predictions and maps.

The annual AGB maps with 70m resolution were created by using

Fig. 8. Variable importance ranking based on OOB error. The left and right
graphs illustrate the percent increase in mean square error(MSE)
(PercentIncMSE) and increase in NodePurity (IncNodePurity) with the im-
portance of theses predictor variables, respectively (a). The linear relationship
of the RF-based GLAS waveform parameters predicted AGB and the field
measurements-based observed AGB, the red solid line is the prediction curve,
the gray solid line indicates the 95% confidence intervals (CI lines) and the
shaded confidence area for the predictions (b).

Table 3
The accuracy assessment of forest classification in 2007.

Class Ground truth (pixels) Total Classified Pixels User Accuracy (%) Commission Error (%)

F NF

Classification F 1,269,092 178 1,269,270 99.4% 0.58%
NF 291,144 52,887 344,031 88.4% 11.6%

Total ground-truth pixels 1,560,236 53,065 1,613,301
Producer accuracy (%) 81.3% 99.7% Overall accuracy= 92.1%
Omission error (%) 18.66% 0.34% Kappa coefficient= 0.83
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the optimal RF model; for example, the 2010 AGB is shown in Fig. 11.
These figures illustrate the RF-predicted AGB pattern and its corre-
sponding uncertainty. We assume that global land cover(GLC) covering
Guangdong in 2010 represents the ground truth, as seen in Google
Earth photos (Fig. 11). When the CV value was high, the mean of AGB
was low, and the map of RF uncertainty (Fig. 11) highlighted small
anomalous areas of high uncertainty (Freeman et al., 2015; Shen et al.,
2016). We must be very cautious of those locations with high CV values
when using the predicted AGB maps because some trees predict low
AGB and others predict higher AGB.

4.4. Forest AGB estimation in Guangdong Province

We used the GLAS-based biomass estimates to produce annual
provincial AGB maps based on multitemporal Landsat and PALSAR
imagery using the RF algorithm. Thus, accurate estimates of AGB
changes in Guangdong Province from 1986 to 2016 were obtained. The
Gaussian kernel density plot of spatial AGB from 1986 to 2016 are
shown in Fig. 12, an AGB value range of 50–80 t/ha accounts for more
than 50% of forest regions. The estimated total AGB and other statistics
in Guangdong forests from 1986 to 2016 are summarized in Fig. 13(a);
the regional mean AGB had a slight decreasing from 66.084 (t/ha) to
60.312 (t/ha) by −8.7%, and the maximum AGB density ranged from
184.5 to 224.84 (t/ha), the total AGB across Guangdong markedly in-
creased, from 1.54×108 t (1986) to 3.50×108 t (2016), an increase
of 55.9%.

In terms of the climatic zone-based forest zones (Fig. 13(b)), a si-
milar increasing trend was observed for total AGB in both the mid-
subtropical and south-subtropical, that is, an increase from 0.89×108 t
and 0.65×108 t in 1986 to 1.82× 108 t and 1.68×108 t in 2016,
respectively, by 51.2% and 61.1%, accounting for 42–62% and 38–57%
of the total AGB. In the tropical area, AGB decreased sharply from
110,000 t in 1986 to 1526 t in 2016, particularly after 2010. In terms of
the economic zones (Fig. 13(c)), there was an upward tendency among
these four economic zones. Mountainous regions had the highest AGB
range of values–the lowest value being of 1.08×108 t (1986) and the
highest value being 3.05× 108 t (2014). Mountainous accounted for
58–70% of the total AGB, followed by the PRD region (20–30%),
western coast of Guangdong (3–9%), and eastern coast of Guangdong
(2–7%). The estimated total AGB were from 0.32× 108 t to 1.1× 108 t
in PRD, 0.42× 107 t to 2.8×107 t on the eastern coast of Guangdong,
and 0.5× 107 t to 4.0× 107 t on the western coast of Guangdong.
Moreover, the total AGB trend on the western coast of Guangdong and
PRD closely corresponded with the trend of the mountainous area,
which had a tendency of increasing relatively slowly to the maximum,
then going down, exhibiting differences from the eastern coast of
Guangdong. The derived AGB values in the aforementioned three re-
gions increased rapidly from 1986–1990, and then decreased with
slight fluctuations until 2008, especially in the mountainous area, and
followed by a gradual increase up to 2014, unlike the eastern coast of
Guangdong, which dropped until 1990. An increase then occurred until
2009, with another decline in 2008, and finally, a sharp decline after
2014.

5. Discussion

5.1. GLAS-based waveform predictions validation

We prepared GLAS waveform parameters as input parameters in the
GLAS-based AGB estimation. After the variable importance estimation,
the optimal variables were determined. We found that ht (top tree
height from waveform) and rh98 (quartiles heights for waveform en-
ergy to reach 98% of total energy starting from signal end) have a re-
latively strong relationship with GLAS-based AGB for evergreen
broadleaved forest and rainforest, which agreed with previous research
that suggested that relative heights (h75 or h100) were positively
correlated with AGB estimates (Chi et al., 2017; Guo et al., 2010). Rh98
(similar to h100) was useful for estimating AGB in Guangdong.

The model-based approach can be applied in regions of enough
numbers of field observations to GLAS footprints, providing an oppor-
tunity to estimate AGB in homogeneous areas where field inventories
are sparse (Healey et al., 2012). Chi et al. (2015) reported that the
logarithm function models were explained well by the adjusted R2

range of 0.62 to 0.76 in the needleleaf, broadleaf, and mixed forests in
the subtropical and tropical zones, including Guangdong. Zhang et al.
(2014a,b) used SR, PLSR, and SVR for GLAS-based AGB estimation at
field-measured points and reported an R2 of 0.82 and an RMSE of
32.69Mg/ha for the final chosen bootstrapping SVR in northeastern
China. The adjusted R2 of our study reached 0.89 (RMSE=21.24 t/ha,
NRMSE=4.83%). Obviously, the results from the RF model are su-
perior to the above-mentioned final performances. However, there is a
saturation problem, because the RF model overestimated low values
and underestimated high values (Fig. 8(b)). Generally, the RF method
can reduce errors while making more accurate GLAS-based AGB pre-
dictions.

5.2. Making comparisons between forest AGB estimates and existing results

5.2.1. Chosen predicted variables and validation
A variety of spectral variables sensitive to AGB were included. The

relative importance of reduced variables in the RF model explained
more than that of SGB (Fig.9) because the SGB model is quite sophis-
ticated since changing any settings can affect the optimal values of
other settings (Freeman et al., 2014). Vegetation phenology is highly
sensitive to climate change. Phenology also controls vegetation feed-
back to the climate system by influencing the seasonality of albedo,
surface roughness length, canopy conductance, and fluxes of water,
energy, CO2 and biogenic volatile organic compounds (Richardson
et al., 2013). Inclusion of phenology variables generally improved AGB
predictions, especially two variables: the median and mean of dry
season NDVI, which were chosen in the optimal RF model (Fig. 11). The
relative importance of the AGB predictions (Fig. 9(a)) shows that the
time series dry season NDVI contains phenology and soil moisture
seasonal variations to distinguish between tree cover and background
(Karlson et al., 2015). We only used NDVI to characterize AGB during
the dry season, but other spectral indices or data from all of the seasons
could be used; for example, tasseled cap greenness and wetness can be
used because of their stronger relationship to AGB (Fig. 9(a)).

Table 4
Comparisons of AGB assessment results using RF and SGB.

Statistical methods Input data set No. of variables (Reduced) R2
adj RMSE (t/ha)

RF Elevation, ndvi_drymedian, ndvi_drymean, AMT, AP, TS, PS, HV, slope, EVI, SWIR1, SWIR2, NDMI,
TCW, TCG

15 0.858 11.35

SGB1 TS, AP, ndvi_dryrange, slope, elevation, HH, AMT, SWIR1, NIR, HV, SAVI, NDMI, Blue, TCW, TCB 15 −0.0001 30.10
SGB2 Elevation, ndvi_drymedian, ndvi_drymean, AMT, AP, TS, PS, HV, slope, EVI, SWIR1, SWIR2, NDMI,

TCW, TCG
15 0.0307 29.63
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Fig. 9. Variable importance ranking based on OOB error in RF(a), and the relative influence of the reduction of squared error attributable to each variable (decrease
in squared error) in SGB1 (b), respectively; relationship between GLAS waveform- extrapolated footprint aboveground biomass (AGB) (predicted) and RF-based GLAS
waveform parameters predicted AGB (observed) based on RF (c), SGB1 (d) and SGB2 (e) models, red solid line is the prediction curve, grey solid line indicates the
95% confidence intervals (CI-lines) and the shaded confidence area for the predictions (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article).
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Understanding biomass-climate relationships is important for bio-
mass and carbon estimations from the past to future since climate is
evolving. Although climatic variables have been used in biomass pre-
dictions (Poudel et al., 2011; Zhang et al., 2014b), we only know a little
about how climate affects biomass variations(Stegen et al., 2011). Cli-
mate was a key influencer in the Guangdong AGB estimation, especially
for temperature seasonality, the annual mean temperature, and the
annual precipitation, among all of the climatic variables (Fig.9(a)).

Terrain topography in Guangdong is quite complex, and results in the
GLAS waveform being stretched (Pang et al., 2011). It was concluded
that the regression approach-based SRTM range is one of the out-
standing variables for AGB estimation (Boudreau et al., 2008). Chi et al.
(2015) pointed out that the bias between biomass estimates under a low
slope (< 20°) and field-based biomass is smaller than that of those with
a high slope (> 20°) or all of the slopes. Here, chosen GLAS footprints
falling on slopes less than 10° to estimate AGB were considered ap-
propriate. Wu et al. (2016) suggested that the RF algorithm with R2

(0.63) and RMSE (26.44 t/ha) exhibited the best performance and was
better than stochastic gradient boosting, when using Landsat-based
AGB estimation in northwestern Zhejiang Province. Chi et al. (2017)
revealed that Landsat, GLAS, and DEM-based AGB estimations based on
the RF approach had an R2 of 0.72 and an RMSE of 25.24Mg/ha. Our
results within an R2

adj of 0.858 and an RMSE of 11.35 t/ha induced by

Fig. 10. A comparison of variable importance between the RF and the SGB.

Fig. 11. The predicted AGB pattern map in 2010 and its corresponding uncertainties depicted by the statistics of mean, coefficients of variation and standard
deviations combined with GLC in 2010 in Guangdong.

Fig. 12. Kernel density distribution pattern of AGB estimated from 1986 to
2016; points in different colors in the legend represent lines in different years.
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Fig. 13. Total AGB changes in Guangdong from 1986 to 2016,
and the statistical parameters (mean, standard deviation, max-
imum and minimum values) of the predicted AGB maps, the
dashed line is the prediction curve against the time, the orange
pink solid line indicates the 95% confidence intervals (CI lines)
and the shaded confidence area for the predictions (a); Changes
in total AGB over three climate zone-based forest zones (b);
Changes in total AGB over the four economic zones, including
the Mountainous area, Pearl River Delta region, eastern coast of
Guangdong and western coast of Guangdong, and the dotted line
represents a decrease in the Mountainous region in 2008 (c).
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the RF model are superior to the above-mentioned studies, and that of
using the SGB model.

5.2.2. Forest classification assessment
Many researchers used the MOD12Q1 global land cover (Chi et al.,

2015; Hu et al., 2016; Su et al., 2016; Zhang et al., 2014b) and Landsat
classification product (Chi et al., 2017; Margolis et al., 2015; Nelson
et al., 2017) in place of forest. However, in view of different definitions
and mapping means of land cover (Healey et al., 2012), there are
striking differences among land cover maps (Fritz and See, 2008). The
overall accuracy and Kappa coefficient of our findings at 92.1% and
0.83, respectively, were acceptable when long-time forest classification
maps were generated based on a pixel-based algorithm.

5.2.3. Forest AGB estimation and comparisons
Referring to the RF-based modeling results, it appears that the mean

AGB approximated 69.73 and 74.53 t/ha in 2007 and 2011, respec-
tively, in northern Guangdong. However, the RF model-based AGB as-
sessment within the VCT-based forest type in northern Guangdong
derived from Landsat, PALSAR, and NFI showed a mean AGB of 59.61
and 60.48 t/ha, respectively (Shen et al., 2016). The results of this study
are much higher than those of the former estimation results and a mean
AGB of 59.92 and 64.56 t/ha from China NFI, respectively. The pre-
dicted total AGB of 3.5×108 t in 2016 in the entirety of Guangdong
was lower than that of the AGB data (5.944× 108 t) from the Guang-
dong Forestry and Ecological Situation Bulletin. Such discrepancies are
attributable to different forest definition used in the two cases. Du et al.
(2014) used MODIS and NFI to estimate the entire Guangdong AGB,
and the underestimated biomass distribution was found between 0 and
40.4Mg/ha.

5.3. Major drivers for forest AGB dynamics

Although several data sets support an overall forest AGB increase in
Guangdong, the direction and magnitude of the forest AGB change is
still unknown because of the large uncertainties in remote sensing-de-
rived estimates, which can be explained by human activities and cli-
mate effects. The local government proposed an afforestation plan of
“Green Guangdong” in 1985 and achieved it in 1993; in 1994 and 2005,
the government encouraged the development of sustainable and
modern forestry (Ren et al., 2013), which might be one of the causes of
the significant increase in forest biomass density in Southeast China
(including Guangdong) from 1985 to 2005 (Piao, 2005). The AGB de-
crease in 2008 (Fig. 13(c), dotted line) in the mountainous area and
eastern coast of Guangdong can be explained by freezing rain and snow
disasters in 2008, resulting in a loss of one-tenth of China’s forests
(Stone, 2008). The major land-use changes, such as an increase in
tropical economic forests (e.g., eucalyptus plantations and rubber trees)
(Zhu, 2017) and the frequent typhoons and droughts (Wang et al.,
2016; Zhang et al., 2017), directly result in the tropical forest having
large variations before 2010, especially in the Leizhou Peninsula (the
largest eucalyptus distribution region lies at the southern part of
mainland China) (Fig. 1). The Leizhou Peninsula has experienced gra-
dual forest loss, water shortages, and ecosystem degradation biodi-
versity loss (Zhang et al., 2017)—for instance, a 60 year drought dis-
aster occurred in 2015, which may explain the sharply decreasing AGB
up to 2016 (Fig. 13(b)).

However, most mountainous areas in northern Guangdong have had
slow economic development and have retained natural forests and
plantations to provide important ecological protection in Guangdong,
suggesting why northern Guangdong has the highest forest AGB
(Fig. 13(c)) (Ren et al., 2013). Since the early 1980s, the Pearl River
Delta has witnessed a rapid development of population and economy,
large plantations have quickly replaced natural forests, and the mature
plantations have led to a higher forest AGB stock (Ren et al., 2013),
lower than that of northern Guangdong (Fig. 13(c)). Similarly, western

Guangdong conducted massive reclamation and establishment of
commercial plantations, bringing many eucalyptus forests; the coastal
shelter belt of eastern Guangdong planted water conservation forest
(Ren et al., 2013). Young plantations occupying the large areas in the
western and eastern regions may make forest AGB storage low (Ren
et al., 2013). Additionally, the establishment of using native broad-
leaved plantations excluding eucalyptus and pine plantations con-
tributed to high forest AGB storage (Ren et al., 2013). Thus, forest
management for high forest AGB and carbon stock should be examined.

5.4. Uncertainty in detection of AGB

The main reason for uncertainty for total forest AGB detection was
different sources and spectral discrepancy in various tree species, which
ultimately affected the production of land-cover maps (Zheng et al.,
2008). Using some of the GLAS waveform parameters to relate AGB was
more accurate than using an allometric equation to estimate AGB by
airborne LIDAR-based canopy height estimated from the GLAS wave-
form(Hayashi et al., 2013). The GLAS footprints were from 2003 to
2009; however, the field plots were surveyed from 2005–2009. The
time discrepancy between the field plots (2005) and the observations
(2003 and 2004), and the inconsistent plot sizes, can result in errors in
AGB estimation. The next-generation space-borne LIDAR systems will
have an important role in future forest resource monitoring(Hayashi
et al., 2015; Healey et al., 2012; Margolis et al., 2015).

6. Conclusions

In the study, the estimation method of forest AGB distribution in
Guangdong Province was developed through the combination of mul-
tisource data sets, namely the RF-based GLAS waveform-derived AGB
model and the RF-based GLAS waveform- extrapolated footprint AGB
model. The final two models were used to effectively construct GLAS
waveform-based AGB prediction framework. As validated by field in-
ventory data and uncertainty maps, the estimated models generated
reliable forest AGB maps with some basic prediction error. By in-
tegrating phenology variables and climate variables, we obtained much
interannual and seasonal, or spatio-temporal dynamics of forest AGB.
Although combining multiple sources (field measurements, remote
sensing information and the optimal machine learning algorithms) to
develop models has some uncertainties, findings from this study will
provide a basis for exploring the performance of forest AGB change
detection in subtropical and tropical regions, which can help policy-
makers and the remote-sensing community understand forest biomass
carbon stocks associated with afforestation and deforestation in plan-
tations and rainfall forests under the impacts of forest disturbance and
climate change.
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Appendix A

Appendix B. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.agrformet.2018.04.005.
The supplementary materials provide one data sheet for each initially collected plot measurment and GLAS waveform parameter values

(“mydata1_AGB_GLASwaveforms.csv”), another data sheet for GLAS-derived AGB and various values (“mydata2_AGB_variables.csv”), also the RF
and SGB models’ running R code (“LUT_1200432016_reduce.csv” is a “raster look up table” to map RF-based AGB map).
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Table A1
Summary of the six types of predictor variables including speCctrum, phenology, climate, topography, texture, and PALSAR components for AGB estimation models.

Type Variable Formula Ref. Description

Spectrum R,G,B, NIR,SWIR1,SWIR2 Landsat 5,7,8 bands
NDVI (NIR−R)/(NIR+R) (Rouse et al., 1973) Normalized Difference

Vegetation Index
NDMI (NIR− SWIR)/(NIR+ SWIR) (Gao, 1996) Normalized Difference Moisture

Index
EVI 2.5×(NIR− R)/(NIR+6×R

− 7.5×B+1)
(Huete et al., 2002) Enhanced vegetation index

SAVI (1+ 0.5)× (NIR-R)/
(NIR+R+0.5)

(Huete, 1988) Soil-adjusted Vegetation Index

Phenology (dry season
NDVI)

Maximum, mean, median, minimum, range,
standard deviation

(Gessner et al., 2013) Cumulative NDVI

Climate surfaces (Worldclim) AMP (Hijmans et al., 2005) Annual Mean Precipitation (mm)
PS Precipitation Seasonality

(Coefficient of Variation)
AMT Annual Mean Temperature (℃)
TS Temperature Seasonality

(standard deviation×100)
Tasseled cap transformations TCB, TCG, TCW (Baig et al., 2014; Crist and

Cicone, 1984; Huang et al.,
2002)

Brightness, Greenness, Wetness
(L5, L7, L8)

Topography Elevation, slope
Land cover type LC (Chen et al., 2015) GlobeLand30
Texture (window sizes

3× 3pixels)
mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment,
correlation

(Haralick et al., 1973) GLCM texture measures

PALSAR HH, HV, HH/HV PALSAR components

W. Shen et al. Agricultural and Forest Meteorology 259 (2018) 23–38

36

https://doi.org/10.1016/j.agrformet.2018.04.005
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0005
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0005
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0005
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0010
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0010
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0010
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0010
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0015
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0015
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0020
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0020
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0020
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0025
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0030
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0030
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0030
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0035
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0035
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0040
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0040
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0040
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0045
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0045
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0045
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0050
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0050
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0050
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0055
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0055
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0060
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0060
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0060
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0060
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0065
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0065
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0070
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0070
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0070
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0070
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0075
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0075
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0080
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0080
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0085
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0085
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0090
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0090
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0090
http://CRAN.R-project.org/.eafreeman@fs.fed.us
http://CRAN.R-project.org/.eafreeman@fs.fed.us
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0100
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0100
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0100
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0105
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0105
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0105
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0110
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0110
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0115
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0115
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0120


in the comparison of global land cover for different applications. Global Change Biol.
14, 1057–1075.

Gao, B.C., 1996. NDWI - a normalized difference water index for remote sensing of ve-
getation liquid water from space. Remote Sens. Environ. 58, 257–266.

Genuer, R., Poggi, J.M., Tuleau-Malot, C., 2015. VSURF: An R Package for Variable
Selection Using Random Forests. R J, vol. 7. pp. 19–33.

Gessner, U., Machwitz, M., Conrad, C., Dech, S., 2013. Estimating the fractional cover of
growth forms and bare surface in savannas. A multi-resolution approach based on
regression tree ensembles. Remote Sens. Environ. 129, 90–102.

Guo, Z., Chi, H., Sun, G., 2010. Estimating forest aboveground biomass using HJ-1 sa-
tellite CCD and ICESat GLAS waveform data. Sci. China Earth Sci. 53, 16–25.

Haralick, R.M., Shanmuga, K., Dinstein, I., 1973. Textural Features for Image
Classification. Ieee T Syst Man Cyb Smc3. pp. 610–621.

Harding, D.J., Carabajal, C.C., 2005. ICESat waveform measurements of within-footprint
topographic relief and vegetation vertical structure. Geophys. Res. Lett. 32.

Hayashi, M., Saigusa, N., Oguma, H., Yamao, Y., Yamagata, Y., Takao, G., 2013. Applying
ICESat/GLAS Data to Estimate Forest Aboveground Biomass on Hokkaido, Japan. In
AGU Fall Meeting Abstracts.

Hayashi, M., Saigusa, N., Yamagata, Y., Hirano, T., 2015. Regional forest biomass esti-
mation using ICESat GLAS spaceborne LiDAR over Borneo. Carbon Manage. 6, 19–33.

Healey, S.P., Patterson, P.L., Saatchi, S., Lefsky, M.A., Lister, A.J., Freeman, E.A., 2012. A
sample design for globally consistent biomass estimation using lidar data from the
Geoscience Laser Altimeter System (GLAS). Carbon Balance Manage. 7, 1–10.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high re-
solution interpolated climate surfaces for global land areas. Int. J. Climatol. 25,
1965–1978.

Houghton, R.A., Hall, F., Goetz, S.J., 2009. Importance of biomass in the global carbon
cycle. J. Geophys. Res. Biogeosci. 114, 1–13.

Hu, T., Su, Y., Xue, B., Liu, J., Zhao, X., Fang, J., Guo, Q., 2016. Mapping global Forest
aboveground biomass with spaceborne LiDAR, optical imagery, and Forest inventory
data. Remote Sens. 8, 565.

Huang, C., Wylie, B., Yang, L., Homer, C., Zylstra, G., 2002. Derivation of a tasselled cap
transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 23,
1741–1748.

Huang, H., Liu, C., Wang, X., Biging, G.S., Chen, Y., Yang, J., Gong, P., 2017. Mapping
vegetation heights in China using slope correction ICESat data, SRTM, MODIS-de-
rived and climate data. ISPRS J. Photogramm. 129, 189–199.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of
the radiometric and biophysical performance of the MODIS vegetation indices.
Remote Sens. Environ. 83, 195–213.

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25,
295–309.

Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., Mattsson, E., 2015. Mapping
tree canopy cover and aboveground biomass in Sudano-Sahelian Woodlands using
Landsat 8 and random Forest. Remote Sens. 7, 10017–10041.

Le Toan, T., Quegan, S., Davidson, M.W.J., Balzter, H., Paillou, P., Papathanassiou, K.,
Plummer, S., Rocca, F., Saatchi, S., Shugart, H., Ulander, L., 2011. The BIOMASS
mission: mapping global forest biomass to better understand the terrestrial carbon
cycle. Remote Sens. Environ. 115, 2850–2860.

Lefsky, M.A., Cohen, W.B., Harding, D.J., Parker, G.G., Acker, S.A., Gower, S.T., 2002.
Lidar remote sensing of above-ground biomass in three biomes. Global Ecol.
Biogeogr. 11, 393–399.

Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Espirito-Santo, F.D.,
Hunter, M.O., de Oliveira, R., 2005. Estimates of forest canopy height and above-
ground biomass using ICESat. Geophys. Res. Lett. 32.

Lei, X.D., Tang, M.P., Lu, Y.C., Hong, L.X., Tian, D.L., 2009. Forest inventory in China:
status and challenges. Int. For. Rev. 11, 52–63.

Liaw, A., Matthew, W., 2002. Classification and regression by randomForest. R. News 2,
18–22.

Los, S.O., Rosette, J.A.B., Kljun, N., North, P.R.J., Chasmer, L., Suarez, J.C., Hopkinson,
C., Hill, R.A., van Gorsel, E., Mahoney, C., Berni, J.A.J., 2012. Vegetation height and
cover fraction between 60A degrees S and 60A degrees N from ICESat GLAS data.
Geosci. Modell. Dev. 5, 413–432.

Lu, D.S., 2006. The potential and challenge of remote sensing-based biomass estimation.
Int. J. Remote Sens. 27, 1297–1328.

Lu, D.S., Chen, Q., Wang, G.X., Liu, L.J., Li, G.Y., Moran, E., 2016. A survey of remote
sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J.
Digit. Earth 9, 63–105.

Lucas, R.M., Cronin, N., Lee, A., Moghaddam, M., Witte, C., Tickle, P., 2006. Empirical
relationships between AIRSAR backscatter and LiDAR-derived forest biomass,
Queensland, Australia. Remote Sens. Environ. 100, 407–425.

Main-Knorn, M., Cohen, W.B., Kennedy, R.E., Grodzki, W., Pflugmacher, D., Griffiths, P.,
Hostert, P., 2013. Monitoring coniferous forest biomass change using a Landsat tra-
jectory-based approach. Remote Sens. Environ. 139, 277–290.

Margolis, H.A., Nelson, R.F., Montesano, P.M., Beaudoin, A., Sun, G., Andersen, H.-E.,
Wulder, M.A., 2015. Combining satellite lidar, airborne lidar, and ground plots to
estimate the amount and distribution of aboveground biomass in the boreal forest of
North America. Can. J. For. Res. 45, 838–855.

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F.,
Kutler, J., Lim, T.K., 2006. A Landsat surface reflectance dataset for North America,
1990-2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72.

Mitchard, E.T.A., Saatchi, S.S., White, L.J.T., Abernethy, K.A., Jeffery, K.J., Lewis, S.L.,
Collins, M., Lefsky, M.A., Leal, M.E., Woodhouse, I.H., Meir, P., 2012. Mapping tro-
pical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon:
overcoming problems of high biomass and persistent cloud. Biogeosciences 9,
179–191.

Nelson, R., Margolis, H., Montesano, P., Sun, G., Cook, B., Corp, L., Andersen, H.-E.,
deJong, B., Pellat, F.P., Fickel, T., Kauffman, J., Prisley, S., 2017. Lidar-based

estimates of aboveground biomass in the continental US and Mexico using ground,
airborne, and satellite observations. Remote Sens. Environ. 188, 127–140.

Pang, Y., Lefsky, M., Sun, G., Ranson, J., 2011. Impact of footprint diameter and off-nadir
pointing on the precision of canopy height estimates from spaceborne lidar. Remote
Sens. Environ. 115, 2798–2809.

Piao, S., 2005. Forest biomass carbon stocks in China over the past 2 decades: estimation
based on integrated inventory and satellite data. J. Geophys. Res. 110.

Poudel, B.C., Sathre, R., Gustavsson, L., Bergh, J., Lundström, A., Hyvönen, R., 2011.
Effects of climate change on biomass production and substitution in north-central
Sweden. Biomass Bioenergy 35, 4340–4355.

Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B.,
Ohmann, J.L., 2010. Quantification of live aboveground forest biomass dynamics
with Landsat time-series and field inventory data: a comparison of empirical mod-
eling approaches. Remote Sens. Environ. 114, 1053–1068.

R Development Core Team, 2008. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-
07-0. http://www.R-project.org.

Ren, H., Chen, H., Li, L., Li, P., Hou, C., Wan, H., Zhang, Q., Zhang, P., 2013. Spatial and
temporal patterns of carbon storage from 1992 to 2002 in forest ecosystems in
Guangdong, Southern China. Plant Soil 363, 123–138.

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M.,
2013. Climate change, phenology, and phenological control of vegetation feedbacks
to the climate system. Agric. For. Meteorol. 169, 156–173.

Ridgeway, G., 2007. Generalized Boosted Models: A Guide to the Gbm Package. Update 1.
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems

in the Great plains with ERST. NASA Spec. Publ. 351, 309–317.
Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R.,

Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M., Morel, A.,
2011. Benchmark map of forest carbon stocks in tropical regions across three con-
tinents. PNAS 108, 9899–9904.

Schutz, B.E., Zwally, H.J., Shuman, C.A., Hancock, D., DiMarzio, J.P., 2005. Overview of
the ICESat mission. Geophys. Res. Lett. 32.

Shen, W.J., Li, M.S., Huang, C.Q., Wei, A.S., 2016. Quantifying live aboveground biomass
and forest disturbance of mountainous natural and plantation forests in Northern
Guangdong, China, based on multi-temporal Landsat, PALSAR and field plot data.
Remote Sens. 8, 595.

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R.,
2014. New global forest/non-forest maps from ALOS PALSAR data (2007–2010).
Remote Sens. Environ. 155, 13–31.

Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. CRC press.
Simard, M., Pinto, N., Fisher, J.B., Baccini, A., 2011. Mapping forest canopy height

globally with spaceborne lidar. J. Geophys. Res. 116.
Stegen, J.C., Swenson, N.G., Enquist, B.J., White, E.P., Phillips, O.L., Jorgensen, P.M.,

Weiser, M.D., Mendoza, A.M., Vargas, P.N., 2011. Variation in above-ground forest
biomass across broad climatic gradients. Global Ecol. Biogeogr. 20, 744–754.

Stone, R., 2008. Natural disasters - ecologists report huge storm losses in China’s forests.
Science 319, 1318–1319.

Su, Y., Guo, Q., Xue, B., Hu, T., Alvarez, O., Tao, S., Fang, J., 2016. Spatial distribution of
forest aboveground biomass in China: estimation through combination of spaceborne
lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 173,
187–199.

Sun, G., Ranson, K., Kimes, D., Blair, J., Kovacs, K., 2008. Forest vertical structure from
GLAS: an evaluation using LVIS and SRTM data. Remote Sens. Environ. 112,
107–117.

Tian, X., Yan, M., van der Tol, C., Li, Z., Su, Z., Chen, E., Li, X., Li, L., Wang, X., Pan, X.,
Gao, L., Han, Z., 2017. Modeling forest above-ground biomass dynamics using multi-
source data and incorporated models: a case study over the qilian mountains. Agric.
For. Meteorol. 246, 1–14.

Vogelmann, J., Khoa, P., Lan, D., Shermeyer, J., Shi, H., Wimberly, M., Duong, H., Huong,
L., 2017. Assessment of forest degradation in Vietnam using Landsat time series data.
Forests 8, 238.

Wang, D., Wang, X., Liu, L., Wang, D., Huang, H., Pan, C., 2016. Evaluation of CMPA
precipitation estimate in the evolution of typhoon-related storm rainfall in
Guangdong, China. J. Hydroinform. 18, 1055–1068.

Wang, H., Mo, J., Lu, X., Xue, J., Li, J., Fang, Y., 2009. Effects of elevated nitrogen de-
position on soil microbial biomass carbon in major subtropical forests of southern
China. Front. For. China 4, 21–27.

Wu, C., Shen, H., Shen, A., Deng, J., Gan, M., Zhu, J., Xu, H., Wang, K., 2016. Comparison
of machine-learning methods for above-ground biomass estimation based on Landsat
imagery. J. Appl. Remote Sens. 10, 035010.

Wulder, M.A., White, J.C., Fournier, R.A., Luther, J.E., Magnussen, S., 2008. Spatially
explicit large area biomass estimation: Three approaches using forest inventory and
remotely sensed imagery in a GIS. Sensors-Basel 8, 529–560.

Xie, X., Wang, Q., Dai, L., Su, D., Wang, X., Qi, G., Ye, Y., 2011. Application of China’s
national Forest continuous inventory database. Environ. Manage. 48, 1095–1106.

Xing, Y., Qiu, S., Ding, J., Tian, J., 2016. Estimation Of Regional Forest Aboveground
Biomass Combining ICESat-GLAS Waveforms And HJ-1A/HSI Hyperspectral
Imageries. ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences XLI-B7. pp. 731–737.

Yu, Y., Saatchi, S., 2016. Sensitivity of L-Band SAR backscatter to aboveground biomass of
global forests. Remote Sens. 8, 522.

Yu, Y., Yang, X., Fan, W., 2015. Estimates of forest structure parameters from GLAS data
and multi-angle imaging spectrometer data. Int. J. Appl. Earth Obs. Geoinf. 38,
65–71.

Zhang, H., Cheng, W., Qiu, X., Feng, X., Gong, W., 2017. Tide-surge interaction along the
east coast of the Leizhou Peninsula, South China Sea. Cont. Shelf Res. 142, 32–49.

Zhang, J., Huang, S., Hogg, E.H., Lieffers, V., Qin, Y., He, F., 2014a. Estimating spatial
variation in Alberta forest biomass from a combination of forest inventory and remote

W. Shen et al. Agricultural and Forest Meteorology 259 (2018) 23–38

37

http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0120
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0120
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0125
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0125
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0130
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0130
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0135
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0135
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0135
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0140
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0140
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0145
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0145
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0150
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0150
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0155
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0155
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0155
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0160
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0160
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0165
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0165
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0165
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0170
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0170
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0170
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0175
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0175
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0180
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0180
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0180
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0185
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0185
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0185
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0190
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0190
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0190
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0195
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0195
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0195
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0200
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0200
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0205
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0205
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0205
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0210
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0210
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0210
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0210
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0215
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0215
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0215
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0220
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0220
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0220
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0225
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0225
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0230
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0230
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0235
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0235
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0235
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0235
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0240
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0240
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0245
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0245
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0245
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0250
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0250
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0250
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0255
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0255
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0255
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0260
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0260
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0260
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0260
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0265
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0265
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0265
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0270
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0270
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0270
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0270
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0270
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0275
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0275
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0275
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0275
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0280
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0280
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0280
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0285
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0285
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0290
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0290
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0290
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0295
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0295
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0295
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0295
http://www.R-project.org
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0305
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0305
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0305
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0310
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0310
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0310
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0315
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0320
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0320
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0325
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0325
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0325
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0325
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0330
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0330
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0335
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0335
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0335
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0335
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0340
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0340
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0340
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0345
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0350
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0350
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0355
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0355
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0355
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0360
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0360
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0365
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0365
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0365
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0365
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0370
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0370
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0370
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0375
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0375
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0375
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0375
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0380
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0380
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0380
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0385
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0385
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0385
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0390
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0390
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0390
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0395
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0395
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0395
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0400
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0400
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0400
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0405
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0405
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0410
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0410
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0410
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0410
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0415
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0415
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0420
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0420
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0420
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0425
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0425
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0430
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0430


sensing data. Biogeosciences 11, 2793–2808.
Zhang, Y.Z., Liang, S.L., Sun, G.Q., 2014b. Forest biomass mapping of northern eastern

china using GLAS and MODIS. Ieee J-Stars 7, 140–152.
Zhao, F., Guo, Q., Kelly, M., 2012. Allometric equation choice impacts lidar-based forest

biomass estimates: a case study from the Sierra national Forest. CA. Agric. For.
Meteorol. 165, 64–72.

Zheng, D.L., Heath, L.S., Ducey, M.J., 2008. Satellite detection of land-use change and
effects on regional forest aboveground biomass estimates. Environ. Monit. Assess.

144, 67–79.
Zhou, L., Wu, J., Mo, X., Zhou, H., Diao, C., Wang, Q., Chen, Y., Zhang, F., 2017.

Quantitative and detailed spatiotemporal patterns of drought in China during 2001-
2013. Sci. Total Environ. 589, 136–145.

Zhu, H., 2017. The tropical forests of Southern China and conservation of biodiversity.
Bot. Rev. 83, 87–105.

Zvoleff, A., 2015. Glcm: Calculate textures from grey-level co-occurrence matrices
(GLCMs) in R. http://CRAN.R-project.org/package=glcm.R.

W. Shen et al. Agricultural and Forest Meteorology 259 (2018) 23–38

38

http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0430
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0435
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0435
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0440
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0440
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0440
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0445
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0445
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0445
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0450
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0450
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0450
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0455
http://refhub.elsevier.com/S0168-1923(18)30127-8/sbref0455

	Annual forest aboveground biomass changes mapped using ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for Guangdong province, China
	Introduction
	Materials and data
	The study area
	Data acquisition and preprocessing
	Forest inventory plots
	ICESat GLAS data
	Landsat-based data
	ALOS PALSAR-based data
	Auxiliary data


	Methodology
	Linking field-based AGB to GLAS waveform parameters
	Stochastic models
	The implementation of RF modeling
	The implementation of SGB

	Extrapolating GLAS-derived AGB estimates to Landsat and PALSAR data
	Explanatory variables based on image data
	Model assessment and validation

	Forest distribution mapping based on Landsat and PALSAR
	PALSAR-forest/non-forest(FNF)/Landsat-based forest mapping
	Validation and accuracy assessment of forest maps

	Mapping forest biomass

	Results
	AGB estimates from GLAS waveform parameters
	PALSAR-FNF/Landsat forest map in Guangdong
	Assessment of AGB retrieval performance
	Forest AGB estimation in Guangdong Province

	Discussion
	GLAS-based waveform predictions validation
	Making comparisons between forest AGB estimates and existing results
	Chosen predicted variables and validation
	Forest classification assessment
	Forest AGB estimation and comparisons

	Major drivers for forest AGB dynamics
	Uncertainty in detection of AGB

	Conclusions
	Acknowledgements
	mk:H1_37
	Supplementary data
	References




