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A B S T R A C T   

Forest disturbances can have broad impact on the climate, local environment, and the regeneration of the forest 
ecosystem. The nature and magnitude of such impact is largely driven by disturbance intensity. In this study, by 
integrating field plot measurements collected by the Forest Inventory and Analysis program with time series 
Landsat observations, we produced the first set of annual forest disturbance intensity map products quantifying 
the percentage of basal area removal (PBAR) at the 30-m resolution for the conterminous United States (CONUS) 
from 1986 to 2015. The derived map products revealed that during the 30-year study period, the annual average 
PBAR values of all disturbed pixels across CONUS ranged from 66% to 70%, and the proportion of those pixels 
having stand-clearing disturbances ranged from 40% to 58%. High disturbance intensities were concentrated in 
the Southeastern states from Texas to Virginia and along the Pacific coast and the Cascades in the West. At the 
national scale, the annual mean PBAR and proportion of stand clearing area (PSCA) values both appeared to 
follow second order trajectories, with increasing trends at the beginning, decreasing trends towards the end, and 
turning points around 2003. Overall, there is a net increase of 2% in PBAR and 3% in PSCA from 1986 to 2015. 
The temporal trends of PBAR and PSCA were also investigated at state and ecoregion levels, with substantial 
differences found among many states and ecoregions. While states and ecoregions generally follow second order 
trajectories, the majority had increasing trends throughout much of the study period, reflecting higher distur
bance intensities during the later years compared to earlier years. Large increase (>10%) in PBAR was seen in 
several states (e.g., Virginia, Arkansas, and Minnesota) and ecoregions (e.g., Northern Minnesota Wetlands); 
however, large decreases (>10%) in PBAR were not observed in any states, and were seen in only one ecoregion, 
the Blue Mountains in the southeast. The disturbance intensity maps are available from a web portal of the Oak 
Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) at https://doi.org/10.3334/ORNL 
DAAC/2059.   

1. Introduction 

Forests are shaped by many processes, including both disturbance 
history and post-disturbance succession. Recently, anthropogenic and 
natural disturbances have changed the forests on Earth on an unprece
dented scale (Pickett and White, 2013; Turner et al., 1993). During the 
last 300 years, human activities, including timber removals and defor
estation for agricultural use, have been estimated to affect over 50% of 
global land surface and permanently cleared over 25% of forests (Hurtt 
et al., 2011; Vitousek et al., 1997). Natural disturbances (e.g., wind, fire, 
insects, hurricane and disease), as part of the natural forest development 

cycle, also modify forest compositions and affect the cycle of regenera
tion and regrowth (Chambers et al., 2007; Seidl et al., 2017; Sieg et al., 
2017). Disturbance-induced forest changes have consequently affected 
climate, biodiversity and other ecosystem services provided by forests 
(Thom and Seidl, 2016). 

Since the 1970s, Landsat has been providing multi-decades obser
vations over the Earth's surface (Cohen and Goward, 2004). The opening 
of the Landsat archive for free access in 2008 (Woodcock et al., 2008) 
marked a new era for utilizing Earth observation data to document 
changes to terrestrial ecosystems at large space scales, including 
developing novel methods in forest disturbance mapping (Hansen and 
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Loveland, 2012). Many algorithms have been developed to estimate the 
occurrence location, extent, time and duration of disturbances by 
detecting changes in spectral trajectory from Landsat time series (DeV
ries et al., 2015; He et al., 2011; Hermosilla et al., 2015; Huang et al., 
2010a; Kennedy et al., 2010; White et al., 2017; Zhu et al., 2019b). 
Forest disturbance products have been produced at national to global 
scales (Hansen et al., 2013; White et al., 2017; Zhao et al., 2018). 

Given these rapid developments, however, much less progress has 
been made in quantifying a key aspect of forest disturbance using remote 
sensing data – disturbance intensity. Disturbance intensity immediately 
affects the changes of forest structure, composition (Panfil and Gullison, 
1998; Parrotta et al., 2002), subsequent forest productions (Egnell, 
2017), and plant litter input. The changes caused by disturbances, 
dictated by their intensities lead to long-term impacts on forest carbon 
storage (Scheller et al., 2011), soil carbon and nutrient stocks (Akselsson 
et al., 2007; Mushinski et al., 2017; Olsson et al., 1996; Yanai et al., 
2003), and microbial communities in adjacent water environment (Reid 
et al., 2010). Knowing how disturbance intensity changes over time and 
how forests respond to historical disturbances will help in evaluating 
disturbance risk, preparing for future disturbances, and minimizing 
their negative effects (Buma and Schultz, 2020; Thom and Seidl, 2016). 

Ground-based quantification of disturbance intensity requires field 
measurements made before and after a disturbance event. Such repeat 
measurements are mandated by the National Forest Inventories (NFIs) 
programs of increasingly more countries. The US Forest Service (USFS) 
Forest Inventory and Analysis (FIA) program is one of the oldest and 
largest NFI program (Bechtold and Patterson, 2005; Gelfand et al., 2013; 
McRoberts et al., 2005). While repeat FIA measurements allow for the 
estimation of attribute changes over time (Bechtold and Patterson, 2005; 
Fridman et al., 2014), the spatial distribution of FIA plot designs cannot 
always provide the spatial resolution necessary for all applications 
(McRoberts and Tomppo, 2007; Tomppo et al., 2008). Tracking annual 
forest disturbances with strategic national field inventories alone is 
challenging given the highly localized and clustered nature of many 
natural disturbance processes in space and time (Bradford et al., 2010). 
Further, tree regrowth rates after disturbance can be very rapid in areas 
with high productivity or management, confounding field data collected 
at 5-year or longer intervals. Image-based remote sensing can provide 
spatially contiguous and frequent observations useful to detect distur
bance location, extent, and severity over large areas. 

In previous studies, disturbance magnitude has been calculated as 
the difference of spectral reflectance ratio based indices between pre- 
and post-disturbance observations (Huang et al., 2010b; Kennedy et al., 
2010). While the calculated disturbance magnitude can be used as the 
approximation to the disturbance severity or intensity (Huang et al., 
2015; Ling et al., 2016; Senf and Seidl, 2021), this spectral change 
cannot be directly used to measure the biophysical consequences of a 
disturbance event. The quantification of a disturbance's impact on bio
physical variables such as changes in biomass, basal area, and height 
would require accurate reference data from pre- and post-disturbance 
events. Following the concept that harvest intensity can be estimated 
as changes in basal area and canopy cover (Healey et al., 2006; Hill 
et al., 2015), Tao et al. (2019) demonstrated the feasibility of combining 
Landsat time series and multi-temporal field measurements to quantify 
disturbance intensity in North and South Carolina for over 30 years. 
Here disturbance intensity, measured by changes in basal area, is a 
combination of both natural disturbance severity and anthropogenic 
activity intensity (e.g., logging intensity). Building on that study, the 
objective of this research was to test the applicability of the approach 
over larger geographies, then use it to generate yearly maps of forest 
disturbance intensity in the conterminous United States (CONUS) from 
1986 to 2015. The resultant maps provided spatially explicit quantita
tive estimates of changes in basal area following each disturbance event. 
We examined the spatial patterns and temporal trends of disturbance 
intensity across CONUS at both the state and the level-3 ecoregion level 
(U.S. Environmental Protection Agency, 2010). The derived map 

products will not only provide a more precise quantification of forest 
disturbances across the US, but they can also be used to derive a more 
accurate assessment of the impacts of those disturbances on ecological 
functions. 

2. Methodology 

2.1. Data 

2.1.1. Landsat time series stacks 
Landsat time series stacks (LTSS) (Huang et al., 2009) were used to 

detect disturbance occurrence in this study. LTSS were formed by ready- 
to-use Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI images that 
were acquired from leaf-on season with minimum cloud cover (<5%) 
and shadows, which had been geometrically and radiometrically cor
rected using the Landsat Ecosystem Disturbance Adaptive Processing 
System (LEDAPS) to produce surface reflectance data (Huang et al., 
2009; Masek et al., 2006). The cloud fraction of each Landsat image was 
calculated based on a cloud and shadow mask generated using a cloud 
masking algorithm developed by Huang et al. (2010b). If multiple im
ages with less than 5% cloud cover were available, the image with least 
cloud cover was selected. If there are multiple images with similarly low 
cloud cover, we selected the image acquired on the Julian day of year 
(DOY) nearest to the center of the DOY range for this Worldwide 
Reference System-2 (WRS2) scene. When no cloud-free image could be 
found for a specific year, multiple partially cloudy (<50%) images from 
that leaf-on season were used to create an image composite that had less 
than 5% cloud cover (Zhao et al., 2018). The compositing algorithm first 
selected the image having the most clear-view pixels as the composite 
base image. If a pixel in the base image was not acceptable due to cloud/ 
shadow or other data quality issues, a clear-view observation at that 
pixel location was selected from other available images based on a 
maximum normalized temperature compositing rule, which was then 
used to replace the pixel in the base image (Zhao et al., 2018). More 
details on the image selection and compositing methods have been 
provided by Schleeweis et al. (2016) and Zhao et al. (2018). 

A total of 434 WRS2 scenes were required to provide a near complete 
coverage of CONUS. An annual LTSS was constructed for each scene, 
which comprised of about 30 cloud-free or near cloud-free images – one 
per year for the years from 1986 to 2015. 

2.1.2. FIA plot data 
Reference disturbance intensity data was derived from the FIA 

database. FIA has over 377,000 plots, with roughly 1/3 forest sample 
plots, distributed across the nation (Smith, 2002). Starting in 2000, FIA 
plots were divided into 5 panels in the eastern states (see northern re
gion and southern region states in Table 1) and 10 panels in the western 
states (see interior west region and Pacific northwest region states in 
Table 1) with the intention to measure one panel per year (Gillespie, 
1999). The panel design samples 14–20% of eastern plots and 10% of 
western plots each year with the full state remeasured inventories 
completed roughly every 5 years for eastern states and 10 years for 
western states. A panel corresponds to a measurement year of the 5-year 
or 10-year cycle. After the last panel is measured, the cycle is repeated. 
For example, for most eastern states, if the plots from panel 1 were 
measured in 2010, each of the remaining four panels (2–5) would be 
assigned to the four succeeding years (2011–2014) and plots from panel 
1 will be measured again in 2015 (Brand et al., 2000). Additionally, each 
panel's design ensures a statistically balanced sample of plots that can 
estimate forest inventory variables annually for the entire state. During 
each field visit, the FIA crew measures the diameter at breast height (d.b. 
h) for timber species, the diameter at the stem root collar (d.r.c) for 
woodland species. Trees ≥12.7 cm d.b.h./d.r.c located within subplots 
and trees <12.7 cm d.b.h./d.r.c located within microplots are measured 
for other attributes. See FIA Field Guide (2019) for explanation of var
iables and the plot design. Repeat measurements at the same plot on 
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different dates can be used to calculate changes in volume or basal area 
resulting from disturbances that occurred between those two dates 

Not all FIA plots were used to calculate reference disturbance in
tensity. Several criteria were applied to identify plots to be used as 
reference for this study. First, we excluded plots established in the pe
riodic FIA phase prior to 1998, to ensure plot data was collected with the 
national standardized plot design and data collection procedures. Sec
ond, a plot was used if it had experienced disturbance between two 
consecutive annual inventories. This was determined by collocating 
exact locations of FIA plots with the 30 m VCT annual disturbance 
products. This ensures the measurements of sample trees pre- and post- 
disturbance are available for estimating the change. Third, a plot was 
used if it was not located on a forest patch edge, for the following rea
sons: (1) if a plot is located across disturbed patch edges, impact of 
disturbance on the trees within and outside the patch will be distinct, 
which can lead to underestimation of plot disturbance intensity (Tao 
et al., 2019); (2) when plots are linked to pixels, geolocation mismatch 
could introduce large uncertainties, given the up to ±30-m positional 
accuracy of Landsat terrain-corrected Level 1 (L1T) images (Storey et al., 
2014; Storey et al., 2016). If four subplots are highly heterogeneous, 
both forest attribute change and its corresponding spectral change 

should be different across subplots. Due to the offset of pixel location, 
the forest attribute change of a plot could be associated with deviated 
spectral characteristics. The mismatch has been demonstrated to have a 
strong impact on the prediction accuracy of forest attributes, such as 
biomass (Frazer et al., 2011) and forest area (McRoberts et al., 2010). 
The calculation of reference disturbance intensity will be described in 
section 2.2.3. 

2.2. Method 

2.2.1. Method overview 
The mapping algorithm used in this study generally follows the 

approach developed by Tao et al. (2019), which was used to generate 
forest disturbance intensity maps for North and South Carolina. In this 
study, we tested the approach over seven states in the Southeast region 
and over four FIA regions (Table 1) before applying it to the entire 
conterminous US (CONUS). Below we provide a brief summary of this 
algorithm, as more details have been provided by Tao et al. (2019). Here 
we focus more on the handling of reference data across CONUS, the 
development of disturbance products for CONUS, evaluation of the 
mapping approach at different scales (state, regional, and national), and 

Table 1 
Distributions and year range of FIA plots used in this study by state and FIA regions.  

FIA Region State Abbreviations Plot Counts Area (km2) Measurement Year Range 

Southern Region 
(2575 plots) 

Alabama AL 326 135,765 1999–2017 
Arkansas AR 253 137,732 1999–2017 
Florida FL 120 170,312 2001–2016 
Georgia GA 319 153,910 1999–2017 
Kentucky KY 41 104,656 1999–2017 
Louisiana LA 212 135,659 2000–2017 
Mississippi MS 171 125,438 2006–2017 
North Carolina NC 246 139,391 1999–2017 
Oklahoma OK 34 181,037 2007–2015 
South Carolina SC 293 82,933 1999–2016 
Tennessee TN 98 109,153 1999–2017 
Texas TX 232 695,662 2002–2017 
Virginia VA 230 110,787 1999–2017 

Northern Region 
(483 plots) 

Connecticut CT 1 14,357 2009–2015 
Delaware DE 4 6446 2007–2017 
Illinois IL 2 149,995 2008–2017 
Indiana IN 5 94,326 2002–2016 
Iowa IA 1 145,746 2007–2012 
Kansas KS 1 213,100 2004–2009 
Maine ME 102 91,633 2001–2017 
Maryland MD 4 32,131 2006–2013 
Massachusetts MA 1 27,336 2011–2015 
Michigan MI 88 250,487 2001–2017 
Minnesota MN 122 225,163 2000–2017 
Missouri MO 57 180,540 2002–2017 
Nebraska NE 2 200,330 2008–2016 
New Hampshire NH 7 24,214 2004–2016 
New Jersey NJ 1 22,591 2005–2009 
New York NY 8 141,297 2003–2017 
North Dakota ND 0 183,108 N/A 
Ohio OH 21 116,098 2002–2017 
Pennsylvania PA 26 119,280 2002–2017 
Rhode Island RI 0 4001 N/A 
South Dakota SD 22 199,729 2001–2017 
Vermont VT 2 24,906 2008–2016 
Wisconsin WI 0 169,635 N/A 
West Virginia WV 6 62,756 2004–2014 

Interior West Region 
(220 plots) 

Arizona AZ 31 295,234 2001–2017 
Colorado CO 9 269,601 2003–2016 
Idaho ID 72 216,443 2004–2017 
Montana MT 89 380,831 2003–2017 
New Mexico NM 11 314,917 2010–2017 
Nevada NV 1 286,380 2004–2014 
Utah UT 7 219,882 2000–2017 
Wyoming WY 0 253,335 N/A 

Pacific Northwest Region 
(276 plots) 

California CA 61 423,967 2001–2017 
Oregon OR 129 254,799 2001–2017 
Washington WA 86 184,661 2002–2016  
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assessment of the quality of the resultant CONUS-wide disturbance in
tensity products and the spatial-temporal patterns revealed by those 
products. The mapping approach consists of four steps (Fig. 1). The first 
was to determine the disturbance year and calculate change of spectral 
indices from Landsat time series. The second was to derive reference 
disturbance intensity from repeat measurements on field inventory 
plots. The reference data were then used to train the Random Forest 
algorithm (Breiman, 2001) to establish the relationship between the 
spectral changes and basal area change. The random forest algorithm 
has been widely used to extrapolate plot measurements of biophysical 
variables or classification schemes of training samples to large areas 
with remote sensing data (Belgiu and Drăguţ, 2016; Pal, 2005). Finally, 
the model was applied to Landsat images covering the entire CONUS to 
produce annual wall-to-wall maps. The following sections describe the 
details in each step. 

2.2.2. Disturbance product and spectral change metrics from Landsat 
Disturbance maps used in this study were derived from Landsat time 

series stacks (LTSS) (Huang et al., 2009) using the vegetation change 
tracker (VCT) algorithm (Huang et al., 2010b). These products show the 
location and year of disturbances mapped at the 30 m resolution. For 
each disturbance detected, 10 magnitude measures, including 5 delta 
variables and 5 normalized ratio variables (Table A1), were calculated 
using several spectral bands and indices to represent the spectral change 
of the pre- and post-disturbance events as described in Tao et al. (2019). 
The indices include NDVI, normalized burn ratio (NBR), normalized 
difference moisture index (NDMI), IFZ, and forest z-score (FZ) calculated 
using Landsat bands 4 (B4FZ) and 5 (B5FZ) (Huang et al., 2010b). These 
were calculated using Eqs. (A1-A6) and were used as predictor variables 
modeling disturbance intensity. 

2.2.3. Reference disturbance intensity derivation 
Reference disturbance intensity data was derived from repeat mea

surements at the same FIA plots on different dates. Given the 5- to 10- 
year intervals between FIA remeasurements, however, changes in total 
basal area between two dates cannot be attributed solely to disturbance 
events. Growth of surviving trees and new trees between the two dates 
also contributes to an increase in basal area of a plot. Therefore, a simple 
difference of total basal area between two measures would include the 
growth, often resulting in an underestimation of the basal area change 
caused by disturbance events (Fig. 2) 

To eliminate the effect of tree growth, each tree record was tracked 
by its sequence number through time. Only trees recorded in the prior 
inventory and absent from the next inventory are assumed to be affected 
or removed by disturbances between the two inventories. The difference 
between basal areas of these trees were then used to calculate the per

centage of basal area removal (PBAR) as a measure of disturbance in
tensity following Eq. (1): 

PBAR =
TBA1 − BA21

TBA1
(1)  

where TBA1 is the total basal area of all live trees at the first time of 
inventory, and BA21 is the total basal area measured at the prior in
ventory of trees alive at both inventories (Fig. 2). Note that the diameter 
measured at the second inventory was not used in the calculation. If we 
replace BA21 with TBA2, the total basal area of all live trees at the second 
time of inventory, which is larger than BA21 because it includes the 
growth of existing trees (trees a and b in Fig. 2) and new trees (trees e,f 
and g in Fig. 2), this will lead to an underestimation of PBAR. PBAR 
ranges from zero to one, with zero indicating no basal area removed, and 
one indicating 100% basal area removed by disturbance. Note in this 
study PBAR measures the loss of basal area from all possible causes, not 
differentiating disturbance types. 

After the calculation of PBAR for each disturbed plot, the calculated 
value was evaluated by visually examining available Google Earth (GE) 
high-resolution imagery to eliminate potential discrepancies between 
this value and the GE imagery. Plots with large discrepancies (e.g. 
calculated PBAR is less than 20% the GE images revealed that a stand- 
clearing event had occurred and vice versa) were removed from the 
reference dataset. During this screening process, all security precautions 
were taken per the FIA agreement, including no exact coordinates were 
used to search for locations on imagery in GE. 

After the screening process (discussed in section 2.1.2 and the pre
vious paragraph), 3554 qualified plot records over CONUS were avail
able for use, with 2575 in the south, 483 in the north, 220 in the Interior 
West, and 276 in the Pacific Northwest (Table 1). Seven states in the 
southeast (NC, SC, GA, TN, MS, AL, FL) contribute 1573 records (about 
44%) to all reference plots. The high density of available reference plots 
in the region is due to both the frequent and intensive timber harvesting 
activities in this part of the country, and the frequency of FIA full panels 
in the east compared to the west. The measurement years of reference 
plots range from 1999 to 2017 and the coverage varies by state, 
depending on the beginning year of transition to the annual inventory 
system of each state. For all the plots that passed the screening, per
centage of PBAR is calculated from pre- and post-disturbance plot 
measurements in the FIA database, to characterize the impact of 
disturbance on the forest's biophysical properties, thus providing refer
ence data to disturbance intensity modeling (Healey et al., 2006; Tao 
et al., 2019). 

2.2.4. Algorithm assessment and national mapping 
The effectiveness of the disturbance mapping approach had been 

Fig. 1. Key steps of the disturbance intensity mapping framework.  
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previously demonstrated in only two states (Tao et al., 2019). To eval
uate its robustness more comprehensively, we first tested it in each of 
the seven southeastern states (NC, SC, GA, TN, MS, AL, and FL). We then 
tested this approach with a model for each of the FIA regions (Table 1) as 
well as a single model for the entire CONUS. Our goal was to demon
strate the feasibility of using a single model to map disturbance intensity 
across CONUS to avoid issues that could arise from using multiple 
models: 1) some states or regions did not have enough reference plots for 
model development (Table 1), and 2) discontinuities could exist be
tween adjacent states or regions if they were mapped using different 
models. 

To evaluate the model for each geographic area, 10-fold cross vali
dations were performed which randomly partitioned the reference plot 
samples into 10 subsets. Ten different models were built, each trained 
with 9 of the 10 subsets and tested with the remaining subset such that 
each of the 10 subsets was used once as a validation set. All 10 sets of 
validation results were then averaged to produce a single estimation of 
model performance, measured by the coefficient of determination (R2, 
Eq. (2)) and Root Mean Square Error (RMSE, Eq. (3)), 

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2 (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(yi − ŷi)
2

n

√

(3)  

where n is number of samples, yi is the PBAR of the ith reference plot, ŷi 
is the predicted PBAR of the ith plot, and y is the mean PBAR for all the n 
sample plots. 

7 southeastern states, 4 FIA regions and 1 CONUS models were 
evaluated using this approach. Individual state-level models were not 
built or assessed for the remaining 41 states, most of which have less 
than 100 usable reference plots (Table 1). Because the FIA plots used in 
this study were selected to address the issues described in section 2.2.3, 
the resultant validation results likely will be different from those derived 
using a design-based approach (Olofsson et al., 2014; Stehman and 
Czaplewski, 1998), especially in regions where the number of reference 
plots is less than optimal. However, because the validation plots were 
not used in training and had little or no spatial autocorrelation with the 
training plots (FIA plots are located at least 5 km apart from each other), 
those validation results should provide a reasonably realistic assessment 
of the models and derived data products. After the model accuracy 
assessment (see discussion in 4.1), the national model was used to 
produce wall-to-wall annual disturbance intensity maps for CONUS from 
1986 to 2015, where each annual map shows the PBAR values for dis
turbances from a specific year. In addition to the cross validation 
described in section 2.2.4, the derived national maps were also evalu
ated by examining these annual maps over many locations across 
CONUS where pre- and post-disturbance Google Earth images are 

available. The high spatial resolution of Google Earth imagery made it 
possible to determine disturbance intensity qualitatively by examining 
the pre- and post-disturbance images visually (see Fig. 5). In total 320 
random locations were examined, with 80 in each of the four FIA re
gions. In each region, points were drawn from two categories, 40 from 
pixels mapped as low-medium intensity class (0– 80%), and 40 from 
pixels mapped as high intensity class (>80%). The mapped class at each 
location was compared to the GE imagery pre- and post-disturbance 
conditions to identify obvious errors (actual low-medium estimated as 
high, actual high estimated as low-medium). 

2.2.5. Spatial/temporal analysis of the disturbance intensity products 
The annual disturbance intensity maps derived above provided an 

opportunity to examine the spatial-temporal patterns of disturbance 
intensity across CONUS over multiple decades. To evaluate the spatial 
patterns, we aggregated the 30 annual maps into a time-integrated map 
that records the PBAR of the largest disturbance. This time-integrated 
map provides a picture of the spatial variability of PBAR at the 30 m 
spatial resolution. From the annual maps, we also calculated the mean 
PBAR values at both the state scale and the Environmental Protection 
Agency (EPA) level 3 ecoregion scale. EPA ecoregions are defined as 
areas that share regional similarities in the mosaic of biotic, abiotic, 
terrestrial, and aquatic ecosystem components (Omernik, 1987, 2004), 
and therefore natural forests within an ecoregion are expected to 
develop and grow in similar environments. The level 3 ecoregions (EPA, 
2006) were used in this study because they appeared to be more 
appropriate than those at other levels for illustrating the spatial- 
temporal patterns of forest disturbance intensity mapped in this study. 
Since the proportion of clear-cut areas to all harvested areas is often used 
as an indicator of harvest intensity at the regional scale (Mikoláš et al., 
2015; Schleeweis et al., 2020; Soutiere, 1979), we also examined the 
spatial variability of stand-clearing disturbances across states and 
ecoregions. Stand clearing is defined as no less than 80% basal area 
removal (Birdsey and Lewis, 2002). 

To examine the temporal variability of disturbance intensity, we 
used the annual disturbance intensity maps to calculate the mean PBAR 
as well as the proportion of stand clearing area (PSCA) per each of the 
30 years for each state, each ecoregion, and CONUS. PSCA is calculated 
as proportion of stand-clearing area to total disturbance area. The pro
duced time series allow for investigations into the temporal trend of 
disturbance intensity. Preliminary analysis indicated there could be 
three types of temporal changes: trends with a turning point in the 
middle and similar levels of PBAR at the two ends of the study period (i. 
e., increase followed by decrease or decrease followed by increase), near 
monotonic increasing or decreasing trends, and no obvious trend. 

A two-step process was used to determine the change type of a time 
series. First a second-order polynomial regression model (ax2 + bx + c) 
was used to test if there were trends with a turning point. If the p-value of 
t-test indicates the polynomial regression was statistically significant (p 

Fig. 2. An illustration of forest change between two inventory times showing basal area loss due to disturbance (trees c and d), gain from growth (trees a and b), and 
establishment of new trees (trees e, f, and g). In tree labels, the letter denotes which tree it is, and the number denotes the time of inventory (e.g., a1 means tree a 
measured at time 1). The basal area change caused by the disturbance event would be underestimated by a simple difference between the two inventories. Instead, it 
should be calculated using the equation Eq. (1). 
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< 0.01), a positive quadratic term (coefficient a) would indicate initial 
decrease followed by increase in PBAR and/or PSCA, while the opposite 
(initial increase followed by decrease) would have a negative coeffi
cient. Given the relatively short record (30 years) of the disturbance 
intensity time series, higher order polynomial models were not consid
ered in this study. Therefore, a time series would have no obvious trend 
if it failed the t-tests of both the linear and 2nd order polynomial fitting. 
Then the turning point of the polynomial regression model was calcu
lated to determine if the trend had a turning point in the middle and 
similar levels of PBAR at the two ends of the study period, or if the trend 
had near monotonic increasing or decreasing with a turning point 
outside the study period. 

3. Results 

3.1. Model performance at different scales 

The disturbance intensity mapping algorithm appeared to be robust 
for most of the seven southeastern states. The cross-validation results 
(comparison of predicted values against reference data for samples not 
used in model calibration) resulted in R2 values ranging from 0.55 to 
0.80 and RMSE from 13% to 18% (Fig. 3). Model results derived over the 
four US regions and CONUS were not as good as those derived over AL 
and other 4 southeastern states, but they were comparable to those 
derived over MS and TN (Fig. 4). These regional and national models 
made it possible to map PBAR across CONUS despite the difficulty in 
developing separate mapping models for individual states due to the 
lack of adequate sample plots for model development in many states. In 
particular, the accuracy of the national model appeared to be similar to 
those derived over the Southern Region (SR) and Pacific Northwest 
(PNW) regions and better than those over the Interior West (IW) and 
Northern Region (NR), suggesting that the national model could be 
robust enough for mapping PBAR across CONUS. Therefore, the national 
model was used to produce the final wall-to-wall PBAR maps annually 
across the country. 

Since the accuracy values of the national model shown in Fig. 4 were 
derived using set-aside plots that had essentially no spatial autocorre
lation with those used in model calibration (FIA plots are located at least 
5 km apart from each other), they should provide a reasonably realistic 
representation of the accuracies of the derived annual PBAR maps at the 
national scale. While the accuracy of the national model might be driven 
by plots in the SR region, which contributed 44% of the plots used in this 
study, no obvious regional biases were found during our comprehensive 
visual assessments of the resultant maps against available high resolu
tion Google Earth images. The mapped PBAR values appeared reason
able in most of the areas we checked. Fig. 5 provides a few visual 
assessment examples for different disturbance types in different regions. 

In the examination against GE Imagery, of the total 160 locations 
with estimated low-medium intensity over the four FIA regions, 90% in 
PNW, 85% in IW, 82.5% in NR and 97.5% in SR appeared to have 
experienced low-medium intensity disturbances; for the 160 locations 
with estimated high intensity, 92.5% in PNW, 87.5% in IW, 95% in NR 
and 95% in SR appeared to have experienced high intensity disturbances 
(Table 2). 

3.2. Spatial patterns of disturbance intensity in CONUS 

The derived disturbance intensity maps revealed that 513,177 km2 

(19.8%) of the forested lands in CONUS were disturbed at least once. 
About 284,265 km2 (55%) of the mapped disturbance areas had stand- 
clearing disturbance events (defined as ≥ 80% PBAR). The time- 
integrated map created from the annual maps, which represents the 
PBAR value of largest disturbance, shows how well the spatial patterns 
of PBAR match the boundaries of many ecoregions (Fig. 6). As expected, 
the highest disturbance intensities were found in several ecoregions in 
the Southeast, Lower South, and Pacific Northwest, where industrial 
forests with heavy timber harvests are located. Fire disturbance intensity 
in the West was highly variable, where moderately high disturbance 
intensities were found in many ecoregions along the coast and near the 
Rockies, while most other areas had moderate to low disturbance 

Fig. 3. Validation of disturbance intensity mapping models developed for seven southern states using set aside reference plots not used in model calibration (notes: 
unit of histograms on the side is the count of plots; green solid line is the fitted line; black dashed line is the 1:1 line). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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intensities. 
At the state level, 30-year mean PBAR ranged from 52% to 81% 

(Fig. 7-A). The southeastern states, two states on the pacific north
western coast (WA and OR), as well as VA and DE have the highest mean 
PBAR. Several states in the West, including CA, ID, MT, and NV, and two 
in the east (ME and MD) had moderate disturbance intensities, while 
values in the remaining states were relatively low. 

The ecoregion-based mean PBAR map shows that the disturbance 
intensity had large within-state variations (Fig. 7-B). In both WA and 
OR, for example, high PBAR is seen in the western ecoregions including 
Coast Range, Willamette Valley, and Cascades, while forestlands to the 
east of Cascade Range experience low- to medium-intensity distur
bances. In California, the Coast Range and Central California Valley 
ecoregions have much higher mean PBAR (i.e., 82% and 76%) than 
other regions within the state. Such spatial variability also exists in 
Texas, where high values only exist in the two ecoregions in the east and 
west of the state, South-Central Plains and High Plains. For the south
eastern US, where the state-level mean PBAR was high, exceptions can 
be seen in ecoregions such as the Mississippi Alluvial Plain, Southern 
Florida Coastal Plain, and Western Gulf Coastal Plain. These ecoregions 
are primarily dominated by land cover types other than forest land, such 
as crops and pastureland, grassland, and wetland (Homer et al., 2020). 
Mid- to low- intensity disturbances are also seen in the Blue Ridge re
gion, where national forests and national parks occupy about 50% of the 
total land area. As expected, the mean PSCA had roughly the same 
spatial patterns as the mean PBAR but varied in wider value ranges 

(Fig. 7-C, 7-D). PSCA was lowest in NY (16%) but was over 60% in 
several southeastern states (e.g., AL, GA, LA) (Fig. 7-C). The value range 
was slightly larger at the ecoregion level, ranging from 13% to 70% 
(Fig. 7-D). Ecoregions with high PSCA values include Coast Range and 
Central California Valley along the Pacific coast and Southeastern 
Plaines, Piedmont, Middle Atlantic Coastal Plain, and Southern Coastal 
Plain in the southeast (Fig. 7-D), where clearcutting has been a common 
practice (Siry, 2002; Smith and Darr, 2004). 

3.3. Temporal trends of disturbance intensity 

The mapped disturbance intensities had considerable temporal var
iations. During the 30-year study period, the annual mean PBAR values 
over CONUS varied between 66% and 77% while the annual mean PSCA 
ranged from ~40% to 58%. The result reveals that of all disturbed forest 
area, only around half are stand-cleared, indicating the importance of 
considering disturbance intensity when calculating disturbance area or 
disturbance rate. Both the mean PBAR and PSCA had increasing trends 
during the first half of the study period followed by decreasing trends in 
the 2nd half after they peaked at around 2003 (Fig. 8). Overall, there is a 
net increase of 2% in PBAR and 3% in PSCA from 1986 to 2015. It's 
worth noting that the annual total disturbance area over CONUS did not 
seem to have any obvious trend and varied over a much wider relative 
range, from below 20,000 km2 to above 30,000 km2 (a range of about 
50% of the mean). The temporal range of state level mean annual PBAR, 
calculated as the difference between the annual mean PBAR values at 

Fig. 4. Validation of disturbance intensity mapping models developed for (1) Interior West (IW) Region; (2) Northern Region (NR); (3) Pacific Northwest (PNW) 
Region; (4) Southern Region (SR); and (5) CONUS using set aside reference plots not used in model calibration (notes: unit of histograms on the side is the count of 
plots; green solid line is the fitted line; black dashed line is the 1:1 line). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 5. Qualitative assessment of the derived disturbance intensity maps overlaid on Google Earth images (4th column) by visually examining high resolution Google 
Earth images acquired before (2nd column) and after (3rd column) the mapped disturbances for different disturbance types selected from across the country. See 
Fig. 6 for the locations of the selected examples. 
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the 90th and 10th percentiles of each state, varied from 5% to 21% 
among the 48 states and from 5% to 23% among the 85 ecoregions. 
Additionally, the range of mean PSCA varied from 10% to 37% among 
states and 6% to 50% among ecoregions (Fig. 9). Likely due to large 
interannual variability in disturbances driven by fire and insect out
breaks (Meigs et al., 2015; Singleton et al., 2019), states and forested 

ecoregions located in the semiarid west had some of the highest tem
poral ranges. Most of the remaining states and ecoregions in the country, 
including those located in the eastern U.S. and along the Pacific coast, 
had lower temporal variations with their mean PBAR and mean PSCA 
values. 

At the state level (Fig. 10-A), about two thirds (33 out of 48) of the 
states had annual mean PBAR values that seemed to follow 2nd order 
polynomial trajectories with negative 2nd coefficients (initial 
decreasing trends followed by increasing trends towards the end). The 
remaining 15 states either did not have statistically significant trends or 
had extremely low forest cover (< 5%) and hence these trends would not 
be that meaningful. 11 of 33 states that had statistically significant 2nd 
order trends (AZ, CO, CT, FL, IL, IN, KY, MD, NJ, NM, TN, TX, UT) had a 
relatively balanced inverse “U” shape with similar levels of PBAR at the 
two ends of the study period and a turning point around the middle 
(2000 ± 3 years). The majority (20 out of 33) had increasing trends 
throughout much of the study period that resulted in substantially 
higher disturbance intensities during the later years than the earlier 
years of the study period (Fig. A1). Large increase (>10%) in PBAR was 
seen in several states (e.g., VA, AR, and MN). Two states (VA, VT) had 
turning points beyond 2015, meaning they had near monotonic 
increasing trends over the 30-year study period. With a turning point in 
1996, only MT had lower mean PBAR values in the 2010s than in the 

Table 2 
Visual examination results of mapped intensity over 320 random locations 
across CONUS with 80 locations in each of 4 FIA regions (Low-medium: PBAR 
<80%; high: PBAR≥ 80%).  

FIA Region  Low-medium 
(n = 40 for each region) 

High 
(n = 40 for each region) 

PNW 
Low- 
medium 36 (90%) 3 

High 4 37 (92.5%) 

IW 
Low- 
medium 

34 (85%) 5 

High 6 35 (87.5%) 

NR 
Low- 
medium 33 (82.5%) 2 

High 7 38 (95%) 

SR 
Low- 
medium 

39 (97.5%) 2 

High 1 38 (95%)  

Fig. 6. A time-integrated map representing the percentage of basal area removal (PBAR) value regardless of the disturbance year for pixel locations where only one 
disturbance event was detected and the maximum PBAR for locations that were disturbed multiple times overlaid with EPA Level 3 ecoregions shows that the spatial 
patterns of mapped disturbance intensities match the boundaries of many ecoregions. 

J. Lu et al.                                                                                                                                                                                                                                        



Remote Sensing of Environment 275 (2022) 113003

10

1980s. 
While the PBAR temporal trends of many ecoregions were similar to 

those of the states that intersect or overlap with them, there were a few 
anomalies (Fig. 10-B). For example, although the state level mean PBAR 
over WA, OR, CA, and ME did not have any obvious trends, some 
ecoregions that were completely located within these states, including 

Coast Range and Acadian Plains and Hills, had near monotonic 
increasing trends. While none of the states had a trend with a positive 
2nd coefficient, three ecoregions, including Eastern Cascades Slopes and 
Foothills, Ouachita Mountains, and Southwestern Tablelands had posi
tive 2nd coefficients. Large increase (>10%) in PBAR was seen in 
Northern Minnesota Wetlands, and large decrease (>10%) was observed 

Fig. 7. Spatial pattern of 30-year average percentage of basal area removal (PBAR) (A: by state, B: by EPA level 3 ecoregion) and average proportion of stand- 
clearing area (PSCA) (C: by state, D: by EPA level 3 ecoregion). 

Fig. 8. Temporal profile of annual mean PBAR (green solid line), annual mean PSCA (grey solid line), and total disturbance area (orange dashed line); along with 
second order polynomial trends fitted for annual mean PBAR (green dashed line) and annual mean PSCA (grey dashed line). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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in Blue Mountains (Fig. A2). Locations of ecoregions mentioned are 
marked in Fig. 6. 

Overall, the temporal trends of mean PSCA followed those of mean 
PBAR at both state and ecoregion levels. However, there were a few 

states that did not have statistically significant trends with their mean 
PBAR values, but their mean PSCA values showed 2nd order trends, 
including ID and WY having negative 2nd coefficients and OR and ME 
having positive coefficients (Fig. 10-C). On the other hand, NV and NH 

Fig. 9. Temporal range of state level mean annual PBAR calculated as the difference between the annual mean PBAR values (A: of each state; B: of each ecoregion) 
and PSCA values (C: of each state; D: of each ecoregion) at the 90th and 10th percentiles. 

Fig. 10. Temporal trends fitted for PBAR (A: by state, B: by ecoregion) and PSCA (C: by state, D: by ecoregion). Year of turning point is mapped for states/ecoregions 
with significant polynomial fitting. Point-hatched polygons are states/ecoregions with decreasing followed by increasing trends (“U” shape), while grid-hatched 
polygons are states/ecoregions with increasing followed by increasing trends (inverse “U” shape). Grey-colored states/ecoregions are where no significant trend 
is fitted, and white indicates where forest cover is low (less than 5%). 
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had significant trends with their mean BPAR, but not with the mean 
PSCA. Similarly, several ecoregions, including Northern Basin and 
Range, Middle Rockies, North Cascades, and Central Irregular Plains did 
not have obvious trends with their mean PBAR values, but their mean 
PSCA showed statistically significant trends (Fig. 10-D). The ecoregion 
that had significant trends with their mean PBAR but not with their 
mean PSCA values was Acadian Plains and Hills. 

4. Discussion 

Forest disturbances can have broad impact on the climate, local 
environment, and the regeneration of the forest ecosystem. The nature 
and magnitude of such impact, however, is largely driven by disturbance 
intensity. Previously, we developed an approach for mapping forest 
disturbance intensity by integrating time series Landsat observations 
and FIA field inventory measurements in a Random-Forest-based ma
chine learning framework and demonstrated its effectiveness in North 
and South Carolina (Tao et al., 2019). In this study, we evaluated this 
approach in seven individual states located in the Southeast, over the 
four FIA regions that constitute the CONUS, and for the entire CONUS. 
The feasibility of using a single national model to produce CONUS-wide 
products was evidenced by the fact that the RF model developed over 
CONUS was comparable to or even better than the individual models 
developed for four US regions when evaluated over set-aside samples. 
With this national model we produced the first set of disturbance in
tensity maps with a 30-m spatial resolution over the entire CONUS that 
characterize forest disturbance intensity on an annual basis for a 30-year 
period. 

By quantifying the percentage of basal area removed by disturbance 
events, these products can provide a much more precise characterization 
of the full continuum of severity in basal area loss events. This represents 
an improvement over categorical maps only flagging whether or not a 
loss has occurred, and allows for a better understanding of the impact 
not only on the forests being disturbed, but also on local hydrology, 
energy balance, habitat, and a suite of other related environmental is
sues (Banks et al., 2013; Hanson and Lorimer, 2007; Reid et al., 2010; 
Senf and Seidl, 2021). The annual time step over three decades and the 
CONUS 30-m spatial resolution coverage, also represent improvements 
that can provide finer details for up to 30 years over any area within 
CONUS. The spatial-temporal PBAR patterns in the derived products 
were in general agreement with Forest Service reports on areas and 
trends of stand clearing harvest (Siry, 2002; Smith and Darr, 2004). 
Compared to areas affected by logging events, PBAR mapped over areas 
affected by natural disturbances, such as fire and insect outbreaks, were 
more likely to be driven by both the severity of those events and post- 
disturbance management practices, such as salvage logging (Leverkus 
et al., 2018; Lindenmayer et al., 2008), A CONUS-wide disturbance 
attribution map has been developed (Schleeweis et al., 2020). It is 
possible to combine the PBAR and attribution maps to calculate the loss 
of basal area from different disturbance types. Further analyses of the 
temporal trends of the PBAR of different disturbance types may reveal 
how the drivers of different disturbance types have changed over time. 
For example, trends in harvesting intensity may reflect changes in forest 
management practices (Legaard et al., 2015), while trends in natural 
disturbance events are more likely due to climate change or interdecadal 
climate variability (Abatzoglou and Williams, 2016; Harris et al., 2018). 

Our modeling approach requires both remote sensing time series 
observations and repeat field measurements provided by the FIA data. 
Optical systems such as the Landsat satellite series can provide near 
contiguous observations at national to global scales on near annual or 
even sub-annual bases (Wulder et al., 2019; Zhu et al., 2019a). While in 
the past data gaps could arise from constant cloudy conditions in certain 
regions and/or acquisition limitations due to many practical reasons 
(Asner, 2001; Ju and Roy, 2008), such gaps should be greatly reduced 
when global observations acquired by the Sentinel-2 satellites launched 
in 2015 and 2017 become available. Such observations make it possible 

to time and map locations of disturbance events as well as spectral 
changes caused by those events over large areas. Further, the successful 
launch of the Sentinel-1 satellites in 2014 and 2016 ushered a new era 
where global systematic acquisitions of Synthetic Aperture Radar (SAR) 
data have become publicly available (Torres et al., 2012). With a plan
ned launch date in 2023, the NASA-ISRO SAR (NISAR) mission is ex
pected to provide L-band SAR data across the globe (Rosen et al., 2015). 
In general, SAR data are more sensitive to vegetation structure than 
optical data (Lu et al., 2016; Treuhaft et al., 2004). Methods for mapping 
forest disturbances using time series SAR observations have been 
developed and will continue to evolve (Bouvet et al., 2018; Hirschmugl 
et al., 2020; Rüetschi et al., 2019). 

While optical and SAR data could be used to detect forest distur
bances and calculate the change signals caused by those disturbances in 
satellite observations, field measurements are needed to convert the 
satellite observations to changes in physical quantities like basal area or 
biomass. The FIA field inventory database is an invaluable dataset for 
quantifying forest disturbance intensity across CONUS. The database 
provides field-based measurements for many basic biophysical quanti
ties such as height, diameter, and age at tree and plot levels (Bechtold 
and Patterson, 2005; McRoberts et al., 2005). From these measurements 
other derived quantities such as basal area, volume, and biomass were 
also calculated (Bechtold and Patterson, 2005; McRoberts et al., 2005). 
Net changes in these biophysical quantities can be derived by comparing 
these data through time. However, because FIA plots are revisited at 5- 
to 10-year intervals, these net changes in general are not the sole results 
of changes caused by disturbance events that occurred between two field 
measurements. Fortunately, the FIA database provides adequate infor
mation for tracking the same trees measured in different inventory cy
cles. This information made it possible to calculate the basal area loss 
caused by disturbances that had occurred between two consecutive field 
visits (Tao et al., 2019). As discussed in section 2.1.2 and 2.2.3, how
ever, the FIA data needs to be filtered carefully in order to select the 
plots that could be used to derive reliable PBAR values and minimize the 
impact of potential misregistration errors between field measurements 
and satellite observations. As shown in Table 1, this resulted in an 
extremely limited quantity of useable plots, with valid reference PBAR 
information, for a few states in the Northern and Interior West regions, 
which could be a reason why the models developed for these two regions 
had lower R2 values than those developed for the other two regions and 
across CONUS. 

One way to mitigate this problem is to intensify field sampling over 
areas where certain disturbances (e.g., planned harvest) are known to 
happen ahead of time and collect field measurements before and after 
those disturbances. For natural disturbances that are often unpredict
able, rapidly remeasuring established field plots in and around distur
bance affected areas provides useful information (Sheffield and 
Thompson, 1992; Woodall and Leutscher, 2005). Ideally, remote sensing 
mapping algorithms need to be calibrated using reference data with 
spatial and temporal characteristics matching those of remote sensing 
data. As discussed in many previous studies (e.g. Hoppus et al., 2000; 
Nelson et al., 2009; Tao et al., 2019), there are considerable spatial- 
temporal mismatches between FIA measurements and Landsat obser
vations, which likely contributed to some of the mapping uncertainties 
reported in this study. 

Given the fact that lidar has become a locally viable alternative to 
field methods for measuring many forest attributes (e.g., canopy, height, 
etc.) (Lefsky et al., 2002; Matasci et al., 2018; Wulder et al., 2012), it 
may be possible to use lidar data to derive reference data required for 
disturbance intensity mapping. Depending on how fast trees can grow or 
regenerate in a study region, however, multi-temporal lidar data ac
quired within a short period (e.g., 1–2 years) would be needed to derive 
reliable reference disturbance intensity data. Such data could be ob
tained by acquiring new lidar data over areas that were disturbed 
recently and had old lidar or ground measurements acquired shortly 
before disturbance. Finding such areas may have been difficult in the 
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past. Now that the GEDI (Global Ecosystem Dynamics Investigation) 
(Dubayah et al., 2020) and ICESat2 (Ice, Cloud, and land Elevation 
Satellite-2) (Neuenschwander and Pitts, 2019) are acquiring lidar sam
ples across the globe, and airborne lidar data are acquired for increas
ingly more areas (Sugarbaker et al., 2014), there are more opportunities 
to obtain repeat lidar measurements within a year or two of disturbance 
events. As discussed in section 2.2.3, due to potential tree growth and/or 
regeneration between those measurements, the difference between two 
lidar measurements acquired many years apart cannot be attributed 
solely to changes caused by disturbances that had occurred between the 
two measurements. The method we developed for calculating PBAR by 
tracking individual trees over time with FIA plot data, likely cannot be 
adapted for use with lidar data, because it is not possible to identify 
individual trees using large footprint waveform lidar data, and tree 
delineation using very dense lidar cloud point data remains a challenge 
(Aubry-Kientz et al., 2019; Zhang et al., 2015). 

Despite the simplicity and convenience as well as some of the ad
vantages of using a single national model to map disturbance intensity 
across CONUS, the fact that mapping models developed for 5 of the 7 
southeast states performed better than the national model (Fig. 3) 
demonstrated that should geographically representative reference data 
be available for all states or ecoregions, improved disturbance mapping 
could be achieved by using a collection of state- or ecoregion-based 
mapping models instead of a single national model. Of course, ample 
overlap should be provided between adjacent states or ecoregions to 
reduce potential discontinuities between them. Use of a set of locally 
calibrated models distributed over a large area has become an increas
ingly more common practice to improve mapping results at national to 
global scales (Potapov et al., 2021). 

5. Conclusions 

By integrating field plot measurements collected by the FIA program 
and time series Landsat observations, we have produced the first set of 
annual forest disturbance intensity map products quantifying the per
centage of basal area removal (PBAR) at the 30-m resolution for the 
conterminous United States from 1986 to 2015. These products were 
generated using a Random Forest model that had an R2 of 0.65 and 
RMSE of 16.2% when evaluated using plots not used in model calibra
tion. Comprehensive qualitative visual assessments of annual distur
bance intensity maps appeared reasonable when compared to high 
temporal and spatial resolution Google Earth imagery. The derived map 
products revealed that during the 30-year study period, the annual 
average PBAR values of all disturbed pixels across CONUS ranged from 
66% to 70%, and the proportion of those pixels having stand-clearing 
disturbances ranged from 40% to 58%. High disturbance intensity 
values were concentrated in the Southeastern states from TX to VA and 
along the Pacific coast and the Cascades in the West. At the national 
scale, the annual mean disturbance intensity values appeared to follow 
2nd order trajectories starting with increasing trends at the beginning 
and decreasing trends towards the end, along with turning points around 
2003. The temporal trends of disturbance intensity differed substantially 
among many states and ecoregions. While the mean disturbance 

intensity values for some states and ecoregions did not show obvious 
trends, most of the states' and ecoregions' disturbance intensity values 
presented statistically significant 2nd order trends. In particular, several 
states and ecoregions had near monotonic increasing trends that peaked 
near the end of the study period or did not reach peak value during the 
study period. Compared to other published disturbance products, the 
maps derived through this study can provide unique information on 
forest disturbance – quantitative estimates of the intensity of mapped 
disturbance events, which were previously unavailable but are critical 
for understanding forest dynamics across CONUS over multiple decades. 
The temporal dynamics of disturbance intensity revealed by these map 
products may shed light on how forest management practices and other 
disturbance processes causing basal area loss might have changed across 
the country. The disturbance intensity data product is available from an 
ORNL DAAC web portal at https://doi.org/10.3334/ORNLDAAC/2059. 
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Appendix A. Methods for calculating spectral change indices 

For each image in the LTSS, the VCT algorithm determined the forest likelihood of each pixel by thresholding two spectral indices, integrated forest 
z-score (IFZ) (Eq. (A1)) and normalized difference vegetation index (NDVI) (Eq. (A2)). 

IFZ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
3

∑

band red,swir1,swir2

(
Bi − Bi

SDi

)2
√
√
√
√ (A1)  
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NDVI =
Bnir − Bred

Bnir + Bred
(A2) 

where Bi is the reflectance value of Landsat band i, and Bi and SDi are the mean and standard deviation of band i reflectance for all forest samples 
identified within an image. Previous study (Tao et al., 2019) indicates that the use of all 10 magnitudes of both types would achieve better model 
accuracy, and thus all the 10 magnitude variables were calculated in this study. 

NBR =
Bnir − Bswir2

Bnir + Bswir2
(A3)  

NDMI =
Bnir − Bswir1

Bnir + Bswir1
(A4)  

B4FZ =
Bnir − Bnir

SDnir
(A5)  

B5FZ =
Bswir1 − Bswir1

SDswir1
(A6)   

Table A1 
Spectral change indices used in disturbance intensity mapping.  

Category Equation Index 

Delta magnitudeΔ = Indexpost − Indexpre IFZ, NDVI, NBR, B4FZ, B5FZ 

Normalized Ratio (NR) 
magnitudeNR = 1 − Indexpre/Indexpost IFZ, B5FZ 
magnitudeNR = 1 − Indexpost/Indexpre NDVI, NBR, NDMI  

Appendix B. Temporal Profiles of PBAR in CONUS states and ecoreigons 
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Fig. A1. Temporal profiles of average PBAR in CONUS states. Second order polynomial trend lines (blue curve) are plotted where significant trend is fitted. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A2. Temporal profiles of mean PBAR in level-3 ecoregions. Second order polynomial trend lines (blue curve) are plotted where significant trend is fitted. Plots 
are titled by North America level 3 ecoregion codes (see Table A2 for a list of codes and ecoregion names). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)  
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Fig. A3. Temporal profiles of average PSCA in CONUS states. Second order polynomial trend lines (blue curve) are plotted where significant trend is fitted. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A4. Temporal profiles of mean PSCA in level-3 ecoregions. Second order polynomial trend lines (blue curve) are plotted where significant trend is fitted. Plots 
are titled by North America level 3 ecoregion codes (see Table A2 for the list of codes and ecoregion names). 
North American Level 3 Ecoregion Codes and Names. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)  
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Table A2 
North American Level 3 Ecoregion Codes and Names (see the link for the full ecoregion map: https://gaftp.epa.gov/EPADataCommons/ORD/Ecoregions/cec_na/NA_ 
LEVEL_III.pdf).  

CODE NA_L3NAME CODE NA_L3NAME 

10.1.2 Columbia Plateau 8.1.8 Acadian Plains and Hills 
10.1.3 Northern Basin and Range 8.2.1 Southeastern Wisconsin Till Plains 
10.1.4 Wyoming Basin 8.2.2 Huron/Erie Lake Plains 
10.1.5 Central Basin and Range 8.2.3 Central Corn Belt Plains 
10.1.6 Colorado Plateaus 8.2.4 Eastern Corn Belt Plains 
10.1.7 Arizona/New Mexico Plateau 8.3.1 Northern Piedmont 
10.1.8 Snake River Plain 8.3.2 Interior River Valleys and Hills 
10.2.1 Mojave Basin and Range 8.3.3 Interior Plateau 
10.2.2 Sonoran Desert 8.3.4 Piedmont 
10.2.4 Chihuahuan Desert 8.3.5 Southeastern Plains 
11.1.1 California Coastal Sage, Chaparral, and Oak Woodlands 8.3.6 Mississippi Valley Loess Plain 
11.1.2 Central California Valley 8.3.7 South Central Plains 
11.1.3 Southern and Baja California Pine-Oak Mountains 8.3.8 East Central Texas Plains 
12.1.1 Madrean Archipelago 8.4.1 Ridge and Valley 
13.1.1 Arizona/New Mexico Mountains 8.4.2 Central Appalachians 
15.4.1 Southern Florida Coastal Plain 8.4.3 Western Allegheny Plateau 
5.2.1 Northern Lakes and Forests 8.4.4 Blue Ridge 
5.2.2 Northern Minnesota Wetlands 8.4.5 Ozark Highlands 
5.3.1 Northern Appalachian and Atlantic Maritime Highlands 8.4.6 Boston Mountains 
5.3.3 North Central Appalachians 8.4.7 Arkansas Valley 
6.2.10 Middle Rockies 8.4.8 Ouachita Mountains 
6.2.11 Klamath Mountains 8.4.9 Southwestern Appalachians 
6.2.12 Sierra Nevada 8.5.1 Middle Atlantic Coastal Plain 
6.2.13 Wasatch and Uinta Mountains 8.5.2 Mississippi Alluvial Plain 
6.2.14 Southern Rockies 8.5.3 Southern Coastal Plain 
6.2.15 Idaho Batholith 8.5.4 Atlantic Coastal Pine Barrens 
6.2.3 Columbia Mountains/Northern Rockies 9.2.1 Aspen Parkland/Northern Glaciated Plains 
6.2.4 Canadian Rockies 9.2.2 Lake Manitoba and Lake Agassiz Plain 
6.2.5 North Cascades 9.2.3 Western Corn Belt Plains 
6.2.7 Cascades 9.2.4 Central Irregular Plains 
6.2.8 Eastern Cascades Slopes and Foothills 9.3.1 Northwestern Glaciated Plains 
6.2.9 Blue Mountains 9.3.3 Northwestern Great Plains 
7.1.7 Strait of Georgia/Puget Lowland 9.3.4 Nebraska Sand Hills 
7.1.8 Coast Range 9.4.1 High Plains 
7.1.9 Willamette Valley 9.4.2 Central Great Plains 
8.1.1 Eastern Great Lakes Lowlands 9.4.3 Southwestern Tablelands 
8.1.10 Erie Drift Plain 9.4.4 Flint Hills 
8.1.3 Northern Allegheny Plateau 9.4.5 Cross Timbers 
8.1.4 North Central Hardwood Forests 9.4.6 Edwards Plateau 
8.1.5 Driftless Area 9.4.7 Texas Blackland Prairies 
8.1.6 Southern Michigan/Northern Indiana Drift Plains 9.5.1 Western Gulf Coastal Plain 
8.1.7 Northeastern Coastal Zone 9.6.1 Southern Texas Plains/Interior Plains and Hills with Xerophytic Shrub and Oak Forest  
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