
1.  Introduction
Afforestation is typically referred to as a human-driven process of seedling or planting new forests on land that has 
been absent from forests for at least 50 years in the past (Brown et al., 1986; Lund, 2007). Land use and land cover 
change (LULCC) driven by afforestation can affect the carbon budget and surface energy balance of local ecosys-
tems through biogeophysical and biogeochemical processes, which will further influence the climate change 
from regional to global scales (Anderson et al., 2011; Bonan, 2008; Duveiller et al., 2018). In particular, the 
biophysical processes related to afforestation can control the land-atmospheric exchange of water and energy by 
altering the radiative (e.g., albedo) and non-radiative (e.g., evapotranspiration (ET) and roughness) characteristics 
(Alkama & Cescatti, 2016; Bright et al., 2017; Huang et al., 2020; Zhao & Jackson, 2014). This will further affect 
surface energy redistributions and exert warming or cooling effects on the local climate (Bright et al., 2017). For 
example, the non-radiative effects of forest gains dominate the local response and lead to cooling in most regions 
experiencing disturbances across the world (Bright et al., 2017). However, a comprehensive evaluation of how 

Abstract  Developing effective climate mitigation strategies under global warming requires a 
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radiative and non-radiative processes on land surface temperature caused by converting open land (i.e., 
grassland and cropland) and natural forests to planted forests remain unclear. We used satellite observations and 
intrinsic biophysical mechanism theory-based energy balance models to estimate the biophysical impacts of 
potential afforestation of open land and natural forests on surface temperature from 2000 to 2010 in Guangdong 
Province, southern China. Results showed that afforestation of open land had a consistent net cooling effect. 
Due to the afforestation of natural forests, the modeled results revealed that afforestation among all conversion 
types had a net warming effect of 0.15 ± 0.5 K, which caused by the change in energy redistribution factor 
although uncertainty remains. While the most significant warming caused by converting natural forest to 
planted forests was also slightly affected by albedo. The afforestation's non-radiative and radiative processes 
led to a slight warming of 0.143 ± 0.43 K and a cooling of −0.096 ± 0.19 K, respectively. The non-radiative 
process dominates the effect of afforestation on the surface temperature, with the overall non-radiative forcing 
index greater than 73% ± 0.59%. Our study highlights the need of protecting natural forests and provides a 
practical method for assessing the impacts of afforestation on the local climate and the effectiveness of climate 
mitigation efforts.

Plain Language Summary  Afforestation is an important tool for mitigating climate change. 
However, the land cover change induced by afforestation may affect the land-atmosphere balance of water and 
energy. Accurate estimation of surface temperature change in response to afforestation-induced surface energy 
change is challenging. From 2000 to 2010, afforestation activities in southern China were frequent, resulting in 
a significant increase in carbon sinks. Yet, how these land-use changes can affect the local climate is unclear. 
Here we prepared the high-resolution land cover data and utilized satellite observations and a physical-based 
method to estimate the impacts of afforestation on land surface temperature in southern China. This strategy 
can provide insights for designing rational afforestation policies in southern China and similar geographic areas.

SHEN ET AL.

© 2022. American Geophysical Union. 
All Rights Reserved.

Biophysical Effects of Afforestation on Land Surface 
Temperature in Guangdong Province, Southern China
Wenjuan Shen1,2  , Jiaying He3  , Tao He4, Xiangping Hu5  , Xin Tao6, and Chengquan Huang7

1College of Forestry, Nanjing Forestry University, Nanjing, China, 2Co-Innovation Center for Sustainable Forestry in 
Southern China, Nanjing Forestry University, Nanjing, China, 3Department of Earth System Science, Tsinghua University, 
Beijing, China, 4School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China, 5Industrial 
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology 
(NTNU), Trondheim, Norway, 6Department of Geography, University at Buffalo, Buffalo, NY, USA, 7Department of 
Geographical Sciences, University of Maryland, College Park, MD, USA

Key Points:
•	 �The modeled land surface temperature 

due to afforestation had a net warming 
effect

•	 �The non-radiative process mainly 
drives the effect of afforestation on 
local surface temperature

•	 �The detailed distribution of 
afforestation and a precise energy 
balance model allow accurate 
evaluation of the temperature response

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
W. Shen,
wjshen@njfu.edu.cn

Citation:
Shen, W., He, J., He, T., Hu, X., Tao, 
X., & Huang, C. (2022). Biophysical 
effects of afforestation on land 
surface temperature in Guangdong 
Province, southern China. Journal of 
Geophysical Research: Biogeosciences, 
127, e2022JG006913. https://doi.
org/10.1029/2022JG006913

Received 22 MAR 2022
Accepted 4 AUG 2022

Author Contributions:
Conceptualization: Wenjuan Shen
Data curation: Xiangping Hu
Resources: Tao He
Supervision: Chengquan Huang
Writing – original draft: Wenjuan Shen
Writing – review & editing: Jiaying He, 
Xin Tao

10.1029/2022JG006913
RESEARCH ARTICLE

1 of 14

 21698961, 2022, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

006913 by U
niversity A

t B
uffalo (Suny), W

iley O
nline L

ibrary on [01/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-8691-8036
https://orcid.org/0000-0002-6394-5218
https://orcid.org/0000-0003-3468-8248
https://doi.org/10.1029/2022JG006913
https://doi.org/10.1029/2022JG006913
https://doi.org/10.1029/2022JG006913
https://doi.org/10.1029/2022JG006913
https://doi.org/10.1029/2022JG006913
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JG006913&domain=pdf&date_stamp=2022-08-19


Journal of Geophysical Research: Biogeosciences

SHEN ET AL.

10.1029/2022JG006913

2 of 14

forest change affects regional temperature through the radiative and non-radiative processes is still lacking in 
afforested areas, normally referred to as planted forests (PF). Accurate quantification of afforestation impacts on 
land surface temperature (LST) is also challenging due to the lack of long-term land records at high resolution 
for capturing the spatiotemporal distribution of afforestation (Li et al., 2016; Prevedello et al., 2019). Moreover, 
it remains unclear that afforestation induces the surface temperature changes through which biophysical variables 
at a regional scale (Li et al., 2015; Peng et al., 2014; Prevedello et al., 2019).

The biophysical impacts of forest change on LST are typically evaluated using in situ meteorological observa-
tions, remote sensing data, or climate models (Chen & Dirmeyer, 2020; Li et al., 2022; Mahmood et al., 2014). 
Although in situ measurements provide direct and accurate observations for studying such impacts, they are 
limited in spatial coverages and lack mechanical explanations (Senior et al., 2017). Climate models can account 
for both biophysical and external atmospheric feedbacks, but their performances are affected by various types 
of uncertainties (He et al., 2015; Wickham et al., 2013; Yu et al., 2015). Empirical models with remote sensing 
observations have become a primary tool for analyzing the relationships between forest cover and climate at 
the regional and global scales (Li et al., 2016; Peng et al., 2014). Existing studies have explored the impact of 
afforestation on LST using various remote sensing data sets (Li et al., 2016; Prevedello et al., 2019; Shen, Li, 
Huang, He, et al., 2019; Shen et al., 2020). For example, Ge et al. (2019) have analyzed the climate feedback of 
afforestation in China based on Moderate-Resolution Imaging Spectroradiometer (MODIS) land cover data. Yet, 
the coarse-resolution MODIS land cover data may easily affect the results in heterogeneous areas with mixed land 
cover pixels (Novo-Fernández et al., 2018). Also, few studies have investigated how biophysical energy balance 
mechanisms, such as albedo radiation feedbacks and energy redistribution changes, drive afforestation-induced 
temperature change in southern China using high-resolution LULCC data.

Energy balance models based on different physical theories have been developed to evaluate the impacts of 
LULCC on the climate (Li et  al.,  2020; Liao et  al.,  2018; Luyssaert et  al.,  2014; Rigden & Li,  2017; Wang 
et al., 2018). Specifically, the intrinsic biophysical mechanism (IBM) theory is a commonly adopted method to 
quantify the biophysical impacts of land-use change on the LST (Lee et al., 2011). The energy balance model 
based on the IBM theory is capable of distinguishing between internal forcing and external feedback of LULCC 
and has been used to separate the effects of the radiative and non-radiative processes induced by afforestation on 
the LST (Lee et al., 2011). As in situ measurements, such as FLUXNET and meteorological observations, can 
provide accurate values of these intrinsic biophysical parameters, many researchers are trying to scale them to 
larger scales to study the non-radiative mechanisms induced by afforestation through the combination of energy 
balance models (Bright et al., 2017; Ge et al., 2019). Nevertheless, this method is limited due to the sparse distri-
bution of in situ observations (Tang et al., 2018; Wang et al., 2018). This can be addressed by utilizing remote 
sensing data with spatial consistency. Thus, a combination of remote sensing observations, in situ measurements, 
and energy balance models can provide a new direction for assessing the impacts of forest changes and their 
biophysical characteristics on surface temperature (Bright et al., 2017; Ge et al., 2019).

Afforested areas in southern China play a critical role in driving LULCC and restoring total vegetation carbon 
storage in China. Afforestation projects, such as converting from croplands to forests, have been continuously 
increasing during the recent years. Economic demands have promoted substantial conversion from natural forests 
(NF) into commercial forests in this region, especially between 2000 and 2010 (Shen et  al.,  2018; Shen, Li, 
Huang, He, et al., 2019). Driven by the market, fast-growing and high-yield tree species have commonly used 
in some projects as they can quickly grow into forests in a short-rotation period. As a result, the mixed forest 
species with NF areas have been gradually replaced by monospecific even-aged plantations in southern China, 
particularly Guangdong Province. Nevertheless, the biophysical impacts of these afforestation practices on LST 
in southern China are still poorly understood.

This study aims to estimate the biophysical impacts of afforestation on the local surface temperature from 2000 to 
2010 across Guangdong Province, southern China. We quantified the response of LST to afforestation using both 
satellite observations and a physical-based method that integrates the energy balance model and IBM theory. We 
also assessed the radiative and non-radiative effects of afforestation in our study area. Specifically, we compared 
the differences between afforested areas and the NF, and assessed the afforestation impacts in open land areas, 
including cropland (CR) and grassland (GR).

 21698961, 2022, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

006913 by U
niversity A

t B
uffalo (Suny), W

iley O
nline L

ibrary on [01/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Biogeosciences

SHEN ET AL.

10.1029/2022JG006913

3 of 14

2.  Materials and Methods
2.1.  Data Preparation

The distributions of PF, NF, and open land (CR and GR) areas in 2000 and 2010 in Guangdong Province were 
identified from two 30 m land cover data sets: SGB-NDVI-based forest and non-forest (FNF) time series maps 
(Shen, Li, Huang, Tao, et al., 2019) and GlobeLand30 data product (Chen et al., 2015). The accuracy of the 
SGB-NDVI-based FNF and GlobeLand30 ranged from 83% to 86% (Shen, Li, Huang, Tao, et al., 2019) and 
84%–89% (Chen et al., 2015), respectively. We first mapped the PF and non-forest areas using the dense time 
series SGB-NDVI-based FNF data. Here we defined the PF as the intersection between non-forest from the year 
before the current year (i.e., persisting non-forest or deforestation in 2009) and the forest in the current year 
(i.e., afforestation or post-deforestation reforestation in 2010) following previous studies (Shen, Li, Huang, He, 
et al., 2019; Shen, Li, Huang, Tao, et al., 2019). The GlobeLand30 data was then used to identify the NF (forest 
minus PF), CR and GR areas, as described in Shen, Li, Huang, He, et al. (2019). The total area of the mapped PF 
is close to that from the National Forestry Yearbook of China (Shen, Li, Huang, He, et al., 2019). To assess the 
impacts of the potential afforestation across space and time, the pixels that did not experience changes in land 
cover types between 2000 and 2010 were then used as reference pixels for comparisons. We further resampled 
the original values from 30 m resolution to 1 km using the nearest neighbor method to match the biophysical 
variables from the MODIS data.

Biophysical and climatic variables were primarily obtained from MODIS products (Table 1). We acquired the 
LST data from the 8-day MODIS MYD11A2 product, the albedo data from the MCD43B3 product, the ET data 
from the MOD16A2 product, the downward longwave surface fluxes from GLASS LW_modis data provided by 
the National Earth System Science Data Center (http://www.geodata.cn), and the downward shortwave surface 
fluxes from the 3-hr MODIS MCD18A1 product. We then extracted the monthly and seasonal averages of the 
variables for all these data sets. The monthly air temperatures at 2 m above the ground were also obtained from 
the China Meteorological Data service center (http://data.cma.cn/en) as a reference. These in situ measurements 
covering 26 meteorological stations were interpolated using the random forest models developed by Shen, Li, 
Huang, He, et al. (2019). The interpolated and observed 2 m air temperature showed a strong correlation, with 
Pearson's r values ranging between 0.8 and 0.99 for the 2000 and 2010 data (Shen, Li, Huang, He, et al., 2019). 
We then generated the daily, monthly, and annual averages of the LST and calculated the annual and monthly 
averages of the in situ air temperature.

2.2.  Estimating Biophysical Effects of Hypothetical Afforestation on Surface Temperature

To understand the biophysical effects of afforestation on LST between 2000 and 2010 in Guangdong Province, 
we adopted a space-for-time substitution method (Zhao & Jackson, 2014) to identify regions representing hypo-
thetical afforestation and different conversion types. We then used the energy balance model and IBM theory to 
quantify the afforestation impacts on the LST.

2.2.1.  Space-For-Time Method

The space-for-time method assumes that the adjacent pixels of PF and other land cover types have the same back-
ground climate. Hence, the local surface temperature differences are primarily driven by the land cover changes 
(Zhao & Jackson, 2014). Here the hypothetical afforestation refers to the forest change that has yet to happen in 

Data set Variables Resolution Time References

MYD11A2 LST 1 km/8 days 2002–2010 Wan (2008)

MCD43B3 Albedo 1 km/8 days 2000–2010 Schaaf et al. (2002)

MOD16A2 ET 1 km/8 days 2000–2010 Mu et al. (2011)

MCD18A1 Downward shortwave flux 1 km/3 hr 2001–2010 Wang et al. (2020)

LW_modis Downward longwave flux 1 km/daily 2000–2010 Cheng et al. (2017)

Table 1 
Remote Sensing Data Used to Extract Biophysical and Climate Variables
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reality. By comparing the differences between adjacent pixel pairs of the PF and other land cover types, we can 
estimate the impacts of hypothetical afforestation in this area.

We first created 5 × 5 km grids across the entire study area and sampled those including NF, CR, GR, and PF 
that have not changed from 2000 to 2010. To identify proper grids representing the conversions from no change 
NF, CR or GR to the hypothetical PF, we then selected them based on the 1 km land cover data from Section 2.1 
following the rule: the cover of PF ≥ 5% and the cover of NF or open land (CR or GR) ≥ 80% (Figure 1). Within 
each selected grid, we adopted a window searching method (Zhao & Jackson, 2014) to identify the hypothetical 
changes by pairing adjacent pixels of PF and other types (NF, CR, and GR).

To assess the impacts of hypothetical afforestation on the local climatic and biophysical parameters, we calcu-
lated the multi-year mean values of LST, albedo, air temperature, and downward longwave and shortwave fluxes 
in the selected 5 km grids. Then, for each conversion type, the afforestation induced changes were estimated 
by calculating the differences of these variables between the no change PF and the other types (NF, CR, or 
GR). Taking albedo as an example, the afforestation-induced albedo change (Δα) can be calculated as follows 
(Student's t-test: confidence interval (CI) is estimated by t-test at 95%, p < 0.05):

Δ𝛼𝛼 = 𝛼𝛼PF − 𝛼𝛼𝑖𝑖,� (1)

where αPF is the albedo of the PF after afforestation, αi is the albedo of the CR, GR, or NF before afforestation, 
and i represents the CR, GR, or NF. The differences in other biophysical and climate variables between PF and 
other types (NF, CR, and GR) were estimated in a similar fashion.

Figure 1.  Location of the study area in Guangdong Province, southern China. Distribution of the areas with no change in land cover type, including planted forest 
(PF), cropland (CR), grassland (GR), and natural forest (NF) from 2000 to 2010 and sample grids (5 × 5 km). The black, blue, and purple boxes indicate the functional 
sample grid cells for converting cropland, grassland, and NF to planted forests, respectively.
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2.2.2.  Modeling LST Change Due To Hypothetical Afforestation Using the Energy Balance Model and 
the IBM Theory

The IBM theory assumes that the impacts of different land cover types on the LST are caused by local surface 
longwave radiative and energy redistribution induced by the aerodynamic resistance and Bowen ratio (Bright 
et al., 2017; Lee et al., 2011). The energy redistribution factor (f) reflects the surface energy balance of vegeta-
tion structure and physiology. Higher f values indicate that a vegetation ecosystem is more efficient at dissipat-
ing surface energy through intrinsic biogeophysical properties (Chen & Dirmeyer, 2016; Lee et al., 2011). The 
theory also assumes no differences in the low-atmosphere temperature between forest and open land (Winckler 
et al., 2017). The IBM theory is originated from the surface energy balance equation defined using Equation 2 
(Lee et al., 2011):

SWnet + LW↓ − 𝜎𝜎𝜎𝜎
4

𝑠𝑠 = 𝑅𝑅𝑛𝑛 = 𝐻𝐻 + LE + 𝐺𝐺𝐺� (2)

where SWnet is the net surface shortwave radiation (W m −2), 𝐴𝐴 LW↓ is the incoming longwave radiation (W m −2), σ 
is the Stephan-Boltzmann constant (W m −2 K −4), Ts is the surface temperature (K), Rn is the net radiation, H is the 
sensible heat flux, LE is the latent heat flux and G is the soil heat flux (W m −2). Lee et al. (2011) pointed out that 
H and LE act as essential factors controlling the surface temperature (Ts) in the surface energy balance equation, 
so Ts can be estimated using Equations 3–5:

𝑇𝑇𝑠𝑠 =
𝜆𝜆0

1 + 𝑓𝑓
(𝑅𝑅

∗

𝑛𝑛 − 𝐺𝐺) + 𝑇𝑇𝑎𝑎,� (3)

𝑅𝑅
∗

𝑛𝑛 = SWnet + LW↓ − 𝜎𝜎𝜎𝜎
4

𝑎𝑎 ,� (4)

SWnet = (1 − 𝛼𝛼)SW↓,� (5)

where 𝐴𝐴 𝐴𝐴0 = 1∕
(

4𝜎𝜎𝜎𝜎𝑠𝑠𝑇𝑇
3

𝑠𝑠

)

 (K (W m −2) −1) is the monthly mean temperature sensitivity of the longwave radiation 
feedback (εs is the monthly mean surface emissivity, εs = 0.983 for cropland and grassland, εs = 0.989 for forest 
(Caselles et al., 2011), Ta is the monthly mean air temperature (K), 𝐴𝐴 SW↓ is the incoming shortwave radiation 
(W m −2), and 𝐴𝐴 𝐴𝐴∗

𝑛𝑛 is the monthly apparent net radiation). G is the monthly mean soil heat flux, which is estimated 
as G = 0.14(Ta,n − Ta,n−1) (n represents month as 1, 2, …, 12) following Fischer et al. (2021). It is used for the 
calculation of the reference ET of reference surfaces based on Penmann-Monteith equations and can be recog-
nized. Then, we then modified Equation 3 to estimate f from Ts, Ta, 𝐴𝐴 𝐴𝐴∗

𝑛𝑛 , and G:

𝑓𝑓 =
𝜆𝜆0

𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎

(𝑅𝑅
∗

𝑛𝑛 − 𝐺𝐺) − 1,� (6)

where Ts is the observed monthly surface temperature (K). Two equal values between Ts and Ta are invalid.

According to the IBM theory and the energy balance model based on Equations 2–5, several individual biophysi-
cal forcings induced by LULCC, including albedo, roughness, and ET, can affect the surface temperature changes 
(Ts). Thus, the total change in the modeled surface temperature (ΔTs_m) due to afforestation can be separated into 
three sections, including the changes in the energy redistribution factor (Δf), radiative forcing (𝐴𝐴 Δ𝑅𝑅∗

𝑛𝑛 ), and soil heat 
flux (ΔG), using the following equations (Bright et al., 2017):

Δ𝑅𝑅
∗

𝑛𝑛 = ΔSW↓ = −SW↓ × Δ𝛼𝛼𝛼� (7)

Δ𝑇𝑇𝑠𝑠 𝑚𝑚 =
𝜆𝜆0

(1 + 𝑓𝑓 )
Δ𝑅𝑅

∗

𝑛𝑛 +
−𝜆𝜆0

(1 + 𝑓𝑓 )
Δ𝐺𝐺 +

−𝜆𝜆0

(1 + 𝑓𝑓 )
2
(𝑅𝑅

∗

𝑛𝑛 − 𝐺𝐺) Δ𝑓𝑓𝑓� (8)

where λ0, f, 𝐴𝐴 𝐴𝐴∗

𝑛𝑛 , and G represent the variables for the CR, GR, and NF before afforestation. To address the differ-
ences in the variables between PF and open land (CR and GR), the variables in Equation 8 were modified based 
on Equations 1 and 7 but excluded the atmospheric feedback as follows:

Δ𝑇𝑇𝑠𝑠 𝑚𝑚 = Δ𝑇𝑇𝑠𝑠 𝛼𝛼 + Δ𝑇𝑇𝑠𝑠 𝐺𝐺 + Δ𝑇𝑇𝑠𝑠 𝑓𝑓 ,� (9)

Δ𝑇𝑇𝑠𝑠 𝛼𝛼 =
𝜆𝜆𝑖𝑖

(1 + 𝑓𝑓𝑖𝑖)
(−SW↓𝑖𝑖 × (𝛼𝛼𝑃𝑃𝑃𝑃 − 𝛼𝛼𝑖𝑖)) ,� (10)
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Δ𝑇𝑇𝑠𝑠 𝐺𝐺 =
−𝜆𝜆0𝑖𝑖

(1 + 𝑓𝑓𝑖𝑖)
(𝐺𝐺PF − 𝐺𝐺𝑖𝑖) ,� (11)

Δ𝑇𝑇𝑠𝑠 𝑓𝑓 =
−𝜆𝜆𝑖𝑖

(1 + 𝑓𝑓𝑖𝑖)
2

(

𝑅𝑅
∗

𝑛𝑛𝑖𝑖
− 𝐺𝐺𝑖𝑖

)

(𝑓𝑓PF − 𝑓𝑓𝑖𝑖) ,� (12)

where ΔG and Δf are the differences in the multiyear monthly mean soil heat flux and energy redistribution factor 
(f) between the PF and other land cover types (CR, GR, and NF) from 2000 to 2010, similar to Δα in Equation 1; 
while ΔTs_m is the difference in the modeled surface temperature between the PF and other land cover types. This 
results from the joint contributions of the three parts in response to the temperature change caused by the forest 
change in Equation 9. Specifically, ΔTs_α represents the impact of the surface radiative forcing and albedo change 
on surface temperature; ΔTs_G is the impact of the soil heat flux diffusion on surface temperature; ΔTs_f is the 
impact of the turbulent energy redistribution on surface temperature. Then, the modeled surface temperate change 
(ΔTs_m) was estimated using Equations 9–12. Positive ΔTs_m values represent a warming effect due to afforesta-
tion, while negative values indicate cooling.

2.3.  Comparing Modeled and Observed LST Changes Induced by Afforestation

Then, we estimated ΔTs using only MODIS data as the observed LST change (ΔTs_o) caused by the hypothetical 
afforestation as a reference. The ΔTs_o was obtained by comparing the Ts values of the PF and other land cover types 
following Equation 1. We compared the afforestation-induced LST changes estimated with the two types of methods 
(ΔTs_m and ΔTs_o) and examined their linear relationships. We also assessed the relationships between ΔTs_m and 
ΔTs_f, ΔTs_α, and ΔTs_G using the monthly and seasonal values for the PF, NF, and open land via linear regression.

2.4.  Identifying Radiative and Non-Radiative Effects of Afforestation

The contributions of the radiative and non-radiative effects of afforestation to the ΔTs were quantified and 
analyzed using the non-radiative forcing index (NRFI) (Bright et al., 2017):

NRFI (%) =
|Δ𝑇𝑇𝑠𝑠 𝑓𝑓 | + |Δ𝑇𝑇𝑠𝑠 𝐺𝐺|

|Δ𝑇𝑇𝑠𝑠 𝛼𝛼| + |Δ𝑇𝑇𝑠𝑠 𝑓𝑓 | + |Δ𝑇𝑇𝑠𝑠 𝐺𝐺|

× 100,� (13)

where ΔTs_α is the albedo-driven LST change and represents the radiative effects of the afforestation-induced PF 
change; ΔTs_G and ΔTs_f refer to the G- and f-driven LST changes, respectively, and represent the non-radiative 
effects. A larger NRFI value indicates stronger non-radiative effects due to afforestation.

3.  Results
3.1.  Afforestation Impacts on Surface Biophysical Parameters and Land Surface Fluxes

To evaluate the impacts of hypothetical afforestation on LST, 83, 30, and 84 5 × 5 km grids were sampled to 
represent the three conversion types, CR to PF, GR to PF, and NF to PF, respectively (Figure 1). For each conver-
sion type, we calculated the Δf, Δα, ΔET, 𝐴𝐴 Δ𝑅𝑅∗

𝑛𝑛 , and ΔG based on the no change PF and the CR, GR, and NF 
pixels between 2000 and 2010. The student's t-test revealed significant changes (p < 0.05) in the f, albedo (α), net 
radiation (𝐴𝐴 𝐴𝐴∗

𝑛𝑛 ), and G for all three conversion types. We also reported the monthly mean values of Δf, Δα, ΔET, 
𝐴𝐴 Δ𝑅𝑅∗

𝑛𝑛 , and ΔG induced by afforestation with their 95th percentiles (Figure 2).

The energy redistribution factor f generally increased after afforestation (Δf > 0), except for the afforestation on 
GR in summer and autumn and NF in autumn (Figure 2a). It can be observed across all seasons that the increases 
of f outweighed the decreases. Specifically, we found that the values of f after afforestation on CR showed a 
decreasing trend of 91.7% from spring to winter. The afforestation on GR in spring and winter also had positive 
Δf values. For afforestation on NF, Δf was positive (0.52) in summer, but became negative (−0.41) in autumn. 
Moreover, at the lower latitudes in Guangdong Province, the Δf values between PF and open land (CR/GR) were 
slightly higher than those between PF and NF (Figure S1 in Supporting Information S1). For CR, afforestation at 
the mid-high latitudes in Guangdong Province decreased f in spring, while this decrease in f mainly occurred in 
winter for NF (Figure S1 in Supporting Information S1).
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The annual variations in albedo were generally small and sometimes negligible. The highest and lowest negative 
Δα values occurred when converting NF and CR to PF, respectively (Figure 2c). Spatial and temporal variations 
in Δα existed for all three conversion types. We found a considerable decrease at the higher latitudes in Guang-
dong Province, except in summer. While a minor reduction was observed on the lower margins between the PF 
and CR, except for a more significant decrease in spring (21°N). A more significant reduction in Δα occurred 
at the mid-latitudes between PF and GR, and at the low latitudes between PF and NF (Figure S1 in Supporting 
Information S1). Except for the more significant decrease in summer (21°30’N), albedo had little effect at the 
lower latitudes. For converting open land to PF, Δα had the lowest value in winter.

Moreover, PF was less sensitive than GR to strong seasonal fluctuations in G, especially in summer and spring 
(Figure S2a in Supporting Information S1). Those that were less sensitive than CR occurred in the winter and 
autumn; and those that were more sensitive than NF were found in the spring, summer, and autumn. We also 
found a negative relationship between the monthly G and albedo due to afforestation on GR (Figure S3a in 
Supporting Information S1), yet linear relationships were not found between the monthly mean ΔG and ΔSWnet 
(Figure S3b in Supporting Information S1). Additionally, for all conversion types, ΔSWnet had an overall down-
ward trend from winter to summer and an upward trend from summer to winter (Figure 2d). The highest ΔSWnet 
value occurred when converting GR to PF.

Interestingly, consistent negative ΔET values were found among all conversion types throughout the year (Figure 
S2b in Supporting Information S1). The ΔET values were the lowest when converting CR to PF and the highest 
when converting NF to PF. Yet the seasonal variations of ΔET were not obvious. Moreover, the relationship 
between ΔET and Δf was less pronounced (Figure S3c in Supporting Information S1).

3.2.  Impacts of Afforestation on Surface Temperature

We then calculated and compared the mean values of the modeled ΔTs_m driven by the energy redistribution 
factor (Ts_f), albedo (Ts_α), and soil heat flux change (Ts_G), as well as the observed Ts_o (Figure 3 and Figure S4 in 
Supporting Information S1). For the modeled Ts changes, afforestation mainly had a net warming effects on NF, 

Figure 2.  Monthly differences in the (a) energy redistribution factor f (Δf), (b) 𝐴𝐴 𝐴𝐴∗

𝑛𝑛 (𝐴𝐴 Δ𝑅𝑅∗

𝑛𝑛 ), (c) albedo (Δα), and (d) SWnet (ΔSWnet) between the no change planted forest 
and cropland, grassland, and natural forest from 2000 to 2010 in Guangdong Province, China. Each bar's vertical lines represent the 95% confidence intervals estimated 
using the Student's t-test.

 21698961, 2022, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

006913 by U
niversity A

t B
uffalo (Suny), W

iley O
nline L

ibrary on [01/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Biogeosciences

SHEN ET AL.

10.1029/2022JG006913

8 of 14

with annual ΔTs_m values of 0.34 ± 0.48 K. In contrast, a net cooling effect was found on CR (−0.17 ± 0.87 K) 
and on GR (−0.02  ±  0.19  K). The spatial patterns of the ΔTs_m also vary across all three-conversion types. 
Converting CR to PF could lead to warming in northern and southwestern Guangdong, but cooling in the south 
(Figure 4a and Figure S4 in Supporting Information S1), while afforestation on NF resulted in warming across all 
latitudes. A cooling effect occurred for restoring GR to PF in northern Guangdong.

Noticeable differences were found between the ΔTs_m and ΔTs_o induced by afforestation, particularly on NF. For 
the observed ΔTs_o, afforestation caused a net cooling effect for all conversion types (Figure 3), with the strongest 
on CR (−0.72 ± 0.007 K), followed by that on NF (−0.087 ± 0.002 K), and GR (−0.043 ± 0.008 K). The monthly 
trends of ΔTs_m and ΔTs_o were also inconsistent in general (Figure 3). For example, we found a warming effect 
in the warm seasons and a cooling effect in the cold seasons due to afforestation on CR according to the ΔTs_m. 
Yet,  the observed Ts change (ΔTs_o) suggested consistent cooling effects for all conversion types during warm 
seasons.

The modeled Ts change driven by f (ΔTs_f) led to warming effects of 0.066 ± 0.71 K, 0.001 ± 0.17 K and 
0.36 ± 0.42 K when converting CR, GR, and NF to PF, respectively (Figure 3 and Figure S4 in Supporting 
Information  S1). The annual, monthly, and latitudinal ΔTs_f were more spatially and temporally consistent 
with the ΔTs_m than with the Ts changes driven by albedo (ΔTs_α) and G (ΔTs_G; Figures S4–S7 in Supporting 
Information S1; Figures 3–5). The contributions of albedo and the soil heat flux to the modeled Ts change were 
also relatively small and negligible among all conversion types (Figures S4–S6 in Supporting Information S1, 
Figure 3). Generally, the radiative process driven by the albedo change made small or negligible contributions 
to the modeled Ts change (Figures S6 and S7 in Supporting Information  S1). Whereas, the non-radiative 

Figure 3.  Monthly mean values of the modeled Ts change (ΔTs_m), the observed Ts change (ΔTs_o), the Ts change driven by the energy redistribution factor change 
(ΔTs_f), the Ts change driven by the albedo change (ΔTs_α), and the Ts change driven by the soil heat flux change (ΔTs_G) for all three conversion types. Each bar's vertical 
lines represent the 95% confidence interval estimated using the Student's t-test.
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process associated with the change in f as one of the primary partition variables dominates the modeled Ts 
change based on the strong linear relationship between ΔTs_f and ΔTs_m (Figure 5). Among these, the contri-
butions of afforestation on NF were an exception because of a slight albedo effect (Figure S7 in Supporting 
Information S1).

3.3.  Contributions of Radiative and Non-Radiative Effects of Afforestation to Surface Temperature 
Change

Afforestation had a warming effect of 0.143 ± 0.43 K through the non-radiative processes and a cooling effect of 
−0.096 ± 0.19 K via the radiative processes in Guangdong Province. The annual average of NRFI values were 
about 64.5% ± 0.79%, 80.2% ± 0.72%, and 75.3% ± 0.26% for converting CR, GR, and NF to PF, respectively 
(Figure  6). This indicates that the non-radiative processes contribute more than radiative processes to the Ts 
change in our study area. The differences in the NRFI values of the conversion types exist across months and 
latitudes. For the afforestation of NF, GR, and CR, the largest NRFI values were 94.7% ± 0.14% in March, 
99.99% ± 0.002% in May, and 93.7% ± 0.32% in June; while the smallest NRFI values were 8.9% ± 0.08% in 

Figure 4.  Monthly and latitudinal mean values of the modeled Ts change (ΔTs_m, a) and the Ts change driven by the energy redistribution factor change (ΔTs_f, b) for all 
three conversion types. The black dots represent the 95% significance level using the Student's t-test.
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September, 33.0% ± 0.96% in October, and 19.1% ± 0.66% in October, respectively. Most of the monthly average 
NRFI values were above 73% ± 0.59%. The northern part of Guangdong experienced stronger non-radiative 
effects due to afforestation than the other regions for all conversion types, particularly for afforestation of GR 
(Figure S8 in Supporting Information S1).

Figure 5.  The relationships between the monthly values of ΔTs_m and Δf (a), ΔTs_m and ΔTs_f (b) for the three conversion types. The blue lines are the linear regression 
lines. The gray solid line indicates the 95% confidence intervals (CI lines) and the shaded confidence area for the predictions.

Figure 6.  Monthly values of the non-radiative forcing index (NRFI) for the three conversion types. Each bar's vertical lines represent the 95% confidence interval 
estimated using the Student's t-test.
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4.  Discussions
In this study, we found the impact of the hypothetical afforestation from 2000 to 2010 in Guangdong Province, 
southern China on the modeled LST using the surface energy balance model and IBM theory showed a slight 
warming effect. Afforestation on open land (CR and GR) produced an overall cooling effect from north to south, 
which is consistent with the results of previous studies (Alkama & Cescatti, 2016; Li et al., 2015; Peng et al., 2014; 
Prevedello et al., 2019). Yet, the effects of afforestation on the LST when converting NF to PF obtained using 
modeled and observed results were contradictory, which can be explained from several perspectives.

Converting NF to PF can have a warming effect on LST because the conifer forests have dark leaves and low 
albedo, thus can absorb more sunlight than underground, which is different from that of broadleaved forests 
(Popkin, 2019; Shen, Li, Huang, He, et al., 2019). This could also explain the finding that the warming impact 
occurred in the warm seasons. Unlike the contradictory results mentioned above, converting CR and GR to PF 
resulted in cooling effects based on both the modeled and observed Ts change, which is consistent with the results 
of previous studies (Bright et al., 2017; Ge et al., 2019), although the effect displayed by the observed results was 
stronger. Compared to grasslands and croplands, forests have a higher capacity to transfer latent heat and sensible 
heat to the atmosphere (Jackson et al., 2008). The roughness and aerodynamic conductance of the forest canopy 
are significantly higher than that of herbaceous vegetation and crop, leading to the forest canopy being cooler 
than the grasslands and croplands (Houspanossian et al., 2013; Kelliher et al., 1993; Lee et al., 2011). Moreover, 
the decrease in the shortwave radiation after afforestation on GR can contribute to the temperature decrease 
as well (Yang et al., 1999). The warming effect of converting cropland to forest, especially irrigated cropland, 
occurs in northern and southwestern Guangdong, which is consistent with the studies from Ge et al. (2019) and 
Kueppers et al. (2008).

In general, the biophysical mechanisms of the radiative and non-radiative processes can provide plausible expla-
nations for the modeled Ts change results due to afforestation across Guangdong Province. The combined effects 
of these processes drive the spatiotemporal variations in the surface temperature change due to afforestation. 
Afforestation can lead to warming due to a lower albedo of forests than open land; however, albedo does not play 
a dominant role in either method (Anderson et al., 2011; Betts, 2000). In addition, forests can lead to evaporative 
cooling. However, this was not revealed by the observed results because satellite observations do not consider the 
effects of the energy balance process. This suggests that the IBM-based method adopted in this study can provide 
more insights for investigating the impacts of afforestation on the local environment. It is also reasonable that 
the ET change did not dominate the afforestation effects since the higher evaporation loss from PF may lead to 
problems with water management and the local climate (Nosetto et al., 2005). Additionally, the change in G had 
little effect on the overall results, which is consistent with Ge et al. (2019). Forests are typically less sensitive to 
G than herbaceous species (Yang et al., 1999). Under a high solar radiation load, the land cover types with lower 
vegetation cover, such as rain-fed cropland and GR, have higher G values. The heat fluxes of these categories are 
nearly zero and negligible.

The non-radiative effects of afforestation, particularly the Δf, are the major contributors to the warming effect in 
open land (cropland and GR), and they explain more than 73% of the warming (i.e., the change in Ts) (Figures 5 
and 6). The spatial and seasonal variations in the Δf were also consistent with previous studies conducted on 
afforestation (Bright et al., 2017; Ge et al., 2019; Lee et al., 2011). However, the aerodynamic resistance-based f 
value may overestimate the impacts of the non-radiative processes on the surface temperature (Liao et al., 2018; 
Rigden & Li, 2017). As for NF, we did not observe obvious effects of some of the spatial inconsistencies compared 
to the results of previous studies. These anomalies could be caused by the higher resolution data we used to 
describe the spatiotemporal distribution of the afforestation. More studies on high-resolution land cover type 
identification are required, such as different forest species, irrigated cropland and rain-fed cropland (Kueppers 
et al., 2008; Prevedello et al., 2019).

Our study also suggested that the IBM-based method is more indicative for studying the biophysical effects 
of afforestation at a regional scale (Bright et  al.,  2017; Wang et  al.,  2020). Compared to Ge et  al.  (2019),  
we adopted different land cover data and parameters for the energy balance model, which could lead to different  
results. Studies of afforestation in the arid regions of northern China also found opposite results using different  
approaches, such as regional climate models and site observations based on the IBM theory (Wang 
et al., 2018, 2019). It has been concluded that the former (Wang et al., 2019) considered the biophysical effects 
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of afforestation based on the regional climate model and the effects of atmospheric feedback. Although we did 
not use climate models and concluded that the local climate feedbacks were consistent, our study thoroughly 
analyzed the biophysical impacts of afforestation on different land cover types using fine-identification data for 
afforestation as inputs to the model.

The results we obtained using the physical-based method for afforestation of open land were consistent with 
those from satellite observations-based results and Ge et al. (2019), in which afforestation led to cooling. Yet, 
the total warning effect was inconsistent with those derived from the satellite observations in this study and 
with the findings of previous studies, which suggested a total cooling effect due to afforestation of open land 
and NF (Peng et al., 2014; Shen, Li, Huang, He, et al., 2019). Several factors could contribute to these differ-
ences. First, our analyses were conducted based on hypothetical afforestation using the space-for-time method. 
Though this strategy has been commonly adopted (Chapman et al., 2020; Chilukoti & Xue, 2020; Ge et al., 2019; 
Peng et al., 2014; Zhao & Jackson, 2014) and produced comparable results of LST trends with the actual forest 
changes (Li et  al.,  2016), using the hypothetical afforestation for analysis could still induce uncertainties in 
results because it is not exactly the actual forest cover change. Second, though the non-local effects of atmos-
pheric feedbacks on afforestation are typically less significant at small scales (Lee et al., 2011) and thus ignored 
in this study, afforestation can indirectly affect the local temperature through feedbacks from the atmosphere 
(Devaraju et al., 2018; Li et al., 2020). Also, uncertainties could be introduced by the input data sets through the 
resampling methods and some hypothetical parameter values that have not been independently validated as well 
as errors that exist in surface temperature driven by three biophysical parameters. Future work could incorporate 
more accurate biophysical or climatic variables and detailed land cover types, such as specific tree species and 
crop types, for developing an enhanced understanding of afforestation impacts on the local environment. The 
satellite and biophysical parameters used in this energy balance model were restricted to non-overcast conditions, 
which could lead to an overestimation of the afforestation impacts on the surface temperature (Bright et al., 2017; 
Ge et al., 2019). The temperature effect of radiation difference caused by topography is also negligible (Hao 
et al., 2021; Lee et al., 2013).

Forest changes can modify the thermal and hydrological cycles of local ecosystems through the radiative and 
non-radiative effects of biophysical processes, while the water resources, soil properties, and background climate 
affect the contributions of forests to climate (Anderson et al., 2011; Perugini et al., 2017). Further separation of 
the effects of the energy redistribution parameters such as the latent heat, sensible heat flux, and Bowen ratio on 
the temperature could provide more meaningful insights into the interactions between forest change and the local 
ecosystems. Furthermore, multi-source data such as high-resolution afforestation data and satellite observations, 
surface energy flux data, climate models, and in situ measurements can be integrated in the future to investigate 
the land-atmospheric interactions related to land cover changes (Perugini et  al.,  2017). Additionally, though 
afforestation is an important tool for mitigating climate change, restoring lost forest area and maintaining existing 
forests are critical for preventing further biophysical surface warming in local regions (Bright et al., 2017).

5.  Conclusions
In this study, we integrated satellite data and a surface energy balance model to investigate the biophysical 
impacts of afforestation on the LST in Guangdong Province, southern China. This study proposes a framework 
for understanding the biophysical effects of forest changes due to afforestation on local surface temperature by 
integrating high-resolution land cover data and an energy balance model. Results from satellite observations and 
the physical-based model both suggested a cooling effect of afforestation on open land (CR and GR) across our 
study area. Nevertheless, we found that the annual warming impact of the afforestation of NF obtained using the 
modeled surface temperature change differed from the satellite observation-based results. The change in f domi-
nates this modeled temperature result. In general, the non-radiative processes lead to warming, while the radiative 
processes lead to slight cooling. The most significant cooling and warming due to the non-radiative processes 
occurred over forests converted from open land and NF, respectively.

Identifying detailed land cover types and selecting appropriate types for afforestation should be improved in the 
practical evaluation of the temperature response and the mitigation of regional increases in temperature. Our 
methods and findings can provide guidance for designing rational afforestation plans in southern China and 
similar geographic areas.
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Data Availability Statement
Biophysical and climatic data are available from MODIS products through public resources. The no change 
planted forests, natural forests, and open lands data in 2000–2010 can be found at https://doi.org/10.6084/
m9.figshare.19982726.v3. The surface biophysical parameters and land surface fluxes data can be found at 
https://doi.org/10.6084/m9.figshare.20107175.v1. Data and grids used for modeling LST change due to hypo-
thetical afforestation can be found at https://doi.org/10.6084/m9.figshare.20107973.v1. And the non-radiative 
forcing index (NRFI) and land surface temperature change data due to afforestation can be found at https://
doi.org/10.6084/m9.figshare.20109944.v1. All R code used in data processing can be found at https://doi.
org/10.6084/m9.figshare.20105423.v2.
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