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Abstract—Hyperspectral remote sensing data offer unique op-
portunities for the characterization of the land surface and atmo-
sphere in the spectral domain. However, few studies have been
conducted to estimate albedo from such hyperspectral data. In this
study, we propose a novel approach to estimate surface shortwave
albedo from data provided by the Airborne Visible Infrared Imag-
ing Spectrometer (AVIRIS). Our proposed method is based on the
empirical relationship between apparent directional reflectance and
surface shortwave broadband albedo established by extensive ra-
diative transfer simulations. We considered the use of two algo-
rithms to reduce data redundancy in the establishment of the
empirical relationship including stepwise regression and principle
component analysis (PCA). Results showed that these two algo-
rithms were able to produce albedos with similar accuracies.
Analysis was carried out to evaluate the effects of surface anisotropy
on the direct estimation of broadband albedo. We found that the
Lambertian assumption we made in this study did not lead to
significant errors in the estimation of broadband albedo from
simulated AVIRIS data over snow-free surfaces. Cloud detection
was carried out on theAVIRIS images using aGaussiandistribution
matching method. Preliminary evaluation of the proposed method
was made using AmeriFlux ground measurements and Landsat
data, showing that our albedo estimation can satisfy the accuracy
requirements for climate and agricultural studies, with respective
root-mean-square-errors (RMSEs) of 0.027, when compared with
AmeriFlux, and 0.032, when compared with Landsat. Further
efforts will focus on the extension and refinement of our algorithm
for application to satellite hyperspectral data.

Index Terms—Airborne Visible Infrared Imaging Spectrometer
(AVIRIS), AmeriFlux, bidirectional reflectance distribution
function (BRDF), direct estimation, hyperspectral data, Landsat,
principle component analysis (PCA), stepwise regression, surface
albedo.

I. INTRODUCTION

S URFACE albedo is an important parameter for calculating
the surface energy balance, as used in urban environment

studies [1], [2]. High-resolution albedo maps can also be used as
a critical input for the estimation of the surface energy budget, to
improve the estimation of evapotranspiration in precision agri-
culture studies [3]. Supply of albedo values at high spatial
resolutions also enables ecological studies of the surface energy
balance at landscape scales, where surface albedo is sensitive to
small-scale vegetation structure [4].

Global land surface albedo products have been generated from
multiple satellite sensors [5]. In general, there are two approaches
estimating land surface albedo [6], [7]: physical and statistical.
The physical approach, adopted by the Moderate Resolution
Imaging Spectroradiometer (MODIS) land team [8], generally
consists of three basic steps: 1) atmospheric correction that
converts top-of-atmosphere (TOA) radiance to surface directional
reflectance; 2) surface anisotropic model fitting that converts
accumulated surface directional reflectance to spectral albedos
[9]; and 3) narrowband to broadband conversion that converts
spectral albedo to broadband albedo. An optimization-based
methodhas alsobeendeveloped to simultaneously retrieve surface
albedo and aerosol optical depth, based on the coupling of atmo-
sphere and surface anisotropy in radiative transfer models [10].

In comparison, the statistical approach directly links TOA
spectral reflectance to land surface broadband albedo, based on a
database created from extensive radiative transfer simulations.
The statistical method does not require any atmospheric correc-
tion. Moreover, it also does not require the accumulation of
observations over a certain period of time, which enables the
monitoring of rapid changes in surface albedo. Liang et al. [11]
designed a direct estimation algorithm using a neural-network.
This was later improved using linear regression analysis for each
of the angular bins and applied toMODIS data [12] and was also
improved to produce accurate daily snow/ice albedo more
efficiently with a mean bias of less than 0.02 and residual
standard error of 0.04 [13]. This algorithm has been adopted as
a default for operationally mapping the land surface broadband
albedo using data from the Visible Infrared Imager Radiometer
Suite (VIIRS), and it has recently been improved by Wang et al.
[14]. In addition, the algorithm has also been further refined to
produce the long-term Global LAnd Surface Satellites
(GLASSs) albedo product [15], [16].

In the past decade, few researchers have used hyperspectral
remote sensing data to estimate surface broadband albedo, either
due to its limited temporal and spatial coverage, or to the
challenge posed by the automation of pixel-level atmospheric
correction. For example, Painter et al. [17] established the
relationship between surface albedo and snow cover as well as
snow grain size, based on model-simulated spectral libraries.
They then applied this relationship to atmospherically corrected
surface reflectance to estimate albedo. Roberts et al. [4] used
modeled surface downward radiation and atmospherically cor-
rected surface reflectance to calculate shortwave albedo.Both the
studies followed the above-mentioned physical approach to
estimate albedo. However, in these approaches, the atmospheric
components must be premeasured to obtain the surface reflec-
tance, under the Lambertian assumption.
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The nature of the direct albedo estimation algorithm is such
that it relies on the data from extensive radiative transfer simula-
tions under different geometries and atmospheric conditions, to
overcome the lack of premeasured atmospheric components
needed for atmospheric correction. As the direct estimation
algorithm is based heavily on spectral signatures, hyperspectral
data would be more useful than multispectral data to examine its
performance in albedo estimation, without using angular signa-
tures. In this study, we developed a refined direct estimation
algorithm and used it on the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) data, as a proxy for hyperspectral satel-
lite data, to ultimately estimate surface shortwave albedo. In this
paper, we first introduce the AVIRIS data and basic principles of
directly estimating surface albedo from hyperspectral data in
Section II. Preliminary results and validations are shown and
discussed in Section III, followed by the conclusion in
Section IV.

II. METHODOLOGY AND DATA

A. Direct Estimation of Surface Albedo From Hyperspectral
Data

Surface shortwave albedo, defined as the ratio of outgoing to
incoming solar radiation at the Earth’s surface, is a very impor-
tant biophysical variable in climate, urban, agricultural, and
ecological studies. Surface shortwave albedo can be calculated
as the sum of spectral albedo, weighted by the downward solar
radiation [7]

where is the surface shortwave albedo covering the spectral
range from (300 nm) to (3000 nm); and are the
surface downward shortwave radiation and spectral albedo at
wavelength , respectively.

Surface spectral albedo is the integrated value of the
atmospherically corrected surface directional reflectances over
the entire hemisphere. Formultispectral sensors, shortwave albedo
is usually calculated from the spectral albedos of multiple bands
[8], [18].While surface spectral reflectance can usually be derived
from atmospheric correction of a single observation (apparent
reflectance or radiance), spectral albedo requires multiple angular
samplings for integration over the hemisphere, which is usually
not possible with sensors such as AVIRIS. Although surface
shortwave albedo needs both spectral and angular information,
the latter is currently not available for hyperspectral behavior.
However, previous studies have shown that the Lambertian
assumption for hyperspectral data in broadband albedo estima-
tions does not lead to significant errors [13], [19]. In other words,
the abundant spectral information from hyperspectral data can
compensate for the errors inherent in the Lambertian assumption
we applied to the albedo estimation in this study.

Traditional methods of atmospheric correction require atmo-
spheric variables such as aerosol loading andwater vapor content
as inputs. Errors in the atmospheric variable estimation will
propagate into the final surface albedo estimation. Moreover, the

TOA solar radiation is usually used as a weighting factor in (1) to
calculate shortwave albedo. However, the solar radiation that
reaches the Earth’s surface at a specific time, elevation, and
geographic location will be redistributed in the spectral domain
by means of absorption and scattering of the atmosphere. Thus,
the actual surface shortwave albedo will change with the atmo-
spheric conditions, including aerosol loading and other factors.

Hyperspectral data are capable of capturing the spectral
signatures of both the surface and atmosphere, providing an
accurate broadband surface albedo estimation [19]. To overcome
the above-mentioned limitations, the following direct estimation
designed by Liang et al. [13] could be refined to retrieve surface
albedo from a single observation

where is the apparent reflectance observed by the remote
sensor for band ; is the regression coefficient; and
is the intercept.

Fig. 1 illustrates the procedure for estimating surface short-
wave albedo from hyperspectral remote sensing data. To carry
out the direct estimation, we first collected 245 surface albedo
spectra including vegetation, soil, rock, water, snow, and ice [6],
[10] from USGS [20] and ASTER [21] libraries and used
MODTRAN5 [22] to simulate the shortwave albedo and the
apparent reflectance for each spectral band under different
geometric and atmospheric conditions (see Table I). We used
the “US62” atmospheric profile. Precipitable water vapor was set
at 1.5 cm based on previous research [1]. “Rural aerosol” was
taken as the primary aerosol type in the simulations [22].

Given that many spectral bands are inter-correlated, applica-
tion of the direct estimation using all the bands would not be
necessary and may even cause problems of over-fitting. Water
vapor absorption bands and low signal-to-noise-ratio (SNR)
bands were removed for this estimation of surface albedo.

The magnitude of the apparent reflectance changes with sun-
sensor-target geometries and atmospheric conditions. We there-
fore carried out the linear regression for each of the angular bins
(Table I) to improve the accuracyof the estimation.Asmuchof the
information from hyperspectral data is inter-correlated, it is im-
portant to remove the redundant bands in order to further mitigate
the over-fitting problem. Thus, in this study, we propose the use of
two algorithms: stepwise regression and principle component
analysis (PCA). For the stepwise regression method, we used a
backward stepwise regression algorithm. In the variable selection
of the stepwise regression, bandswith p values less than 0.05were
removed. For the PCA-based method, we first carried out the
PCA for each of the angular bins. Then, we selected the principle
components that explained 99% of sample variance. Finally,
regressions between the apparent reflectance and principle com-
ponents were carried out. Some results, based on the radiative
transfer simulations, are presented in Section III-A.

B. AVIRIS Data

AVIRIS is an airborne sensor that is operated by the NASA
Jet Propulsion Laboratory (JPL) and flies onboard ER-2 and
TwinOtter aircrafts mainly over the United States. TheAVIRIS
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sensor consists of 224 spectral bands in the range of 300–
2500 nm, with an average bandwidth of 10 nm. It has an off-
nadir scan angle of and its spatial resolution varies from

to depending on the flight altitude from 4 to 20 km.
AVIRIS data after 2006 are freely available through the JPL
website. All the data have been geometrically and radiometri-
cally calibrated [23].

C. AmeriFlux Ground Measurements

Ground measurements of downward and upward shortwave
radiation are available from AmeriFlux sites over the North
America. Measurements are routinely made and recorded at
intervals of 30 min with a spectral coverage of 250–2800 nm.
Surface albedo can be calculated by dividing the upward
radiation by the downward radiation. We compiled and utilized
all the available AVIRIS data andAmeriFluxmeasurements for
2007–2011. Matches were tabulated in Table II.

III. RESULTS

A. Empirical Relationship of Surface Albedo and Apparent
Reflectance From Radiative Transfer Simulations

Following the methodology introduced in Section II, we used
MODTRAN5 [22] and the surface spectra to simulate the broad-
band surface albedo and apparent spectral reflectance under
different geometric and atmospheric conditions.

A least-square linear regression algorithm was applied to
establish the relationship between surface albedo and apparent
reflectance from the simulated data, following (2). Regression for
each angular bin was carried out separately. Tables III and IV
show examples ( ) of the root-mean-
square-error (RMSE) and from the stepwise regression
algorithm and PCA-based algorithm, respectively.

In the stepwise regression algorithm, generally, fewer than 10
bands are selected for each of the angular bins after application of
the band removal criteria. All the values are greater than 0.99,
which indicates good performance of the linear regression
among different land cover types under different atmospheric
conditions. RMSE values are less than 0.01when the solar zenith
angle is small ( ). As the solar zenith angle reaches 40 , the
RMSEvalues become slightly larger than 0.01,which is still very
good. This suggests that a larger solar zenith angle introduces
larger uncertainties in the surface albedo estimation, which is
likely caused by the increased length of path through the atmo-
sphere. The results from the PCA-based algorithm are slightly
inferior to those from the stepwise regression algorithm; the
RMSE is almost doubled while the is slightly smaller but still
larger than 0.98.

Fig. 1. Flowchart of surface albedo estimation from hyperspectral remote sensing data.

TABLE I
CONFIGURATION OF GEOMETRIC AND ATMOSPHERIC CONDITIONS IN

MODTRAN5 SIMULATIONS
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B. Surface Anisotropic Effects in the Broadband Albedo
Direct Estimation

To simplify the procedure for albedo estimation using hyper-
spectral data in this study, the Lambertian assumption was
adopted. The findings of [13], [19] indicated that this assumption
would not lead to significant bias in the broadband albedo
estimation that uses hyperspectral information. Nevertheless, it
is important to investigate the surface anisotropic effects in our
direct estimation of broadband albedo from AVIRIS data.

In this study, we simulated snow-free surface bidirectional
reflectance distribution functions (BRDFs) using the Scattering

by Arbitrarily Inclined Leaves (SAIL) model [24], [25]
under various illumination geometries, vegetation densities,
and structures (see Table V). Soil spectra from the spectral
libraries (see Section II-A) were also used in the surface
BRDF simulations. Based on the surface BRDFs, we then
simulated the AVIRIS TOA spectral reflectance using the
same geometric and atmospheric configurations as listed in
Table I, except that we extended the range of view zenith
angle .

The regressioncoefficientsderived fromthe stepwise regression
algorithm in Section II-A were directly applied to the simulated

TABLE II
AVIRIS FLIGHTS OVER AMERIFLUX SITES DURING 2007–2011 WITH VALID GROUND SHORTWAVE ALBEDO MEASUREMENTS

Precise geo-location information can be found in AmeriFlux website.
IGBP: International Geosphere-Biosphere Programme; CRO: cropland; CSH: closed shrubland; DBF: deciduous broadleaf forest; EBF: evergreen broadleaf forest;
ENF: evergreen need leaf forest; GRA: grassland.
DOY: day of year.
SZA: solar zenith angle.

TABLE III
STATISTICS USING STEPWISE REGRESSION TO ESTIMATE SURFACE SHORTWAVE ALBEDO

FROM SIMULATED DATA (VIEW ZENITH ANGLE: ): (A) RMSE; (B)

TABLE IV
STATISTICS USING PRINCIPLE COMPONENTS TO ESTIMATE SURFACE SHORTWAVE

ALBEDO FROM SIMULATED DATA (VIEW ZENITH ANGLE: ): (A) RMSE; (B)
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AVIRIS TOA reflectance to generate the surface albedo estima-
tion. Comparison between the estimated albedo and the SAIL
simulated surface albedo (Fig. 2) shows that our albedo estimates
have a small negative bias ( ) with an RMSE of 0.012. This
supports the assertion that the Lambertian assumption does not
lead to significant errors in the surface broadband albedo estima-
tion from hyperspectral data, particularly for snow-free surfaces.

Table VI shows the impacts of the view zenith angle on the
albedo estimation. The results indicate that the albedo estimation
accuracies do not changemuchwith different view zenith angles.
Considering that both the solar zenith angle and the view zenith
angle from AVIRIS data selected in this study are within the
range of , direct application of the linear relationship
between TOA reflectance and surface broadband albedo derived
in this study would be able to satisfy the accuracy requirements.

C. Cloud Detection From AVIRIS Data

Detection of cloud cover fromAVIRIS data is difficult without
the simultaneous thermal infrared observations. The spectral
signatures of cloud and land surface would be highly variable
as the solar-sensor-target geometries change. Simply relying on
the spectral threshold approach may result in significant uncer-
tainties in cloud detection. Therefore, spatial information is
required for cloud detection if the scene is not entirely covered
by clouds.

In this study, before we carry out any cloud detection, we have
tomake the assumption that the surface albedo of a snow-free area
follows a Gaussian distribution. We selected the apparent reflec-
tance data ofAVIRISband µ [26], [27] andfit its histogram
with a Gaussian distribution. Data that fell outside of the
Gaussian distribution were assumed to be either clouds (high
reflectance) or shadows (low reflectance). We tested the cloud
detection algorithm and found that it worked well on all the data
listed in Table II based on visual interpretation. Examples of cloud
detection in cloudy and clear scenes are shown in Figs. 3 and 4.

TABLE VI
ALBEDO ESTIMATION ACCURACY AND VIEW ZENITH ANGLE

(SOLAR ZENITH ANGLE: )

Fig. 2. Comparison of albedo estimation from simulated AVIRIS TOA reflec-
tance (y-axis) and surface albedo integrated from SAIL model simulated surface
BRDF (x-axis). Color bar shows point density.

TABLE V
CONFIGURATION OF GEOMETRIC AND VEGETATION CONDITIONS IN SURFACE

BRDF SIMULATIONS

Fig. 3. Gaussian distribution curvefitted to the histogramof apparent radiance for
cloud detection usingAVIRIS band µ : (a) cloudy image at siteUS-CaVon
DOY 187, 2009 and (b) cloud-free image at site US-ChR on DOY 205, 2009.
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One limitation of cloud/shadow detection in AVIRIS data is that
shadows and water bodies are indistinguishable from one another
because of their similar signature in the shortwave spectral
domain. Further improvement to cloud/shadow detection may
involve the geometric linkage between cloud and shadow to
reduce potential misclassification of shadow and water.

D. Estimation of Surface Albedo at AmeriFlux Sites

Direct comparison of remotely sensed albedo with ground
measurements is not usually optimal since: 1) remote sensing
sensors obtain information on a pixel-basis instead of a point-
basis and 2) the footprint of the pyranometer is determined by its
height and field-of-view (FOV). The high spatial resolution of
AVIRIS data offers unique opportunities for accurate matching
of ground measurements with remote sensing data compared to
coarse-resolution data. We followed the methodology presented
in He et al. [6] and Shuai et al. [28] using the instrument height
and FOV to calculate the effective footprint of ground measure-
ments. Then, we aggregated the correspondingAVIRIS pixels to
obtain the AVIRIS albedo for each site. Ground measurements
were averaged using data obtained within of the flight
overpass to match the AVIRIS data. In this way, we could
minimize the difference in scale between remotely sensed albedo
and ground measurements.

The comparison of AVIRIS albedo and groundmeasurements
at 10 AmeriFlux sites is shown in Fig. 5. According to Table II,
some flights covered multiple AmeriFlux sites and some sites
were observed by the flights multiple times. Results show that
our algorithms used to estimateAVIRIS albedo are effective over
snow-free surfaces, with a bias of and an RMSE of 0.027
for the stepwise regression algorithm and a bias of 0.004 and an
RMSE of 0.031 for the PCA-based algorithm. This also indicates
that our algorithms are robust for flights above sea
level, regardless of flight location. Similar to the simulated
results discussed in Section III-A, the results from the PCA-
based algorithm are slightly inferior to those from the stepwise
regression algorithm. We separated the comparisons shown in

Fig. 4. Detection of cloud/shadow from AVIRIS data: (a) true color composite of AVIRIS data at site US-CaV on DOY 187, 2009 and (b) detection results from the
AVIRIS data (land: red, cloud: green, and shadow: blue).

Fig. 5. Comparison of ground measurements and AVIRIS shortwave albedo
estimates from (a) the stepwise regression algorithm and (b) the PCA-based
algorithm at AmeriFlux sites. Statistics shown in the figure are based on flights
with resolutions coarser than 8 m (circles). Flights with finer resolutions ( )
are denoted by triangles.
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Fig. 5 by the spatial resolutions of the AVIRIS images. Under-
estimations of AVIRIS albedo were found at US-Var (the two
triangles in Fig. 5) with ground measured albedo of and
AVIRIS albedo of . US-Var is a grassland site (see
Table II) and the instrument was located 2 m above the ground.
Thus, a small geolocation error in the high-resolution AVIRIS
data (3.2 m at US-Var) would have caused substantial mismatch
with the instrument footprint. The surrounding forests may have
compounded in this underestimation.

E. Comparison of Albedo Estimations From AVIRIS and
Landsat Data

The number of matched pairs of ground measurements made
at AmeriFlux sites and AVIRIS flights was limited during
2007–2011. In order to assess our albedo algorithm over a large

area covering multiple land cover types, including vegetation,
water, bare soil, and urban areas, we used Landsat data to support
the validation.

There are three main steps involved in calculating the surface
shortwave broadband albedo from Landsat data [6]. First, we
used the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) tool to perform the atmospheric correction to
obtain surface directional reflectance for each of the six reflective
bands and cloud mask [29]. Second, we used MODIS albedo/
BRDF products [8] to convert the surface directional reflectance
to spectral albedo. Finally, shortwave broadband albedo was
calculated from the spectral albedos using an empirical method
[6]. This approach of deriving Landsat shortwave albedo has
been validated using ground measurements [6], [28].

In the selection of the AVIRIS and Landsat ThematicMapper
(TM) data for algorithm comparison, we considered only the

Fig. 6. Shortwave albedo estimations from: (a) Landsat TMonAugust 18, 2010; (b)AVIRIS onAugust 26, 2010 using the stepwise regression algorithm; and (c) as for
(b) but using the PCA-based algorithm. Image is centered at , in Madison, WI, USA.
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cloud-free scenes with minimal difference in acquisition time.
A matched pair of AVIRIS data (flight no.: f100826t01p00r07
on August 18, 2010) and a Landsat TM scene (p024r030 on
August 26, 2010) was examined. Considering that both data
sets were obtained in August 2010, we assume that there were
no significant changes in surface albedo during the 8 days
separating their collection. Fig. 6 shows the surface broadband
albedo maps from Landsat and AVIRIS. Clear boundaries can
be seen in bothmaps, delineating a variety of land surface types,
including water, crop, grass, forest, bare land, and urban areas.
A statistical comparison is shown in Fig. 7, which indicates that
our algorithm is able to generate promising high-resolution
albedo estimates with a bias of 0.002 and an RMSE of 0.032
from the stepwise regression algorithm and a bias of 0.010 and
an RMSE of 0.034 from the PCA-based algorithm. The PCA-
based algorithm-generated albedo estimations gave an overes-
timation of 0.008 relative to the stepwise regression algorithm.
However, the albedos estimated using the PCA-based algo-
rithm had better overall correlation with the Landsat albedos. In
general, no significant differences were found between these

two algorithms either from visual comparison (Fig. 6) or from
statistical comparison (Fig. 7). These results suggest that our
estimated shortwave albedo data are able to satisfy the accuracy
requirements of urban, agricultural, ecological, and climate
applications.

IV. CONCLUSION

Estimation of surface shortwave albedo using data of either
high spatial resolution or high spectral resolution has seldom
been attempted in previous research. In this study, we proposed a
refined direct estimation approach using a stepwise regression
algorithm and a PCA-based algorithm to estimate shortwave
albedo from hyperspectral remote sensing data.

As the Lambertian assumption was made in this study,
surface anisotropic effects on the broadband albedo direct
estimation have been evaluated. We used the surface BRDFs
simulated from a canopy radiation transfer model to estimate
surface broadband albedo and to simulate AVIRIS TOA reflec-
tance. Validation results showed that directly applying the
Lambertian-based regression coefficients generated accurate
surface broadband albedo with an RMSE of 0.012 over snow-
free surfaces, and no significant angular dependence. Thus, we
argue that hyperspectral information is likely to be more
important than the angular information in estimating surface
broadband albedo.

The proposed method was applied to AVIRIS data. Prelimi-
nary validation results based on ground measurements and
Landsat data have shown that our algorithms were robust over
various atmospheric and geometric conditions by providing
albedo estimation with RMSEs less than 0.034.

Direct comparison with ground measurements has been wide-
ly used to assess the medium/coarse resolution satellite albedo
products; however, significant differences in scale were found.
High spatial resolution albedo estimates can help bridge this gap
[30]. In addition, the AVIRIS albedo derived in this study can be
very useful in urban environmental, ecological, and agricultural
applications, which usually require surface energy balance
components with a high spatial resolution.

The principle outcome of this study is that our algorithm can
be refined and applied on future satellite hyperspectral missions
(e.g., HyspIRI), thereby providing accurate surface albedo
estimations on a global basis, as a supplement to the existing
satellite products. In addition, the results from our algorithm
may be used to verify and explain the possible uncertainties
in narrowband to broadband albedo conversions reported in
Govaerts et al. [31]. Further study is needed, including the
implementation of our algorithm to satellite hyperspectral data,
and algorithm validation and refinement over bright surfaces,
including snow and desert.
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Fig 7. Scatter plots of albedo estimations from Landsat TM and AVIRIS data:
(a) AVIRIS albedo estimation from stepwise regression algorithm and
(b) AVIRIS albedo estimation from the PCA-based algorithm.
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