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A B S T R A C T   

Land use/land cover change is a key component in terrestrial carbon cycle, yet there are still large uncertainties 
in the terrestrial carbon budget. To reduce such uncertainties and refine the spatial distribution of carbon flux, a 
30-m Grid-based Carbon Accounting (GCA) model was proposed. We adapted a well-established bookkeeping 
model into a spatial-explicit model to utilize Landsat time series stacks and to calculate the carbon fluxes 
resulting from three types of forest disturbances including forest harvesting, forest-to-urban conversion, and fire. 
Our model results provide spatial details at sub-ha scale that are crucial for carbon management at individual 
landowner levels. Sensitivity analysis revealed that both pre-disturbance forest carbon and disturbance intensity 
had large impact on carbon flux estimates arising from forest disturbances that occurred between 1986 and 2010 
in North Carolina. At the state level, forest harvesting and fire from 1986 to 2010 released 88.5 MT and 1.6 MT 
carbon respectively. During the same period, regrowing trees over the logged area absorbed 142.7 MT carbon 
while those over burned area absorbed 1.6 MT more. The net flux from harvesting, fire, and post-disturbance 
growth was − 52.5 MT. Conversion of forest to urban resulted in a net source of 5.3 MT. Overall, the areas 
subject to the three types of disturbances and post-disturbance growth was a net sink of 47.2 MT carbon over the 
entire study period. While our modeling framework was tested at the 30 m spatial resolution in this study, it can 
be adapted for use with finer spatial and/or temporal resolution remote sensing products that will become more 
readily available in the coming years, thus further improve the carbon flux estimates.   

1. Background 

The past century has seen a rise in atmospheric CO2 concentration 
that leads to the observed global climate change (IPCC, 2014). To 
combat it, numerous carbon emission reduction initiatives, such as 
REDD+ (“reducing emissions from deforestation and forest degrada
tion”, and the + standing for “the role of conservation, sustainable 
management of forests and enhancement of forest carbon stocks”) and 
various carbon trade/carbon credit programs have been established 
(Agrawal et al., 2011; Canadell and Raupach, 2008; Denise et al., 2011; 
Schulze et al., 2002). This calls for robust carbon accounting systems to 
support the measurement, reporting, and verification (MRV) of carbon 

pools and fluxes (Birdsey et al., 2006; Fahey et al., 2010; Lamb et al., 
2021), yet large uncertainties exist in current estimates of carbon fluxes 
between the biosphere and the atmosphere (Houghton, 2013; Anto
narakis, 2014). The most recent global carbon budget reports emissions 
from land-use change at around 1.3 ± 0.7 GtC yr-1 over the 1970–1999 
period, and 0.9 ± 0.7 GtC in 2020 (Friedlingstein et al., 2021): the un
certainty is over 50% of the estimated flux. An accurate estimation of the 
Earth’s carbon budget is crucial for national and international decision 
makers when considering climate mitigation strategies (Griscom et al., 
2017; Marland et al., 2003; Noormets et al., 2015), thus reducing such 
uncertainties is of great interest in the scientific community, especially 
in quantifying carbon fluxes at more local and regional scales (Turner 
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et al., 2016). 
There are many ways to estimate forest carbon pools and fluxes. The 

first one is the inverse models used with variations in atmospheric 
concentrations of CO2 to infer sources and sinks (Fan et al., 1998; Pacala 
et al., 2001; Crevoisier et al., 2007). These studies have generally esti
mated larger net sinks than other approaches, but the uncertainties are 
high. The second approach is to use process-based ecosystem models or 
terrestrial biosphere models (TBMs) to simulate changes in carbon 
storage on land (e.g. Tian et al., 1999; Hurtt et al., 2002; Williams et al., 
2020). The estimates of annual NEP from TBMs are also highly variable, 
for example, the estimates of annual NEP for temperate North America 
varies from a sink of 1600 to a source of 500 TgC/yr for the period 
2000–2005 (Huntzinger et al., 2012). The major components of NEP 
(GPP and Rs) varied even more than NEP among the models. The third 
approach relies on data from forest inventories to calculate carbon 
budgets (Birdsey and Heath, 1995; Turner et al., 1995; Smith et al., 
2007; Pan et al., 2011; Gray and Whittier, 2014). Estimates from in
ventory data are less variable than estimates from inverse studies and 
ecosystem models, and generally the estimated net carbon sink in forests 
is also smaller. But the strategic national inventory data are based on 
sampling strategies designed primarily to estimate stocks (growth and 
mortality), not to monitor changes in area at fine spatial resolution 
(Bradford et al., 2010). The fourth approach is to utilize carbon ac
counting methods to track carbon fluxes arising from land use conver
sion, forest harvest, wildfire, and other land use/land cover change types 
(Houghton et al., 1999; Zheng et al., 2011; Brack and Richards, 2002). 
Driven by tabular statistics on land use change and related carbon pools, 
this approach typically produces results with spatial characteristics no 
better than those of the tabular input data. Such results might be useful 
at national or regional levels, but lack the spatial details needed to 
support carbon management decision makings by local agencies or in
dividual landowners. The carbon flux estimates from different ap
proaches vary greatly, even the direction of the flux can differ at global 
scale, either due to incomplete accounting inherent in some of the 
methods (Houghton, 2003a) or data variability (Huntzinger et al., 
2012). But with spatially detailed land-use change and disturbance re
cords, such differences may be resolved (Houghton, 2003a). 

Deriving carbon estimates with needed spatial details was difficult in 
the past, partly because spatial products on the required model inputs 
did not exist. With rapid advances in remote sensing technology, how
ever, it has become increasingly more feasible to map many variables 
important for tracking carbon fluxes with increasingly better quality 
(Goward et al., 2008). Landsat images have been used to map land cover 
and land cover/land use change for decades (Powell et al., 2010; 
Schroeder et al., 2014). Following the opening of the entire Landsat 
archive for no-cost access, the multi-decade Landsat record has been 
used to nationally reconstruct forest disturbance history (Goward et al., 
2010; Huang et al., 2010), map disturbance agent (Schleeweis et al., 
2020; Schroeder et al., 2014), and quantify disturbance intensity (Tao 
et al., 2019). Integration of remote sensing observations with field plot 
data and/or other measurements allowed derivation of biomass prod
ucts at local, national, to continental scales (Hall et al., 2006; Santi et al., 
2017). With increasingly more optical, radar, and lidar observations 
provided by existing and forthcoming satellite missions, including 
Sentinel-1 and -2, the Ice, Cloud and land Elevation Satellite (ICESAT-2), 
and Global Ecosystem Dynamics Investigation (GEDI) mission, the 
ability to produce high quality data products on land change, biomass 
density, and other biophysical variables needed to calculate terrestrial 
carbon fluxes will continue to improve (Xiao et al., 2019). 

Effective use of the rich, remote sensing-based datasets to advance 
carbon management decision making requires a framework to integrate 
these datasets with models to produce carbon estimates with required 
spatial-temporal details. A major goal of this study was to develop a grid- 
based framework where fine resolution disturbance, forest carbon, and 
other remote sensing products can be used as inputs to a well-established 
carbon accounting model (Houghton et al., 1999), which has been used 

in varies studies including past Global Carbon Budget (Le Quéré et al., 
2016; Friedlingstein et al., 2021) and tracks carbon fluxes through 
several different pool, to produce spatially detailed map products of 
carbon pools and fluxes. Previous studies have shown that this can lead 
to better estimations of carbon fluxes where regional statistics are un
available, or when close examination of spatial patterns are needed 
(DeFries et al., 2002; Kuemmerle et al., 2011; Tang et al., 2020). Here in 
this study, we have established a framework that provides yearly esti
mates of carbon fluxes resulting from forest disturbances at a fine res
olution of 30-m. We have tested this framework over North Carolina 
where detailed forest carbon and Landsat-based disturbance products 
are available and used it to produce 30-m map products of carbon fluxes 
arising from forest disturbances occurred between 1986 and 2010. 
These fine resolution map products are valuable for understanding the 
spatial-temporal patterns of carbon sources from forest disturbances and 
sinks from post-disturbance growth. More importantly, they can provide 
much needed details that are mostly unavailable thus far for carbon 
accounting, management, and related decision support at individual 
property owner, municipal, county, or even state levels. 

2. Methods 

2.1. Study area and period 

North Carolina is located in the southeastern United States. It is split 
between two ecozones, Zone 21, subtropical humid forest, and Zone 35, 
temperate mountain system (Fig. 6). Its 100 counties are distributed 
from the Atlantic coast in the east to the Great Smoky Mountains in the 
west. About 60% (75199.3 km2) of the state’s 139,390 km2 land base is 
forest land (Brown et al., 2014), most of which is classified as timberland 
(Bardon et al., 2010). Major forest type groups include Oak-Hickory, 
Loblolly-shortleaf pine, Oak-pine, and Oak-Gum-Cypress. More than 
half of the state’s forests were disturbed at least once between 1985 and 
2010 (Huang et al., 2015). While timber harvest is the dominant 
disturbance type, damages from hurricane, insect outbreak, snow/ice, 
fire, and other natural disturbances are also common. The state’s total 
area subject to stand clearing disturbances was relatively stable, but the 
impact of partial disturbances had large inter-annual variability (Tao 
et al., 2019). In this study, we ran the model for the period of 
1986–2010. Note that any latency effect from disturbances before 1986 
was not calculated, nor was carbon absorption from undisturbed pixels 
included in the model results reported in this study. 

2.2. The original bookkeeping carbon accounting (BCA) model 

The Bookkeeping Carbon Accounting (BCA) model (Houghton et al., 
1999) is a well-established model for tracking carbon fluxes arising from 
land use and land cover change. This model divides the globe into 
ecozones following the Food and Agriculture Organization of the United 
Nations (FAO) Global Ecological Zones (GEZ, second edition). For each 
ecozone, the BCA model keeps track of the carbon in four major pools: 
living aboveground and belowground biomass; dead biomass, including 
coarse woody debris; harvested wood products; and soil organic carbon 
(Houghton and Nassikas, 2017). These major pools are divided into 
smaller categories for calculation purposes: soil release and uptake, 
slash (woody debris left on site), carbon burned on site, regrowth after 
disturbance, and decay of various industrial wood products. Carbon 
pools and the fluxes for different disturbance types are tracked at the 
ecozone level. Table 1 lists the forest change processes and carbon pools 
considered in this study, and the key parameters used to calculate these 
pools and fluxes are listed in Table 2. 

For a disturbance event that resulted in a disturbance area of LC, the 
release from the carbon ended up in the slash in any given year X is  

Slashr in X = (Slash PoolX-1 + LC * CPrim * FSlash) * (1 – e− DRslash)       (1) 
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And the carbon pool after each year’s release is  

Slash Pool in X = (Slash PoolX-1 + LC * CPrim * FSlash) * e− DRslash        (2) 

The carbon burned on site is released immediately in the year of 
disturbance, and can be calculated as  

P1r = LC * FP1 * (CPrim – CMin)                                                         (3) 

For regrowth after disturbance, it is assumed that the growth rate is 
fast when the disturbed land is recovering from minimum to secondary 
forest, then the rate becomes slow until the forest reaches mature stage, 
at which point the growth stops. During each regrowth stage, it is 
assumed that the growth rate is constant. The annual carbon uptake or 
sink by regrowth from minimum to secondary forest and from secondary 
forest to mature forest are calculated using equations (4) and (5)  

Regrowthmin2sec = LC * (CSec – CMin) / Tms                                         (4)  

Regrowthsec2mat = LC * (CMat – CSec) / Tms                                         (5) 

The total annual uptake by regrowth is the sum of annual uptake by 
regrowth from all previous disturbances. 

For the wood products, based on different product types, the pool is 
divided into a fast decay pool (10-year decay pool, or P10, e.g., paper 
products) and a slow decay pool (100-year decay pool, or P100, e.g., 
furniture, wood used in buildings). The calculations for these pools and 
their annual releases are similar to Eq. (1) and Eq. (2), where 1/10th or 
1/100th of the respective pool is released per year. 

2.3. Development of a grid-based carbon accounting (GCA) model 

A major limitation of the current BCA model is its inability to provide 
results at a resolution required for project level or landscape level car
bon management. To overcome this problem, we reimplemented the 
BCA model within a gridded framework to leverage the increasingly 
more available remote sensing products that could be used to derive the 
parameters required by the model. In this framework, a study area is 
divided into even-sized grid cells (e.g., 30-m pixels). Carbon pools and 
fluxes are calculated for individual grid cell instead of ecozones. For 

each cell, the parameters that can be derived from available remote 
sensing products will have cell-specific values derived from those 
products. The remaining parameters will inherit the ecozone-based 
values from the original BCA model according to which ecozone that 
cell belongs to. 

As will be discussed in section 2.3, several remote sensing products 
were available over the study area, including 1) a carbon content map, 
and 2) a suite of disturbance products providing details on the timing/ 
year, intensity, as well as type/attribution of each disturbance event. 
With these products, the GCA model was implemented such that it could 
account for carbon fluxes arising from multiple disturbance events that 
occurred within the same grid cell in different years. Further, we used 
these products to improve the calculation of carbon fluxes arising from 
disturbance and post-disturbance regrowth through the following steps: 

First, the carbon density map was used to replace CPrim in deter
mining the initial carbon density of a grid cell right before the first 
disturbance event was detected at that location (pre-disturbance carbon 
density). Second, the amount of carbon removed from the living biomass 
within that grid cell due to the first disturbance event was calculated as 
the product of pre-disturbance carbon density and the percentage of 
carbon removed (PCR) by that event, which was assumed to be 100% 
(stand clearing) when not using the disturbance intensity data. As will be 
discussed in section 2.4.1, the disturbance intensity products provided 
estimates of percent basal area removal (PBAR), which was the per
centage of the total basal area of live trees removed by a disturbance 
event. Based on the allometric equations of Jenkins et al. (2003), which 
were developed to convert tree diameter measurements to biomass, the 
percentage of carbon removed (PCR) by a disturbance event can be 
calculated from PBAR using the following equation:  

PCR = PBAR6/5                                                                                    

Third, whether to use equation (4) or (5) to calculate the initial 
growth immediately following that disturbance event was determined 
according to the remaining carbon in live biomass after that event, 
which was the difference between pre-disturbance density and the 
amount of carbon removed by that event as calculated above. If the 
remaining carbon is below CSec, equation (4) is used. Otherwise, use 
equation (5). 

Finally, if more disturbances were detected after the first disturbance 
over a pixel location, the pre-disturbance carbon density for each sub
sequent disturbance event was calculated as the sum of the remaining 
carbon after the previous disturbance and the carbon accumulated 
through the growth calculate in the third step. The fluxes arising from 
disturbance and post-disturbance growth were then calculated following 
the second and third steps. 

2.4. Model inputs 

Since the GCA model was in essence a reimplementation of the BCA 
model within a gridded framework, most of its parameters would have 
values equivalent to those used in the original BCA model. That is, for 
each of those parameters, all grid cells in the GCA model that were 
located within the same ecozone of the BCA model had the same 
ecozone-based values used by the original BCA model. For the param
eters that could be derived from available remote sensing products, their 
values over each grid cell will be derived from remote sensing products 
and can vary within the ecozones. The remote sensing products used in 
this study included a suite of forest disturbance maps and a pre- 
disturbance carbon density map all scaled to 30 m resolution. 

2.4.1. Forest disturbance data 
Several products were used to produce a disturbance dataset with 

information on the timing (year), type (attribution), and intensity of 
disturbances that occurred in North Carolina from 1985 to 2010. The 
first were annual forest disturbance maps showing which pixels had 

Table 1 
Pools tracked by the BCA model for LULCC types considered in this study 
(indicated by “X”).   

Fire Wood Harvesting Conversion to Urban Land 

Soil Release    
Soil Uptake    
Slash X X  
Burned X  X 
Regrowth X X  
Wood Products  X   

Table 2 
Ecozone-specific parameters used by the BCA model.  

Name Unit Description 

CPrim g/ 
Ha 

Carbon density in undisturbed, mature/primary forest 

CMin g/ 
Ha 

Minimum carbon density after disturbance 

CSec g/ 
Ha 

Carbon density in recovered, secondary forest 

FSlash  Fraction of carbon ended up in slash pool 
DRSlash  Decay rate coefficient for slash pool 
FP1  Fraction of carbon ended up in 1-year decay pool 
FP10  Fraction of carbon ended up in 10-year decay pool 
FP100  Fraction of carbon ended up in 100-year decay pool 
Tms Year Time for forest to grow into secondary forest from stand-clearing 

disturbance 
Tsp Year Time for forest to grow into mature forest from secondary forest  
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disturbances in what years (Huang et al., 2015). These maps were 
derived using Landsat time series stacks (LTSS) (Huang et al., 2009) and 
the vegetation change tracker (VCT) algorithm (Huang et al., 2010). For 
each disturbance event detected by the LTSS-VCT approach, if it was 
also mapped as a burned pixel by the annual fire maps derived through 
the Monitoring Trends in Burn Severity (MTBS) project (Eidenshink 
et al., 2007), then it was a fire disturbance. Otherwise it was a wood 
harvesting event unless it was classified as a conversion to urban as 
follows – if at least one disturbance was detected at a pixel location and 
that pixel was mapped as an urban pixel in 2011 by the National Land 
Cover Dataset (NLCD 2011) (Homer et al., 2015), then the last distur
bance detected over that pixel was a conversion to urban. We used the 
NLCD 2011 because it represents land covers in the study area closest to 
the end of our study period, thus can help classifying disturbance types 
the most accurately compared to NLCD from other years. It should be 
noted that if two or more disturbance events were detected over the 
same pixel location, each event could be of a different type. However, if 
one of the types was a conversion to urban, that type must be the last 
one, because wood harvesting or fire could not happen over an area 
already converted to urban. The decision process used to attribute the 
detected disturbances is shown in Fig. 1. 

For each disturbance event determined above, its intensity was 
derived based on the PBAR dataset produced by (Tao et al., 2019). As 
mentioned earlier, PBAR was a measure of the percentage of total live 
tree basal area that was removed by a disturbance event. The PBAR 
value for a disturbance event was derived based on the spectral change 
values associated with that disturbance event and a model calibrated 
using reference PBAR data calculated from pre- and post-disturbance 
field measurements collected through the USFS Forest Inventory and 
Analysis (FIA) program. While in the Tao et al. (2019) study, PBAR was 
calculated without considering the disturbance type, for this study, the 
PBAR values were set to 100% for all conversion-to-urban disturbances. 

2.4.2. Pre-disturbance carbon density data 
As mentioned in section 2.2, pre-disturbance carbon density – the 

carbon density at a pixel location right before a disturbance event, is 
required for calculating the carbon change arising from that event. Since 
disturbances could and did occur throughout the entire observing 
period, this would require annual carbon density maps for the entire 
study period, which unfortunately do not exist. Although there are at 
least two CONUS-wide carbon density maps (Kellndorfer et al., 2013; 

Wilson et al., 2013), the values from those maps could not be used 
because the pre-disturbance carbon density for disturbances occurred 
before the derivation of those maps. Here in this paper, we used the 
carbon density map developed by Wilson et al. (2013) as part of the 
model input. Assuming that harvesting is more likely to occur in older 
forests than younger ones, we applied a spatial filtering method to the 
Wilson map to derive a pre-disturbance carbon density map that might 
provide more realistic values than the values in the original maps or the 
ecozone level values used by the original BCA model. Specifically, for 
any pixel location, we calculated the 95 or 99 percentile value with a 
relatively large area surrounding that pixel, say a 6 km by 6 km window, 
and used that value as the pre-disturbance carbon density value for that 
location. 

To evaluate how realistic the pre-disturbance carbon density values 
derived this way were, we selected the FIA plots that had field mea
surements right before they were disturbed in the VCT products and 
plotted the FIA-based pre-disturbance carbon values against those from 
the original carbon density map as well as the pre-disturbance carbon 
density maps derived above. Fig. 2 shows that the median values from 
the pre-disturbance maps derived using both 95 and 99 percentiles were 
more realistic and closer to the 1:1 line compared to FIA measurements 
than that derived from the original carbon map, demonstrating that the 
spatial filtering method did provide more realistic pre-disturbance car
bon density values. 

2.4.3. Other inputs 
We used the pre-set parameter values provided with the original 

bookkeeping model for all other inputs. Attempts were made to find 
better forest growth rates with FIA plot data, however they vary greatly 
among different plots, even in the same ecozone (Fig. 3), with the 
average growth rate far larger than the median in each ecozone 
(Table 3). There are many factors that affect growth rates of trees, 
including but not limited to age, nutrient availability, climate, and 
species, and it is difficult to determine reasonable growth rates for each 
ecozone to use in the bookkeeping model with currently available data, 
so the original parameter values were used in the end. 

2.5. Carbon modeling scenarios 

The ability of the GCA model to use spatially explicit remote sensing 
products made it possible to assess the impact of those inputs on carbon 
estimates at finer spatial scales. In this study, four scenarios were 
designed to evaluate the impact of the products described in section 2.4, 
(Table 4). In the first scenario, neither the disturbance intensity dataset 
nor the pre-disturbance carbon density dataset was used. Instead, pre- 
defined mature forest carbon density values were used as pre- 
disturbance carbon density and all disturbances were considered stand 
clearing according to the original model setting (OMS) of the BCA 
model. In scenario 2, only the spatial disturbance intensity (SDI) dataset 
was used. Pre-defined mature forest carbon density values were used as 
pre-disturbance carbon density values. In scenario 3, only the spatial 
pre-disturbance carbon density (SPC) dataset was used. All disturbances 
were assumed to be stand clearing. In the last scenario, both spatial 
datasets (SDI + SPC) were used. Assuming the remote sensing products 
would produce more realistic carbon estimates than using the original 
model parameters, the final carbon fluxes arising from the mapped 
disturbances were calculated using scenario 4 (SDI + SPC). The differ
ences among the four scenarios could be used to examine the impact of 
the remote sensing products on the estimation of carbon fluxes arising 
from forest disturbances and recover in recent decades. 

3. Results 

3.1. Model verification and sensitivity analysis 

The model was first coded following the logic and assumptions of the Fig. 1. The process of determining disturbance attribution.  
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original BCA model, with every disturbance assumed to be stand- 
clearing, the initial carbon density right before the disturbance always 
at the mature forest level, and conversion to agricultural or urban land 
could happen multiple times on a pixel. With this intermediate model, 
not only the total net fluxes over the entire observing period but also the 
annual source and sink estimates for all major carbon pools derived 
using the two models were the same, demonstrating that we successfully 
deployed the BCA model in a gridded framework for producing spatially 
detailed carbon estimates. Then, the disturbance attribution process was 
improved to account for multiple disturbance events on the same pixel 
(see Fig. 1), disturbance intensity and starting carbon density were 
replaced by gridded data derived from satellite remote sensing products, 
and the carbon density throughout the disturbance-regrowth process 
was tracked in the finalized GCA model. The total fraction of disturbed 
forest pixels is about 44.7% in North Carolina, or 35874.3 km2 out of all 
82159.5 km2 of total forested area. 

Model results derived with and without using the spatially explicit 
pre-disturbance carbon density map and the disturbance intensity 
dataset as inputs to the GCA model show that modifying these inputs had 
large impact on carbon estimates. Compared to benchmark results 

derived using original model settings (the OMS scenario), the net carbon 
flux arising from mapped disturbances over North Carolina during the 
study period was reduced from 242.9 MT (net source) to 136.4 MT (net 
source) when only the spatial disturbance intensity (the SDI scenario) 
was used. The flux value became negative (net sink) when the pre- 
disturbance carbon density map was used but all disturbances were 
assumed stand clearing (the SPC scenario). The net flux was further 
reduced to − 47.2 MT when both spatial maps were used (the SPC + SDI 
scenario) (see Fig. 4). 

Because wood harvesting was the dominant disturbance type in the 
study region, the two spatial datasets had the largest impacts on harvest 
source calculations. Emission from wood harvesting was estimated at 

Fig. 2. Comparison of carbon density values between plot measurements and derived maps. After filtering the original map with 95th or 99th percentile in a 6 km by 
6 km window, the range of values are closer to those of undisturbed plots. 

Fig. 3. Distribution of forest growth rates calculated from FIA plot data. The 
box widths are proportional to the square-root of the number of observations in 
each ecozone. 

Table 3 
Growth rate statistics from selected FIA plots. The last two columns show the values provided with the original BCA model.  

GEZ code count median avg min max param_fastGR param_slowGR 

21 3326 2.0876421 2.987681 0.001047 35.3077 2.96656 0.98884 
35 919 1.7693155 2.514326 0.001976 64.1434 1.58216 0.52738  

Table 4 
Scenarios for assessing model sensitivity to spatial carbon density and distur
bance intensity data.  

Scenario Pre-disturbance C value 
used 

Disturbance intensity 
data used? 

Original model setting 
(OMS) 

Ecozone-specific constant No 

Spatial disturbance intensity 
only (SDI) 

Ecozone-specific constant Yes 

Spatial Pre-disturbance C 
density only (SPC) 

Spatial pre-disturbance C 
density map 

No 

SPC + SDI Spatial pre-disturbance C 
density map 

Yes  

Fig. 4. Comparison of carbon fluxes by disturbance type between different 
scenarios. Using both RS-based carbon density map and disturbance intensity 
data has turned the 25-year net total C flux from source to sink. 
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366.9 MT for the study region using the OMS scenario. It was reduced to 
247.9 MT and 133.4 MT under scenarios SDI and SPC respectively, and 
further down to 88.5 MT when both datasets were used (the SPC + SDI 
scenario). The impacts of the two datasets on fire source estimates were 
similar but at much smaller scales because the total area affected by fire 
was only a small fraction of that subject to harvesting. 

Driven by post-disturbance growth rates, sink calculation for both 
post-harvest and post-fire growth should not be directly affected by the 
two spatial datasets. However, because the model assumes a fast growth 
rate at relatively low carbon density and changes the growth rate to a 
lower value when a pixel’s carbon density exceeds a threshold value, use 
of the two spatial datasets can affect a pixel’s carbon value at any given 
time and hence can have indirect impact on the sink estimates for these 
post-disturbance growth processes. 

While the impact of the pre-disturbance C dataset on source calcu
lation for forest-to-urban conversion is similar to that for wood har
vesting and fire events, the impact of the disturbance intensity dataset is 
more complicated. In theory, source calculation for forest-to-urban 
should not be affected by the disturbance intensity data, because the 
intensity should always be 100% for this change process. However, a 
pixel converted to urban could have one or more disturbances (mostly 
harvesting) prior to the final conversion to urban. For such a pixel, if a 
mature forest carbon value was assigned to it prior to its earliest 
disturbance event, a low disturbance intensity would result in a small 
carbon source and trigger the model to start calculating carbon increase 
from post-disturbance regrowth and the pixel’s carbon density could 
exceed the assumed value for mature forest before the pixel was con
verted to urban. As a result, the source estimation for that forest-to- 

urban conversion event under the SDI scenario could be higher than 
that calculated under the OMS scenario. This could only happen to pixels 
that had other disturbances prior to the forest-to-urban conversion. This 
is why the annual forest-to-urban source values calculated under the 
OMS and SDI scenarios were similar in the first couple of years but 
differed in later years (Fig. 5(C)). 

3.2. Carbon fluxes from disturbance and post-disturbance growth 

Carbon fluxes arising from disturbances and post-disturbance growth 
over North Carolina were modeled using the SPC + SDI scenario where 
both the disturbance intensity and pre-disturbance carbon density 
datasets were used as inputs to the GCA model. Sources arising from 
harvesting, fire, and forest-to-urban conversion, as well as sinks from 
post-harvest and post-fire regrowth were calculated on an annual basis 
for every 30-m pixel that had at least one disturbance mapped. Fig. 6 
shows the net flux images derived by summing up all source and sink 
terms over the study period for each pixel, along with a few full reso
lution zoom-in examples showing the fluxes driven by different change 
processes. 

These 30-m maps can be aggregated for any geographic or admin
istrative regions (e.g., areas affected by individual disturbance events, 
properties of individual landowners, districts, counties, and state) to 
derive estimates needed for addressing specific carbon management 
and/or decision support needs. At the state level, forest harvesting and 
fire from 1986 to 2010 released 88.5 MT and 1.6 MT carbon respec
tively. During the same period, regrowing trees over the logged area 
absorbed 142.7 MT carbon while those over burned area absorbed 1.6 

Fig. 5. Annual total carbon absorbed and released by disturbance types during the study period under the four different scenario settings. The trendlines show large 
differences among the sources under the four scenarios. 
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MT more. The net flux from harvesting, fire, and post-disturbance 
growth was − 52.5 MT. Conversion of forest to urban resulted in a net 
source of 5.3 MT. Overall, the areas subject to the three types of dis
turbances and post-disturbance growth was a net sink of 47.2 MT carbon 
over the entire study period. 

The source and sink estimates differed substantially among the 
counties within the state (Fig. 7). Most counties with high carbon re
leases due to harvesting are located in the eastern side of the state, with 
Bertie and Beaufort having the highest releases. Except for Rutherford 
County and Wilkes County, harvesting emissions in most counties on the 
west side were only small fractions of many counties on the east side. 

Emissions due to the other two disturbance types were small in 
general. However, each of the two disturbance types had some hotspots. 
As expected, counties surrounding population centers had higher 

emissions from urbanization, including the Mecklenburg County (the 
Charlotte metropolitan area), Wake County and Durham County (the 
Raleigh-Durham-Chapel Hill area, Fig. 7(A)), and Guilford County 
(suburban Greensboro). The few other counties that had sizable emis
sions from urbanization also had mid-sized cities (population >200k). 

Large fire is not common in NC. In 2008, however, a fire ignited by 
lightning burned more than 41,500 acres, mostly within the Pocosin 
Lakes National Wildlife Refuge, resulting in high emissions in Tyrrell 
and Hyde counties. Several other counties, including Pender, Craven, 
and to lesser degrees, Burke and Washington, also had sizable emissions 
due to fire. 

The carbon sink related to wood harvesting and fire is driven by post- 
disturbance growth. Given the fast forest growth rates in the study re
gion (especially in ecozone 21), it does not take many decades for the 

Fig. 6. A browse image of the 30-m net flux map derived by summing up all source and sink terms over the study period for each pixel. The full resolution zoom-in 
examples show the flux patterns over areas with (a) extensive forest-to-urban conversion, (b) a large fire occurred in 2008, (c) active wood harvesting followed by 
strong growth throughout the study period, (d) minimal disturbances within national park/national forests, and (e) storm damage/salvage logging followed 
by recovery. 
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carbon accumulation through post-disturbance growth to surpass the 
amount released by a disturbance event, especially when the pre- 
disturbance carbon is low or the intensity of that disturbance event is 
low, or both. As a result, most counties with high carbon releases due to 
wood harvesting had even higher sink values over the entire study 
period. These results, however, should not be considered as indicators 
that forests subject to wood harvesting might be a stronger carbon sink 
than undisturbed forests, as the latter was not considered in this study. 
Except for Pender County where the carbon sink from post-fire growth 
by 2010 exceeded the release from a fire occurred in 1986, the few 
counties that had fire disturbances had minimal sinks from post-fire 
growth. 

Overall, the total c sink arising from post-disturbance recovery 
exceeded the total release from all three disturbance types in most 
counties in east and central North Carolina, resulting in negative net 
fluxes in those counties during the study period. The relatively large 
emissions from forest-to-urban conversion in Mecklenburg County and 
the 2008 Pocosin Lakes fire that spilled into Tyrrell County were offset 
by sinks from post-disturbance growth. As a result, the net fluxes from 
disturbance and post-disturbance growth were near zero in both 
counties. Three other counties in the east along with more than a dozen 
counties in the west also had near zero net fluxes. Most of these counties 
had very little emissions from disturbances and hence not much post- 
disturbance growth. The slightly positive net fluxes in the Swain, 
Jackson, and Macon Counties were likely due to slightly higher distur
bances towards the end of study period. 

4. Discussion 

The BCA model provides a useful tool for estimating carbon pools 
and fluxes arising from land use/land cover change. It has been used to 
calculate carbon estimates at national and global scales. However, 
because the smallest modeling unit of the model is an ecozone, it is 
difficult to use it to derive estimates with sub-ecozone details. To address 
this limitation, we reimplemented the BCA model within a gridded 
framework. The resultant grid-based carbon accounting (GCA) model 
provides a flexible framework for integrating remote sensing products 
into the carbon accounting process to produce spatially disaggregated 
carbon estimates, which are increasingly needed to support fine scale 
carbon management decision making and related applications. 

As with the original BCA model, the estimates produced by the GCA 
model are attributed to different pools and change processes at an 
annual time step. While the BCA model has been widely used to estimate 
carbon fluxes arising from historical land use changes (Houghton et al. 
1999, 2012; Houghton 2003b; Houghton and Nassikas 2017), the GCA 
model is intended for modeling the carbon dynamics of forest changes 
that occurred in recent decades during which key datasets such as 
disturbance history, land use conversion, and carbon density could be 
mapped using RS data. The sensitivity analysis conducted in this study 
demonstrated the need for reliable, fine resolution remote sensing data 
products for accurate estimation of carbon fluxes arising from contem
porary forest disturbances and post-disturbance recovery. Large differ
ences were found between the carbon estimates derived based on RS 
products and those derived using parameter values of the original BCA 
model, which were fine tuned for modeling historical land use changes. 

Fig. 7. Total carbon absorption and emission by disturbance types at county level during the 25-year study period. Wood harvesting activities are prevalent in the 
eastern part of the state, resulting in both large sources and sinks. Only a handful of counties are affected by fire. Emission from conversion to urban land is prominent 
in counties with major urban centers. Overall, the emission is less than or almost equal to the absorption in all counties. 
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Compared to estimates derived by assuming the forests had a mature 
forest carbon density value and all disturbances were stand clearing 
events, the carbon release from wood harvesting was reduced by more 
than 30% and 60%, respectively, when RS based disturbance intensity 
and carbon density data were used in deriving those estimates, and by 
more than 75% when both were used. As a result, the net flux arising 
from the observed disturbances and post-disturbance growth in North 
Carolina changed from 242.9 MT (source) to − 47.2 MT (sink) when the 
disturbance intensity and pre-disturbance carbon density values used by 
the original BCA model were replaced by values derived based available 
fine resolution RS products. 

Given the large impact of both forest carbon and disturbance in
tensity on carbon flux estimates, it is critically important to map these 
attributes with sufficient accuracy and adequate spatial and temporal 
details. While methods have been developed for producing forest 
disturbance products at the 30 m spatial resolution on an annual basis, 
forest carbon maps over large areas are available only for very few years 
(Wilson et al., 2013). Due to forest growth, the carbon value from a map 
developed for a specific year in general should not be used directly as the 
pre-disturbance carbon for calculating carbon emissions from a distur
bance event that occurred in a different year. Annual forest carbon 
density maps would allow proper determination of the pre-disturbance 
carbon for disturbances that occurred in any year of the study domain. 
In the absence of such annual products, we developed an alternative 
method to create a pre-disturbance carbon density map based on a map 
produced for a specific year. The average values from the derived map 
were much closer to pre-disturbance carbon values measured by FIA 
field crew, demonstrating that the method we developed could be used 
to derive pre-disturbance carbon estimates in the absence of more reli
able data. 

Like any other science data, RS products, including those used in this 
study, typically have varying levels of uncertainties. However, as RS 
technology advances rapidly and increasingly more and better calibra
tion data are becoming available, more RS products with better quality 
and quantified uncertainties will be developed. The gridded framework 
of the GCA model allows rapid integration of these new products to 
improve carbon estimation. This framework can be adapted for use with 
new, finer resolution remote sensing products as they become available. 

It should be noted that GCA model implemented in this study only 
tracks the carbon accumulated through growth after a disturbance 
event. It does not calculate carbon changes from growth for the years 
before the first disturbance was detected over a pixel location, nor does 
it do so over forest areas that have no detected disturbances. In addition, 
other disturbance agents, such as insect or disease as well as major 
hurricanes are not considered. Although currently any disturbances not 
identified as fire or urban conversion are categorized as harvesting, in 
actuality the disturbance/recovery pattern of these additional distur
bance types should be different from that of harvesting. While we intend 
to add modules to track these carbon changes in our future studies, the 
carbon estimates derived through this study do not provide a complete 
picture of forest carbon dynamics over North Carolina, and hence should 
not be used as evidence as to whether harvesting reduces or enhances 
carbon sequestration. More comprehensive experiments are needed to 
address this important question. 

5. Conclusions 

We have reimplemented the BCA model within a gridded framework 
to allow it to ingest fine resolution remote sensing products and produce 
carbon estimates with spatial details beyond the smallest modeling unit 
of the original BCA model. The resultant grid-based carbon accounting 
(GCA) model has been calibrated/parameterized such that it produces 
the same results as the original BCA model when the inputs to both 
models are equivalent. As with the original BCA model, the GCA model 
calculates carbon fluxes between major carbon pools arising from 
several disturbance types and post-disturbance growth over forestlands, 

including timber harvesting, fire, and conversion to urban area. 
An important feature of the GCA model is that it can integrate fine 

resolution remote sensing products into the carbon accounting process 
to produce spatially disaggregated carbon estimates, which are 
increasingly needed to support fine scale carbon management decision 
makings and related applications. In North Carolina, the model was used 
to estimate carbon fluxes arising from forest disturbances mapped using 
historical Landsat observations over 1986–2010 to take advantage of 
their fine spatial resolution of 30 m and their consistent long-term re
cord. The net flux from those disturbances and post-disturbance growth 
over the study period was 242.9 MT (source) when derived based on the 
original parameter values of the BCA model, which were tuned for 
modeling fluxes from historical land use change over several centuries. 
The flux was reduced to − 47.2 MT (sink) when remote sensing-based 
disturbance attribution, disturbance intensity, as well as pre- 
disturbance carbon density products were used as model inputs, 
demonstrating that use of newly available fine resolution remote sensing 
products could have large impact on modeling the carbon fluxes arising 
from forest disturbance and post-disturbance growth. Therefore, 
improved estimates of those fluxes will rely heavily on further 
improving RS products using better observations and more accurate and 
more representative calibration data. Currently, the GCA model only 
tracks the carbon accumulated through growth after a disturbance 
event. Future efforts should focus on developing modules for calculating 
carbon changes from growth for the years before the first disturbance 
was detected over a pixel location, as well as growth over forest areas 
that have no detected disturbances, which is needed to provide a more 
complete picture of forest carbon dynamics. 
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