Michael E. Fisher
University of Maryland  

Institute for Physical Science & Technology

Home > Research Faculty & Scientists

photo_fisher.jpg (29377 bytes)        

Michael E. Fisher

Distinguished University Professor
and Regents Professor

Institute for Physical Science and Technology
    and Department of Physics


Institute for Physical Science and Technology
University of Maryland
College Park, MD 20742-2431
    Telephone: (301) 405-4819
    Fax: (301) 314-9404
    Email: xpectnil@ipst.umd.edu

A fundamental question in the theory of matter concerns the nature of different phases, the transitions between them and the associated critical phenomena. The researches of Michael Fisher address many aspects of these basic questions ranging from establishing rigorous theorems for the underlying statistical mechanics through exact analytical and precise numerical solutions for model systems, dimensional expansions and renormalization group calculations, Monte Carlo simulations, and phenomenological and thermodynamic analysis of concrete experimental observations. Current work focuses on ionic fluids, their fluctuations, correlations and criticality, on surface and interfacial phenomena, including wetting transitions, etc., and on biophysical problems including motility and the mechanochemistry of molecular motors. Some recent papers are listed below, followed by a link to selected biographical details.


Depiction of renormalization group flows in a
space of Hamiltonians representing different real and conceptally possible physical systems. See Rev. Mod. Phys. 70, 653 (1998).

Selected recent publications by M. E. Fisher:

  1. The story of Coulombic criticality, J. Stat. Phys. 75,1-36 (1994).
  2. On the absence of intermediate phases in the two-dimensional Coulomb gas (M.E.F., X.-J. Li and Y. Levin) J. Stat. Phys. 79, 1-11; 81 [E] 865 (1995).
  3. The renormalized coupling constants and related amplitude ratios for Ising systems (S.-Y. Zinn, S.-N. Lai, and M.E.F.) Phys. Rev. E 54, 1176-1182 (1996).
  4. Prewetting transitions in a near-critical metallic vapor, V.F. Kozhevnikov, D.I. Arnold, S.P. Naurzakov, and M.E.F., Phys. Rev. Lett. 78, 1735-1738 (1997).
  5. Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653-681 (1998).
  6. Fluctuations in electrolytes: the Lebowitz and other correlation lengths (S. Bekiranov and M.E.F.) Phys. Rev. Lett. 81, 5836-39 (1998).
  7. The force exerted by a molecular motor, M.E.F. and A.B. Kolomeisky, Proc. Nat'l Acad. Sci. USA, 96, 6597-6602 (1999).
  8. The Yang-Yang anomaly in fluid criticality: Experiment and scaling theory (M.E.F. and G. Orkoulas) Phys. Rev. Lett. 85, 696-699 (2000).
  9. Extended kinetic models with waiting-time distributions: exact results (A.B. Kolomeisky and M.E.F.) J. Chem. Phys. 113, 10 867-877 (2000)
  10. Force-velocity relation for growing microtubules (A.B. Kolomeisky and M.E.F.) Biophys. J. 80, 149-154 (2001).
  11. The critical locus of a simple fluid with added salt (Y.C. Kim and M.E.F.) J. Phys. Chem. B 105, 11785-95 (2001).
  12. Universality class of criticality in the restricted primitive model electrolyte (E. Luijten, M.E.F. and A. Z. Panagiotopoulos) Phys. Rev. Lett. 88, 185701:1-4 (2002).
  13. A simple kinetic model describes the processivity of myosin-V (A.B.Kolomeisky and M.E.F.) Biophys. J. 84, 1642-1650 (2003).
  14. Precise simulation of near-critical fluid coexistence (Y.C. Kim, M.E.F. and E. Luijten) [arXiv:cond-mat/0304032] Phys. Rev. Lett. 91, 065701:1-4 (2003).
  15. Ionic criticality: an exactly soluble model (J.-N. Aqua and M.E.F.) [arXiv:cond-mat/0311491] Phys. Rev. Lett. 92, 135702:1-4 (2004).
  16. Discretization dependence of criticality in model fluids: a hard core electrolyte (Y.C. Kim and M.E.F.) [arXiv:cond-mat/0402275] Phys. Rev. Lett. 92, 185703:1-4 (2004).
  17. Charge and density fluctuations lock horns: ionic criitcality with power-law forces (J.-N. Aqua and M.E.F.) J. Phys. A 37, L241-L248 (2004).
  18. Scaling for interfacial tensions near critical endpoints (S.-Y. Zinn and M.E.F.) [arXiv: cond-mat/0410673] Phys. Rev. E 71, 011601:1-17 (2005).
  19. Interfacial tensions near critical endpoints: experimental checks of EdGF theory (S.-Y. Zinn and M.E.F.) Molec. Phys. 103, 2927-2942 (2005): issue in honor of B. Widom
  20. How multivalency controls ionic criticality (J.-N. Aqua, S. Banerjee and M.E.F.) [arXiv:cont-mat/0507077] Phys. Rev. Lett. 95, 135701:1-4 (2005).
  21. Criticality in charge asymmetric ionic fluids (J.-N. Aqua, S. Banerjee and M.E.F.) [arXiv:cond-mat/0410692] Phys. Rev. E 72,041501:1-25(2005).
  22. Convergence of fine-lattice discretization for near-critical fluids (S. Moghaddam, Y.C. Kim and M.E.F.) [arXiv:cond-mat/0502169] J. Phys. Chem. B 109, 6824-37(2005).
  23. Fluid coexistence close to criticality: Scaling algorithms for precise simulation ( Y.C. Kim and M.E.F.) [arXiv:cond--mat/0411736] Comp. Phys. Commun. 169, 295-300 (2005).
  24. Singular coexistence-curve diameters: Experiments and simulations (Y.C. Kim and M.E.F.) [arXiv:cond-mat/0507369] Chem. Phys. Lett. 414, 185-192 (2005).
  25. Vectorial loading of processive motor proteins: Implementing a landscape picture ( Y.C. Kim and M.E.F.) [arXiv: cond-mat/0506185] J. Phys.: Condens. Matt. 17, S3821-S3838 2005).
  26. Kinesin crouches to sprint but resists pushing (M.E.F. and Y.C. Kim) Proc. Natl. Acad. Sci. USA 102, 16209-16214 (2005).
  27. Universality of ionic criticality: Size- and charge-asymmetric electrolytes (Y.C. Kim, M.E.F. and A.Z. Panagiotopoulos) Phys. Rev. 95, 195703:1-4 (2005).

Other Links

Maintained by C. Claremont
Direct any Institute related questions/comments to Larry Lauer