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ABSTRACT
Scientific-style figures are commonly used on the web to present nu-
merical information. Captions that tell accurate figure information
and sound natural would significantly improve figure accessibil-
ity. In this paper, we present promising results on machine figure
captioning. A recent corpus analysis of real-world captions reveals
that machine figure captioning systems should start by generating
accurate caption units. We formulate the caption unit generation
problem as a controlled captioning problem. Given a caption unit
type as a control signal, a model generates an accurate caption unit
of that type. As a proof-of-concept on single bar charts, we propose
a model, FigJAM, that achieves this goal through utilizing metadata
information and a joint static and dynamic dictionary. Quantitative
evaluations with two datasets from the figure question answering
task show that our model can generate more accurate caption units
than competitive baseline models. A user study with ten human
experts confirms the value of machine-generated caption units in
their standalone accuracy and naturalness. Finally, a post-editing
simulation study demonstrates the potential for models to para-
phrase and stitch together single-type caption units into multi-type
captions by learning from data.

KEYWORDS
Data visualization, web accessibility, text generation, image cap-
tioning, figure question answering

1 INTRODUCTION
Scientific-style figures are important media forms to present nu-
merical information in a wide spectrum of documents (e.g., HTML,
PDF). Captions are pieces of text accompanying figures that summa-
rize their information. Accurate and natural-sounding captions can
improve the accessibility and usefulness of figures and documents.
For instance, captions can help readers quickly grasp a web page’s
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main ideas during skim reading. Captions can scaffold as the alter-
native text of figures for users with visual impairments [52] and
users with low network bandwidth for loading figures. A detailed
caption can also increase the retrievability of a web page by search
engine crawlers. Unfortunately, descriptions for figures in docu-
ments are often trivial, non-informative, or absent altogether [6].
The increased calls for web accessibility and new tools like auto-
mated accessibility checkers [9] lead us to ponder the possibility of
automating caption generation. Such systems could provide much
value when integrated into existing web publishing tools such as
WordPress, Google Web Designer, and Adobe Acrobat.

To automatically generate captions for figures, the machine
needs to parse figure elements, reason over the relationships be-
tween elements, then describe the relationships in natural language.
Recent advances in more general vision–language problems such
as visual question answering [1, 33] and image captioning [51, 54]
show howwell the machine can reason about and describe an image.
Closer to our application domain, work on figure question answer-
ing [28, 29] and figure element extraction [44, 49] demonstrates
machine capability on scientific-style figures.

However, it is unclear how the outputs of these approaches meet
the goal of accessibility. For example, figure question answering [28,
29] assumes that users generate questions about a figure. However,
visually impaired users may need some descriptions of the figure
before asking questions. Figure element extraction [44, 49] also
does not answer the residual question of how users should interpret
parsed figure elements to understand the figure. Taking a leap from
previous applications, we aim to generate captions useful to users
but with minimum requirements on user interaction, making it a
“last mile” problem with directly applicable value for end-users.

A recent corpus analysis on human-written figure captions from
the IELTS English Language Test [45] finds that caption paragraphs
are composed of separable caption units. The caption units are
clauses of a finite set of types (e.g., number and labels of items,
pairwise comparisons) that describe specific types of information
in figures. This discovery of caption units suggests that we can
frame the overall problem of figure captioning as a multi-stage
inquiry. The first stage can focus on the problem of generating
accurate caption units of specific types. Meanwhile, subsequent
stages can focus on stitching the caption units into overall caption
paragraphs. In this paper, we follow by focusing on the first stage
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problem of automatically generating accurate caption units. We
formulate the task as a controlled image captioning problem: given
a control signal of the caption type, a model generates a caption
unit of that type. While real-world observations bring forth the
concept of caption units, there are no readily available, large-scale
datasets for doing supervised machine learning on this task. We
create datasets of figures and caption units on single bar charts
from two existing figure question answering datasets: DVQA [28]
and FigureQA [29].

We propose the FigJAM (Figure captioning with Joint Attention
to Multi-modal information) model for single bar charts. It gen-
erates accurate caption units for a given control signal by jointly
attending tomulti-modal information. Attention is a neural network
mechanism that re-weights relevant features from the encoding
side to improve generation quality [54]. Multi-modal information of
a figure includes both raw figure image and metadata. Image meta-
data has been shown effective in disentangling visual reasoning
tasks from general image understanding [58]. Attending directly to
metadata information helps FigJAM achieve better visual-semantic
alignment [30] than baselines, 1 an ability to align a visual figure
element with the element’s underlying name. For text labels in the
figure that are out-of-vocabulary (OOV) words in general English,
FigJAM incorporates a dynamic dictionary, following the design of
the DVQA figure question answering model [28].

To validate the effectiveness of the problem formulation and
FigJAM, we conduct quantitative evaluations with the two datasets.
Experiment results show that by incorporating metadata informa-
tion and dynamic dictionary, FigJAM can generate more accurate
caption units over competitive baselines. The baselines include a
general CNN-LSTM-Attn model, an FCAP model with pixel-based
relation network and partial utilization of metadata information,
and a DVQA-adapted captioning model with the dynamic dictionary.
A user study with ten human experts further confirms the value
of machine-generated caption units in their standalone accuracy
and naturalness. Finally, a post-editing simulation study on two
suitable datasets converted from DVQA and LEAF-QA [10, 28]
demonstrates that our proposed model can paraphrase and stitch
single-type caption units into multi-type captions.

In summary, this paper makes the following contributions:
• Problem Formulation (Sec. 3):We formulate the problem
of generating accurate caption units as a controlled image
captioning problem.

• Model (Sec. 4): We introduce FigJAM, a model that utilizes
metadata information and incorporates a figure-specific dy-
namic dictionary to tackle the problem on single bar charts.

• Evaluation Results (Sec. 5 – 8):We analyze the effective-
ness of the problem formulation and the FigJAMmodel through
quantitative evaluations in metrics, a user study, and a post-
editing simulation study.

2 RELATEDWORK
Our work builds on ideas from three related problems.

1In general, the concept of visual-semantic alignment [30] refers to connecting image
objects with their valid semantic meanings outside of the images. Here, we opera-
tionalize the concept as the ability to connect figure elements (e.g., a bar) with their
text labels. Captions mention text labels to refer to the elements.

2.1 Image Captioning
Most recent work on image captioning employs an end-to-end,
neural encoder-decoder structure [30, 51] with the attention mech-
anism [54], which gives a top-down, general description of the
image. A few approaches make general captions more controllable
and specific, including having different styles (sentiments, attrac-
tiveness, etc.) [20, 37], or being grounded with bottom-up semantic
concepts (attributes, entities, objects, etc.) [3, 7, 15, 57, 59]. Dense
captioning [27, 32] and dense relational captioning [31] generate a
plurality of captions for one single image (object existence, relation-
ships, etc.). Figure captioning has exclusive challenges, including
caption accuracy and multi-hop visual-semantic alignment. We
formulate the task as a controlled image captioning problem. Gen-
erated caption units could further group into a dense caption.

2.2 Figure Question Answering
Visual question answering (VQA) is the task of answering questions
about images from either real-world scenes [1, 33, 35] or synthetic
scenes [1, 26]. Figure question answering (FQA) tackles question
answering on scientific-style figures. DVQA [28] and FigureQA [29]
are two public datasets on FQA. LEAF-QA [10] is another recently
proposed dataset. FQA has some unique challenges over usual
VQA problems [28], including proper handling of figure-specific
vocabulary and visual-semantic alignment. Our problem of figure
captioning differs from FQA since no question is asked from the user.
This work aims to bridge the gap between FQA and spontaneous
figure captioning.

2.3 Parsing Figures & Rule-based Captioning
A body of related work has studied the problem of parsing and
reconstructing figures [13, 44, 49]. The work focuses on the task
of extracting visual elements and mapping them into a predefined
data structure. However, they do not address the problem of gener-
ating human-readable descriptions for the elements [23]. Several
corpus studies [17, 18] examine the communicative goals behind
infographic captions and provide ideas for automatically gener-
ating such captions. This thread of work creates a taxonomy of
intended messages to classify each caption sentence into an intent
category [38]. A recent corpus analysis study [45] examines cap-
tions with multiple sentences from a real-world corpus. The study
presents design guidelines for generating captions with multiple
sentences to communicate intended messages.

Rule-based techniques have been widely applied for generating
descriptive text and figure captions. Mittal et al. [39] design a rule-
based text planning system that describes graphics generated by
SAGE-system [46]. PostGraphe [19] and SelTex [14] are two other
rule-based text generators, focusing on text generation with access
to underlying data in tabular form. Several systems also propose
modularized pipelines for summarizing line graphs and bar charts
with texts [16, 40]. These pipelines usually consist of an informa-
tion extraction module, an intent recognition module, and a text
planning module. Follow-up research proposes cluster-based [4] or
semantic graph [2] approaches to enhance the pipelines. Compared
to these rule-based generators, FigJAM is more flexible at reasoning
over arbitrary pixel figures and modeling language.



Generating Accurate Caption Units for Figure Captioning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 1: Model architecture of FigJAM (Sec. 4.1.1–4.1.5). The left-most are an input figure and metadata in yellow boxes. Num-
bers on yellow boxes are indexes in the dynamic dictionary. The right-most purple vector is the predicted slot value over a
joint static and dynamic dictionary.

Figure 2: Model architecture of FigJAM (Sec. 4.1.6).

3 PROBLEM FORMULATION
We formulate the problem of generating caption units as a con-
trolled image captioning problem, where a model generates a cap-
tion unit specific to a caption type. Illustrated on the left of Figure 1,
let an input pixel figure image 𝑋 , having the metadata information,
be denoted as T . Here, we assume having the metadata information
in the simplest level, which are OCR-extracted text labels and their
bounding boxes. Therefore, T represents a set of tuples

T = {(𝑠𝑖 , 𝑐𝑖 )}𝑛𝑖=1 = {(𝑠1, 𝑐1), (𝑠2, 𝑐2), ..., (𝑠𝑛, 𝑐𝑛)} (1)

Now, given a caption type 𝑡 (e.g., title, figure type, count, label name),
the goal for the model is to generate a typed caption sentence C,
which we call the caption unit, for the input figure 𝑋 representing
a sequence of words C = (𝑤1,𝑤2, . . . ,𝑤𝑙 ), where 𝑙 = |C| is the
length of the caption unit that varies. Each tuple (𝑠𝑖 , 𝑐𝑖 ) ∈ T con-
tains an alphanumeric text label 𝑠𝑖 and bounding box coordinates
𝑐𝑖 of 𝑠𝑖 . 𝑛 is the number of text labels in the figure. A figure satisfies
that 𝑛 ≥ 1, i.e., containing at least one alphanumeric text label.
Optionally, caption units of specific types may require additional
inputs 𝑑 = {𝑑1, ..., 𝑑𝑚} as guiding signals, where 𝑑 is𝑚 pieces of
information to nail down a unique ground truth. We list the re-
quired additional inputs in the third column of Table 1. Suppose the
caption unit C is “Cage is the label of the first bar from the bottom”;
then, the additional input 𝑑 here will be the ordinal number of a bar,
1, to make sure a caption unit describes the name of a particular
bar (the first bar). Having a unique ground truth ensures the cor-
rect measurement of caption accuracy. Putting everything together,
given a corpus𝒟 = {𝑋,T , 𝑡, 𝑑, C}𝑁

𝑖=1, the goal is to learn a caption-
ing model M that generates caption units. Once the captioning
modelM is learned, we can then use it to infer a caption unit for
a new unseen figure. More formally, given M along with a new
figure (𝑋,T), we generate caption units where each of them has
one specific type 𝑡 with corresponding additional inputs of 𝑑 .

4 PROPOSED MODEL: FIGJAM
We propose the FigJAM (Figure captioning with Joint Attention
to Multi-modal information) model. It is suitable for generating
caption units on single bar charts.

4.1 Model Architecture
Figure 1 and 2 shows the model architecture of FigJAM.

4.1.1 Encoding input. On the left-most are four parts of input to the
model: (1) a pixel figure image; (2) a set of OCR-extracted bounding
box tuples as the metadata information (the gray dotted box); (3) the
caption unit type (the red vector); (4) the additional input required
for the type (the orange vector). As in Table 1, additional inputs
can be ordinal numbers or elements. We specify them in the vector
as the word indexes of ordinal numbers or elements from a joint
dynamic and static dictionary. Following ideas from DVQA [28],
the dynamic dictionary consists of 30 reserved word indexes to
accommodate unique text labels from OCR-extracted bounding
boxes in a figure. The same word index has different denotations
in different figures. A CNN (e.g., ResNet-50) encodes the raw figure
image to get its features as 𝑋 = {𝑥1,1, ..., 𝑥𝐻,𝑊 } ∈ R𝑚 , where 𝐻
and𝑊 are the height and width from CNN output, and𝑚 is the
number of feature maps. The image feature is useful for calculating
(along with the metadata information) the joint attention for slot
value prediction and the adaptive soft-attention at each decoding
time step.

We encode the caption type as a vector 𝑡 of length 1.We represent
additional input associated with a caption type as a vector 𝑑 =

{𝑑1, ..., 𝑑𝑚′} where𝑚′ is the maximum number of additional inputs
across all types. For caption unit types that do not require additional
input, 𝑑 is a zero-filled vector of the same length.2 We concatenate
caption type vector and additional input vector as the query vector
(red and orange color block in Figure 1) 𝑑 = [𝑡 ;𝑑].

Given the set of metadata information, we construct a matrix
𝑆 ∈ R𝑛×6, where 𝑛 is a figure-specific value denoting the number of
alphanumeric text labels in the figure. 6 is the column dimension of
𝑆 where each row 𝑠 ′

𝑖
consists of (1) the metadata coordinates 𝑐𝑖 ; (2)

2Alternatively, the caption unit type 𝑡 could be encoded as an embedding representa-
tion. We did not do this since the number of caption unit types is small—a maximum
of seven types in the current setting.
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Table 1: Summary of caption types, descriptions, additional inputs, and example outputs.

Caption type Description Additional inputs Example output (with slot value)

Title Mentioning the title, usually with paraphrasing. None This table shows sales statistics for items in different stores.
Figure type High-level figure type (horizontal/vertical, bar/pie/line, etc. None This is a horizontal bar chart.

Count Counting the number of elements in the figure. None There are three bars in the chart.
Label name Describing the text label name for an ordered position. Ordinal number Nth Cage is the label of the first bar from the bottom.
Min/max Describing the element that has the minimum/maximum value. None Frame has the highest accuracy.

Comparison Describing the comparative advantage of one element over the other. Element X, Y The accuracy of the algorithm damage is larger than ward.
Value Describing the value of an element. Element X 80 is the accuracy of the algorithm brace.

Table 2: Dataset statistics for each caption unit type. Note that FigureQA-cap data does not have title or value types.

Dataset Split # Images Title Figure type Count Label name Min/max Comparison Value

FigureQA-cap [29]

train 37,000 N/A 37,000 37,000 214,327 33,499 148,000 N/A
validation 3,000 N/A 2,370 2,504 2,323 2,299 2,678 N/A
test_easy 3,000 N/A 2,438 2,583 3,063 2,692 2,458 N/A
test_hard 3,000 N/A 2,315 1,989 2,731 2,689 2,558 N/A

DVQA-cap [28]

train 195,000 195,000 115,516 39,935 194,426 61,847 67,867 20,379
validation 5,000 2,838 3,240 1,033 2,908 1,571 1,700 533
test_easy 5,000 2,934 2,606 961 2,950 1,563 1,763 510
test_hard 5,000 2,451 2,997 1,046 3,152 1,603 1,704 482

a dynamic word index associated with the text label 𝑠𝑖 ; (3) a binary
bit indicating whether the text label contains only digits.

4.1.2 Attention to positional ordering (the blue vector at the top).
The caption unit type label name describes the text label name for
a given position. It is necessary to infer from ground-truth text
label’s coordinates as well as its relative value to the coordinates of
other text labels.

Therefore, we calculate the first attention by using the query vec-
tor 𝑑 (which contains the ordered position) to query the bounding
box matrix 𝑆 . Specifically, let 𝑠 ′

𝑖
be the 𝑖-th row in 𝑆 . The atten-

tion weight to this row calculates as follows. First, the interaction
between the row and the query vector is captured by an MLP.

𝑒𝑖 = Attn (𝑠 ′𝑖 , 𝑑) = 𝑣⊤tanh (𝑊𝑠 ′𝑖 +𝑈𝑑) (2)

Outputs for each bounding box row aggregate into a matrix and
then go through another fully-connected MLP layer to sort out a
relative ordering of the bounding boxes (“sorting MLP”). A softmax
function follows the MLP. Doing softmax gives the final attention
weights to each bounding box row.

𝑎 = [𝑎0;𝑎1; ...;𝑎𝑛] = softmax (MLP ( [𝑒0; 𝑒1; ...; 𝑒𝑛])) (3)

4.1.3 Attention to object-based value (the green vector at the top).
The caption unit type min/max describes the element that has the
min/max value. It is necessary to compare values (e.g., bar heights)
associated with each text labels. For orthogonal figure types like
bar charts (as opposed to, e.g., pie charts), the coordinates of text
labels serve as an anchor to know the location of the elements (e.g.,
bars) in the figure.

Therefore, we augment the bounding box matrix 𝑆 into 𝑆 . For
each row 𝑠 ′

𝑖
in 𝑆 that corresponds to one bounding box text label, we

append it with local features of the same row and the same column
as its coordinate from the image feature𝑋 . The augmented features
work as local, hard attention to the figure, guided by object-specific
information.

Let 𝑠 ′
𝑖
be the 𝑖-th metadata rows in 𝑆 . Based on Sec. 4.1.1, it

includes the metadata coordinates 𝑐𝑖 = (𝑙, 𝑡, �̊�, ℎ̊) where 𝑙 is the

distance of the bounding box to the left margin, 𝑡 is its distance to
the top, �̊� is its width, and ℎ̊ is its height. The row position of the
bounding box is 𝑟𝑖 = 𝑡 + ℎ̊

2 while the column position is 𝑐𝑖 = 𝑙 + �̊�
2 .

The augmented vector for the bounding box then becomes

𝑠𝑖 = [𝑠 ′𝑖 ; (𝑥𝑟𝑖 ,1, ..., 𝑥𝑟𝑖 ,𝑊 ); (𝑥1,𝑐𝑖 , ..., 𝑥𝐻,𝑐𝑖
)] (4)

Similar to the first attention, the attention weights for each bound-
ing box information calculate as

𝑒𝑖 = Attn (𝑠𝑖 , 𝑑) = 𝑣⊤tanh (𝑊𝑠𝑖 +𝑈𝑑) (5)

𝑎 = [𝑎0;𝑎1; ...;𝑎𝑛] = softmax ( [𝑒0; 𝑒1; ...; 𝑒𝑛]) (6)

4.1.4 Relation classification on object-based value pairs. The com-
parison type describes the comparative advantage of one element
over the other. Inspired by the relation network [47] that models re-
lations between object descriptor boxes on the CLEVR dataset [26],
we introduce a classification component that evaluates the rela-
tions between figure elements through metadata information. For
comparison, as the query vector 𝑑 specifies the two objects to be
compared, 𝑑 is used to retrieve two bounding box rows from 𝑆 ,
namely 𝑠𝑖 and 𝑠 𝑗 . The subtraction between 𝑠𝑖 and 𝑠 𝑗 goes through
an MLP, which gives the result for relation classification.

𝑎 = MLP (𝑠𝑖 − 𝑠 𝑗 ) (7)
This relation modeling is different from previous work on figure

question answering [29]. The latter models pixel-level pairwise
relation. In Sec. 6.2.2, we show that pixel-level is too fine as the
granularity and inefficient for object-wise comparison.

4.1.5 Auxiliary slot value classification (the purple vector at the top
right). We aggregate the image feature, attention weights, relation
classification results and then pass them into an auxiliary classifi-
cation module. The module predicts a dictionary word among the
static and dynamic dictionary as the slot value word𝑤 (Sec. 5.1.3)
before generating a caption unit. The classification module uses an
MLPwhose output is a vector of the same size as the joint dictionary.
More formally,
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𝑤 = MLP ( [𝑎;𝑎;𝑎;𝑋 ]) (8)

4.1.6 Initializing the decoder LSTM. As shown in Figure 2, After
obtaining the slot value word 𝑤 , we concatenate four sources of
information as a joint vector: (1) the caption unit type vector 𝑡 ; (2)
the embedding of additional inputs 𝑑 ; (3) the embedding of the slot
value word𝑤 ; (4) the image feature 𝑋 . The joint vector initializes
the decoder LSTM. At each step, the decoder LSTM predicts with
attention weighting to the image feature and the word embedding
of the last predicted word [54].

5 QUANTITATIVE EVALUATION SETUP
This section describes the setup for quantitative evaluations on
FigJAM, where we create captioning datasets for single bar charts,
and design metrics and baselines.

5.1 Data Preparation
Table 1 defines and exemplifies each caption type. There are four
steps in data preparation: creating caption units (Sec. 5.1.1), incor-
porating metadata (Sec. 5.1.2), defining slot value (Sec. 5.1.3) and
additional inputs (Sec. 5.1.4). Our dataset is available at this link.

5.1.1 Creating Caption Units. The IELTS corpus analysis [45] presents
a set of dominant caption types. In this work, we aim to generate
accurate caption units of a wide variety of caption types, including
title, figure type, count, label name, min/max, comparison, and value.
Unfortunately, there is no directly available supervised caption-
ing dataset on those. Therefore, we create our datasets by making
appropriate updates to figure question answering datasets. Both
DVQA [28] and FigureQA [29] are large-scale question answer-
ing datasets on scientific-style figures. DVQA has over 3 million
question–answer pairs for bar charts. FigureQA has more than 2
million question–answer pairs for five figure types. Both have two
test splits, an easy one and a hard one, to test model generalizability
over unseen semantics. From the corpus analysis, we find that these
datasets contain a substantial amount of questions aligned with the
set of caption unit types that we define.

Intuitively, combining and converting a question–answer pair
of a question type into a statement sentence would yield a ground
truth caption unit of that type. We nail down seven caption types to
include in our datasets (as shown in Table 1). We use a SpaCy [24]
POS tagger to convert the questions into statement sentences by
following the wh-movement. Specifically, we replace each interrog-
ative word with the actual answer and then re-order the sentence
for grammatical soundness. Finally, two co-authors manually check
the quality of converted captions by sampling 20 captions for each
caption type in each of the two datasets. 3 All the sampled captions
are accurate and grammatically correct except for one caption “The
chart shows Title.” Table 2 lists the data statistics of our converted
captions. We name our caption dataset converted from DVQA as
DVQA-cap, and the one converted from FigureQA as FigureQA-cap.

There are several minor limitations in creating caption units
of these types. First and foremost, we only created caption units
for single bar charts. Although single bar charts are a subset of all
figure types, we believe the problem formulation and methodology
3Quality check results are available at the same link.

of this work would inspire approaches for stacked, group bar charts,
and other figure types. Next, the title type is absent from FigureQA.
For the value type, we only convert questions on figure elements
whose value equals a quantized tick label. Count is not a dominant
type in the corpus analysis.

5.1.2 Incorporating Metadata. Metadata extracted from the image
has been shown effective in visual reasoning tasks [58]. Nowa-
days, extracting figure metadata has been a task with reasonable
accuracy [25]. The status quo allows FigJAM to incorporate meta-
data information for attention, which offloads the burden to reason
only from image feature. Consistent with the problem formulation
(Sec. 3), for both datasets, we leverage the simple form of metadata
in figures: OCR-extracted text labels and associated bounding box
coordinates. Nevertheless, we believe that richer forms of metadata
obtained frommore complex metadata extraction techniques would
further advance FigJAM and other caption unit generation model.

5.1.3 Slot Value. Inspired by the response generation task in task–
oriented dialog systems [36], we define a slot value word for each
caption type (see Table 1). The response generation task empha-
sizes the importance of correctly predicting a slot value within a
response [34, 41] with the slot error rate metric [36, 53]. For cap-
tion unit generation, slot value correctness is also an important
determinant [45]. The auxiliary classification module (Sec. 4.1.5)
of FigJAM ensures correct prediction on the slot value and faster
convergence rate.

Another benefit for defining slot values is using them as addi-
tional inputs to generate subsequent caption types, so as to form a
caption paragraph. For example, count does not appear as a dom-
inant caption type in the corpus analysis; we include it because
its predicted slot value, the count of bars in the figure, can be the
additional input to label name. After predicting 5 bars in the figure,
we enumerate ordinal numbers from 1 to 5 and use each ordinal
number as the additional input to generate a caption unit of the
type label name. Similarly, the predicted slot values of label name
pair with one another as the additional inputs to comparison. A
planning algorithm could stitch together all caption units in Table 1
into a caption paragraph.

5.1.4 Additional Input. Previous work [12] trains and evaluates the
captioning model on caption paragraphs with sequence-level met-
rics. This evaluation scheme obscures the level of caption accuracy.
We advocate an accuracy-oriented evaluation on caption outputs,
starting with a justification on why sequence-level metrics are not
suitable. Consider an example ground truth caption paragraph “This
figure is a line plot. It contains three categories: yellow, magenta, sky
blue ...” An inaccurate caption output of “This figure is a dot plot. It
contains three categories: teal, magenta, sky blue...” would achieve
a BLEU-4 [42] score of 0.356 and a METEOR [5] score of 0.372.
Another accurate but paraphrased caption output “There are three
labels in this line plot. Their names are sky blue, magenta, yellow...”
would achieve a BLEU-4 score of 0 and a METEOR score of 0.313.
The scores are lower than the inaccurate case. As an explanation,
the family of sequence-level metrics (e.g., BLEU, METEOR) mea-
sures a general-sense similarity (instead of accuracy) between the
ground truth and a generated caption output. It does not differen-
tiate generated output errors between those in template language

https://github.com/xeniaqian94/web2021-figure-captioning
https://github.com/xeniaqian94/web2021-figure-captioning
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and truth slots. In the accurate but low-scored case, diversity in
template language obscures an accurate caption.

Additional inputs guarantee a fair evaluation of the accuracy of
each generated caption unit. Consider an alternative approach to
evaluate is to include all accurate and possible caption units of the
same caption type as ground truth. At evaluation time, a generated
caption unit that matches any ground truth is considered accurate.
This approach unavoidably introduces bias into the dataset, e.g.,
for label name, if caption units that discuss the first bar dominate, a
trainedmodel would adapt to such bias and bemore prone to discuss
the first bar. Instead, we define additional inputs associated with
each ground truth caption unit to make the ground truth unique,
an opposite characteristic to being diverse. A ground truth caption
unit of type label name has the ordinal number 𝑁𝑡ℎ as its additional
input. When 𝑁 = 3, a generated caption that talks about “Cage is
the fourth bar from the bottom” would be incorrect despite being
truthful to the figure content. Therefore, introducing additional
inputs aligns with the goal of accuracy-oriented evaluation.

5.2 Evaluation Metrics
We report accuracy (i.e., exact match rate, EM) and BLEU-4 scores.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑜 𝑓 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑒𝑠 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠

# 𝑜 𝑓 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠
(9)

The fine-grained caption types and additional inputs guarantee
that each example in the dataset has one unique ground truth
caption. A predicted caption, when accurate, should exactly match
with the ground truth.

We also include BLEU-4 [42] to cross-compare with numbers
reported in FCAP [12]. However, as discussed in Sec. 5.1.4, sequence-
level evaluation metrics are mainly suitable for general image cap-
tioning tasks in measuring meaningful variances between the hy-
potheses and the references. In our task, these differences undesir-
ably obscure the level of accuracy.

5.3 Baselines
We evaluate three baselines in comparison with FigJAM. Table 4
lists the features of each model.

• CNN-LSTM-Attn [54]: a CNN-LSTM-based image captioning
model with soft attention. The model uses a static dictionary
of the model. For caption types with additional inputs, the
additional inputs’ embedding is appended to the image rep-
resentation to initialize the LSTM and calculate the attention
weights.

• FCAP [11, 12]: an extension to the CNN-LSTM-Attn with ad-
ditional attention to the embeddings of text labels and pixel–
based pairwise relations from the image features. It uses a
static dictionary.

• DVQA [28]: a CNN-LSTM-based visual question answering
model with stacked attention [56]. We adapt it to be a cap-
tioning model by replacing the output classifier with an
LSTM decoder. We simplify the input question encoding into
the input of a caption type and embeddings of additional
inputs. It creates a dynamic dictionary.

5.4 Model Configuration and Implementation
For pre–processing, we resize figure images in all datasets and their
corresponding metadata to be 448 × 448. To encode figure image,
we fine-tune a pre-trained ResNet-50 up to the second last average
pooling layer, the output image representation has a size of 14 ×
14. We use the same approach as DVQA to construct the dynamic
dictionary. Words that appear in the captions but are not text labels
in the metadata form the static dictionary. The dynamic dictionary
significantly reduces the dictionary size. On DVQA-cap, the dy-
namic and static dictionary gives a total size of 93. FigureQA-cap
has 72. 4 Dictionary words are represented by 128-dimensional
word embeddings, compatible with the reduced dictionary size. The
auxiliary classification module is a two-layer MLP with an interme-
diate dimension of 512 and an output dimension of the dictionary
size. Decoder LSTM has a hidden representation dimension of 256.
We use teacher forcing during training and beam search with size
one during testing. We use the Adam optimizer with a learning
rate of 1𝑒 − 3 and cross-entropy loss. The loss applies to both the
auxiliary classification module and the decoder. For training, we
experienced longer convergence rates when jointly training for all
caption types. Reported results are on separate training for each
caption type.We trained the models on an NVIDIA Titan X graphics
card for 50,000 batches with a batch size of 8.

6 QUANTITATIVE RESULTS AND ANALYSIS
Table 3 and Table 5 reports the accuracy of different models in
generating caption units on the two datasets. Overall, our FigJAM
model outperforms the competitive baselines, achieving high abso-
lute scores (on the order of 90 and more) in terms of both accuracy
and BLEU-4. This section compares FigJAM with the baselines and
suggests where does FigJAM achieve its gains.

Despite the high values in the tables, our primary motivation is
to present results of typing different caption units and demonstrate
the technical bottleneck. For readers who might be interested in
aggregated accuracy on the figure level, we include supplementary
results at the same link. 5

6.1 Dynamic Dictionary vs. Static Dictionary
The group of models that use a static dictionary, CNN-LSTM-Attn
and FCAP, performs consistently unwell for non-trivial caption
types (label name, min/max, comparison, and value). The accuracy
of these models is near the level of random guess: for label name
and min/max, randomly recalling a correct word out of the static
dictionary has a probability of smaller than 1%; for comparison,
randomly guessing one of the higher or lower relations correct,
without inferring from the two elements (specified by additional
inputs), has a probability of near 50%; for value, the accuracy of
10–15% roughly means that the model tends to answer the most
frequent value in the corpus. In contrast, models that use a dynamic
4With only the static dictionary, DVQA-cap has a dictionary size of 1,072; while
FigureQA-cap has 175.
5We omit the results here for two concerns. First, the original DVQA and FigureQA
models do not ask all possible (i.e., a complete set of) questions on each figure. Each
figure in our DVQA-cap and FigureQA-cap datasets accordingly has an incomplete
set of captions than the possible amount. As a remedy, we report overall accuracy
(i.e., perfect accuracy) on 12 random figures through the user study (Sec. 7). Second,
prior work shows limitations in evaluating aggregated captions using sequence-level
metrics instead of accuracy. See the justification example in Sec. 5.1.4.

https://github.com/xeniaqian94/web2021-figure-captioning
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Table 3: Accuracy and BLEU-4 scores on the FigureQA-cap dataset. Values are scaled by 100.

Figure type Count Label name Min/max Comparison
Accuracy BLEU-4 Accuracy BLEU-4 Accuracy BLEU-4 Accuracy BLEU-4 Accuracy BLEU-4

Test
Familiar
Color

CNN-LSTM-Attn 100.00 100.00 100.00 100.00 10.81 90.48 78.00 92.91 50.57 77.82
FCAP 100.00 100.00 99.26 99.76 4.67 89.93 67.83 89.60 50.41 77.74
DVQA 100.00 100.00 99.96 99.99 80.12 97.90 89.78 96.72 98.70 99.45

FigJAM 100.00 100.00 99.96 99.99 94.87 99.45 99.55 99.86 99.39 99.74

Test
Novel
Color

CNN-LSTM-Attn 100.00 100.00 100.00 100.00 0.00 89.20 0.04 66.89 43.35 73.88
FCAP 100.00 100.00 98.99 99.68 0.37 89.25 0.00 66.86 48.32 76.84
DVQA 99.05 99.51 100.00 100.00 79.09 97.75 88.10 96.17 98.44 99.33

FigJAM 100.00 100.00 100.00 100.00 92.49 99.18 99.40 99.81 99.61 99.83

Table 4: Features of baseline models and FigJAM.

Dictionary Directly using
any metadata? Relation network

CNN-LSTM-Attn Static No No
FCAP Text labels only Pixel-based
DVQA Dynamic No No

FigJAM
Text labels

and coordinates Object-based

dictionary, including DVQA and our FigJAM, are easily able to predict
non-trivial caption types.

The comparative disadvantage of models with a static dictio-
nary is that they cannot understand or re-describe a text label by
its figure-specific context. They consistently associate a text label
with its static meaning. The ability to associate an object in the
figure with its semantic is called visual-semantic alignment [30].
Our problem operationalizes it as the ability to associate a figure
element (e.g., a bar) with its name as in the text label. For instance,
an element named cigar in figure A means its first bar while cigar
in another figure B instead means its last bar. The only exception
where models with a static dictionary (CNN-LSTM-Attn and FCAP)
demonstrate this ability is when these models work on the test
familiar color setting of the FigureQA-cap dataset. The accuracy
for both models is relatively higher in Table 3 than in Table 5, ap-
proaching 10% for label name and over 50% for min/max). Both
numbers are misleading due to potential feature leakage introduced
from the original FigureQA dataset: the dataset uses figure element
colors to name the elements. Correspondingly, models with a static
dictionary learn to associate visual features extracted by CNN with
color words in the dictionary. Unfortunately, this association does
not generalize to the test novel color condition, nor does it gen-
eralize to the DVQA-cap dataset. At test time, we see examples
where an FCAP model predicts a most similar in-vocabulary color
name for the test novel color condition, such as “midnight blue
is the label of ...” instead of the correct caption of “navy blue is
the label of ...” Models with a static dictionary do not achieve real
visual-semantic alignment since they cannot differentiate nuances
in colors (midnight blue and navy blue).

Another motivation for having the dynamic dictionary is to han-
dle text labels that are either multi-word units or out-of-vocabulary
(OOV) words. The dynamic dictionary is similar to the copy mech-
anism in text generation tasks [22, 48]. At each decoder timestep,
when a dynamic dictionary word has the highest probability, the
model copies a multi-word unit into the output sequence. A cap-
tion unit of type title for the figure in Figure 1 can be “The figure
shows Acc. of different algorithms.” Models with a static vocabulary
would struggle to predict this caption unit, where “Acc.” is likely

an OOV word in the static dictionary. For corpora with a small
vocabulary, where OOV is common, it is advantageous to have a
dynamic dictionary.

6.2 Direct Utilization of Metadata Information
Herewe analyze benefits for directly utilizingmetadata information,
which differentiates DVQA and FigJAM.

6.2.1 Handling positional ordering. FigJAM directly utilizes meta-
data information by encoding real-value coordinate information
of text labels into the attention component that handles positional
ordering (Sec. 4.1.2). The caption type of label name predicts the
label name from a given ordered position (𝑁𝑡ℎ). FigJAM uses the
ordinal number 𝑁𝑡ℎ to query the fine-grained coordinates of all
labels, followed by a “sorting MLP” module to get a relative order-
ing of these coordinates. The hypothesis is that the fully-connected
“sorting MLP” module gives robust positional ordering by focus-
ing on macro-level position differences while ignoring micro-level
width or height differences between a column or a row of aligned
text labels.

In contrast, DVQA does not directly model coordinate information.
It uses the information indirectly to create the dynamic dictionary:
DVQA applies an ordering heuristic on coordinate information to
index text labels [28] as the dictionary. The heuristic is coarse-
grained compared to coordinates’ precision, making DVQA prone to
predict the most frequent dynamic word index for a given position
𝑁𝑡ℎ instead. For example, when given an additional input of 𝑁 = 1,
the model tends to predict the dynamic word of index 4 since 4 is the
most common index for words in the bottom left. Table 3 shows the
results. Our approach significantly outperforms all other methods
for non-trivial caption types (label name,min/max, and comparison)
on both tasks (testing of familiar colors and novel colors) in Table 3.6
CNN features in DVQA may help correct some bias between ordered
position and dynamic word index, based on whether a figure uses
a horizontal or vertical layout. Moreover, for label names in yellow
bounding boxes as shown in Figure 1, small variances in figure’s
layout would affect the order of a dynamic dictionary. Variances
include how tightly or loosely a figure positions label names along
one dimension or even how it aligns those label names.

6.2.2 Object-based Attention. FigJAM has two object-based atten-
tion modules: one attends to object-based values (Sec. 4.1.3) and an-
other to object-based value pairs for relation prediction (Sec. 4.1.4).

6One exception is the comparison caption type in Table 3, where the DVQA model
performs competitively well (over 98%). One explanation is that the original FigureQA
dataset is biased to only ask about the first two bars in view, according to its question
generation script.

https://github.com/Maluuba/FigureQA/blob/master/figureqa/generation/questions/categorical.py
https://github.com/Maluuba/FigureQA/blob/master/figureqa/generation/questions/categorical.py
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Table 5: Accuracy and BLEU-4 scores on the DVQA-cap dataset. Values are scaled by 100.

Figure type Count Label name Min/max Comparison Value
Accuracy BLEU-4 Accuracy BLEU-4 Accuracy BLEU-4 Accuracy BLEU-4 Accuracy BLEU-4 Accuracy BLEU-4

Test
Familiar

Vocabulary

CNN-LSTM-Attn 99.88 99.93 98.02 99.45 0.14 89.46 0.13 80.94 49.91 83.51 14.90 86.29
FCAP 99.39 99.67 83.66 94.37 0.03 90.03 0.13 80.27 50.09 83.62 12.75 82.66
DVQA 99.96 99.98 97.29 99.09 67.32 96.60 77.61 95.10 50.20 83.69 59.61 93.36

FigJAM 99.81 99.87 96.98 98.84 85.25 98.25 94.31 98.86 99.09 99.72 91.37 98.61

Test
Novel

Vocabulary

CNN-LSTM-Attn 99.93 99.96 97.71 99.39 0.00 89.40 0.00 80.91 0.00 32.43 0.00 54.33
FCAP 99.50 99.69 80.59 93.53 0.00 89.80 0.00 79.67 0.00 32.43 0.00 54.04
DVQA 99.80 99.87 97.71 99.29 66.88 96.53 76.92 95.07 48.83 83.07 60.37 93.09

FigJAM 99.63 99.75 95.79 98.41 86.29 98.56 95.07 99.02 99.59 99.87 87.97 97.96

Object-based attention gives FigJAM higher accuracy than DVQA
on min/max, comparison, and value, by a large margin (+10–40%).
The intuition behind utilizing metadata information (coordinates)
for object-based attention is that coordinates of text labels directly
point the model to know “where it should look at for an object” as
well as “which two areas it should look at to compare two objects.”
We could see it as another instance of visual-semantic alignment.
DVQA, without object-based guidance, relies solely on the image fea-
tures and positional information from the dynamic dictionary index
to navigate the right attention pattern over the entire figure image.
The comparative advantage is similar to that of the relation network
on state descriptions over CNN-LSTM with stacked attention on
the CLEVR dataset [47]. One exception noted earlier is the high
accuracy of DVQA (over 98%) for comparison on the FigureQA-cap
dataset due to a systematic bias.

Comparing FigJAM with FCAP, the latter employs pixel-based
relational attention for comparison. FCAP gives random relational
prediction with near 50% accuracy while FigJAM performs sur-
prisingly well. We argue that object-based attention for relation
prediction is more effective than pixel-based one. First, it achieves
visual-semantic alignment. When all figure elements (bars) have the
same color and texture where visual features have no differences,
pixel-based relational attention cannot differentiate the subject
and object being compared. On the contrary, recognizing objects
through coordinate anchors could separate the two figure elements
being compared and capture the relative block size of these elements
to achieve relational reasoning. Another drawback in pixel-based
relational attention is a square increase in computation time and
corresponding slow convergence: the model needs to compute the
square of the number of pixels from the image feature. One expla-
nation for the lower accuracy of FCAP for type count on DVQA-cap
is that FCAP is slow at converging on this trivial type.

6.3 Generating Caption Units vs. Figure
Question Answering

Since DVQA-cap and FigureQA-cap are both converted datasets
from Figure Question Answering (FQA) [28, 29], one might expect
to compare the accuracy between our caption generation task and
FQA tasks. However, the accuracy of FigJAM and baseline models
is not directly comparable to the classification accuracy in the FQA
task. First, given a caption unit and the question–answer pair of
the same type, spontaneously generating a caption unit is more
challenging than understanding and answering a yes/no question.
To answer the question “Is aqua the maximum,” a FQA model needs
to recognize 5–10 contrasting colors that exist in figures and tell

whether aqua is the highest among the few colors. To come up
with a caption unit “Aqua is the maximum,” a captioning model
needs to precisely recall, from all dictionary entries, the name
of a color that is “halfway between blue and green” and not to
mislead it with another similar color cyan. This comparison in task
difficulty is analogous to Bloom’s Taxonomy [8] of human cognitive
level, where creating is at a higher level and more challenging than
analyzing. Second, question–answer pairs included in the DVQA
dataset are not the same as those included in the caption dataset.
There is a question asking, “Are figure values in a logarithmic scale?”
Moreover, the original DVQA work groups questions into three
coarse-grained categories (structure, data, reasoning) and reports
accuracy for each. Among the three categories, there are compound
questions that combine multiple caption types in our definition.
Lastly, the captioning task has a lower probability for a random
guess to be correct. The DVQA dataset has questions such as “Is
the accuracy of bound lower than cigar.” A random guess on these
questions also gives a near 50% accuracy even when bound is an
OOV word. In our problem, the two baselines that use a static
dictionary have a near 0 accuracy in generating non-trivial caption
units (see Table 5, comparison under “test novel vocabulary”) such
as “bound is lower than cigar.” The models cannot correctly predict
an OOV word bound as the subject.

6.4 Comparing Different Caption Types
Caption types vary substantially in their level of difficulty to gener-
ate. All models performwell on trivial caption types (figure type and
count), since CNN alone can understand the overall figure structure.
Non-trivial caption types (label name, min/max, comparison, and
value) are more challenging. Caption units of the value type are
currently limited to describing figure elements whose value corre-
sponds to a quantized tick label on the axis. We wish to highlight
that generating caption units of the value type resembles that of
the label name type from a modeling perspective. The label name
type requires the model to describe a label name on the axis based
on an ordinal number. Similarly, the value type describes a value
on the axis based on the named figure element’s relative height.

7 USER STUDY
The previous section provides evidence of the efficacy of the con-
trolled captioning problem formulation and discusses how key
components of the FigJAM model (e.g., direct metadata utilization,
dynamic dictionary) provide performance gains over baselines. This
section presents an additional evaluation of the overall proposal,
encompassing both the problem formulation and FigJAM outputs
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Figure FigJAM-generated caption Human-written caption

The chart compares sales stats among different products. Two bars are there. The bars are horizontal. Bull is the label of the first bar 
from the bottom. Trick is the label of the second bar from the bottom. Trick, sold the most units. The item bull sold less units than trick.

1. The chart compares trick and bull unit in terms of the number of 
units sold. Trick, the first bar from top, was sold seven times. Bull, 
the second bar, was sold only one time.

2. The chart compares sales stats among different products. Trick sold 
more units than bull (7 vs. 1). 

The chart reports accuracy of different algorithms. Nine bars are there. The bars are horizontal. Wart is the label of the second bar from 
the bottom. Works is the label of the first bar from the bottom. Clue is the label of the fourth bar from the bottom. Soon is the label of 
the sixth bar from the bottom. Debt is the label of the eighth bar from the bottom. Map is the label of the seventh bar from the bottom. 
Bat is the label of the fifth bar from the bottom. Bid is the label of the third bar from the bottom. Bid, has the highest accuracy. The 
accuracy of the algorithm cult is smaller than bid. The accuracy of the algorithm map is smaller than cult. The accuracy of the 
algorithm cult is larger than bat. The accuracy of the algorithm wart is smaller than cult. The accuracy of the algorithm soon is smaller 
than cult. 2 is the accuracy of the algorithm works. 8 is the accuracy of the algorithm clue. 8 is the accuracy of the algorithm cult. 4 is 
the accuracy of the algorithm wart. 8 is the accuracy of the algorithm debt.

1. The chart reports accuracy of nine different algorithms. The Bid 
and bat algorithms have the highest accuracy at 9, followed by 
Cult, Debt and Clue at 8. The Map, Soon, Wart, Works algorithms' 
accuracies significantly lower than the rest.

2. The chart reports accuracy of nine different algorithms. There is a 
clear separation between high accuracy algorithms (cult, debt, bat, 
clue, and bid, each around 8 accuracy), and lower accuracy 
algorithms (map, soon, wart, and works, each around 1-2 accuracy).

Figure 3: Illustrative comparison between FigJAM-generated and human-generated captions for one lower complexity (top)
and one higher complexity (bottom) figure from the user study. Note the overall accuracy and relative naturalness of FigJAM’s
caption units, but a verbose and slightly less natural overall caption paragraph than humans’ condensed captions with higher-
level patterns emphasized.

through a user study. While the fundamental importance is to es-
tablish the task of generating accurate caption units, the user study
complements quantitative evaluations in Sec. 5 and 6 as additional
validation. Presenting machine learning modeling outputs informs
our readers, especially UX researchers, about the current technical
landscape [55]. The goal is different from prior research focusing
on either specific techniques [4, 11, 12, 14] or user scenarios in
anticipation [6, 9, 43].

Despite that accessibility to the visually impaired population
being a primary motivation for our work, this user study leaves
openness to the actual use cases and definition of target end-users. 7
One future work is to depict more precisely the target end-users.
Here we target the population as sighted participants, as they are a
less vulnerable population at commenting on the correctness of the
current emblematic system output. In the long run, we view sighted
figure authors are a majority population that can actively contribute
figure captions, e.g., editing from automatically generated captions.
It is valuable to probe their perception of this task.

We recruit ten participants to write captions for and rate FigJAM-
generated captions for 12 figures sampled from the DVQA dataset.
All participants regularly write captions more than once a quarter
(N = 5 write captions more than once per month; N = 2 more than
once per week). The majority of our participants typically write
captions for scientific papers and presentations, with a minority
(N=2) having experience writing captions for accessibility reasons
(e.g., alternative text) and general audiences.

Each participant reviews six figures sampled from the set of 12
figures; each set of six figures is drawn to cover the range of figure
complexity in the DVQA dataset, as indicated by the number of
bars in the chart (1 to 3, 4 to 7, or 8 to 10). In response to the call to
evaluate aggregated accuracy (Sec. 6), one author manually creates
missing ground truth caption units for the 12 figures, then re-runs
the FigJAM model for machine output.8 In total, each of the 12
figures is processed by an average of 5 participants (range from
2 to 8). For each figure, participants provide 7-point Likert-style

7In Sec. 1, the problem of improving the accessibility and usefulness of figures has
a broad context: busy skim readers, users with visual impairments or low network
bandwidth for loading figures, and back-end search engines for figure retrievals.
8As this manual effort does not scale to whole datasets, we encourage the community
to propose new datasets.

ratings for three dimensions (quality, accuracy, or naturalness) of
the overall caption (1 = very bad, inaccurate, or mechanical; 7 =
very good, accurate, or natural), as well as naturalness ratings for
caption units. To aid qualitative comparisons of caption quality
and naturalness, we also ask participants to write captions of their
own for the figures. Participants are free to use contents from the
machine-generated captions for their captions. We also collect free-
form comments for each caption.

Overall, participants rate the quality, accuracy, and naturalness
of the machine-generated captions slightly above the midpoint of
the 7-point scales. We interpret that participants judge the captions
to be of reasonable quality, accuracy, and naturalness. Overall mean
quality is 4.33 (SD = 1.31), while overall mean accuracy is 4.98 (SD =
1.61). For naturalness, overall mean naturalness is 4.19 (SD = 1.53),
with slightly higher ratings for the naturalness of caption units, at
a mean of 4.63 (SD = 1.89).

Qualitatively, participants make positive comments about cap-
tion accuracy. For example, P6 notes, “I am surprised to see that your
AI algorithm generates very accurate descriptions of the chart." How-
ever, participants do detect errors in the captions for three of the 12
figures. This result gives an initial estimate for aggregated accuracy
(Sec. 6). In one figure, the FigJAM-generated caption inaccurately
notes that one of the bars had the highest value; in reality, the bar
has the highest absolute value but is negative in amplitude com-
pared to the other bars. In two other figures, machine-generated
captions provide an inaccurate value for one bar.

Considering naturalness from a qualitative standpoint, a com-
mon theme in participants’ comments is that themachine-generated
captions as a whole tended to be more verbose and low-level than
human-written captions. For example, P2 notes, “machine genera-
tion captions is good, but in verbose style...if I am authoring my own
captions, I would write more carefully, to make the captions sound
succinct.” Similarly, P9 notes, “The machine-generated captions are
useful but a little bit too detailed.”

Note that participants are not instructed to write captions for
a particular use case, and the majority of participants typically
write captions for scientific publications, rather than the general
audience or accessibility use cases. What seems to be missing in
machine-generated captions for their typical use case is higher-level
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Table 6: Four illustrative post-editing rules. To prepare for
the simulation experiment in Figure 4, we create the sim-
ulated human-written ground truth captions by rewriting
original captions from each source pattern into one to two
targets patterns using regular expressions.

DVQA-cap

Src sales statistics for items in different stores
Tgt 1 sales statistics for items in each retail location
Tgt 2 sales statistics for cokes in each CVS Pharmacy
Src most preferred objects

Tgt 1 the most favorable objects
Tgt 2 the highest ranked video games

LEAF-QA-cap

Src The chart shows (.*) ([0-9]{4}) import
Tgt The chart reports statistics for \\1 import in \\2
Src The chart shows (.*) over Product_Code

Tgt 1 The chart shows product wise \\1
Tgt 2 The chart shows \\1 over chocolate

patterns, such as trends. For example, P4 notes that the machine-
generated caption comprises “trivial observations rather than syn-
thesizing the pattern or interesting aspects of the figure.” This issue
is more salient for more complex figures with more bars, as P4
again notes, for a figure with nine bars, “because there was a bigger
number of bars than the previous figures, a large portion of the auto-
generated caption was dedicated to trivial stuff.” P1 makes a similar
comment, noting that “MG captions contain too many repetitions
without creating higher-level insights.” Figure 3 illustrates this point
with two representative example figures from this study, comparing
FigJAM-generated captions with human-written captions for the
same figure. The examples show the overall accuracy and relative
naturalness of FigJAM’s caption units, but a verbose and slightly
less natural overall caption paragraph compared to human-written
condensed captions with higher-level patterns emphasized.

Notwithstanding, for some captioning use cases like accessibility,
the balance of low-level to high-level information and the level of
verbosity might be appropriately natural. For example, P6 com-
ments that the more detailed, lower-level aspects of the captions
“would help increase not only readability but also accessibility of a
figure..., such a captioning algorithm can help researchers create alter-
native texts for their charts if a figure-generating library employs it.
Thus, such a library can create both a figure and its description, which
can be used as an alternative text.” Hence, verbosity may have some
advantages when it comes to the scenario for visually-impaired
readers because they may want to have as much information as
possible, rather than having just condensed captions. We expect
scientific use cases to drive modifications to the caption types in
the problem formulation (e.g., including more higher-level caption
units, removing lower-level caption units), rather than fundamental
changes to the overall architecture or the modeling approach.

8 POST-EDITING SIMULATION
The quantitative experiments and the user study on FigJAM in-
dicate that machine-generated captions have high accuracy but
are not natural to humans. Prior IELTS corpus analysis highlights
the same importance to generate natural captions [45]. One solu-
tion is to post-edit to improve caption naturalness. The term post-
editing originates from machine translation, where humans modify
machine-generated translation to improve translation quality [50].
To the accessibility use case for the visually-impaired population,
post-editing a machine-generated caption would be valuable. While

figures may have abbreviated text labels to avoid verbosity and save
space, figure captions should avoid abbreviations and sound as de-
tailed as possible. A screen reader that speaks an abbreviated word
(e.g., “DLA”) in captions like a regular English word (“dlah”) would
confuse the user. Finally, without post-editing, one may even argue
whether FigJAM is more advantageous than a rule-based, pipelined
figure captioning system [2, 14, 19, 40]. Given an accurate caption
generated by FigJAM “cage is the label of the first bar from the
left,” an alternative pipelined system could extract figure metadata
and write decision rules to generate the same. Here we investigate
the data-driven model FigJAM for handling two post-editing cases,
based on realistic observations [45]: paraphrasing and stitching.

To achieve post-editing, let us revisit the FigJAM model from
Sec. 4. FigJAM’s dynamic dictionary handles cases when a figure
text label is a multi-word unit. Specifically, when a multi-word
unit is either an additional input or a predicted slot value word, its
embedding from the dynamic dictionary is used to initialize the
decoder. For the post-editing task, we also maintain a parallel static
dictionary, in addition to the dynamic dictionary. Except that each
multi-word unit appears as both an integral word in the dynamic
dictionary and multiple tokenized words in the static dictionary.
Whenever a multi-word unit appears as either the additional input
(the orange block in Figure 1) or the predicted slot value word
(the purple block), an additional LSTM encoder is used to encode
its sequence, whose hidden state of the final timestamp is used
to represent the multi-word unit. At decoding time, the encoded
sequence’s hidden state is used to initialize the decoder, instead of
the dynamic dictionary word embedding of the multi-word unit.
For clarity, we denote this slightly modified variant of FigJAM as
FigJAM++. The effect of FigJAM++ looks like this: given a figure
whose title is “Import 2015 FYR Macedonia,” it generates a caption
unit with abbreviation expanded such as “The figure shows imported
value of the former Yugoslav Republic of Macedonia in 2015.”

Inspired by simulation experiments in machine translation [21],
the experiment in Figure 4 compares the naturalness of captions
from a fully-converged FigJAM++modelwith three simulated pipelined
systems. For the latter, we hypothesize and simulate the scenario
where domain experts manually inspect human-written caption
corpora and write post-editing rules to tweak captions generated
by pipelined systems. The research question is “How many attempts
would a domain expert need to make to improve a pipelined figure
captioning system, such that its generated caption could sound as
natural as a data-driven FigJAM++ model?”

For the experiment, we identify two suitable datasets, DVQA [28]
and LEAF-QA [10]. DVQA has seven unique titles that are multi-
word units. LEAF-QA [10] is a more recent figure question an-
swering dataset, whose major advantage is figures that visualize
real-world data from sources including the U.S. Census and stock
prices. The figures have meaningful, realistic text labels that are
multi-word units. There are 2,624 unique titles, encompassing more
diverse variations than DVQA. Similar to the process in Sec. 5.1.1,
we first write rules based on figure metadata to construct a set of
non-post-edited caption units for LEAF-QA, as the source for post-
editing. We name the converted caption dataset from LEAF-QA as
LEAF-QA-cap. FigJAM++ populates a joint dictionary of size 11,092
on LEAF-QA-cap, approaching the dictionary size of a realistic text
corpus. We then select three caption types: title type on DVQA-cap,
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Figure 4: Simulated post-editing traces for rule-based, pipelined systems vs. FigJAM++ on DVQA-cap title (a); LEAF-QA-cap title
(b); LEAF-QA-cap title + label name (c).

title type on LEAF-QA-cap, and label name on LEAF-QA-cap to
simulate post-editing. For the last one, we revise the definition and
ground truth of label name on LEAF-QA-cap to make the caption
units into multi-type captions. We name it title + label name. To
operationalize, the additional inputs of this type include the figure
title. This revision tests the basic stitching capability for models to
make single-type caption units into multi-type captions.

The simulation experiment starts with the three selected caption
types and the non-post-edited ground truth captions of each type:
DVQA-cap title, LEAF-QA-cap title, and LEAF-QA-cap title + label
name. Two are single-type caption units and one is multi-type
captions. We design seven rules for DVQA-cap and 50 rules for
LEAF-QA-cap. The rules augment the datasets into parallel corpora
with both the source, non-post-edited and the target, post-edited
captions. Table 6 lists example post-editing rules. Each rule is a pair
between one source pattern and at least one target pattern. Some
rules have two target patterns to simulate two options for a domain
expert to post-edit. One option is a primary post-editing pattern
that we assume will be present in a corpus with a probability of
0.8 whenever the source pattern appears. Another is a secondary
pattern with a probability of 0.2. The two options can be interpreted
as two writing styles that co-exist in a corpus, e.g., general vs.
context-specific, formal vs. informal, etc.

FigJAM++ is trained by taking figures andmetadata as input, post-
edited captions in mixed target patterns as ground truth output for
each caption type until 50,000 batches. For pipelined systems, we
first randomize (with replacement) the occurrences of post-edited
captions by each target pattern. Then, we emulate three domain
experts on their traces of iteratively recovering the rules from
post-edited captions as they encounter, and tweaking a portion of
outputs from FigJAM to improve caption quality using a new rule.

Due to the presence of primary and secondary post-editing pat-
terns to the same source pattern with a probability distribution of
[0.8, 0.2], FigJAM++ achieves accuracy scores of 0.792, 0.813, and
0.767, and BLEU_4 scores (flat green lines in Figure 4) of 0.854, 0.938,
0.932, respectively. These results suggest that FigJAM++ can learn
from diverging patterns in a corpus and generalize to achieve rea-
sonable accuracy. Among which, the caption type title + label name
is multi-type. A reasonable accuracy in this type means the model
is capable of learning basic stitching from data. While a converged
FigJAM++ is having a stable BLEU-4 score, the BLEU-4 score of a

simulated pipelined system through domain expert post-editing
goes up when more rules are being discovered. In general, it takes
at least two times the number of rules for the simulated expert to
reach a similar caption quality to that of FigJAM++, e.g., only after
approximately 14 attempts the expert boosts the caption quality
for DVQA-cap title, as in Figure 4 (a). There are timestamps when
a single rule in LEAF-QA-cap significantly boosts caption quality,
which may be less likely in realistic scenarios. After reaching the
highest quality, a domain expert may unconsciously revert a gener-
alized primary rule to a rare secondary rule, as seen in the small
drops of the traces below the green line. For a pipelined system
with a domain expert that manually post-edits, reaching or main-
taining the same level of caption quality as a data-driven model
like FigJAM++ is challenging.

9 CONCLUSION AND FUTUREWORK
We formulate the caption generation problem as a controlled cap-
tioning problem: given a caption unit type as a control signal, a
model generates an accurate caption unit of that type. As a proof-
of-concept, we propose a new deep learning model, FigJAM, that
utilizes metadata information and a joint static and dynamic dictio-
nary. We conduct quantitative evaluations with two datasets from
a related task of figure question answering. Results in accuracy and
BLEU-4 show that FigJAM could generate more accurate caption
units than competitive baselinemodels. A user studywith ten figure-
authoring participants confirms the value of machine-generated
caption units, in their standalone accuracy and naturalness. Finally,
a post-editing simulation study demonstrates our FigJAM’s poten-
tial to paraphrase and stitch in improving caption naturalness.

Our work contributes towards generating accurate and natural
figure captions, specially for scientific-style figures. Future work
along the line includes stitching caption units together as a para-
graph, extending the value type to describe arbitrary figure element
values, and generalizing FigJAM beyond single bar charts to stacked
and group bar charts, as well as other figure types. Like other deep
learning research, our future work depends on appropriate dataset
availability. Deployment is our long-term goal. A production system
may also train from real users’ captioning datasets. We hope our
work can open up collaborations among the research community.
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