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Abstract—Spatial data are ubiquitous, massively collected, and
widely used to support critical decision-making in many societal
domains, including public health (e.g., COVID-19 pandemic
control), agricultural crop monitoring, transportation, etc. While
recent advances in machine learning and deep learning offer
new promising ways to mine such rich datasets (e.g., satellite
imagery, COVID statistics), spatial heterogeneity – an intrinsic
characteristic embedded in spatial data – poses a major challenge
as data distributions or generative processes often vary across
space at different scales, with their spatial extents unknown.
Recent studies (e.g., SVANN, spatial ensemble) targeting this
difficult problem either require a known space-partitioning as the
input, or can only support very limited number of partitions or
classes (e.g., two) due to the decrease in training data size and the
complexity of analysis. To address these limitations, we propose
a model-agnostic framework to automatically transform a deep
learning model into a spatial-heterogeneity-aware architecture,
where the learning of arbitrary space partitionings is guided by
a learning-engaged generalization of multivariate scan statistic
and parameters are shared based on spatial relationships. We
also propose a spatial moderator to generalize learned space par-
titionings to new test regions. Experiment results on real-world
datasets show that the spatial transformation and moderation
framework can effectively capture flexibly-shaped heterogeneous
footprints and substantially improve prediction performances.

Index Terms—Deep learning, statistics, spatial heterogeneity

I. INTRODUCTION

Spatial datasets are ubiquitous and collected at ever-growing
scale, resolution, frequency and variety. Common types of
spatial data include satellite/UAV imagery, points-of-interest
(POI), GPS locations/trajectories, geo-tagged tweets, census
data, maps (e.g., land cover, crimes, traffic accidents, COVID
statistics), and many more. These spatial datasets are critical
in a variety of societal applications, such as Earth observation
(e.g., crop monitoring [1]), public health (e.g., COVID-19
mobility analysis [2]), public safety, transportation, etc.

While spatial datasets are both important and widely used,
they have two intrinsic properties – spatial autocorrelation and
heterogeneity – that often undermine the traditional indepen-
dent and identical distribution (i.i.d.) assumption of data sam-
ples [3], [4]. Spatial autocorrelation violates the independence
assumption as nearby data samples (e.g., landcover, tempera-
ture, mobility) tend to share higher similarity. Spatial hetero-
geneity, on the other hand, violates the identical distribution
assumption as the data generative processes often vary over

space. Even more challenging, such differences in distributions
may not be reflected by variations in observed features, and
the spatial footprints of the generative processes could be
arbitrary in shape due to complex social and physical contexts.
For example, in satellite-based crop monitoring, relationships
between observed spectral characteristics and crop types are
affected by many unobserved or hard-to-collect information
such as each farmer’s adoption of land management practices
(e.g., tillage type, applications of phosphorous and pesticides,
etc.); these choices often depend on personal experience,
planned crop rotation, and local exchanges with other farm-
ers. Similarly, in COVID human mobility projection, travel
patterns often differ across regions due to mixed differences
in local policy and implementation, social culture, events,
community setting (e.g., rural, urban), etc. Unknown spatial
footprints of these heterogeneous processes pose significant
challenges to applications beyond a very local focus.

In related work (more in Sec. V), the wide adoption
of convolutional kernels [5] in deep learning architectures
have explicitly filled the missing representation to capture
spatial autocorrelation (e.g., local connections and maintained
spatial relationships between cells). However, the complex
spatial heterogeneity challenge has not been sufficiently ad-
dressed. In a recent study, a spatial-variability aware neu-
ral network (SVANN) approach was developed [6]. SVANN
mainly demonstrates the benefit (e.g., increase in accuracy)
of separating out training data subsets belonging to known
different distributions, but it requires the spatial footprints of
heterogeneous processes to be known as an input, which is
often unavailable in real applications. Explicit spatial ensemble
approaches aim to adaptively partition a dataset [7], but the al-
gorithm and its variation are specifically designed for two-class
classification problems and only allow two partitions; both
training and prediction are performed separately for each par-
tition. Outside recent literature on deep learning, a traditional
approach to handle spatial heterogeneity is geographically-
weighted regression (GWR) [8]. However, GWR is mainly
designed for inference and linear regression, and cannot han-
dle complex prediction tasks commonly addressed by deep
learning. Most existing methods also require dense training
data across space to train models for individual partitions
or locations. Finally, they cannot be applied to other regions



outside the spatial extent of the training data.
To address these limitations, we propose a model-agnostic

Spatial Transformation And modeRation (STAR) framework
with the following contributions:
• We propose a spatial transformation approach to capture

arbitrarily-shaped footprints of spatial heterogeneity at mul-
tiple scales during deep network training, and synchronously
transform the network into a new ”spatialized” architecture.
The transformation is guided by a dynamic and learning-
engaged generalization of multivariate scan statistic;

• We propose a spatial moderator to generalize the learned
spatial patterns and transformed network architecture from
the original region to new test regions;

• We implement the model-agnostic STAR framework us-
ing both snapshot and time-series based input network
architectures (i.e., DNN, LSTM and LSTM-attention), and
present the statistically guided transformation module for
both classification and regression tasks.
Through experiments on real world datasets, i.e., satellite-

based crop monitoring and COVID-19 human mobility pro-
jection, we show that the STAR framework can substantially
improve model performance, capture flexibly-shaped spatial
footprints of heterogeneous processes, and can be effectively
applied to prediction tasks in new test regions.

II. PROBLEM FORMULATION

The general problem is formulated as follows:
Inputs:
– Geo-located feature X and label y in a spatial domain D;
– Spatial locations L of data samples;
– A deep learning model F selected for the task;
– A significance level α;
Outputs:
– A flexibly-shaped space-partitioning scheme Dpart of D;
– A spatially-transformed F : Fspatial on Dpart;
Objective: The goal is to improve solution for:
– Classification (e.g., precision, recall, F1-scores);
– Regression (e.g., MAE, RMSE).
As our spatial transformation and moderation framework

aims to incorporate awareness of spatial heterogeneity into a
deep learning model selected by the user, input data to this
framework need to contain location information, which can
be either explicitly recorded (e.g., POI visits; trajectories) or
implicitly inferred (e.g., pixels in a satellite imagery). In many
real-world use cases, ground-truth labels (e.g., crop types)
are collected through field surveys only at certain sample
locations (i.e., not a complete map), so location information
also allows those labels to be matched onto the observed
features (e.g., spectral bands in satellite imagery). Based on
the prediction task and data types, a user can specify a desired
deep learning model (e.g., DNN, LSTM, CNN) as an input.
Using this as a base model, our framework will simultaneously
capture the spatial heterogeneity in the data via flexibly-
shaped space-partitioning, and transform the base model into
its spatial version. The significance level α will be used to
guide decisions during the transformation.
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Fig. 1: Spatial processes, hierarchy and network architecture.

III. A MODEL-AGNOSTIC DEEP NETWORK
TRANSFORMATION AND MODERATION FRAMEWORK

A. Spatially heterogeneous processes

In this section, we first define basic concepts on spatial
heterogeneity and then outline key questions to address it.

Definition 1. Spatial process Φ: A function Φ : X 7→ y
governing data generation in a spatial region, which may
involve observed and unobserved (or unknown) features as
variables. The process at a smaller/finer scale may be an
aggregation of itself and processes at larger scales.

Definition 2. Spatial heterogeneity: An intrinsic property of
spatial data [3], [4] stating that data are generated by differ-
ent spatial processes {Φ} across space. Spatial heterogeneity
leads to different data distributions in different regions.

While deep networks can function as universal approxi-
mators for data following identical distributions [9], spatial
heterogeneity commonly existed in spatial data violates this
assumption (e.g., spatial data generated by two simple scalar
functions y = x and y = −x across space cannot be approx-
imated by a single network). As a result, the heterogeneous
processes {Φ} will cause confusion on data distribution during
training, and hamper prediction performance and stability.

Moreover, another complicating factor we need to consider
is the hierarchy of spatial processes across scales and their
corresponding heterogeneity. For example, higher-level het-
erogeneity in the hierarchy may be caused by policies at
larger scales, climate zones, major geographical barriers (e.g.,
mountains), whereas lower-level processes may vary by local
policies, demographics, social/cultural contexts, and personal
decisions. In addition, the spatial footprints of these different
processes may be arbitrary in shape. Fig. 1 (a) and (b) show
an example of mixtures of spatial processes at two different
scales/levels, and this hierarchy is formally defined in Def. 3.

Definition 3. Spatial hierarchy of processes H: A multi-scale
representation of spatial heterogeneity [10]. H represents the
input spatial domain D as a tree; each node Hij ∈ H is a
partition of D, where i denotes the level in the hierarchy, and
j is the unique ID for each partition at level-i. Children of a
partition Hij share the same lower-level processes (processes



{Φ} at levels i′ < i). The process Φ is homogeneous within a
leaf-node and heterogeneous across leaf-nodes.

Based on the definitions and concepts, there are three key
questions we need to address to transform an input deep
learning model F into a spatial-heterogeneity-aware Fspatial:
– What is a learning representation to utilize spatial relation-

ships among data samples to allow: (1) samples following
heterogeneous processes to contribute to different models,
and (2) effective weight-sharing among models?

– How to adaptively learn the often arbitrarily-shaped foot-
prints of spatially heterogeneous processes, which may
contain a mixture of processes across multiple scales?

– How to generalize Fspatial and space-partitioning learned
in one region to be effectively used in other test regions?
In the following Sec. III-B to III-D, we will address the

questions with a representation choice, a statistically-guided
spatial transformation of F , and a spatial moderator.

B. Representation choice: Hierarchical multi-task learning
To handle spatial heterogeneity, the representation needs

to be specified at both data and deep network model levels.
Fortunately, the spatial hierarchy defined in Def. 3 [10] not
only provides a natural way to represent spatial heterogeneity
across scales, but also an effective structure to hierarchically
group deep network parameters for the training process. To
illustrate this, Fig. 1 (c) shows an example of spatial hierarchy
H, where each node Hij ∈ H can be considered as a spatial
region with a spatial process Φij ; here i is the level in the
hierarchy and j is a unique ID of a node at this level. Based
on this hierarchical representation of spatial partitions, Fig. 1
(d) shows the deep network representation that synchronizes
the structure of H, where each unique path from the input to
output has the same architecture as the input deep network
F . Using this representation, model parameters at each layer
are shared by all leaf nodes branched out from the layer. This
means nodes that share more common parent nodes in the
spatial hierarchy H also share more common weights. Another
intuitive interpretation is that spatial partitions that share the
same parent Hij inherit the same higher level spatial process
Φij . The learning at each leaf-node can be considered as a task
in this multi-task learning context.

For the hierarchy-network synchronization (Fig. 1), a final
detail is the selection of the layer, at which the following layers
will be split into two parallel branches. To make this more
formal, we use an optional parameter β (β ≤ 1; default to
1/2) to denote the proportion of the layers to split.

C. Statistically-guided deep network transformation
While transforming an input network F into the hierarchical

spatial representation Fspatial is straightforward, the most
critical task is to actually learn this spatial hierarchy in the
first place. We propose a statistically-guided transformation
algorithm to adaptively capture the hierarchy H and the
synchronized network architecture Fspatial.

Following the spatial hierarchical structure (Def. 3), the
space-partitioning (and network transformation) will propagate

in a hierarchical bi-partitioning fashion, where at each step,
a partition or node Hij ∈ H at the current level will be
split into two children Hi+1

j1 and Hi+1
j2 with arbitrarily-shaped

spatial footprints. As shown in Fig. 2, this process is governed
and automated by spatial statistical tests on the following
overarching hypotheses: (1) Null hypothesis H0: The spatial
process Φij at node Hij is homogeneous (i.e., no need for
partitioning), and (2) Alternative hypothesis H1: Φij is a
mixture of heterogeneous spatial processes.

Our transformation framework is a dynamic and learning-
engaged generalization of the multivariate scan statistic [11]–
[13] as we will discuss over the next two sections.

1) Multivariate scan statistic (MSS): MSS [11], [12] is a
widely applied spatial statistical approach in event detection
(e.g., disease surveillance) [13]. It identifies if there exists a
spatial region with a significantly higher rate of generating
incidents or cases of certain events (e.g., disease, crime) com-
pared to the rest. To better illustrate the formulation of MSS,
denote ck,m and bk,m as the observed and expected (baseline)
number of cases or incidents of event m at spatial location sk,
respectively; where m = 1, ...,M , and the expectation bk,m
can be calculated using the total number of cases Cm of event
m and the proportion of ”base population” at location sk. For
example, using COVID-19 as the event, the ”base population”
can be the total number of tested people, and the number of
cases will cover those tested positive. Next, the null hypothesis
H0 states that the data generative process is homogeneous
across the whole space (the expectation or baseline bk,m is
calculated under this hypothesis); and H1 states that there
exists a region S where the rate of generating instances of
an event is qm times the expected rate under H0, i.e., the
expectation in S is qm · bk,m. As there exist a large number
of spatial regions S, MSS finds the most ”divergent” region
by maximizing the Poisson-based log likelihood ratio [12]:

S∗ = arg max
S

Γmss(S) = arg max
S

log
Likelihood(H1, S)

Likelihood(H0)

= arg max
S

log
∏
sk∈S

M∏
m=1

Pr(ck,m ∼ Poisson(qm · bk,m))

Pr(ck,m ∼ Poisson(bk,m))

(1)

For each specific candidate region S, qm is estimated by
maximizing Likelihood(H1, S), yielding:

S∗ = arg max
S

M∑
m=1

(
Cm,S · log

(
Cm,S
Bm,S

)
+Bm,S − Cm,S

)
(2)

where Cm,S =
∑
sk∈S ck,m; Bm,S =

∑
sk∈S bk,m; qm is

replaced by its maximum likelihood estimate: max{Cm,S

Bm,S
, 1}.

In MSS, after S∗ is identified from the observed dataset,
it evaluates the statistical significance of S∗ through Monte
Carlo estimation with T trials (e.g., 999): MC1, ...,MCT . In
each trial MCt, a simulation data is generated using H0, and
the optimal S∗t and its score Likelihood(H1,S

∗
t )

Likelihood(H0)
are extracted from

it. Finally, given an input significance level α, S∗ is significant
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Fig. 2: Illustrative example of the spatial transformation framework with dynamic and learning-engaged MSS.

(i.e., the data generative process is heterogeneous) if its score
Likelihood(H1,S

∗)
Likelihood(H0)

is in the top α portion of the optimal scores
S∗ ∪{S∗t |t = 1, ..., T}. The enumeration of region candidates
S will be discussed later.

2) A dynamic and learning-engaged generalization of MSS
(DL-MSS): There are three gaps in integrating MSS into
the spatial-heterogeneity-aware deep learning transformation
process: (1) Data compatibility: Input data to a deep learning
model are features X ∈ RN×d (using 1D data samples as an
example) and labels y ∈ ZN (or RN ), which are not directly
compatible with MSS inputs (e.g., observed and expected
cases (ck,m, bk,m) at a location sk); (2) Significance in action:
In MSS, the statistical test is performed using Monte Carlo
estimation, which is more ”descriptive” about the past or
presence. However, we are more interested in ”futuristic”
impact of a spatial pattern S∗, i.e., our real goal is to know
if the partitioning based on the pattern can truly make a
statistically significant improvement on the learning; and (3)
Dynamics of learning: As the complex relationships between
X and y are not known in input data (unlike MSS), footprints
of heterogeneous spatial processes {Φ} need to be dynami-
cally captured as new partitions in H are created and new
parameters are learned.

We propose a Dynamic and Learning-engaged MSS (DL-
MSS) to bridge the gaps through three phases.

DL-MSS Phase-1: Prediction error distribution as a
proxy to heterogeneous processes Φ. To transform input
features X and labels y to a ”observation vs. expectation”
distribution as needed by MSS, we use the spatial distribution
of prediction errors as a proxy to the spatial processes. Here we
will use classification as an example to illustrate the modeling
and the regression variation will be discussed in Sec. III-C5.

There are two main reasons of using error distribution as
the proxy for spatial processes: (1) If all data belonging to
a partition Hi

j ∈ H are generated by a homogeneous spatial
process Φij , we expect the error distribution for each class –
that are predicted by a single model at node Hi

j – to follow a
homogeneous distribution as well. Otherwise, errors following
spatially heterogeneous distributions would indicate that the
data generative process Φij is heterogeneous (i.e., X 7→ y are
different across locations within partition Hij); and (2) The use
of prediction errors enables the use of deep learners to generate
statistics (MSS inputs) to describe processes Φ : X 7→ y, which
are otherwise unavailable or hidden from the input data.

Denote ŷk,m as the predicted labels for samples with class
m (i.e., true labels are m) at spatial location sk (e.g., a cell in a
grid-partitioning of space). The number of misclassified sam-

ples of class m at sk is then errk,m = |ŷk,m 6= m|. Further,
denote nk,m as the number of samples of class m at location
sk; and ERRm and Nm as the number of misclassified and
all samples of class m in the entire space. Using nk,m as
the ”base population”, the expected number of misclassified
samples at location sk is then E(errk,m) = ERRm · nk,m

Nm
.

With this modeling, the error distribution across space can
be now characterized by MSS by replacing ck,m in Eq. (1)
with errk,m and bk,m with E(errk,m). In other words, we are
trying to find a spatial region S that has the most divergent
error distribution from the rest of the space.

The optimal solution S∗ can still be given by Eq. (2), and a
worth-mentioning property is that the multivariate likelihood
ratio in Eq. (2) automatically adjusts for sample size in a
spatial region S, improving the flexibility of the approach.

Once the optimal S∗ is identified, the current node Hij will
be temporarily split into two children Hi+1

j1 and Hi+1
j2 , where

one child corresponds to S∗ and the other for the rest of the
space in Hij . The temporary split will only be implemented in
H if it passes the significance test in the next phase.

DL-MSS Phase-2: Active significance testing with learn-
ing. As described in Sec. III-C1, MSS performs significance
testing via expensive Monte Carlo simulation. More impor-
tantly, the result is by design ”descriptive”, meaning it only
intends to tell if the error distribution in S∗ differs from the
rest for ”the current H-node and model”.

As our goal is to know whether a node-split suggested by
Phase-1 really partitions the current Φij : X 7→ y into two
distinct processes Φi+1

j1 and Φi+1
j2 that lead to a statistically

significant improvement on learning, in DL-MSS, we change
the Monte-Carlo-based descriptive test to a learning-engaged
active test. Denote Θi

j as deep network parameters for partition
Hij ∈ H; note that Θi

j shares part of the parameters with
other partitions having common parents (Sec. III-B). DL-MSS
carries out two sets of learning-engaged experiments to prepare
for the statistical test:

– Split scenario: Using the temporary split (Hij →
(Hi+1

j1 ,Hi+1
j2 )) from Phase-1, DL-MSS trains their network

parameters (Θi+1
j1 ,Θi+1

j2 ) separately using training samples
from the two partitions, evaluates the element-wise loss
separately on validation samples, and concatenates the two
sets of loss to losssplit ∈ Rn, where n is the number of
validation samples in Hij .

– Base scenario: DL-MSS trains parameters Θi
j for the base

node (unsplit) with all training samples from the node
together, and evaluates the element-wise loss lossbase ∈ Rn



on validation samples. The order of validation samples are
kept the same as in the split scenario. In addition, we also
output loss′base, which is the loss before the extra training
is performed here (to get lossbase).
Then, DL-MSS performs significance testing using lossbase

and losssplit as the observed measurements of learning per-
formance on the samples. As both lossbase and losssplit refer
to the same set of samples, evaluation of their statistical
difference needs to be done using dependent statistical tests
to adjust for ”same-group” comparisons. Specifically, we use
the upper-tailed dependent T-test [10], where lossbase and
losssplit are considered as the scores ”before” and ”after”
the split, and we are only interested in the case where the
performance improves. The test statistic is then:

diff =
µ(losssplit − lossbase)

σ(losssplit − lossbase) · (DF + 1)−
1
2

(3)

where µ(·) and σ(·) are the mean and standard deviation,
DF = n− 1 is the degree of freedom.

The significance of diff can be tested directly using stan-
dard upper-tailed T-test table with DF and significance level
α. In addition, to improve the robustness of the testing, we add
another effect size test to evaluate the size of improvement:

es =
µ(losssplit − lossbase)
µ(lossbase − loss′base)

(4)

Here the denominator measures the improvement achieved
purely by the additional training itself, whereas the numerator
measures the extra improvement gained from the node split.
In our implementation, the threshold on es is defaulted to 1.

DL-MSS Phase-3: MSS in a dynamic and learning-
engaged spatial hierarchy H. The original MSS is more of a
run-and-done algorithm that aims to detect all heterogeneous
regions directly on the input dataset. In other words, it assumes
all heterogeneous processes in the current data are readily
detectable. However, in our problem, although the underlying
spatial heterogeneity is fixed in input data X and y, delineation
of the heterogeneous footprints needs to: (1) engage learning
so that the processes Φ : X 7→ y become observable (e.g., via
the error distribution); and (2) follow the dynamic construction
process of the hierarchy H, because parameters learned at
H-nodes needs to be dynamically refined as new nodes are
created to gradually capture heterogeneity at finer scales.

Thus, to capture the spatial heterogeneity in a hierarchical
manner, DL-MSS performs the first two phases as a sub-
routine at new nodes added to H. If a node-split is determined
to be significant, the DL-MSS will further expand that branch
of H; otherwise, DL-MSS terminates the exploration at the
node and mark it as a leaf-node with a homogeneous process.

3) Computation and implementation: So far we have out-
lined the three phases of DL-MSS. From a computational
perspective, the remaining key question is how to efficiently
enumerate candidate regions {S} in order to identify S∗ ∈
{S} at each node throughout the construction of H as well as
its synchronized network architecture Fspatial.

First, for general input datasets with location information
(L defined in Sec. II), we use a g1 × g2 grid G to represent
the space at each node in H. The resolution of the grid
gradually increases as the depth of the hierarchy H increases
so that heterogeneity at larger scales are captured at lower
resolution and finer-scale heterogeneity are captured in more
details. Specifically, when DL-MSS starts at the root of H,
G adopts the original g1 × g2 resolution (e.g., 8 × 8). Then,
as shown in Fig. 2 (Phase-3), each cell is divided into four
equal size cells (i.e., doubling the resolution) if two node-
splits have been made at the current resolution, which keeps
the average number of cells per node similar for levels
i ∈ {i|i mod 3 = 0} (same if children nodes are constrained
to have equal number of cells when split).

In DL-MSS, grid cells are used as spatial locations {sk}
during the optimization of S∗, so the observed and expected
number of misclassified samples ck,m and bk,m in Eq. (1) can
be calculated as aggregated counts at cell levels.

Next, to identify arbitrarily-shaped S∗, the computational
challenge is that the number of candidate regions |{S}| (i.e.,
different subsets of locations) is exponential to the number n
of locations or cells – O(en). Thus, we utilize the linear-time
subset scanning (LTSS) property to reduce the search space:

Definition 4. LTSS property [14]. Given: (1) a set of spatial
locations {sk}, and (2) a score function Γ(S) for region-
ranking where S ⊆ {sk} is a spatial region, the LTSS property
holds if there exists a priority function γ(sk) so that:

max
S

Γ(S) = max
ŝ

Γ

( ⋃
γ(sk)≥γ(ŝ),∀sk

sk

)
(5)

When LTSS holds, all spatial locations can be pre-sorted
using the priority function γ(sk) in a descending order. Then,
by Def. 4, only a linear scan on the sorted list is needed to find
the optimal ŝ to partition the locations into two sets, where
S∗ = {sk|γ(sk) ≥ γ(ŝ)}. This reduces the search cost from
O(en) to O(n log n+n), where O(n log n) is for pre-sorting.

Fortunately, the likelihood ratio function we use here in DL-
MSS (Eq. (1)) has been shown to satisfy the LTSS property
[12], with the priority function given by:

γ(sk) =
M∑
m=1

(ci,m log qm + bi,m(1− qm)) (6)

where M is the total number of classes.
As introduced in Eq. (1) and (2), qm here represents how

many times the error generation rate in a region S is as high as
the expected rate under H0, and it is an unknown variable in
H1 that need to be estimated. Thus, for LTSS to work, values
for qm must be assigned before the optimal S∗ is identified
in order to use the priority function in Eq. (6).

To address this issue, we modify a coordinate ascent type
of strategy used with LTSS to optimize qm and S∗ in an
alternating manner over iterations (Alg. 1). In the algorithm
we change the initialization method used by [12], which uses
qm = eu with u ∼ Uniform[0, 2] and did not perform stably



in our experiments as the randomly generated values are far
outside the normal qm value ranges in our input data. Instead,
we initialize qm values using observed sample values in input:

qm = arg max
qm

∏
sk∈Stop

M∏
m=1

Pr(ck,m ∼ Poisson(qm · bk,m))

=(
∑

sk∈Stop

ck,m)/(
∑

sk∈Stop

bk,m)

where m is the class ID, Stop = {sk| ck,m

bk,m
≥ τ, ∀sk}, and τ

is the median of ck,m

bk,m
at all locations. This initialization can

be interpreted as optimizing the values of qm (same maximum
likelihood estimator as used for Eq. (2) and coordinate ascent
iterations) using locations in Stop, whose members are selected
using ck,m

bk,m
as a heuristic priority function (initialization only).

Algorithm 1 Coordinate ascent for qm and S∗

Require:
• c list: List of all ck,m values for input locations
• b list: List of all bk,m values for input locations
• score function Γ and priority function γ
{Initialization}

1: for m = 1 to M do
2: Stop = get top cells(c list, b list, m)
3: q[m] = optimize q(Stop, c list, b list, m)
4: end for
{Coordinate ascent: S∗ followed by q}

5: for i = 1 to max iteration do
6: γ list = get priority(q, c list, b list, priority func: γ)
7: γ list = γ list.sort(’desc’)
8: S∗ = maximize score by LTSS(γ list, c list, b list,

score func: Γ)
9: for m = 1 to M do

10: q[m] = optimize q(S∗, c list, b list, m)
11: end for
12: end for
13: return S∗

Finally, as the region S∗ detected by LTSS in Alg. 1 may
not be necessarily spatially contiguous (i.e., locations that are
consecutive by priority γ may not be spatially adjacent), we
refine the partition with extra spatial smoothing (the localized
scan in [12] does not work for our purpose as it tends to
limit partitions to small and localized footprints). Specifically,
at the final iteration of Alg. 1, connected components in S∗

(i.e., subsets of grid cells) with a size that are smaller than
a tolerance (defaulted to 3 cells) are swapped to the other
partition S′ = Sij \S∗ where Sij is the entire space at node Hij .
Similarly, for S′, we do the same swap of tiny components.

4) Complexity analysis: Here we provide the time complex-
ity for Alg. 1 at a H-node. Denote n as the total number of
samples and grid cells at the node, m as the number of classes,
and t as the number of iterations (e.g., 1000). The complexity
is then O(t · (n log n+n+mn)) (the cost of initialization and
contiguity refinement is minimal and skipped here). Here the
number of classes can be often considered as a constant, so the
complexity reduces to O(t · n log n). As described in Phase-3
of DL-MSS (Sec. III-C2), the number of cells of the grid is
often very small at each node (e.g., 10s to 100s). Overall, we

noticed that the total time spent on S∗ optimization is mostly
negligible compared to the training time of network parameters
in our experiments (e.g., second/minute vs. hour).

5) Regression version of DL-MSS: For regression, the gen-
eral flow is remains the same and the major differences are
for the score function Γ(S) and priority function γ(sk), which
are needed as the prediction changes from multi-class labels
to continuous values.

In this paper we focus on the scenario where each sample
has one target label, i.e., y ∈ RN×1, where N is the number
of samples. Also, instead of classification errors, we use mean
squared errors ek for regression. For the score function Γ(S),
we select the normal-based likelihood ratio [15] (Poisson is
used for classification), where the null hypothesis H0 states
that ek ∼ Normal(µall, σ2

all) at all locations and H1 states that
there exists a region S where ek ∈ S ∼ Normal(µS , σ2

both),
and ek ∈ S′ ∼ Normal(µS′ , σ2

both) for all other locations S′ (a
common variance σ2

both is used for both). To avoid redundancy,
the simplified Γ(S) and S∗ are (e.g., used by [15]):

Γ(S) = N ln
σall
σboth

− N

2
+

∑
sk∈S∪S′

(ek − µall)2

2σ2
all

(7)

S∗ = arg max
S

Γ(S) = arg min
S

σboth (8)

where only N lnσ−1both in Γ(S) depends on S so maximizing
Γ(S) is equivalent to minimizing σboth or the variance σ2

both.
Based on Eq. (7), we have the following lemma:

Lemma 1. For Γ(S) given in Eq. (7), the following priority
function satisfies the LTSS property:

γ(sk) = ek (9)

Proof. The set of {ek} for locations {sk} is equivalent to a set
of points distributed on a one-dimensional line. Moreover, the
maximum likelihood estimators for the means and variances
are µS = |S|−1

∑
sk∈S ek, µS′ = |S′|−1

∑
sk∈S′ ek, and

σ2
both = N−1(

∑
sk∈S(ek−µS)2+

∑
sk∈S′(ek−µS′)

2). Thus,
minimizing the variance σ2

both (or σboth > 0) is equivalent to
minimizing the k-means loss with k = 2. So for the two groups
to be optimal, there should be no overlap in their ek value
ranges on the 1D space, i.e., minsk∈S ek ≥ maxsk∈S′ ek as-
suming µS ≥ µS′ (proof is symmetric for the other direction).
Otherwise, swapping the minimum ek ∈ S and maximum
ek ∈ S′ must reduce the k-means loss (i.e., Nσ2

both), either
by center assignments or re-estimation.

D. A spatial moderator for generalization

The spatial hierarchy H and ”spatialized” deep network
Fspatial learned and trained from the transformation step aim
to capture spatial heterogeneity for the spatial extent of the
input X and y. However, the partitions cannot be directly
applied to a new spatial region. To bridge this gap, we propose
a spatial moderator, which translates the learned network
branches in Fspatial to prediction tasks in a new region.

The key idea of the spatial moderator is to learn and predict
a weight matrix W for all branches in Fspatial (corresponding
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Fig. 3: Illustrative example of the spatial moderator.

to all leaf-nodes in the spatial hierarchy H), and then use the
weights to ensemble the prediction results from the branches
to get the final result. As an example, suppose the output ŷi for
a sample xi is in 1D. Then, in the weight matrix W ∈ RL×M ,
the L rows each corresponds to a network branch in Fspatial
(or a leaf node in H), where the M columns correspond to
the M labels (one-hot encoding for classification; M = 1 for
regression in this paper). Thus, every column in W is a weight
vector w ∈ RL that gives the weight distribution across the
branches for each of the M labels.

In the spatial moderator, W is not stationary but predicted
dynamically using each input data sample xi. Fig. 3 shows
the general architecture of the moderator. The left side shows
an example of ”spatialized” network Fspatial and the right
side shows the corresponding spatial moderator. For a given
sample xi, the original Fspatial only generates predictions for
the branch that xi spatially belongs to, i.e., ŷi ∈ RM . In
this moderated version, Fspatial will generate predictions from
all L branches for a sample xi, i.e., ŷi ∈ RL×M . Then, the
moderator predicts the weight matrix W ∈ RL×M using the
same sample xi, and the final moderated prediction is:

ŷmod,i = softmax(1T (ŷi �W)) (10)

where 1 ∈ RL is a vector of ones [1,1...,1], and � is element-
wise (or Hadarmad) product.

The layer structure of the moderator we use here is a
network with four densely connected layers with ReLU ac-
tivations. If input xi is a time-series rather than a snapshot of
features, the final layer is replaced with a LSTM layer (i.e.,
the first three layers are used to construct new features from
the original input features, regardless of the timestamps, and
the temporal patterns are learned through the final LSTM layer
[16]). During the training of the moderator, all parameters from
Fspatial will be frozen, and the moderator only needs to learn
the weights for itself (the right side of Fig. 3).

IV. EXPERIMENTS

A. Real-World Datasets

1) California land-cover classification: We use multi-
spectral data from Sentinel-2 satellites in two regions in Cen-
tral Valley, California. Each region has a size of 4096×4096
(∼6711 km2 in 20m resolution). The regions contain a wide
variety of crops with strong heterogeneous patterns, resulting
in a challenging classification task. The land cover types are

listed in Table I. We first learn the spatial partitioning using the
data from Region DA and then use the moderator to transfer
it to Region DB . We use composite image series from May
to October in 2018 (2 images/month) for time-series models,
and one snapshot from August, 2018 for DNN. The labels are
from the USDA Crop Data Layer (CDL) [17]. The training
(and validation) set has 20% data at sampled locations in DA,
and 1% data in DB is used for fine-tuning.

2) Boston COVID-19 human mobility prediction: Human
mobility provides critical information to COVID-19 transmis-
sion dynamics models. We acquired the Boston COVID-19
mobility dataset shared by [18], which includes data from US
census, CDC COVID statistics, and SafeGraph patterns data.
In this dataset, human mobility y is represented by the number
of visits to points-of-interest (POIs; e.g., grocery stores, restau-
rants) and the counting is based smartphone trajectories. We
keep the same features X used in [18], including population,
weekly COVID-19 cases and deaths, number of POIs, week
ID and income. The spatial representation of the data is a
grid-partitioning (37×48) of the Boston area, and each cell is
a data sample. Note that grid cells here are used to model the
input data (similar to pixels in the California land-cover data),
and is independent from the grid G we used in our partition-
optimization approach (Sec. III-C2). The dataset contains 12
weeks of data, and according to [18], we use the first 11 weeks
for training/validation and the final week for testing.

B. Base models F , Implementation and Training

We implemented the spatial transformation and moderation
framework for both snapshot- and time-series-based network
models. Specifically, for snapshot models, we use densely
connected network (DNN) to learn from data labels sampled
at a subset of locations (commonly used in real-world field
surveys for ground-truth collection). For time-series models,
we use both LSTM and LSTM with attention [16], that were
developed for land-cover mapping task with time-series data.
All the models have 7 hidden layers, each with 10 neurons
and a ReLU activation, to learn and construct new features
from raw inputs. For LSTM, an extra LSTM layer is added at
the end to learn temporal patterns, and another attention layer
[16] is further attached for LSTM+Attetion. A softmax layer
is used for classification.

Each model (i.e., DNN, LSTM, LSTM+Attention) is used
as a base network architecture F . Then, we obtain the learned
spatial hierarchy H and synchronized architecture FH (same
as Fspatial; used to save space in result tables), and further
train a spatial moderator FM on top of each FH. For training,
we use the Adam optimizer with initial learning rate set to
0.01. All the model parameters in F and FH (regardless of
branches) are trained with 600 epochs (the losses converged
and remained stable in the final 100 epochs). All the models,
when fine-tuned (e.g., for region DB in California data), are
allocated with an extra 600 epochs. For candidate methods
with spatial moderator, only moderator weights are fine-
tuned. The loss functions for classification and regression are



TABLE I: F1 scores: California land-cover classification using time-series of Sentinel-2 multi-spectral imagery
Region DA (20% training, 20% validation) Region DB (1% fine-tuning)

DNN (snapshot) LSTM LSTM+Attention DNN (snapshot) LSTM LSTM+Attention
F FH FM F FH FM F FH FM F meta FM F meta FM F meta FM

Corn .57 .62 .65 .73 .75 .77 .72 .74 .77 .38 .19 .37 .49 .53 .53 .52 .52 .56
Cotton .00 .79 .75 .80 .82 .83 .79 .80 .83 .85 .77 .88 .90 .91 .93 .92 .91 .93

Sorghum .06 .47 .47 .25 .51 .63 .00 .00 .65 .00 .00 .25 .12 .17 .33 .00 .13 .43
Wheat .00 .00 .30 .16 .25 .55 .00 .00 .59 .00 .00 .27 .01 .56 .60 .00 .53 .59
Alfalfa .48 .58 .62 .70 .73 .74 .72 .73 .75 .58 .10 .62 .71 .75 .76 .76 .75 .77
Grapes .59 .63 .71 .67 .79 .80 .77 .79 .82 .03 .00 .46 .00 .66 .75 .69 .68 .77
Citrus .00 .00 .39 .40 .40 .53 .06 .35 .59 .00 .00 .00 .28 .00 .53 .33 .33 .64

Almond .54 .60 .67 .51 .73 .77 .73 .75 .79 .60 .37 .68 .71 .75 .82 .76 .77 .82
Walnut .04 .48 .51 .59 .59 .71 .51 .57 .72 .00 .00 .00 .00 .00 .21 .00 .00 .00

Pistachio .46 .60 .68 .71 .81 .82 .74 .80 .85 .70 .51 .78 .76 .79 .87 .78 .82 .87
Tomato .00 .00 .68 .83 .85 .87 .83 .85 .87 .00 .00 .35 .55 .65 .73 .68 .66 .72
Garlic .00 .00 .64 .00 .11 .79 .28 .68 .80 .00 .00 .22 .00 .00 .00 .00 .00 .00
Forest .00 .64 .60 .00 .00 .65 .29 .36 .66 .00 .57 .65 .00 .69 .74 .61 .68 .73
Grass .69 .78 .77 .75 .78 .80 .78 .79 .81 .69 .73 .76 .70 .78 .78 .74 .77 .79
Barren .47 .51 .55 .57 .60 .63 .56 .59 .64 .53 .58 .64 .54 .69 .71 .57 .69 .71
Water .56 .56 .61 .00 .08 .66 .63 .63 .67 .00 .00 .51 .00 .22 .66 .00 .64 .62
Urban .57 .64 .67 .67 .70 .70 .66 .69 .70 .00 .00 .08 .02 .00 .18 .03 .00 .19

Meanuw .30 .46 .60 .49 .56 .72 .53 .60 .74 .26 .22 .44 .34 .48 .60 .43 .52 .60
Meanw .49 .59 .67 .63 .71 .75 .68 .71 .77 .53 .56 .66 .56 .70 .74 .63 .70 .74
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Fig. 4: Visualization of LSTM results at example locations.

cross-entropy and mean-squared errors, respectively. Code is
available at: https://github.com/yqthanks/STAR

C. Candidate methods

For California land-cover classification, we have 12 can-
didate methods: (1) base F , spatially transformed FH (no
moderator), and FM (with moderator), for the three models
DNN, LSTM and LSTM+Attention; and (2) F integrated with
the model-agnostic meta-learning (MAML; denoted as meta)
for fast fine-tuning on region DB with the available 1% of
data (DA’s data are clustered into tasks), for the three models.

For Boston COVID-19 human mobility regression, we
have 5 candidate methods for comparison, i.e., ridge regres-
sion, geographically-weighted regression (GWR), COVID-
GAN (using code shared in [18]), DNN, and DNNH (spatially
transformed version). As time-series is not used to construct

additional features in [18] and some features are aggregated to
week-levels, we follow the same strategy and only use week
IDs as features, which also allows a more direct comparison
with COVID-GAN. In addition, as training and testing samples
are from the same set of spatial locations (timestamps are
different, Sec. IV-A), we directly use spatial transformation
and skipped the moderator in this comparison.

D. Results

1) Land-cover classification: Table I shows the F1-scores
of the 12 candidate methods for both spatial regions DA (20%
for training, and 20% for validation) and DB (1% of data for
fine-tuning). In addition to class-wise results, two means are
shown at the bottom: (1) Meanw is the standard weighted
average over the classes based on the number of samples
in each class; (2) Meanuw is the unweighted (or direct)
average over the classes, which helps reveal if a method’s
performance is balanced across classes. This is important
in many applications including land-cover classification. For
example, many relatively rare classes often have much higher
values per acre. For the proposed FH and FM , the spatial
hierarchy H and FH are learned with training data in region
DA. Then, in region DB , the learned weights in FH are frozen
and FM only fine-tunes the moderator with the 1% samples.
This helps evaluate if the heterogeneous spatial processes {Φ}
learned in DA can be generalized to the new region DB with
the moderator, which re-mixes the processes {Φ} based on
characteristics of test data samples. For other architectures,
i.e., the base F and F+MAML (meta in Table I), the network
weights are fine-tuned. We also implemented SVANN [6] for
testing. However, SVANN requires an input space-partitioning
(Sec. I) which is unavailable in this case. We tried it with both
an equal-quad and a k-means (k = 64) based partitioning,
which did not improve over the base models due to data
reduction from partitioning. Moreover, SVANN relies on fixed
partitioning and cannot be applied outside the original spatial
area. Thus, we skipped its results in Table I.
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Fig. 5: Spatial hierarchy learned in region DA (first 3 levels).
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Fig. 6: Learned branch weights across space (across samples).

As we can see, the ”spatialized” network architectures
overall achieved the highest F1-scores for different types of
base models in both regions. Moreover, according to the
Meanuw results, the added awareness of spatial heterogeneity
allows FH and FM to achieve a more stable performance
across different classes. For region DA, the three results F ,
FH and FM for each base model can be used for ablation
analysis. The general trend is that the results of a base model F
gradually improve with the addition of spatial transformation
FH, and the spatial moderator FM (e.g., Meanw increases
from 0.49 to 0.59, and finally to 0.67 for DNN). To visualize
the improvements, Fig. 4 shows local maps of land-cover
classifications for LSTM’s base F and moderator FM in four
sample areas, with two for each region.

In addition, Fig. 5 shows the hierarchical process of space-
partitioning with DL-MSS (Sec. III-C2) for the first 3 levels.
In the first level (largest scale), for example, H1

1 is a mix of
urban and suburban areas, whereas H1

2 contains more rural
and mountainous areas. Note that some partitions (e.g., H2

3)
are not further split, as determined by significance testing.
Also, a partition is allowed to contain multiple disconnected
areas as long as they satisfy the minimum footprint size
enforced for contiguity (Sec. III-C3). Nonetheless, we can see
the automatically captured footprints are in general spatially
contiguous as a result of spatial auto-correlation. Finally, Fig.
6 visualizes the weights predicted by the moderator for two
example network branches in FH for DNN (paths from input
to output layers; Fig. 3) for all locations in region DB . For
each branch, the weight is averaged over all classes in the
predicted W at each location. As we can see, in the new region
DB , branch-2 is given higher weights for the left-side of the
region, which is a mountainous area, whereas the weights for
branch-7 shows the opposite spatial pattern.

2) COVID-19 mobility regression: Table II shows the re-
sults of the five candidate methods. We include two sets of
measures: (1) Mean absolute error (MAE) and root mean-
squared-error (RMSE); and (2) The total mobility aggregated
over the entire region, which is a useful indicator for policy-
making at the global level; difference (denoted by ”Diff.”)

TABLE II: COVID-19 human mobility projection
Ridge GWR COVID-GAN DNN DNNH

MAE 220 160 178 159 139
RMSE 440 388 388 405 341
Total 335,225 246,615 402,471 213,362 440,627
Diff. -86,998 -175,608 -19,752 -208,861 18,404

Ground ref. COVID-GAN

DNN𝛨𝛨DNN

Fig. 7: Visualization of human mobility maps (blue: high).

in Table II refers to the deviation from the ground truth
aggregation. Fig. 7 shows maps of the ground truth, COVID-
GAN, DNN and DNNH. Several potential causes of spatial
heterogeneity here include different mobility patterns in the
more populous downtown area versus the suburban regions,
and several ”hotspot” areas of POI visits that are a bit
abnormal compared to the rest.

As we can see, overall DNNH achieved better results for
both sets of measures. One interesting observation is that DNN
(the base model F used for DNNH), while obtained better
MAE than ridge regression and COVID-GAN, substantially
underestimates the total mobility, which could be a result of
incorrect predictions on several mobility hotspots, whose pat-
terns do not follow the global pattern. Similarly, GWR shows
a similar trend. Although GWR performs spatially-localized
regression, it can only handle simple linear relationships using
input variables and apply the same spatial neighborhood for all
locations, which cannot well capture non-stationary mobility
hotspots and variation in the data. Moreover, the data-reduction
problem caused by local-regression in GWR frequently causes
existing standard libraries to run into ill-conditioned problems
if small band-widths are used. Finally, DNNH automatically
identified three heterogeneous partitions (other splits are sta-
tistically insignificant) and branched out downtown, subur-
ban and several mobility hotspots (our method allows large
footprints at multiple locations to be in one node), greatly
improving the performance on both types of measures.

V. OTHER RELATED WORK

Existing methods for handling heterogeneity can be gener-
ally divided into two categories. The first class aims to transfer
parameters learned from one source to another, such as domain
adaptation [19], [20] and meta-learning (e.g., MAML) [21]–
[23]. However, these methods mainly focus on the learning of
robust features and fast adaptation, and may yield degraded



performance when spatial regions have large discrepancy.
Moreover, they require a pre-defined space-partitioning of
heterogeneous processes. It is worth-mentioning though that
these methods and the proposed STAR framework are com-
plementary and can be integrated for further enhancements.
The second direction is based on explicit data partitioning.
For example, researchers have separately trained individual
local models for different data clusters [24], [25] and have
shown improved performance against a single global model.
However, the clustering only uses input features that are
not sufficient to capture underlying heterogeneous processes.
Similarly, local training has been used for manually-defined
spatial regions, e.g., ANN [6] and RNN [26]. Furthermore,
all these methods can significantly reduce the training data
available for local models, making it difficult to train com-
plex models. Spatial-Net also uses the hierarchical multi-task
representation for parameter sharing [10], but cannot handle
irregular partitionings (i.e., spatial footprints with arbitrary
shapes) or be generalized to new regions; it does guarantee
each partition’s spatial contiguity. Finally, mixture process
mining [27] can find regions where data are generated by
homogeneous-mixture processes {Φ} but cannot handle deep
learning inputs where {Φ : X → y} are often unknown and
cannot be directly defined by statistical models (e.g., Poisson).

VI. CONCLUSIONS AND FUTURE WORK

We proposed a model-agnostic spatial transformation and
moderation framework for spatial data and problems. The
framework can: (1) simultaneously learn arbitrarily-shaped
space-partitionings of heterogeneous processes and a ”spatial-
ized” network architecture; and (2) generalize learned spatial
structures to new regions. We demonstrated the statistically-
guided approach on different types of tasks and networks
(e.g., snapshot-based, time-series). Experiments on real world
datasets showed that the framework can substantially improve
the performance of base networks on spatial problems.

In future work, we will explore the use of the framework on
other types of network architectures such as GAN, CNN and
GCN, and traditional machine learning methods. Furthermore,
we plan to investigate specific characteristics of each type of
network architecture in the context of spatial heterogeneity and
identify dedicated customizations of the current framework.
Finally, we will explore generalizations with other types of
space-partitioning schemes, statistical formulations, etc.
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