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Chapter 1. Preface
Asset pricing theory tries to understand and predict the prices or values of claims to uncer-
tain payments. Accounting for the time and risk of prospective payments makes this theory
interesting and challenging. A low price implies a high rate of return, so one can also think
of the theory as explaining why some assets pay higher average returns than others.

If there were no risk, asset pricing would be easy, and would simply consist of discounting
future cashÀows using present value formulas.Uncertainty, or corrections for risk make
asset pricing interesting and challenging. The large size of risk corrections in real world asset
markets make asset pricing theory challenging and relevant.

Asset pricing theory shares the positive vs. normative tension present in the rest of eco-
nomics. Does it describe the way the worlddoes work or the way the worldshould work?
We observe the prices or returns of many assets. We can use the theory positively, to try to
understand why prices or returns are what they are. If the world does not obey a model’s pre-
dictions, we can decide that the model needs improvement. However, we can also decide that
theworld is wrong, that some assets are “mis-priced” and present trading opportunities for
the shrewd investor. This latter use of asset pricing theory accounts for much of its popular-
ity and practical application. Also, and perhaps most importantly, the prices of many assets
or claims to uncertain cashÀows arenot observed, such as potential public or private invest-
ment projects, new¿nancial securities, buyout prospects, and complex derivatives. We can
apply the theory to establish what the prices of these claims should be as well� the answers
are important guides to public and private decisions.

Asset pricing theory all stems from one simple equation, derived in the¿rst page of Chap-
ter 1 of this book: price equals expected discounted payoff. The rest is elaboration, special
cases, and a closet full of tricks that make the central equation useful for one or another appli-
cation. There are two polar approaches to this elaboration. I will call themabsolute pricing
andrelative pricing.

In absolute pricing, we price each asset by reference to its exposure to fundamental
sources of macroeconomic risk. The consumption-based and general equilibrium models
described below are the purest examples of this approach. The absolute approach is most
common in academic settings, in which we use asset pricing theory positively to give an eco-
nomic explanation for why prices are what they are or in order to predict how prices might
change if policy or economic structure changed. Inrelative pricing, we ask a less ambitious
question. We ask what we can learn about an asset’s valuegiven the prices of some other as-
sets. We do not ask where the price of the other set of assets came from, and we use as little
information about fundamental risk factors as possible. Black-Scholes option pricing is the
classic example of this approach. While limited in scope, this approach offers precision in
many applications.

Asset pricing problems are solved by judiciously choosing how much absolute and how
much relative pricing one will do, depending on the assets in question and the purpose of the
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calculation. Almost no problems are solved by the pure extremes. For example, the CAPM
and its successor factor models price assets “relative” to the market or factors, without an-
swering what determines the market or factor risk premia and betas. The latter are treated as
free parameters. On the other end of the spectrum, most practical¿nancial engineering ques-
tions involve assumptions beyond pure lack of arbitrage, about equilibrium “market prices of
risk”.

The central and un¿nished task of absolute asset pricing is to understand and measure the
sources of aggregate or macroeconomic risk that drive asset prices. Of course, this is also the
central question of macroeconomics, and this is a particularly exciting time for researchers
who want to answer these fundamental questions in macroeconomics and¿nance. A lot of
empirical work has documented tantalizing stylized facts and links between macroeconomics
and¿nance. For example, expected returns vary across time and across assets in ways that
are linked to macroeconomic variables, or variables that also forecast macroeconomic events�
a wide class of models suggests that a “recession” or “¿nancial distress” factor lies behind
many asset prices. Yet theory lags behind� we do not yet have a well-described model that
explains these interesting correlations.

This book advocates a discount factor / generalized method of moments view of asset
pricing theory and associated empirical procedures. I summarize asset pricing by two equa-
tions:

sw @ H+pw.4{w.4,

pw.4 @ i+data, parameters,=

wheresw = asset price,{w.4 = asset payoff,pw.4 = stochastic discount factor.

The major advantage of the discount factor / moment condition approach are its simplicity
and universality. Where once there were three apparently different theories for stocks, bonds,
and options, now we see each as just special cases of the same theory. The common language
also allows us to use insights from each¿eld of application in other¿elds.

This approach also allows us to conveniently separate the step of specifying economic
assumptions of the model (second equation) from the step of deciding which kind of empiri-
cal representation to pursue or understand. For a given model – choice ofi+�, – we will see
how the¿rst equation can lead to predictions stated in terms of returns, price-dividend ra-
tios, expected return-beta representations, moment conditions, continuous vs. discrete time
implications and so forth. The ability to translate between such representations is also very
helpful in digesting the results of empirical work, which uses a number of apparently distinct
but fundamentally connected representations.

It also turns out to often be much simpler to think in terms of discount factors rather than
portfolios. For example, it is easier to insist that there exists a positive discount factor than
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CHAPTER 1 PREFACE

to check that every possible portfolio that dominates every other portfolio has a larger price,
and the long arguments over the APT stated in terms of portfolios are easy to digest when
stated in terms of discount factors.

For these reasons, the discount factor language is common in academic research and high-
tech practice. It is not yet common in textbooks, and that is the niche that this book tries to
¿ll.

I also diverge from the usual order of presentation. Most books are structured follow-
ing the history of thought: portfolio theory, mean-variance frontiers, spanning theorems,
CAPM, ICAPM, APT, and¿nally consumption-based model. Contingent claims are an es-
oteric extension of option-pricing theory. I go the other way around: contingent claims and
the consumption-based model are the basic and simplest models around� the others are spe-
cializations. Just because they were discovered in the opposite order is no reason to present
them that way.

I also try to unify the treatment of empirical methods. A wide variety of methods are pop-
ular, including time-series and cross-sectional regressions, and methods based on generalized
method of moments (GMM) and maximum likelyhood. However, in the end all of these ap-
parently different approaches do the same thing: they pick free parameters of the model to
make it¿t best, which usually means to minimize pricing errors� and they evaluate the model
by a quadratic form in pricing errors.

As with the theory, I do not attempt an encyclopedic compilation of empirical procedures.
As with the theory, the literature on econometric methods contains lots of methods and special
cases (likelyhood ratio ways of doing common Wald tests� cases with and without riskfree
assets and when factors do and don’t span the mean variance frontier, etc.) that are seldom
used used in practice. I try to focus on the basic ideas and on methods that are actually used
in practice.

The accent in this book is on understanding statements of theory, and working with that
theory to applications, rather than rigorous or general proofs. Also, I skip very lightly over
many parts of asset pricing theory that have faded from current applications, although they
occupied large amounts of the attention in the past. Some examples are portfolio separa-
tion theorems, properties of various distributions, or asymptotic APT. Since my focus is on
the determinants of asset prices, I do not spend much time on portfolio theory either. While
that theory is still interesting and useful theory for¿nding portfolios, it is no longer a corner-
stone of pricing. Rather than use portfolio theory to¿nd a demand curve for assets, which
intersected with a supply curve gives prices, we now go to prices directly. One can then¿nd
optimal portfolios, but it is a side issue.

Again, my organizing principle is that everything can be traced back to specializations of
the basic pricing equations @ H+p{,. Therefore, after reading the¿rst chapter, one can
pretty much skip around and read topics in as much depth or order as one likes. Each major
subject always starts back at the same pricing equation.

The target audience for this book is economics and¿nance Ph.D. students, advanced MBA
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students or professionals with similar background. I hope the book will also be useful to
fellow researchers and ¿nance professionals, by clarifying, relating and simplifying the set of
tools we have all learned in a hodgepodge manner. I presume some exposure to undergraduate
economics and statistics. A reader should have seen a utility function, a random variable, a
standard error, and a time series before, should have some basic calculus and should have
solved a maximum problem by setting derivatives to zero. The hurdles in asset pricing are
really conceptual rather than mathematical.
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Asset pricing theory
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Chapter 2. Consumption-based model
and overview

2.1 Basic pricing equation

We derive the basic consumption-based model,

sw @ Hw

�
�
x3+fw.4,

x3+fw,
{w.4

�
=

Our basic objective is to¿gure out the value of any stream of uncertain cashÀows. We
start with an apparently simple case, which turns out to capture very general situations.

Let us¿nd the value at timew of a payoff {w.4. For example, if one buys a stock today,
the payoff next period is the stock price plus dividend,{w.4 @ sw.4.gw.4. {w.4 is a random
variable: an investor does not know exactly how much he will get from his investment, but he
can assess the probability of various possible outcomes. Don’t confuse thepayoff {w.4 with
thepro¿t or return� {w.4 is the value of the investment at timew . 4, without subtracting or
dividing by the cost of the investment.

We¿nd the value of this payoff by asking what it is worth to a typical investor. To do this,
we need a convenient mathematical formalism to capture what an investor wants. We model
investors by autility function de¿ned over current and future values of consumption,

X+fw> fw.4, @ x+fw, . �Hw ^x+fw.4,` =

We will often use a convenient power utility form,

x+fw, @
4

4� �
f4��w � 9@ 4> x+fw, @ oq fw � @ 4=
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

This formalism captures investors’ impatience and their aversion to risk. Therefore, we
will be able to quantitatively correct for the risk and delay of cashÀows. The utility function
captures the fundamental desire for moreconsumption, rather than posit a desire for interme-
diate objectives such as means and variance of portfolio returns. Consumptionfw.4 is also
random� the investor does not know his wealth tomorrow, and hence how much he will decide
to consume. The period utility functionx+�, is increasing, reÀecting a desire for more con-
sumption, and concave, reÀecting the declining marginal value of additional consumption.
The last bite is never as satisfying as the¿rst. More importantly, the curvature of the util-
ity function also generates aversion to risk and to intertemporal substitution: The consumer
prefers a consumption stream that is steady over time and across states of nature. Discounting
the future by� captures impatience, and� is called thesubjective discount factor.

Now, assume that the investor can freely buy or sell as much of the payoff{w.4 as he
wishes, at a pricesw. How much will he buy or sell? To¿nd the answer, denote byh the
original consumption level (if the investor bought none of the asset), and denote by� the
amount of the asset he chooses to buy. Then, his problem is,

pd{
i�j

x+fw, .Hw�x+fw.4, v=w=

fw @ hw � sw�

fw.4 @ hw.4 . {w.4�

Substituting the constraints into the objective, and setting the derivative with respect to�
equal to zero, we obtain the¿rst-order condition for an optimal consumption and portfolio
choice,

swx
3+fw, @ Hw ^�x

3+fw.4,{w.4` (1)

or,

sw @ Hw

�
�
x3+fw.4,

x3+fw,
{w.4

�
= (2)

The consumer buys more or less of the asset until this¿rst order condition holds.

Equation (1) expresses the standard marginal condition for an optimum:sx3+fw, is the loss
in utility if the consumer buys another unit of the asset� Hw ^�x3+fw.4,{w.4` is the increase
in (discounted, expected) utility obtained from the payoff corresponding to an additional unit
of the asset atw . 4= The consumer continues to buy or sell the asset until the marginal loss
equals the marginal gain.

Equation (2) isthe central asset-pricing formula. Given the payoff{w.4 and given the in-
vestor’s consumption choicefw> fw.4, it tells you what market pricesw to expect. Its economic
content is simply the¿rst order conditions for optimal consumption and portfolio formation.
Most of the theory of asset pricing just consists of specializations and manipulations of this
formula.
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SECTION 2.2 MARGINAL RATE OF SUBSTITUTION/STOCHASTIC DISCOUNT FACTOR

Notice that we have stopped short of a complete solution to the model, i.e. an expression
with exogenous items on the right hand side. We relate one endogenous variable, price, to two
other endogenous variables, consumption and payoffs. One can continue to solve this model
and derive the optimal consumption choice fw> fw.4 in terms of the givens of the model. In
this case, those givens are initial wealth, the income sequence hw> hw.4 and a speci¿cation of
the full set of assets that the consumer may buy and sell. We will in fact study such fuller
solutions below. However, for many purposes one can stop short of specifying (possibly
wrongly) all this extra structure, and obtain very useful predictions about asset prices from
(2), even though consumption is an endogenous variable.

2.2 Marginal rate of substitution/stochastic discount factor

We break up the basic consumption-based pricing equation into

s @ H+p{,

p @ �
x3+fw.4,

x3+fw,

wherepw.4 is thestochastic discount factor.

A convenient way to break up the basic pricing equation (2) is to de¿ne thestochastic
discount factor pw.4

pw.4 � �
x3+fw.4,

x3+fw,
(3)

Then, the basic pricing formula (2) can simply be expressed as

sw @ Hw+pw.4{w.4,= (4)

When it isn’t necessary to be explicit about time subscripts, I’ll suppress them and just
write s @ H+p{,. The price always comes atw, the payoff atw . 4, and the expectation is
conditional on timew information.

The termstochastic discount factor refers to the waypgeneralizes standard discount
factor ideas. If there is no uncertainty, we can express prices via the standard present value
formula

sw @
4

Ui
{w.4 (5)

whereUi is the risk-free rate.4@Ui is thediscount factor. Since gross interest rates are
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

typically greater than one, the payoff{w.4 sells “at a discount.” Riskier assets have lower
prices than equivalent risk-free assets, so they are often valued by using risk-adjusted discount
factors,

slw @
4

Ul
Hw+{

l
w.4,=

Here, I have added thel superscript to emphasize that each risky assetl must be discounted
by an asset-speci¿c risk-adjusted discount factor4@Ul.

In this context, equation (4) is obviously a generalization, and it says something deep:
one can incorporate all risk-corrections by de¿ning asingle stochastic discount factor – the
same one for each asset – and putting it inside the expectation.pw.4 is stochastic or random
because it is not known with certainty at timew. As we will see, the correlation between the
random components ofp and{l generate asset-speci¿c risk corrections.

pw.4 is also often called themarginal rate of substitution after (3). In that equation,
pw.4 is the rate at which the investor is willing to substitute consumption at timew . 4 for
consumption at timew= pw.4is sometimes also called thepricing kernel. If you know what a
kernel is and express the expectation as an integral, you can see where the name comes from.
It is sometimes called achange of measure or a state-price densityfor reasons that we will
see below.

For the moment, introducing the discount factor p and breaking the basic pricing equa-
tion (2) into (3) and (4) is just a notational convenience. As we will see, however, it represents
a much deeper and more useful separation. For example, notice thats @ H+p{, would still
be valid if we changed the utility function, but we would have a different function connecting
p to data. This turns out to be quite generally true:s @ H+p{, is a convenient accounting
identity with almost no content.All asset pricing models amount to alternative models con-
necting the stochastic discount factor to data. Therefore, we can conveniently break up our
vision of asset pricing into different expressions ofs @ H+p{, and the effects of different
models connectingp to data.

2.3 Prices, payoffs and notation

Theprice sw gives rights to apayoff {w.4. In practice, this notation covers a variety of
cases, including the following:
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SECTION 2.3 PRICES, PAYOFFS AND NOTATION

Price sw Payoff {w.4
Stock sw sw.4 . gw.4

Return 4 Uw.4

Price-dividend ratio sw
gw

�
sw.4
gw.4

. 4
�
gw.4
gw

Excess returns 3 Uh
w.4 @ Ud

w.4 �Ue
w.4

Managed portfolio }w }wUw.4

Moment condition H+sw}w, {w.4}w
One-period bond sw 4

Risk free rate 4 Ui

Option F pd{+VW �N> 3,

The pricesw and payoff{w.4 seem like a very restrictive kind of security. In fact, this
notation is quite general and allows us easily to accommodate many different asset pricing
questions. In particular, we can cover stocks, bonds and options and make clear that there is
one theory for all asset pricing.

For stocks, the one period payoff is of course the next price plus dividend,{w.4 @ sw.4.
gw.4. We frequently divide the payoff{w.4 by the pricesw to obtain agross return

Uw.4 � {w.4
sw

A return is a payoff with price one. If you pay one dollar today, the return is how many
dollars (units of consumption) you get tomorrow. Thus, returns obey

4 @ H+pU,

which is by far the most important special case of the basic formulas @ H+p{,. Confusing
payoffs and returns is a common mistake. You “lose money” if the payoff is less than the
price, but the payoff is still positive.

I use capital letters to denotegross returnsU, which have a numerical value like 1.05.
I use lowercase letters to denotenet returnsu @ U � 4 or log (continuously compounded)
returnsoq+U,, both of which have numerical values like 0.05. One may also quotepercent
returns433 � u. Prices, payoffs, returns etc. may all be real—denominated in consumption
goods—or nominal—denominated in dollars.

Returns are often used in empirical work because they are stationary (in the statistical
sense, not constant) over time. However, thinking in terms of returns takes us away from
the central task of¿nding assetprices. Dividing by dividends and creating a payoff{w.4 @
+4 . sw.4@gw.4,gw.4@gw corresponding to a pricesw@gw is a way to look at prices but still to
examine stationary variables.

Not everything can be reduced to a return, however. If you borrow a dollar at the interest
rateUi and invest it in an asset with returnU, you pay no money out-of-pocket today, and
get the payoffU � Ui . This is a payoff with azero price. Zero price does not imply zero

19



CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

payoff� just an “even bet” that is not worth paying extra to take. It is common to study equity
strategies in which one short sells one stock or portfolio and invests the proceeds in another
stock or portfolio, generating an excess return. I denote any such difference between returns
as anexcess return, Uh. It is also called azero-cost portfolioor a self-¿nancing portfolio.

In fact, much asset pricing focuses on excess returns. Our economic understanding of
interest rate variation turns out to have little to do with our understanding of risk premia, so
it is convenient to separate the two exercises by looking at interest rates and excess returns
separately.

We also want to think about the managed portfolios, in which one invests more or less
in an asset according to some signal. The “price” of such a strategy is the amount invested
at timew, say}w, and the payoff is}wUw.4. For example a market timing strategy might put
a weight in stocks proportional to the price-dividend ratio, investing less when prices are
higher. We could represent such a strategy as a payoff using.}w @ d� e+sw@gw,

When we think about conditioning information below, we will think of objects like}w as
instruments. Then we take an unconditional expectation ofsw}w @ Hw+pw.4{w.4,}w> yielding
H+sw}w, @ H+pw.4{w.4}w,= We can think of this operation as creating a “security” with
payoff{w.4}w.4, and “price”H+sw}w, represented with unconditional expectations.

A one period bond is of course a claim to a unit payoff. Bonds, options, investment
projects are all examples in which it is often more useful to think of prices and payoffs rather
than returns.

To accommodate all these cases, we will simply use the notation pricesw and payoff{w.4.
These symbols can denote3> 4> or }w andUh

w > uw.4, or }wUw.4 respectively, according to the
case. Lots of other de¿nitions ofs and{are useful as well.

2.4 Intuition, implications, and classic issues in ¿nance

I use simple manipulations of the basic pricing equation to introduce classic issues in
¿nance: the economics of interest rates, risk adjustments, the mean-variance frontier, the
slope of the mean-variance frontier, a beta representation for expected returns, and time-
varying expected returns.

Risk-corrections are driven by covariance of payoffs with the stochastic discount factor.
Prices are driven down and returns up for assets that make consumption more volatile.

A few simple rearrangements and manipulations of the basic pricing equations @ H+p{,
give a lot of intuition and introduce some classic issues in¿nance, including determinants of
the interest rate, risk corrections, idiosyncratic vs. systematic risk, beta pricing models, and
mean variance frontiers.
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SECTION 2.4 INTUITION, IMPLICATIONS, AND CLASSIC ISSUES IN FINANCE

2.4.1 Risk free rate.

The risk free rate is given by

Ui @ 4@H+p,= (6)

The risk free rate is known ahead of time, so s @ H+p{, becomes 4 @ Hw+pw.4U
i
w.4, @

Hw+pw.4,U
i
w.4.

If a risk free security is not traded, we can de¿ne Ui @ 4@H+p, as the “shadow” risk-free
rate. (In some models it is called the “zero-beta” rate.) If one introduced a risk free security
with returnUi @ 4@H+p,, consumers would be just indifferent to buying or selling it.

To think about the economics behind interest rates, consider the consumption-based dis-
count factor model with power utilityx3+f, @ f�� , and assume that consumption growth is
lognormally distributed. Then, the riskfree rate equation becomes

uiw @ � . �Hw�oq fw.4 � �5

5
�5w +� oq fw.4, (7)

where I have de¿ned the log riskfree rateuiand subjective discount rate� by

uiw @ oqUi
w

� @ h��

and� denotes the¿rst difference operator,

�oq fw @ oq fw � oq fw�4=

To derive expression (7) for the riskfree rate, start with

Ui
w @ 4@Hw

%
�

�
fw.4
fw

���&
=

Using the fact that normal} means

H +h}, @ hH+},.
4
5
�5+},>

We have

Ui
w @ 4@

�
h��h��Hw�oq fw.4.

�5

5
�5w�oq fw.4

�
=

and then take logarithms.

Looking at (7), interest rates are high when impatience� is high. If everyone wants to
consume now, it takes a high interest rate to convince them to save.
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

Interest rates are high when consumptiongrowth is high. In times of high interest rates,
it pays investors to consume less now, invest more, and consume more in the future. Thus,
high interest rates lower thelevel of consumption while raising its growth rate. The power
parameter� is the inverse of theelasticity of intertemporal substitution. For high�, people
are less willing to rearrange consumption over time in response to interest rate incentives.
Such consumers are also less willing to rearrange consumption over states of nature� with
this utility function� controls risk aversion as well as intertemporal substitution.

Finally, the�5 term capturesprecautionary savings. When consumption is more volatile,
people with this utility function are more worried about the low consumption states than they
are pleased by the high consumption states. Therefore, people want to save more, driving
down interest rates.

2.4.2 Risk corrections.

Using the de¿nition of covariancefry+p>{, @ H+p{,�H+p,H+{,, we can write equation
(2) as

s @ H+p,H+{, . fry+p>{,= (8)

Substituting the riskfree rate equation (6), we obtain

s @
H+{,

Ui
. fry+p>{, (9)

The¿rst term is the standard discounted present value formula. This is the asset’s price
in a risk-neutral world – if consumption is constant or if utility is linear. The second term is
a risk adjustment. An asset whose payoff covaries positively with the discount factor has its
price raised and vice-versa.

To understand the risk adjustment, substitute back forp in terms of consumption, to
obtain

s @
H+{,

Ui
.

fry ^�x3+fw.4,> {w.4`

x3+fw,
(10)

Marginal utility x3+f, declines asf rises. Thus, an asset’s price is lowered if its payoff co-
varies positively with consumption. Conversely, an asset’s price is raised if it covaries nega-
tively with consumption.

Why? Investors do not like uncertainty about consumption. If you buy an asset whose
payoff covaries positively with consumption, one that pays off well when you are already
feeling wealthy and pays off badly when you are already feeling poor, that asset will make
your consumption stream more volatile. You will require a low price or a good average return
to induce you to buy such an asset. If you buy an asset whose payoff covaries negatively with
consumption, it helps to smooth consumption and so is more valuable than its expected payoff
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might indicate.

Insurance is an extreme example of the latter effect. Insurance pays off exactly when
wealth and consumption is low for other reasons–you get a check when your house burns
down. For this reason, you are happy to hold insurance, even though you expect to lose
money—even though the price of insurance is greater than its expected payoff discounted at
the risk free rate.

2.4.3 Risk corrections to expected returns.

We use returns so often that it is worth restating the same intuition in terms of returns. Start
with the basic pricing equation for returns,

4 @ H+pU,=

Apply the covariance decomposition,

4 @ H+p,H+U, . fry+p>U, (11)

H+U, @
4

H+p,
� fry+p>U,

H+p,

H+U, @ Ui � fry^x3+fw.4,> Uw.4`

H^x3+fw.4,`
= (12)

All assets have an expected return equal to the risk-free rate, plus a risk adjustment. Assets
whose returns covary positively with consumption make consumption more volatile, and so
must promise higher expected returns to induce investors to hold them. Conversely, assets
that covary negatively with consumption, such as insurance, can offer expected rates of return
that are lower than the risk-free rate, or even negative (net) expected returns.

Much of ¿nance focuses on expected returns. We think of expected returns increasing
or decreasing to clear markets� we offer intuition that “riskier” securities must offer higher
expected returns to get investors to hold them, rather than saying “riskier” securities trade
for lower prices so that investors will hold them. Of course, a low price for a given payoff
corresponds to a high expected return, so this is no more than a different language for the
same phenomenon.

2.4.4 Idiosyncratic risk does not affect prices.

You might think that an asset with a high payoff variance is “risky” and thus should have a
large risk correction. However, if the payoff is uncorrelated with the discount factorp, the
asset receivesno risk-correction to its price, and pays an expected return equal to the risk-free
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

rate! In equations, if

fry+p>{, @ 3

then

s @
H+{,

Ui
=

This prediction holds even if the payoff{ is highly volatile and investors are highly risk
averse. The reason is simple: if you buy a little bit of such an asset, it has no¿rst-order effect
on the variance of your consumption stream.

Another way of saying the same thing is that one gets no compensation or risk adjustment
for holding idiosyncratic risk. Only systematic risk generates a risk correction. To give
meaning to these words, we can decompose any payoff{ into a part correlated with the
discount factor and an idiosyncratic part uncorrelated with the discount factor by running a
regression,

{ @ surm+{mp, . %=

The price of{ is the same as the price of its projection onp, and the residual has zero price:

s+%, @ H+p%, @ 3

s+{, @ H+p{, @ H^p +surm+{mp, . %,` @ H^p surm+{mp,`

(I use projection to mean linear regression,

surm+{mp, @
H+p{,

H+p5,
p=

You can verify thatH+p%, @ 3 follows from this de¿nition.) The projection of{on p is
of course that part of{ which is perfectly correlated withp. The idiosyncratic component
of any payoff is that part uncorrelated withp. Thus only the systematicpart of a payoff
accounts for its price.

2.4.5 Expected return-beta representation.

We can rewrite equation (14) as

H+Ul, @ Ui .

�
fry+Ul>p,

ydu+p,

��
�ydu+p,

H+p,

�

or

H+Ul, @ Ui . �l>p�p
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E(R)

σ(R)

Mean-variance frontier

Rf

Slope σ(m)/E(m)

Some asset returns

Idiosyncratic risk Ri

Figure 1. Mean-variance frontier. The mean and standard deviation of all assets priced by
a discount factorp must line in the wedge-shaped region

where�lp is the regression coef¿cient of the returnUl onp. This is the¿rst instance of a
beta pricing model, which we will look at in more detail below. It says that expected returns
on assetsl @ 4> 5> ===Q should be proportional to their betas in a regression of returns on
the discount factor. Notice that the coef¿cient�p is the same for all assetsl>while the�l>p
varies from asset to asset. The�p is often interpreted as theprice of � risk and the� as the
quantity of risk in each asset.

Obviously, there is nothing deep about saying that expected returns are proportional to
betas rather than to covariances. There is a long historical tradition and some minor conve-
nience in favor of betas. The betas of course refer to the projection ofU onp that we studied
above, so you see again how only the systematic component of risk matters.

2.4.6 Mean-variance frontier

Asset pricing theory has focused a lot on the means and variances of asset returns. Interest-
ingly, the set of means and variances of returns is limited. All assets priced by the discount
factorp must obey

��H+Ul,�Ui
�� � �+p,

H+p,
�+Ul,= (13)

Means and variances of asset returns therefore must lie in the wedge-shaped region illustrated
in Figure 1.
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To derive (13) write for a given asset returnUl

4 @ H+pUl, @ H+p,H+Ul, . �p>Ul�+Ul,�+p,

and hence

H+Ul, @ Ui � �p>Ul

�+p,

H+p,
�+Ul,= (14)

Correlation coef¿cients can’t be greater than one in magnitude, leading to (13).

The boundary of the mean-variance region in which assets can lie is called themean-
variance frontier. It answers a naturally interesting question, “how much mean return can
you get for a given level of variance?” It also plays a central role in asset pricing, which we’ll
see below.

All returns on the frontier are perfectly correlated with the discount factor: the frontier is
generated by

���p>Ul

�� @ 4. Returns on the upper part of the frontier are perfectly negatively
correlated with the discount factor and hence positively correlated with consumption. They
are “maximally risky” and thus get the highest expected returns. Returns on the lower part
of the frontier are perfectly positively correlated with the discount factor and hence perfectly
negatively with consumption. They thus provide the best insurance against consumption
Àuctuations.

All frontier returns are also perfectly correlated with each other, since they are all perfectly
correlated with the discount factor. This implies that we canspan or synthesize any frontier
return from two such returns. For example if you pick any single frontier returnUp then all
frontier returnsUpy must be expressible as

Upy @ Ui . d
�
Up �Ui

�
for some numberd.

Since each point on the mean-variance frontier is perfectly correlated with the discount
factor, we must be able to pick constantsd> e> g> h such that

p @ d. eUpy

Upy @ g. hp=

Thus,any mean-variance ef¿cient return(except the riskfree rate) carries all pricing informa-
tion. Given a mean-variance ef¿cient return, we can¿nd a discount factor that prices all assets
and vice versa. Given a discount factor, we can construct a single-beta representation, soEx-
pected returns can be described in a single - beta representation using any mean-variance
ef¿cient return(except the riskfree rate),

H+Ul, @ Ui . �l>py

�
H+Upy,�Ui

�
=

The essence of the � pricing model is that, even though the means and standard deviations
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of returns ¿ll out the space inside the mean-variance frontier, a graph of mean returns versus
betas should yield a straight line.

We can plot the decomposition in point 4 above of any return into a “priced part” and
an residual as shown in Figure 1. The priced part is perfectly correlated with the discount
factor, and hence perfectly correlated with any frontier asset. The residual part generates no
expected return, and is uncorrelated with the discount factor or any frontier asset. For the
latter reason, it is often referred to as theidiosyncratic component of risk.

2.4.7 Slope of the mean-standard deviation frontier.

The slope of the mean-standard deviation frontier is naturally interesting. It answers “how
much more mean return can I get by shouldering a bit more variance?” LetUs denote the
return of a portfolio on the frontier. From equation (13), the slope of the frontier is

����H+Us,�Ui

�+Us,

���� @ �+p,

H+p,
@ �+p,Ui

Thus, the slope of the frontier, also known as theprice of risk or maximalSharpe ratio is
governed by the volatility of the discount factor.

For an economic interpretation, again consider the power utility function,x3+f, @ f�� >

����H+Ul,�Ui

�+Ul,

���� @ � ^+fw.4@fw,
�� `

H
k
+fw.4@fw,

��
l = (15)

The standard deviation is large if consumption is volatile or if� is large. We can state this
approximation again using the lognormal assumption. If consumption growth is lognormal,

����H+Ul,�Ui

�+Ul,

���� @ s
h�5�5+� oq fw.4, � 4 � ��+� oq f,=

Reading the equation,the slope of the mean-standard deviation frontier is higher if the econ-
omy is riskier – if consumption is more volatile – or if consumers are more risk averse.Both
situations naturally make consumers more reluctant to take on the extra risk of holding risky
assets. We will come back to this slope in detail in the Hansen-Jagannathan bound and equity
premium discussion below.

2.4.8 Time-varying expected returns and random walks.

Since all the moments above can be conditional and can vary as conditioning information
varies, we can talk about variation of prices and returns over time as well as across assets.
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4 @ Hw+pw.4Uw.4, implies

Hw+Uw.4, @ Ui
w �

fryw+pw.4> Uw.4,

Hw+pw.4,
(16)

Expected excess returns were once thought to be constant over time. This idea makes
intuitive sense and is still thought to hold quite well for short time horizons. A high return
(or other news) today shouldn’t signal a high return tomorrow, or mechanical strategies could
make a lot of money.

Examining equation (16), however, we see that expected returns can be predictable–
expected returns can vary over time. However, such predictability has to be explained by
changing mean consumption growth, changing conditional covariance of return with con-
sumption growth, or changing risk aversion (the function relating consumption to the discount
factor). Matching the observed predictability of returns with these economic determinants is
an empirical challenge, which we take up below.

The constant expected return idea is often expressed as “prices follow a random walk.”
(A random walk is a processsw @ sw�4 . %w. It is a special case of amartingale which has
the propertysw @ Hw+sw.4,.) Going back to the basic¿rst order condition, or just multiply
the now familiar consumption-based pricing equation byx3+fw,,

swx
3+fw, @ Hw^�x

3+fw.4,+sw.4 . gw.4,`=

Prices adjusted for dividend payments and scaled by utilitydo follow a martingale. Actual
prices do not follow a martingale when something interesting is happening to thex3+f, terms.

2.4.9 Present value statement.

It is convenient to use only the two period valuation, thinking of a pricesw and a payoff
{w.4= But there are times when we want to relate price to the entire cashÀow stream. To
do this, either maximize the entire expected utilityHw

S
m �

mx+fw.m, by purchasing a stream
igw.mj at pricesw, or just chain together the two period formulasw @ Hw^pw.4+sw.4.gw.4,`
(plus the “transversality condition”olpw$4Hwpw.msw.m @ 3, which we will discuss in a lot
of detail below), to express price as a stochastically discounted present value of the entire
dividend stream,

sw @ Hw

4[
m@3

�m
x3+fw.m,

x3+fw,
gw.m @ Hw

4[
m@3

pw>w.mgw.m = (17)

Remember,everything derived in this section just comes from manipulation of the con-
sumer’s¿rst order condition for purchase of an asset. We have just rewritten those¿rst order
conditions in a lot of interesting ways.
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Chapter 3. Discount factors in
continuous time

Continuous time analogies to the basic pricing equations.

Discrete Continuous

sw @ Hw

S4
m@3 �

w x
3+fw.m,
x3+fw,

Gw.m swx
3+fw, @ Hw

U4
v@3

h��vx3+fw.v,Gw.vgv

pw.4 @ � x
3+fw.4,
x3+fw,

�w @ h��wx3+fw,

s @ Hw+p{, 3 @ �G gw.Hw^g+�s,`

H+U, @ Ui �Uifry+p>U, Hw

�
gs
s

�
. G

s gw @ uiw gw�Hw

k
g�
�

gs
s

l

It is often convenient to express asset pricing ideas in the language of continuous time
stochastic differential equations rather than discrete time stochastic difference equations as
I have done so far. The appendix contains a brief introduction to continuous time processes
that covers what you need to know for this book. Even if one wants to end up with a discrete
time representation, manipulations are often easier in continuous time.

First, we need to think about how to model securities, in place of price sw and one-period
payoff {w.4. Let a generic security have pricesw at any moment in time, and let it pay
dividends at the rateGwgw. (I will continue to denote functions of time assw rather thans+w,
to maintain continuity with the discrete-time treatment, and I will drop the time subscripts
where they are obvious, e.g.gs in place ofgsw. In an intervalgw, the security pays dividends
Gwgw= I use capitalG for dividends to distinguish them from the differential operatorg.)

The instantaneous total return is

gsw
sw

.
Gw

sw
gw=

Risky securities will in general have price processes that follow diffusions, for example

gsw
sw

@ �+�,gw. �+�,g}=

(I will reserveg} for increments to a standard Brownian motion, e.g.}w.��}w � Q +3>�,. I
use the notation+�, to indicate that the drift and diffusions can be functions of state variables.)

We can think of a riskfree security as one that has a constant price equal to one and pays
the riskfree rate as a dividend,

s @ 4> Gw @ uiw > (18)
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CHAPTER 3 DISCOUNT FACTORS IN CONTINUOUS TIME

or as a security that pays no dividend but whose price climbs deterministically at a rate

gsw
sw

@ uiw gw= (19)

Next, we need to express the ¿rst order conditions in continuous time. The utility function
is

H3

] 4

w@3

h��wx+fw,gw

Suppose the consumer can buy a security whose price is sw and that pays a dividend stream
Gw. Then, the ¿rst order condition for buying the security at w and selling it at w.� is

swx
3+fw, @ Hw

] �

v@3

h��vx3+fw.v,Gw.vgv.Hw

�
h���x3+fw.�,sw.�

�

Right away, this ¿rst order condition gives us the in¿nite period version of the basic
pricing equation,

swx
3+fw, @ Hw

] 4

v@3

h��vx3+fw.v,Gw.vgv

This equation is an obvious continuous time analogue to

sw @ Hw

4[
m@3

�w
x3+fw.m,

x3+fw,
Gw.m

It turns out that dividing by x3+fw, is not a good idea in continuous time, since the ratio
x3+fw.�,@x3+fw, isn’t well behaved for small time intervals. Instead, we keep track of the
level of marginal utility. Therefore, de¿ne the discount factor in continuous time as

�w � h��wx3+fw,=

Then we can write the¿rst order condition as

sw�w @ Hw

] �w

v@3

�w.vGw.vgv.Hw ^�w.�wsw.�w`

The analogue tos @ H+p{, is

3 @ �G gw.Hw ^g+�s,` = (20)

Let’s derive this fundamental equation. “One period” must meangw in continuous time. Thus,
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for �w small,

sw�w @ Hw�wGw�w.Hw ^�w.�wsw.�w` (21)

Introduce differences by

sw�w @ �wGw�w.Hw ^�wsw . +�w.�wsw.�w � �wsw,` (22)

canceling sw�w and using the notation �{ @ {w.�w � {w>

3 @ �wGw�w.Hw ^�+�wsw,`

Taking the obvious limit at �w $ 3>

3 @ �wGwgw.Hw ^g+�wsw,`

or, dropping time subscripts, (20)

Equation (20) looks different than s @ H+p{, because there is no price on the left hand
side� we are used to thinking of the one period pricing equation as determining price at w given
other things, including possibly price at w . 4=But price at w is really here, or course, as you
can see from equation (21) or (22). It is just easier to express the difference in price over time.

The object g+�s, also looks a bit mysterious. It isn’t: it is just the change (increment) in
marginal utility weighted price. Since we will write down price processes forgs and discount
factor processes forg�, it is often convenient to break up this term using Ito’s lemma:

g+�s, @ sg�. �gs. gsg�=

(If keeping the second order terms is still mysterious, go back to discrete time in equation 22.

�w.�wsw.�w � �wsw @ sw+�w.� � �w, . �w+sw.�w � sw, . +�w.�w � �w,+sw.�w � sw,=

Now you see where thegsg� came from.) Using this expansion in the basic equation (20),
and dividing bys� to make it pretty, we obtain an equivalent, slightly less compact but
slightly more intuitive version,

3 @
G

s
gw.Hw

�
g�

�
.

gs

s
.

g�

�

gs

s

�
= (23)

(This formula only works when both� ands can never be zero. That is often enough the case
that this formula is useful. If not, multiply through by� ands and keep them in numerators.)

Applying the basic pricing equations (20) or (23) to a riskfree rate, de¿ned as (18) or (19),
we obtain

uiw gw @ �Hw
g�

�
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This equation is the obvious continuous time equivalent to

Ui
w @

4

Hw+pw.4,
=

If a riskfree rate is not traded, we can de¿ne a shadow riskfree rate or zero-beta rate by

�wgw @ �Hw
g�

�
=

With this interpretation, (23) can be rearranged as

Hw

�
gsw
sw

�
.

Gw

sw
gw @ �wgw�Hw

�
g�w
�w

gsw
sw

�
= (24)

This is the obvious continuous-time analogue to

H+U, @ Ui �Uifry+p>U,=

The last term in 24 is the covariance of the return with the discount factor or marginal utility.

Ito’s lemma makes many transformations simple in continuous time. For example, the
transformation between consumption itself and the discount factor is easy in continuous time.
With �w @ h��wx3+fw, we have

g�w @ ��h��wx3+fw,gw. h��wx33+fw,gfw .
4

5
h��wx333+fw,gf

5
w

g�w
�w

@ ��gw.
fwx

33+fw,

x3+fw,

gfw
fw

.
4

5

f5wx
333+fw,

x3+fw,

gf5w
f5w

The quantity

� @ �fwx
33+fw,

x3+fw,

is known as thelocal curvature of the utility function. It is also called the localcoef¿cient
of risk aversion. I prefer not to use this term: in a dynamic model the coef¿cient of risk
aversion is really aversion to wealth bets, measured by the second partial derivative of the
value function. Only in certain very restrictive cases is the value function curvature the same
as the utility function curvature. This quantity is equal to the power in the power utility model
x3+f, @ f�� .

Using this formula we can quickly¿nd the riskfree interest rate in terms of consumption
growth,

uiw gw @ �Hw

�
g�w
�w

�
@ �gw. �Hw

�
gfw
fw

�
� 4

5

f5wx
333+fw,

x3+fw,
Hw

�
gf5w
f5w

�
=
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We see the same economics at work as with the discrete time representation: interest rates are
higher when consumers are more impatient (�,=Interest rates are higher if expected consump-
tion growth is higherHw +gfw@fw,, and interest rates are more sensitive to consumption growth
if utility curvature is higher�. Reading the same terms backwards, consumption growth is
higher when interest rates are higher, since people save more now and spend it in the future,
and consumption is less sensitive to interest rates as the desire for a smooth consumption
stream, captured by�, rises. In this role,� plays the role of theintertemporal substitution
elasticity. The¿nal term is aprecautionary savings term. If consumption is more volatile,
consumers would like to “save for a rainy day”, driving interest rates down.

We can also express asset prices in terms of consumption risk rather than discount factor
risk. From the basic pricing equation

Hw

�
gsw
sw

�
.

Gw

sw
gw� uiw gw @ �Hw

�
gfw
fw

gsw
sw

�
=

Thus, assets whose returns covary more strongly with consumption get higher mean returns,
and the constant relating covariance to mean return is the utility curvature coef¿cient (coef¿-
cient of risk aversion)�.

3.1 Assumptions and applicability

In deriving the basic pricing equation (2),

sw @ Hw

�
�
x3+fw.4,

x3+fw,
{w.4

�

we havenot assumed complete markets or a representative investor. This equation applies
to each individual investor, for each asset to which he has access, independently of the pres-
ence or absence of other investors or other assets. Complete markets/representative agent
assumptions are used if one wants to use aggregate consumption data inx3+fw,, or other spe-
cializations and simpli¿cations of the model.

We havenot said anything about payoff or return distributions, multivariate normality,
the form of the utility function etc. This basic pricing equation should also hold forany
asset, stock, bond, option, real investment opportunity, etc. Such assumptions can be added
for some special cases, but they aren’t here yet. In particular, it is often thought that mean-
variance analysis and beta pricing models require this kind of limiting assumptions, but that
is not the case here. A mean-variance ef¿cient return carries all pricing information no matter
what the distribution of payoffs, utility function, etc.

This is not a “two-period model.” The fundamental pricing equation holds for any two
periods of a multi-period model. Investors can live forever. For example, we can start with
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the utility function

H3

4[
w@3

�wx+fw,= (25)

The basic pricing equation is still the ¿rst order condition for buying an asset sw with payoff
{w.4. In a multiperiod context it is more important to distinguish conditional from uncondi-
tional moments. Equation (17) results directly from the¿rst order condition for payingsw to
receiveigw> gw.4===j.

I have written things down in terms of a time- and state-separable utility function as in
(25), and I have extensively used the convenient power utility example. Nothing important
lies in either choice. Just replacex3+fw, the partial derivative of a general utility function with
respect to consumption at timew. We will look at several examples below.

We donot assume that investors have no non-marketable human capital, or no outside
sources of income. The¿rst order conditions for purchase of an asset relative to consumption
hold no matter what else is in the budget constraint. By contrast, the portfolio approach to
asset pricing as in the CAPM and ICAPM relies heavily on the assumption that the investor
has no non-asset income, and we will study these special cases below.

We don’t even really need the assumption (yet) that the market is “in equilibrium,” that
consumer has bought all of the asset that he wants to, or even that he can buy the asset at all.
We can interpret the formula as giving us the value, or willingness to pay for, a small amount
of a payoff{w.4 that the consumer does not yet have. Here’s why: If the investor had a little
� more of the payoff{w.4 time w. 4>his utility x+fw, . �Hwx+fw.4, would increase by

�Hw ^x+fw.4 . �{w.4,� x+fw.4,` � �Hw

�
x3+fw.4,{w.4� .

4

5
x33+fw.4, +{w.4�,

5 . ===

�

If � is small, only the¿rst term on the right matters. If the investor has to give up a small
amount of moneyyw� at timew, that loss lowers his utility by

x+fw � yw�, � x3+fw,sw� .
4

5
x33+fw, +sw�,

5 =

Again, for small�, only the¿rst term matters. Therefore, in order to receive the small amount
�{w.4, the consumer is willing to pay the small amountyw� where

yw @ Hw

�
�
x3+fw.4,

x3+fw,
{w.4

�
=

If this private valuation is higher than the market valuesw, and if the consumer can buy
some more of the asset, he will. As he buys more, his consumption will change� it will be
higher in states where{w.4 is higher, driving downx3+fw.4, in those states, until the value
to the investor has declined to equal the market value. Thus,after an investor has reached
his optimal portfolio, themarket value should obey the basic pricing equation as well, using
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SECTION 3.2 CONSUMPTION-BASED MODEL IN PRACTICE

post-trade or equilibrium consumption. But the formula can also be applied to generate
the marginalprivate valuation, using pre-trade consumption, or to value apotential, not yet
traded security.

We have calculated the value of a “small” or marginal portfolio change for the investor.
For some investment projects, an investor cannot take a small position. Then the value of
a project not already taken,H

S
�mx+fw.m . {w.m, might be substantially different from

its marginal counterpart,H
S

�mx3+fw.m,{w.m = Once taken of course,fw.m . {w.m becomes
fw.m , so the marginal valuation still applies to the ex-post consumption stream.

3.2 Consumption-based model in practice

The consumption-based model is, in principle, a complete answer to all asset pricing
questions, but works poorly in practice. This observation motivates other asset pricing mod-
els.

The model we have sketched so far can, in principle, give a compete answer to all the
questions of the theory of valuation. It can be applied toany security—bonds, stocks, options,
futures, etc.—or to any uncertain cashÀow. All we need is a functional form for utility,
numerical values for the parameters, and a statistical model for the conditional distribution of
consumption.

To be speci¿c, consider the power utility function

x3+f, @ f�� = (26)

Then, excess returns should obey

3 @ Hw

%
�

�
fw.4
fw

���
Uh
w.4

&
(27)

Taking unconditional expectations and applying the covariance decomposition, expected ex-
cess returns should follow

H+Uh
w.4, @ �

fry

��
fw.4
fw

���
> Uh

w.4

�

H

��
fw.4
fw

���� = (28)

Given a value for�, and data on consumption and returns, one can easily estimate the mean
and covariance on the right hand side, and check whether actual expected returns are, in fact,
in accordance with the formula.
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CHAPTER 3 DISCOUNT FACTORS IN CONTINUOUS TIME

Similarly, the present value formula is

sw @ Hw

4[
m@4

�m
�
fw.m
fw

���
gw.m = (29)

Given data on consumption and dividends or another stream of payoffs, we can estimate the
right hand side and check it against prices on the left.

Bonds and options do not require separate valuation theories. For example, an Q-period
pure discount default-free bond is a claim to one dollar at timew.Q . Its price should be

sw @ Hw

#
�Q

�
fw.Q
fw

���
�w

�w.Q
4

$

where� = price level ($/good). A European option is a claim topd{+Vw.W �N> 3,, where
Vw.W = stock price at timew. W>N @ strike price. The option price should be

sw @ Hw

%
�W

�
fw.W
fw

���
pd{+Vw.W �N> 3,

&

again, we can use data on consumption, prices and payoffs to check these predictions.

Unfortunately, the above speci¿cation of the consumption-based model does not work
very well. To give aÀavor of some of the problems, Figure 2 presents the mean return on
the ten size-ranked portfolios of NYSE stocks vs. the predictions (right hand side of 2) of
the consumption-based model. I picked the parameter� to make the picture look as good
as possible (The section on GMM estimation below goes into detail on how to do this.) As
you can see, the model isn’t hopeless–there is some correlation between mean returns and
predictions. But the model does not do very well. The pricing error (actual expected return -
predicted expected return) for each portfolio is of the same order of magnitude as the spread
in expected returns across the portfolios.

3.3 Alternative asset pricing models: Overview

I motivate exploration of different utility functions, general equilibrium models, and linear
factor models such as the CAPM, APT and ICAPM as approaches to circumvent the empirical
dif¿culties of the consumption-based model.

The poor empirical performance of the consumption-based model motivates a search for
alternative asset pricing models – alternative functionsp @ i+data,. All asset pricing models
amount to different functions forp. I give here a very bare sketch of some of the different
approaches.
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SECTION 3.3 ALTERNATIVE ASSET PRICING MODELS: OVERVIEW

Figure 2. Mean excess returns of 10 CRSP size portfolios vs. predictions of the power
utility consumption-based model.

1) Different utility functions. Perhaps the problem with the consumption-based model is
simply the functional form we chose for utility. The natural response is to try different utility
functions. Which variables determine marginal utility is a far more important question than
the functional form. Perhaps the stock of durable goods inÀuences the marginal utility of
nondurable goods� perhaps leisure or yesterday’s consumption affect today’s marginal utility.
These possibilities are all instances ofnonseparabilities. One can also try to use micro data
on individual consumption of stockholders rather than aggregate consumption. Aggregation
of heterogenous consumers can make variables such as the cross-sectional variance of income
appear in aggregate marginal utility.

2) General equilibrium models. Perhaps the problem is simply with the consumptiondata.
General equilibrium models deliver equilibrium decision rules linking consumption to other
variables, such as income, investment, etc. Substituting the decision rulesfw @ i+|w> lw> = = = ,
in the consumption-based model, we can link asset prices to other, hopefully better-measured
macroeconomic aggregates.

In addition, true general equilibrium models completely describe the economy, including
the stochastic process followed by all variables. They can answer questions such aswhy is
the covariance (beta) of an asset payoff{ with the discount factorp the value that it is, rather
than take this covariance as a primitive. They can in principle answer structural questions,
such as how asset prices might be affected by different government policies. Neither kind of
question can be answered by just manipulating consumer¿rst order conditions.

3) Factor pricing models. We don’t have satisfactory general equilibrium models. An-
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CHAPTER 3 DISCOUNT FACTORS IN CONTINUOUS TIME

other sensible response to bad consumption data is to model marginal utility in terms of other
variables directly. Factor pricing models follow this approach. They just specify that the
discount factor is a linear function of a set of proxies,

pw.4 @ d. e4i
4
w.4 . e5i

5
w.4 . = = = = (30)

where i l are factors and d> el are parameters. (This is a different sense of the use of the word
“factor” than “discount factor.” I didn’t invent the confusing terminology.) Among others,
the Capital Asset Pricing Model (CAPM) is the model

pw.4 @ d. eUZ
w.4

whereUZ is the rate of return on a claim to total wealth, often proxied by a broad-based
portfolio such as the value-weighted NYSE portfolio. The Arbitrage Pricing Theory (APT)
uses returns on broad-based portfolios derived from a factor analysis of the return covariance
matrix. The Intertemporal Capital Asset Pricing Model (ICAPM) suggests macroeconomic
variables such as GNP and inÀation and variables that forecast macroeconomic variables or
asset returns as factors. Term structure models such as the Cox-Ingersoll-Ross model specify
that the discount factor is a function of a few term structure variables, for example the short
rate of interest. Many factor pricing models are derived as general equilibrium models with
linear technologies and no labor income� thus they also fall into the general idea of using
general equilibrium relations to substitute out for consumption.

4) Arbitrage or near-arbitrage pricing. The mere existence of a representation s @
H+p{, and the fact that marginal utility is positive p � 3 (these facts are discussed in
the next chapter) can be used to deduce prices of one payoff in terms of the prices of other
payoffs. The Black-Scholes option pricing model is the paradigm of this approach: Since the
option payoff can be replicated by a portfolio of stock and bond, anyp that prices the stock
and bond gives the same price for the option. Recently, there have been several suggestions
on how to use this idea in more general circumstances by using very weak further restrictions
onp.

We return to a more detailed derivation and discussion of these alternative models of the
discount factorp below. First, and with this brief overview in mind, we look ats @ H+p{,
and what the discount factorp represents in a little more detail.
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Chapter 4. The discount factor
Now we look more closely at the discount factor. Rather than derive a speci¿c discount
factor as with the consumption-based discount factor above, I work backwards. A discount
factor is just some random variable that generates prices from payoffs,s @ H+p{,=What
does this expression mean? Can one always¿nd such a discount factor? Can we use the
above convenient representations without all the structure of the consumers, utility functions,
and so forth? Along the way I introduce the inner product representation which allows an
intuitive visual representation of most of the theorems, and the idea of contingent claims.

I start by deriving the fact that discount factors exist, are positive, and the pricing function
is linear from a complete markets or contingent claim framework. Then I show that these
properties can be built up, without investors, utility functions and the rest, even in incomplete
markets.

The chapter ends with two famous theorems. Thelaw of one price states that if two
portfolios have the same payoffs (in every state of nature), then they must have the same
price. A violation of this law would give rise to an immediate kind of arbitrage pro¿t, as you
could sell the expensive version and buy the cheap version of the same portfolio. The¿rst
theorem is that this law of one price holds if and only if there is a discount factor that prices
all the payoffs bys @ H+p{,.

In ¿nance, we reserve the termabsence of arbitrage for a stronger idea, that if payoff A
always at least as good as payoff B, and sometimes A is better, then the price of A must be
greater than the price of B. The second theorem is that there are no arbitrage opportunities
of this type if and only if there is apositive discount factor that prices all the payoffs by
s @ H+p{,.

These theorems are seful as a justi¿cation for using discount factors without all the struc-
ture we have imposed so far. More importantly, they show how many aspects of apayoff
space (such as absence of arbitrage) can be conveniently captured by restrictions on thedis-
count factor(such as it exists, or it is positive). Later, it will be much more convenient to
impose, check, and intersect restrictions on the discount factor rather than to do so for all
possible portfolios priced by that discount factor.

4.1 Contingent claims

I describe contingent claims. I interpret the stochastic discount factor p as contingent
claims prices divided by probabilities, and s @ H+p{, as a bundling of contingent claims. I
also interpret the discount factor p as a transformation to risk-neutral probabilities such that
s @ H�+{,@Ui .
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CHAPTER 4 THE DISCOUNT FACTOR

Suppose that one of V possible states of nature can occur tomorrow, i.e. specialize to a
¿nite-dimensional state space. Denote the individual states byv. For example, we might have
V @ 5 andv @ rain orv @ shine.

A contingent claim is a security that pays one dollar (or one unit of the consumption
good) in one statev only tomorrow.sf+v, is the price today of the contingent claim. I write
sf to specify that it is the price of a contingent claim and+v, to denote in which statev the
claim pays off.

In a complete market investors can buy any contingent claim. They don’t necessarily
have to be faced with explicit contingent claims� they just need enough other securities to
span or synthesize all contingent claims. For example, if the possible states of nature are
(rain, shine), securities that pay 2 dollars if it rains and one if it shines, or{4 @ +5> 4, and
a riskfree security whose payoff pattern is{5 @ +4> 4, are enough to span or synthesize
any portfolio achieved by contingent claims. More practically, we see below that European
options with every possible strike price span all claims contingent on the underlying asset’s
price.

If there are complete contingent claims, a discount factor exists, and it is equal to the
contingent claim price divided by probabilities.

Let {+v, denote an asset’s payoff in state of naturev= We can think of the asset as a
bundle of contingent claims—{+4, contingent claims to state4> {+5, claims to state5, etc.
The asset’s price must then equal the value of the contingent claims of which it is a bundle,

s+{, @
[
v

sf+v,{+v,= (31)

I denote the prices+{, to emphasize it is the price of the payoff{. Where the payoff in
question is clear, I suppress the+{,. I like to think of equation (31) as happy-meal logic:
the price of a happy meal (in a frictionless market) should be the same as the price of one
hamburger, one small fries, one small drink and the toy.

It is easier to take expectations rather than sum over states. To this end, multiply and
divide the bundling equation (31) by probabilities,

s+{, @
[
v

�+v,

�
sf+v,

�+v,

�
{+v,

where�+v, is the probability that statev occurs. Then de¿nep as the ratio of contingent
claim price to probability

p+v, @
sf+v,

�+v,
=
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Now we can write the bundling equation as an expectation as

s @
[
v

�+v,p+v,{+v, @ H+p{,=

Thus, in a complete market, the stochastic discount factor p in s @ H+p{, exists, and it
is just a set of contingent claims prices, scaled by probabilities. As a result of this interpreta-
tion, the discount factor is sometimes called astate-price density.

The multiplication and division by probabilities seems very arti¿cial in this ¿nite-state
context. In general, we posit states of nature$ that can take continuous (uncountably in¿nite)
values in a space. In this case, the sums become integrals, and we have to usesome measure
to integrate over. Thus, scaling contingent claims prices by some probability-like object is
unavoidable.

Risk neutral probabilities.

Another common transformation ofs @ H+p{, results in “risk-neutral” probabilities.
De¿ne

��+v, � Uip+v,�+v, @ Uisf+v,

where

Ui � 4@
[

sf+v, @ 4@H+p,=

The��+v, are positive, less than or equal to one (sf+v, � 4@Ui , the price of a sure unit of
consumption), and sum to one, so they are a legitimate set of probabilities. Then we can
rewrite the asset pricing formula as

s+{, @
[
v

sf+v,{+v, @
4

Ui

[
��+v,{+v, @

H�+{,

Ui
=

I use the notationH� to remind us that the expectation uses therisk neutral probabilities ��

instead of the real probabilities�.

Thus, we can think of asset pricing as if agents are all risk neutral, but with probabilities
�� in the place of the true probabilities�. The probabilities�� gives greater weight to states
with higher than average marginal utilityp. There is something very deep here: risk aversion
is equivalent to paying more attention to unpleasant states, relative to their actual probability
of occurrence. People who report high subjective probabilities of unpleasant events like plane
crashes may not have irrational expectations, they may simply be reporting the risk neutral
probabilities or the productp � �. This product is after all the most important piece of
information for many decisions: pay a lot of attention to contingencies that are either highly
probable or that are improbable but have disastrous consequences.
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The transformation from actual to risk-neutral probabilities is given by

��+v, @
p+v,

H+p,
�+v,=

We can also think of the discount factorpas thederivative or change of measure from the
real probabilities� to the subjective probabilities��=

The risk-neutral probability representation of asset pricing is often used to simplify option
pricing formulas. I avoid it, however, because it is far too easy to brush over the difference
between risk-neutral and actual probabilities.Everything really interesting in asset pricing
concerns how to make this transformation, or how to make risk-adjustments to expected
present value formulas.

4.2 Investors again

Investor’s¿rst order conditions with contingent claims.

Marginal rate of substitution

It’s worth looking at the investor’s¿rst order conditions again in the contingent claim
context. The investor starts with a pile of initial wealth and a state-contingent income. He
purchases contingent claims to each possible state in the second period. His problem is then

pd{
if>f+v,j

x+f, .
[
v

��+v,x^f+v,` v=w= f.
[
v

sf+v,f+v, @ | .
[
v

sf+v,|+v,=

Introducing a Lagrange multiplier� on the budget constraint, the¿rst order conditions are

x3+f, @ �

��+v,x3^f+v,` @ �sf+v,=

Eliminating the Lagrange multiplier�,

sf+v, @ ��+v,
x3^f+v,`

x3+f,

or

p+v, @
sf+v,

�+v,
@ �

x3^f+v,`

x3+f,

Coupled withs @ H+p{,, we obtain the consumption-based model again.
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The investor’s ¿rst order conditions say that marginal rates of substitution betweenstates
tomorrow equals the relevant price ratio,

p+v4,

p+v5,
@

x3^f+v4,`

x3^f+v5,`
=

p+v4,@p+v5, gives the rate at which the consumer can give up consumption in state 2 in re-
turn for consumption in state 1 through purchase and sales of contingent claims.x3^f+v4,`@x3^f+v5,`
gives the rate at which the consumer is willing to make this substitution. At an optimum, the
two rates should be equal.

We learn that the discount factorp is the marginal rate of substitution between dateand
state contingent commodities. That’s why it, likef+v,, is a random variable. Also, scaling
contingent claims prices by probabilities gives marginal utility, and so is not so arti¿cial as it
may have seemed above.

Figure 3 gives the economics behind this approach to asset pricing.. We observe the con-
sumer’s choice of date or state-contingent consumption. Once we know his utility function,
we can calculate the contingent claim prices that must have led to the observed consumption
choice, from the derivatives of the utility function.

State 1, or date 1

State 2
or date 2

Indifference curve

(c1, c2)

Figure 3. Indifference curve and contingent claim prices

The relevant probabilities are the consumer’ssubjective probabilities over the various
states. Asset prices are set, after all, by consumer’s demands for assets, and those demands
are set by consumer’s subjective evaluations of the probabilities of various events. We of-
ten assumerational expectations, namely that subjective probabilities are equal to objective
frequencies. But this is an additional assumption that we may not always want to make.
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4.3 Risk sharing

Risk sharing: In complete markets, consumption moves together. Only aggregate risk
matters for security markets.

The above derivation holds for any consumer. But the prices are the same for all con-
sumers. Therefore,marginal utility growth should be the same for all consumers

�l
x3+flw.4,

x3+flw,
@ �m

x3+fmw.4,

x3+fmw ,
(32)

wherel andm refer to different consumers. If consumers have the same utility function, then
consumption itself should move in lockstep,

flw.4
flw

@
fmw.4

fmw
=

These results mean that in a complete contingent claims market, all consumers share all
risks. This risk sharing isPareto-optimal. Suppose a social planner wished to maximize
everyone’s utility given the available resources. For example, with two consumersl andm, he
would maximize

pd{
[

�lwx+flw, . �
[

�mwx+fmw , v=w= flw . fmw @ fdw

wherefd is the total amount available. The¿rst order condition to this problem is

�lwx3+flw, @ ���mwx3+fmw ,

and hence the same risk sharing that we see in a complete market, equation (32).

This simple fact has profound implications. First, it shows you whyonly aggregate shocks
should matter for risk prices. Any idiosyncratic income risk will be insured away through
asset markets.

In addition, it highlights the function of security markets and much of the force behind
¿nancial innovation. Security markets – state-contingent claims – are what brings individ-
ual consumptions closer together by allowing people to share risks. Many successful new
securities can be understood as devices to more widely share risks.

4.4 State diagram and price function
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I introduce the state space diagram and inner product representation for prices, s+{, @
H+p{, @ p � {=

s+{, @ H+p{, implies s+{, is a linear function.

Think of the contingent claims price sf and asset payoffs { as vectors in UV , where each
element gives the price or payoff to the corresponding state,

sf @
�
sf+4, sf+5, � � � sf+V,

�3
>

{ @
�
{+4, {+5, � � � {+V,

�3
=

Figure 4 is a graph of these vectors in UV . Next, I deduce the geometry of Figure 4.

Price = 0 (excess returns)

Price = 1 (returns) 

Price = 2

State 1 Payoff

State 2
Payoff

pc

State 1 contingent claim

Riskfree rate

Figure 4. Contingent claims prices (pc) and payoffs.

The contingent claims price vector sf points in to the positive orthant. We saw in the
last section that p+v, @ x3^f+v,`@x3+f,= Now, marginal utility should always be positive
(people always want more), so the marginal rate of substitution and discount factor are always
nonnegative, p A 3 and sf A 3. This fact is important and related to the principle of no
arbitrage below.

The set of payoffs with any given price lie on a (hyper)plane orthogonal to the contingent
claim price vector. We reasoned above that the price of the payoff {must be given by its
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contingent claim value (31),

s+{, @
[
v

sf+v,{+v,= (33)

Interpreting sf and { as vectors, this means that the price is given by the inner product of the
contingent claim price and the payoff. Recall that the inner product of two vectors { and sf
equals the product of the magnitude of the projection of { onto sf times the magnitude of sf.
Using a dot to denote inner product,

s+{, @
[
v

sf+v,{+v, @ sf � { @ msfmmsurm+{msf,m

where m{m means the length of the vector {. Since all payoffs on a plane orthogonal to sf have
the same projection onto sf, they must have the same price.

Planes of constant price move out linearly, and the origin { @ 3must have a price of
zero. If payoff | @ 5{, then its price is twice the price of {>

s+|, @
[
v

sf+v,|+v, @
[
v

sf+v,5{+v, @ 5 sf+{,=

Similarly, a payoff of zero must have a price of zero.

We can think of s+{, as a pricing function, a map from the state space or payoff space in
which { lies (UV in this case) to the real line. We have just deduced from the de¿nition (33)
that s+{, is a linear function, i.e. that

s+d{. e|, @ ds+{, . es+|,=

The constant price lines in Figure 4 are of course exactly what one expects from a linear
function from UV to U. (One might draw the price on the z axis coming out of the page.
Then the price function would be a plane going through the origin and sloping up with iso-
price lines as given in Figure 4.)

Figure 4 also includes the payoffs to a contingent claim to the¿rst state. This payoff is
one in the relevant state and zero in other states and thus located on the axis. The plane of
price = 1 payoffs is the plane of assetreturns� the plane of price = 0 payoffs is the plane of
excess returns. A riskfree unit payoff (the payoff to a risk-free pure discount bond) would
lie on the+4> 4, point in Figure 4� the riskfree return lies on the intersection of the78r line
(same payoff in both states) and the price = 1 plane (the set of all returns).

Geometry with p in place of pc.

The geometric interpretation of Figure 4 goes through with the discount factorp in the
place ofsf. We can de¿ne an inner product between the random variables{ and| by

{ � | � H+{|,>
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and retain all the properties of an inner product. For this reason, random variables for which
H+{|, @ 3 are often called “orthogonal.”

When the inner product is de¿ned by a second moment, the operation “project| onto{”
is aregression. (If {does not include a constant, you don’t add one.) To see this fact, the idea
of projection is to de¿ne

| @ surm+|m{, . %

in such a way that the residual% is orthogonal to the projection,

% � surm+|m{, @ H ^%� surm+|m{,` @ 3

This property is achieved by the construction

surm+|m{, @ +{ � {,�4+{ � |, { @ H+{5,�4H+{|, {

which is the formula for OLS regression. For this reason, econometrics books often graph
OLS regression as a projection of a point| on to a plane spanned by{ with a residual% that
is at right angles to the plane{. We use the same geometry.

The geometric interpretation of Figure 4 also is valid if we generalize the setup to an
in¿nite dimensional state space. Instead of vectors, which are functions fromUV to U,
random variables are (measurable) functions from to U. Nonetheless, we can still think
of them as vectors. The equivalent ofUv is now aHilbert Space O5, which denotes spaces
generated by linear combinations of square integrablefunctions from  to the real line, or
the space of random variables with¿nite second moments. We can still de¿ne an “inner
product” between two such elements by{ � | @ H+{|,. In particular,s+{, @ H+p{, can
still be interpreted as “p is orthogonal to (hyper)planes of constant price.”Proving theorems
in this context is much harder, and you are referred to the references (Especially Hansen and
Richard (1987)) for such proofs.

4.5 Law of one price and existence of a discount factor

De¿nition of law of one price.

s @ H+p{, implies law of one price.

The law of one price implies that a discount factor exists: There exists a unique{� in [
such thats @ H+{�{, for all { 5[ = space of all available payoffs.

Furthermore, for any valid discount factorp>

{� @ proj+p m [,=
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So far we have derived the basic pricing relation s @ H+p{, from environments with
a lot of structure: either the consumption-based model or complete markets. We deduced
that in any sensible model with consumers, the discount factor should be positive, and we
deduced that price is a linear function of payoff in a contingent claim market.

Does thinking about asset pricing in this way require all this structure? Suppose we ob-
serve a set of pricess and payoffs{> and that markets — either the markets faced by investors
or the markets under study in a particular application — areincomplete, meaning they do not
span the entire set of contingencies. In what minimal set of circumstances does some discount
factor exists which represents the observed prices bys @ H+p{,B This section and the fol-
lowing answer this important question. This treatment is a simpli¿ed version of Hansen and
Richard (1987), which contains rigorous proofs and some technical assumptions.

4.5.1 The theorem

Payoff space

Thepayoff space [ is the set (or a subset) of all the payoffs that investors can purchase, or it
is a subset of the tradeable payoffs that is used in a particular study. For example, if there are
complete contingent claims toV states of nature, then[ @ UV . But the whole point is that
markets are (as in real life)incomplete, so we will generally think of[ as a proper subset of
complete marketsUV .

The payoff space will include some set of primitive assets, but investors can also form
new payoffs by forming portfolios. I assume that investors can form any portfolio of traded
assets:

A1: (Portfolio formation){4> {5 5 [ , d{4 . e{5 5 [ for any reald> e.

Of course,[ @ UV for complete markets satis¿es the portfolio formation assumption. If
there is a single basic payoff{, then the payoff space must be at least the ray from the origin
through{. If there are two basic payoffs inU6, then the payoff space[ must include the
plane de¿ned by these two payoffs and the origin. Figure 5 illustrates these possibilities.

The payoff space isnot the space of returns. The return space is a subset of the payoff
space� if a returnU is in the payoff space, then you can pay a price $2 to get a payoff5U, so
the payoff5Uwith price5 is also in the payoff space. Also,�U is in the payoff space.

Free portfolio formation is in fact an important and restrictive simplifying assumption. It
rules out short sales constraints, bid/ask spreads, leverage limitations and so on. The theory
can be modi¿ed to incorporate these frictions, and I treat this modi¿cation later.

If investors can form portfolios of a vector of basic payoffs{ (say, the returns on the
NYSE stocks), then the payoff space consists of all portfolios or linear combinations of these
original payoffs[ @ if3{j. We also can allow truly in¿nite-dimensional payoff spaces. For
example, consumers might be able to tradenonlinear functions of a basis payoff{, such as
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State 1

State 2

x

X

Single Payoff in R2
State 1

State 2

Two Payoffs in R3

State 3 (into page)

x1

x2

Figure 5. Payoff spaces [ generated by one (left) and two (right) basis payoffs.

call options on { with strike price N, which have payoff pd{ ^{+v,�N> 3` =

The law of one price.

A2: (Law of one price, linearity) s+d{4 . e{5, @ ds+{4, . es+{5,

It doesn’t matter how one forms the payoff{. The price of a burger, shake and fries must
be the same as the price of a happy meal. Keep in mind that we are describing a market that
has already reached equilibrium. The point is that if there are any violations of the law of one
price, traders will quickly eliminate them so they can’t survive in equilibrium. Graphically,
if the iso-price curves were not planes, then one could buy two payoffs on the same iso-price
curve, form a portfolio, which is on the straight line connecting the two original payoffs, and
sell it for a higher price than the cost of the portfolio. Thus, law of one price basically says
that investors can’t make pro¿ts by repackaging portfolios. It is a (weak) characterization of
preferences.

A1 and A2 also mean that the 0 payoff must be available, and must have price 0.

The Theorem

The existence of a discount factor implies the law of one price. As we have already seen,
s+{, @ H+p{, implies linearity, and linearity implies the law of one price. This is obvious
to the point of triviality: if{ @ | . } thenH+p{, @ H^p+| . },`= More directly, if the law
of one price were violated, investors would take in¿nite positions and make in¿nite pro¿ts.
Hence, the law of one price is a weakimplication of the utility-based framework.

Our basic theorem in this section reverses this logic. We show that thelaw of one price
implies theexistence of a discount factor. Even if all we know about investors is that they
can see past packaging and will take sure pro¿ts available from packaging, that is enough to
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CHAPTER 4 THE DISCOUNT FACTOR

guarantee the existence of a discount factor.

A1 and A2 imply that the price function on [ looks like Figure4: parallel hyperplanes
marching out from the origin. The only difference is that [ may be a subspace of the original
state space, as shown in Figure 5. We are ready to prove that a discount factor exists.

Theorem: Given free portfolio formation A1, the law of one price A2, there exists a
unique payoff {� 5 [ such that s+{, @ H+{�{, for all { 5 [=

{� is a discount factor. I offer an algebraic and a geometric proof.

Proof 1: (Algebraic.) We can prove the theorem by construction when the payoff space [
is generated by portfolios of a Q basis payoffs (for example, Q stocks). Organize the basis
payoffs into a vector { @

�
{4 {5 === {Q

�3
and similarly their prices s. The payoff

space is then [ @ if3{j. We want a discount factor that is in the payoff space, as the theorem
requires. Thus, it must be of the form {� @ e3{= Find e so that {� prices the basis assets. We
want s @H+{�{, @ H+{{3e,= Thus we need e @ H+{{3,�4s. If H+{{3, is nonsingular,
this e exists and is unique. A2 implies that H+{{3, is nonsingular. Thus, {� @ s3H+{{3,�4{
is our discount factor. It is a linear combination of { so it is in [. It prices the basis assets
by construction. It prices every { 5 [ = H^{�+{3f,` @ H^s3H+{{3,�4{{3f` @ s3f= By
linearity, s+f3{, @ f3s.

Proof 2: (Geometric.) We have established that the price is a linear function as shown in
Figure 6. (Figure 6 can be interpreted as the plane [ of a larger dimensional space as in the
right hand panel of Figure 5, laid Àat on the page for clarity.) Now, to every plane we can
draw a line from the origin at right angles to the plane. Choose a vector {�on this line. The
inner product between any payoff { on the price=1 plane {�is { � {� @ msurm+{m{�,m � m{�m
Thus, every payoff on the price = 1 plane has the same inner product with {�. All we have to
do is pick {� to have the right length, and we obtain s+{, @ 4 @ {� � { @ H+{�{, for every
{ on the price = 1 plane. Then, of course we have s+{, @ {� � { @ H+{�{, for payoffs { on
the other planes as well. Thus, the linear pricing function implied by the Law of One Price
can be represented by inner products with {�. � .

You can see that the basic mathematics here is just that any linear function can be rep-
resented by an inner product. This theorem extends to in¿nite-dimensional spaces too. In
this case, theRiesz representation theorem says that there is always a “line” orthogonal
to any “plane”, so one can always represent a linear functions+{, by an inner product
s+{, @ H+{�{,= See Hansen and Richard (1987) for the details.

What the theorem does and does not say

The theorem says there is a unique{� in [. There may be many other discount factorsp not
in [. In fact, unless markets are complete, there are anin¿nite number of random variables
that satisfys @ H+p{,. If s @ H+p{, thens @ H ^+p. %,{` for any% orthogonal to{,
H+%{, @ 3=

Not only does this construction generate some additional discount factors, it generates
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Price = 0 (excess returns)

Price = 1 (returns) 

Price = 2

x*

Figure 6. Existence of a discount factor {�=

all of them: Any discount factor p (any random variable that satis¿es s @ H+p{,, can be
represented as p @ {�.% with H+%{, @ 3= Figure 7 gives an example of a one-dimensional
[ in a two-dimensional state space, in which case there is a whole line of possible discount
factorsp. If markets are complete, there is nowhere to go orthogonal to the payoff space[,
so{� is the only possible discount factor.

Reversing the argument,{� is the projection of any stochastic discount factor p on the
space [ of payoffs. This is a very important fact:the pricing implications of any model of p
for a set of payoffs [ are the same as those of the projection of p on [, or of themimicking
portfolios of p. Algebraically,

s @ H+p{, @ H ^+surm+pm[, . %,{` @ H ^surm+pm[, {`

Let me repeat and emphasize the logic. Above, we started with investors or a contingent
claim market, and derived a discount factor.s @ H+p{, implies the linearity of the pricing
function and hence the law of one price, a pretty obvious statement in those contexts. Here we
work backwards. Markets areincomplete in that contingent claims to lots of states of nature
are not available. Wedo allow arbitrary portfolio formation, and that sort of “completeness”
is important to the result. If consumers cannot form a portfoliod{ . e|, they cannot force
the price of this portfolio to equal the price of its constituents.. We found that the law of one
price implies a linear pricing function, and a linear pricing function implies that there exists
at least one and usually many discount factors. The law of one price is not innocuous� it is an
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Payoff space X

x*

m = x* + ε space of discount factors

Figure 7. Many discount facotors p can price a given set of assets in incomplete markets.
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assumption about preferences albeit a weak one. The point of the theorem is that this isjust
enough information about preferences to deduce a discount factor.

4.6 No-Arbitrage and positive discount factors

The de¿nition of arbitrage.

There is a strictly positive discount factor p such that s @ H+p{, if and only if there are
no arbitrage opportunities=

Next, another implication of marginal utility that holds for a wide class of preferences,
that can be reversed to deduce properties of discount factors. Start with the following:

De¿nition (Absence of arbitrage). A payoff space [ and pricing function s+{, leave no
arbitrage opportunities if every payoff { that is always non-negative,{ � 3 (almost surely),
and sometimes strictly positive,{ A 3 with some positive probability, has positive price,
s+{, A 3=

No-arbitrage says that you can’t get for free a portfolio thatmight pay off positively, but
will certainly never cost you anything. This de¿nition is different from the colloquial use of
the word “arbitrage.” Most people use “arbitrage” to mean a violation of the law of one price
– a riskless way of buying something cheap and selling it for a higher price. “Arbitrages” here
might pay off, but then again they might not. The word “arbitrage” is also widely abused.
“Risk arbitrage” is an oxymoron that means taking bets.

An equivalent statement is that if one payoffdominates another – if{ � | – thens+{, �
s+|, (Or, a bit more carefully but more long-windedly, if{ � | almost surely and{ A |
with positive probability, thens+{, A s+|,.)

No-arbitrage as a consequence of utility maximization

The absence of arbitrage opportunities is clearly a consequenceof utility maximization. Re-
call,

p+v, @ �
x3^f+v,`

x3+f,
A 3=

It is a sensible characterization of a wide class of preferences that marginal utility is al-
ways positive. Few people are so satiated that they will throw away money. Therefore,the
marginal rate of substitution is positive. Watch out: the marginal rate of substitution is a ran-
dom variable, so “positive” means “positive in every state of nature” or “in every possible
realization.”
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Now, since each contingent claim price is positive, a bundle of positive amounts of con-
tingent claims must also have a positive price, even in incomplete markets. A little more
formally,

Theorem: s @ H+p{, andp+v, A 3 imply no-arbitrage.
Proof: s+{, @

S
v �+v,p+v,{+v,. If there is a payoff with{+v, � 3> and{+v, A 3 with

positive probability, then the right hand side is positive. �
Similarly, if p A 3 then{ � | impliess+{, @ H+p{, � s+|, @ H+p|,.

The theorem

Now we turn the observation around. As the LOOP property guaranteed the existence of a
discount factorp, no-arbitrage guarantees the existence of a positivep.

The basic idea is pretty simple. No-arbitrage means that the prices of any payoff in the
positive orthant (except zero, but including the axes) must be strictly positive. Thus the iso-
price lines must march up and to the right, and the discount factorp, perpendicular to the
iso-price lines, must point up and to the right. Figure 8 gives an illustration of the case that is
ruled out: the payoff{ is strictly positive, but has a negative price. As a result, the (unique,
since this market is complete)p is negative in the y-axis state.

To prove the theorem a little more formally, start in complete markets. There is only one
p> {�. If it isn’t positive in some state, then the contingent claim in that state has a positive
payoff and a negative price, which violates no arbitrage. More formally,

Theorem: In complete markets, no-arbitrage implies that there exists a uniquep A 3 such
thats @ H+p{,.
Proof: No-arbitrage implies the law of one price, so there is a unique{� such that
s @ H+{�{,. Suppose that{� � 3 for some states. Then, form a payoff{ that is
1 in those states, and zero elsewhere. This payoff is strictly positive, but its price,S

v={�+v,?3 �+v,{
�+v, is negative, negating the assumption of no-arbitrage. �

Next, what if markets are incomplete? There are now manyp’s that price assets. Any
p of the formp @ {� . �> with H+�{, @ 3 will do. We want to show that at leastone of
these is positive. But that one may not be{�. Since the otherp’s are not in the payoff space
[, the construction given above may yield a payoff that is not in[, and hence to which we
can’t assign a price. To handle this case, I adopt a different strategy of proof. My proximate
source is Duf¿e (1992), the original proof is due to Ross (1978). The proof is not particularly
intuitive.

Theorem: No arbitrage implies the existence of anp A 3 s. t.s @ H+p{,.
Proof : Join+�s+{,> {, together to form vectors inUV.4. CallP the set of all+�s+{,> {,
pairs,

P @ i+�s+{,> {,> { 5 [j
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p = 0

p = +1

p = -1

x*, m

x

Figure 8. Counter-example for no-arbitrage. The payoff{ is positive, but has negative
price. The discount factor is not strictly positive

P is still a linear space:p4 5 P> p5 5 P , dp4 . ep5 5 P . No-arbitrage means that
elements ofp can’t have all positive elements. If{ is positive,�s+{, must be negative.
Thus,P only intersects the positive orthantUV.4

. at the point 0.
P andUV.4

. are thus convex sets that intersect at one point, 0. By theseparating
hyperplane theorem, there is a linear function that separates the two convex sets� there is
anI = UV.4 , U, such thatI +�s> {, @ 3 for +�s> {, 5 P , andI +�s> {, A 3 for
+�s> {, 5 UV.4

. except the origin. By theRiesz representation theorem we can representI
as an inner product with some vectorp, byI +�s> {, @ �s.p � {, or�s.H+p{, using
the second moment inner product. Finally, sinceI +�s> {, must be positive for+�s> {, A 3>
p must be positive. �

What the theorem says and does not say

The theorem says that a discount factorp A 3 exists, but it doesnot say thatp A 3 is
unique. The left hand panel of Figure 9 illustrates. Anyp on the line through{� orthogonal
to[ also prices assets. Again,s @ H^+p.%,{` if H+%{, @ 3. Any of these discount factors
in the positive orthant are positive, and thus satisfy the theorem. There are lots of them!

The theorem says that a positivep exists, but it also doesnot say thatevery discount
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factor pmust be positive. The discount factors in the left hand panel of Figure 9 outside the
positive orthant are perfectly valid – they satisfys @ H+p{,> and the prices they generate
on[ are arbitrage free, but they are not positive in every state of nature. In particular, the
discount factor{� in the payoff space is still perfectly valid —s+{, @ H+{�{, — but it need
not be positive, again as illustrated in the left hand panel of Figure 9.

X

p = 1

p = 2
x*

m > 0

X

p = 1
p = 2

x*

m

Figure 9. Existence of a discount factor and extensions. The left graph shows that the
postive discount factor is not unique, and that discount factors may also exist that are not
strictly positive. In particular,{� need not be positive. The right hand graph shows that
each particular choice ofp A 3 induces anarbitrage free extension of the prices on[ to all
contingent claims.

Another interpretation: This theorem shows that we canextend the pricing function de-
¿ned on[ to all possible payoffsUV > and not imply any arbitrage opportunities on that
larger space of payoffs. It says that there is a pricing functions+{, de¿ned overall of UV ,
that assigns the same (correct, or observed) prices on[ and that displays no arbitrage on all
of UV = Graphically, it just says we can draw parallel planes to represent prices on all ofUV

in such a way that the planes intersect[ in the right places and march up and to the right so
the positive orthant always has positive prices. In fact, there are many ways to do this. Any
positivep generates such a no-arbitrage extension, as illustrated in the right hand panel of
Figure 9. Asp A 3 exists but is not unique, so the extension it generates is not unique.

We can think of strictly positive discount factors as possible contingent claims prices.
We can think of the theorem as answering the question: is it possible that an observed and
incomplete set of prices and payoffs is generated by some complete markets, contingent claim
economy? The answer is, yes, if there is no arbitrage on the observed prices and payoffs. In
fact, since there are typically many positivep’s consistent with ani[> s+{,j, there exist
many contingent claims economies consistent with our observations.
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Finally, the absence of arbitrage is another very weak characterization of preferences. The
theorem tells us that this is enough to allow us to use the s @ H+p{, formalism with p A 3.

As usual, this theorem and proof do not require that the state space is UV . State spaces
generated by continuous random variables work just as well.

4.7 Existence in continuous time

Just like {� in discrete time,

g��

��
@ �uwgw�

�
�w .

G

s
� uw

�3
	�4w g}=

prices assets by construction in continuous time.

The law of one price implies the existence of a discount factor process, and absence of
arbitrage a positive discount factor process in continuous time as well as discrete time.

At one level, this statement requires no new mathematics. If we reinvest dividends for
simplicity, then a discount factor must satisfy

sw�w @ Hw�w.vsw.v=

Calling sw.v @ {w.v, this is precisely the discrete time s @ H+p{, that we have studied all
along. Thus, the law of one price and absence of arbitrage are equivalent to the existence of
a or a positive �w.v� the same conditions at all horizons v are thus equivalent to the existence
of a or a positive discount factor process �w for all time w.

For calculations it is useful to ¿nd explicit formulas for a discount factors, the analogue
to the discrete time discount factor {� @ s3H+{{3,�4{. Suppose a set of securities pays
dividends

Gwgw

and their prices follow

gsw
sw

@ �wgw.	wg}

where s and } are Q � 4 vectors, � and 	may vary, �+sw> w>other variables,, 	+sw>w>other
variables, is full rank, H +g}g}3, @ L and the division on the left hand side is element-by
element.

We can form a discount factor that prices these assets from a linear combination of the
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shocks that drive the original assets,

g��

��
@ �uiw gw�

�
�w .

G

s
� uiw

�3
	�4w g}= (34)

If there is a risk free rate uiw (also potentially time-varying), then that rate determinesuiw in
the above equation. If there is no risk free rate, the above discount factor will price the risky
assets for any arbitrary (or convenient) choice ofuiw . As usual, this discount factor is not
unique� �� plus orthogonal noise will also act as a discount factor:

g�

�
@

g��

��
. gz> H+gz, @ 3> H+g}gz, @ 3

We can easily check that (34) does in fact price the basis assets. Writing the basic pricing
equation (20) in continuous time,

G

s
gw.Hw

�
g��

��
.
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s
.

g��

��
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s

�

@
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s
gw� uiw gw. �wgw�

�
�w .
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s
� uiw

�3
	�4w 	wgw @ 3=

In the continuous time case it is easier to write the discount factor in terms of theco-
variancematrix of the original securities, where we wrote it in terms of the second moment
matrix in discrete time. There is nothing essential in this difference. We could have written
the discrete-time{� in terms of the covariance matrix of a set of returns just as well: you can
check that

{� @
4

Ui
� H+U,�Ui

Ui
	�4 ^U�H+U,` > 	 � fry+UU3,

satis¿es4 @ H+{�U) by construction, and this formula is obviously closely analogous to the
continuous time formula.
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Chapter 5. Mean-variance frontier and
beta representations
Much empirical work in asset pricing is couched in terms of expected return - beta repre-
sentations and mean-variance frontiers. In this chapter, I draw the connection between the
discount factor view and these more traditional views of asset pricing. In the process, I in-
troduce a number of useful tools and representations. In the¿rst chapter, I showed how
mean-variance and a beta representation follow froms @ H+p{, and (in the mean-variance
case) complete markets. Here, I take a closer look at the representations and I draw the con-
nections in incomplete markets. I start by de¿ning the terminology of beta pricing models
and mean variance frontiers.

5.1 Expected return - Beta representations

An expected return-beta model is,

H+Ul, @ �. �l>d�d . �l>e�e . = = =

�equals the risk free or zero beta rate.

When the factors are returns,id @ Ud then�d @ H+Ud, � �, and factor pricing is
equivalent to a restriction on intercepts in time-series regressions.

When the factors are not returns, we can reexpress the beta pricing model in terms of
factor mimicking portfolios that are returns.

Much empirical work in¿nance is cast in terms of beta representations for expected re-
turns. A beta model is a characterization of expected returns across assets of the form

H+Ul, @ �. �l>d�d . �l>e�e . = = = > l @ 4> 5> ===Q= (35)

�> � are constant for all assets and�l>d is the multiple regression coef¿cient of returnl on
factord. This quali¿cation is important: if the betas are arbitrary numbers or characteristics
of the securities there is no content to the equation!�l>d is interpreted as the amount of
exposure of assetl to factord risks, and�d is interpreted as the price of such risk-exposure.
Read the beta pricing model to say: “for each unit of exposure� to risk factord, you must
provide investors with an expected return premium�d=”

If there is a risk free rate, its betas are all zero1, so the intercept is equal to the risk free

� The betas are zero because the risk free rate is known ahead of time. When we consider the effects of
conditioning information, i.e. that the interest rate could vary over time, we have to interpret the means and betas
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rate,

Ui @ �

If not, then� is the expected rate of return on a portfolio of risky assets with zero betas on
all factors.� is called the (expected)zero-beta ratein this circumstance.

Beta pricing models are constructed to explain the variation in average returns across
assets. I write l @ 4> 5> ===Q to emphasize this fact. For example, equation (35) says that if we
plot expected returns versus betas in a one-factor model, we should expect all+H+Ul,> �l>d,
pairs to line up on a straight line with slope�d= A low price is equivalent to a high expected
return, so this is “asset pricing” by any other name. One way to test (35) is to run across
sectional regression of average returns on betas,

H+Ul, @ �. �l>d�d . �l>e�e . = = =. �l> l @ 4> 5> ===Q=

This regression is tricky because of the nonstandard notation: the�l are the right hand vari-
ables, the� are the slope coef¿cients, and the�l arepricing errors. The model predicts
�l @ 3, and they should be statistically insigni¿cant in a test.

The “factors” are proxies for marginal utility growth. I discuss the stories used to select
factors at some length below. For the moment keep in mind the canonical examples of risk
factors,i @ consumption growth or the return on the market portfolio of all assets.

We can write the multiple regressions that de¿ne the betas as

Ul
w @ dl . �l>di

d
w . �l>ei

e
w . = = =. %lw= w @ 4> 5> ===W (36)

This is often called atime-series regression, to distinguish it from the cross-sectional regres-
sion of average returns on betas. Notice that we run returnsUl

w on contemporaneous factors
iw. This regression is not about predicting returns from variables seen ahead of time. Its ob-
jective is to measure contemporaneous relations� risk exposure� whether returns are typically
high in “good times” or “bad times” and thus whether the asset is useful to smooth risks.

Rather than estimate a zero-beta rate, one often examines a factor pricing model using
excess returns. Differencing (35) between any two returnsUhl @ Ul�Um (Um may but does
not have to be risk free), we obtain

H+Uhl, @ �l>d�d . �l>e�e . = = = > l @ 4> 5> ===Q= (37)

Here,�ld represents the regression coef¿cient of the excess returnUhl on the factors. This
subtraction is more than a convenience: it allows us to focus on the central task of under-
standing risk premia and risk corrections.

as conditional moments. Thus, if you are worried about time-varying risk free rates, betas, and so forth, either
assume all variables are i.i.d. (and thus the risk free rate is constant), or interpret all moments as conditional on time
| information. We incorporate conditioning information explicitly in the next chapter.
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Finally, we often express factor risk premia� in terms of portfolio returns. If the factors
already are excess returns,id @ Uhd, this is easy. Otherwise,¿nd an excess returnUhd with
beta of 1 on one factor and beta zero on the rest. In either case, the factor model (37) applied
to the excess returnUhd implies�d @ H+Uhd, so we can write the factor model as

H+Uhl, @ �l>dH+Uhd, . �l>eH+Uhe, . = = = > l @ 4> 5> ===Q=

The beta pricing model (35)-(37) and the regression de¿nition of the betas in (36) look
very similar. It seems like one can take expectations of the time-series regression (36) and
arrive at the beta model (35), in which case the latter would be vacuous since one can always
run a regression of anything on anything. Yet the beta model and regression are distinct
equations and capture very different ideas. The difference is subtle but crucial: the time-
series regressions (36) we will in general have a different interceptdl for each returnl, while
the intercept� is the same for all assets in the beta pricing equation (35). The beta pricing
equation is a restriction on expected returns, and thus imposes a restriction on intercepts in
the time-series regression. In the special case that the factors are themselves excess returns,
the restriction is particularly simple: the intercepts should all be zero.

5.2 Mean-variance frontiers

The mean-variance frontierof a given set of assets is the boundary of the set of means and
variances of the returns on all portfolios of the given assets. One can ¿nd or de¿ne this bound-
ary by minimizing return variance for a given mean return. Many asset pricing propositions
and test statistics have interpretations in terms of the mean-variance frontier.

Figure 10 displays a typical mean-variance frontier. As displayed in Figure 10, it is com-
mon to distinguish the mean-variance frontier of all risky assets, graphed as the hyperbolic
region, and the mean-variance frontier of all assets, i.e. including a risk free rate if there is
one, which is the larger wedge-shaped region. Some authors reserve the terminology “mean-
variance frontier” for the upper portion, calling the whole thing theminimum variance fron-
tier. The risky asset frontier is a hyperbola, which means it lies between two asymptotes,
shown as dotted lines. The risk free rate is typically drawn below the intersection of the
asymptotes and the vertical axis, or the point of minimum variance on the risky frontier. If it
were above this point, investors with a mean-variance objective would try to short the risky
assets.

In Chapter 1, we derived a similar wedge-shaped region as the set of means and variances
of all assets that are priced by a given discount factor. This chapter is about incomplete
markets, so we think of a mean-variance frontier generated by a given set of assets, typically
less than complete.

When does the mean-variance frontier exist? I.e., when is the set of portfolio means and
variances less than the wholeiH> �j space? We basically have to rule out a special case: two
returns are perfectly correlated but yield different means. In that case one could short one,
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long the other, and achieve in¿nite expected returns with no risk. More formally, eliminate
purely redundant securities from consideration, then

Theorem: So long as the variance-covariance matrix of returns is non-singular, there is a
mean-variance frontier.

To prove this theorem, just follow the construction below. This theorem should sound
very familiar: Two perfectly correlated returns with different mean are a violation of the law
of one price. Thus, the law of one price implies that there is a mean variance frontier as well
as a discount factor.

E(R)

σ(R)

Mean-variance frontier

Rf

Original assets

Risky asset frontier

Tangency portfolio
of risky assets

Figure 10. Mean-variance frontier

5.2.1 Lagrangian approach to mean-variance frontier

The standard de¿nition and the computation of the mean-variance frontier follows a brute
force approach.

Problem: Start with a vector of asset returnsU. Denote byH the vector of mean returns,
H �H+U,> and denote by	 the variance-covariance matrix	 @ ^H+U�H,+U�H,3`.
A portfolio is de¿ned by its weightsz on the initial securities. The portfolio return isz3U
where the weights sum to one,z34 @4=The problem “choose a portfolio to minimize variance
for a given mean” is then

plqizj z3	z s.t.z3H @ �> z34 @ 4= (38)
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Solution: Let

D @ H3	�4H> E @ H3	�44> F @ 43	�44=

Then, for a given mean portfolio return�, the minimum variance portfolio has variance

ydu +Us, @
F�5 � 5E�.D

DF �E5
(39)

and is formed by portfolio weights

z @ 	�4
H +F��E, . 4 +D�E�,

+DF �E5,
=

Equation (39) shows that the variance is a quadratic function of the mean. The square
root of a parabola is a hyperbola, which is why we draw hyperbolic regions in mean-standard
deviation space.

The minimum-variance portfoliois interesting in its own right and appears as a special
case in many theorems and it appears in several test statistics. We can ¿nd it by minimizing
(39) over �> giving �min var @ E@F. The weights of the minimum variance portfolio are thus

z @ 	�44@+43	�44,=

We can get to any point on the mean-variance frontier by starting with two returns on
the frontier and forming portfolios. The frontier isspanned by any two frontier returns.
To see this fact, notice thatz is a linear function of�. Thus, if you take the portfolios
corresponding to any two distinct mean returns�4 and�5> the weights on a third portfolio
with mean�6 @ ��4 . +4� �,�5 are given byz6 @ �z4 . +4� �,z5.

Derivation: To derive the solution, introduce Lagrange multipliers5� and5� on the con-
straints. The¿rst order conditions to (38) are then

	z��H� �4 @ 3

z @ 	�4+�H. �4,= (40)

We¿nd the Lagrange multipliers from the constraints,

H3z @ H3	�4+�H. �4, @ �

43z @ 43	�4+�H. �4, @ 4

or �
H3	�4H H3	�44
43	�4H 43	�44

� �
�
�

�
@

�
�
4

�
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�
D E
E F

� �
�
�

�
@

�
�
4

�

Hence,

� @
F��E

DF�E5

� @
D�E�

DF �E5

Plugging in to (40), we get the portfolio weights and variance.

5.2.2 Characterizing the mean-variance frontier

Every return can be expressed as Ul @ U� .zlUh� . ql=

The mean-variance frontier isUpy @ U� .zUh�

Uh� is de¿ned asUh� @ surm+4mUh,= It represents mean excess returns,H+Uh, @H+Uh�Uh,
;Uh 5 Uh

The Lagrangian approach to the mean-variance frontier is straightforward but cumber-
some. Our further manipulations will be easier if we follow an alternative approach due to
Hansen and Richard (1987). Technically, Hansen and Richard’s approach is also valid in
in¿nite-dimensional payoff spaces, which we will not be able to avoid when we include con-
ditioning information. Also, it is the natural geometric way to think about the mean-variance
frontier given that we have started to think of payoffs, discount factors and other random
variables as vectors with a second moment norm.

De¿nitions of U�> Uh�=

I start by de¿ning two special returns.U� is the return corresponding to the payoff{� that
can act as the discount factor= The price of{�, is, like any other price,s+{�, @ H+{�{�,.
Thus,

The de¿nition ofU� is

U� � {�

H+{�5,
(41)

The de¿nition ofUh�is

Uh� � surm+4 m Uh, (42)
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Uh � space of excess returns@ i{ 5 [ v=w= s+{, @ 3j

U� andUh� have many interesting properties, which I discuss below. Now we can state a
beautiful orthogonal decomposition.

Theorem: Every returnUl can be expressed as

Ul @ U� .zlUh� . ql

wherezl is a number, andql is an excess return with the property

H+ql, @ 3=

The three components are orthogonal,

H+U�Uh�, @ H+U�ql, @ H+Uh�ql, @ 3=

This theorem quickly implies

Theorem: Upy is on the mean-variance frontier if and only if

Upy @ U� . zUh�

for some real numberz.

As usual,¿rst I’ll argue why the theorems are sensible, then I’ll offer a fairly loose alge-
braic proof. Hansen and Richard (1987) give a much more careful proof.

Graphical construction

Figure 11 illustrates the decomposition. Start at the origin (0). Recall that the{� vector is
orthogonal to planes of constant price� thus theU� vector lies at right angles to the plane
of returns as shown. Go toU�. Uh� is the excess return that is closest to the vector4� it is
orthogonal to planes of constantmean return, shown in theH @ 4> H @ 5 lines, just as the
returnU� is orthogonal to all excess returns. Proceed an amountzl in the direction ofUh�,
getting as close toUl as possible. Now move, again in an orthogonal direction, by an amount
ql to get to the returnUl. We have thus expressedUl @ U� . zlUh� . ql in a way that all
three components are orthogonal.

Returns withq @ 3, U� . zUh�>are the mean-variance frontier. Here’s why. Since
H+U5, @ �5+U, . H+U,5, we can de¿ne the mean-variance frontier by minimizing second
moment for a given mean. The length of each vector in Figure 11 is its second moment, so
we want the shortest vector that is on the return plane for a given mean. The shortest vectors
in the return plane with given mean or value ofH in the picture are on theU� .zUh� line.

Uh� is an excess return inUh that representsmeans onUh with an inner product in just
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CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

R*

Re*

1

ni

Ri=R*+wiRe*+ni

0

E=0
E=1

R*+wiRe*

Re = space of excess returns (p=0)

R=space of returns (p=1)

Figure 11. Orthogonal decomposition and mean-variance frontier.

the same way that{� is a portfolio in[ that represents prices on[=

H+Uh, @ H+Uh�Uh, ;Uh 5 Uh

To see this fact algebraically,

H+Uh, @ H+4�Uh, @ H ^surm+4 m Uh,�Uh` @ H+Uh�Uh,=

Here’s the idea intuitively. Expectation is the inner product with 1. Planes of constant ex-
pected value in Figure 11 are orthogonal to the4 vector, just as planes of constant price are
orthogonal to the{� or U� vectors. I don’t show these planes for clarity� I do show lines of
constant expected return inUh, which are the intersection of planes of constant expected pay-
off with theUh plane. Therefore, just as we found an{� in [ to represent prices in[ by
projectingp onto[, we¿ndUh� in Uh by projecting of4 ontoUh. Yes, a regression with
one on the left hand side. Planes perpendicular toUh� in Uh (and inU, are payoffs with
constantmean, just as planes perpendicular to{� in [ generate payoffs with the sameprice.

Algebraic argument

Now, on to an algebraic proof of the decomposition and characterization of mean variance
frontier.

Proof: Straight from their de¿nitions, (41) and (42) we know thatUh is an excess return
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(price zero), and thatU� andUh are orthogonal,

H+U�Uh, @
H+{�Uh,

H+{�5,
@ 3=

We de¿neql so that the decomposition adds up toUl as claimed –ql is what is left over –
and we de¿nezl to make sure thatql is orthogonal to the other two components. Then we
prove thatH+ql, @ 3 for the mean-variance frontier. De¿ne

ql � Ul �U� �zlUh�=

For anyzl> ql is an excess return so already orthogonal toU�>

H+U�ql, @ 3.

To showH+ql, @ 3 andql orthogonal toUh�, we exploit the fact that sinceql is an excess
return,

H+ql, @ H+Uh�ql,=

Therefore,Uh� is orthogonal toql if and only if we pickzl so thatH+ql, @ 3. We don’t
have to explicitly calculatezl for the proof2.
Once we have constructed the decomposition, the frontier drops out. SinceH+ql, @ 3 and
the three components are orthogonal,

H+Ul, @ H+U�, .zlH+Uh�,

�5+Ul, @ �5+U� .zlUh�, . �5+ql,=

Thus, for each desired value of the mean return, there is a uniquezl. Returns withql @ 3
minimize variance for each mean. �

Decomposition in mean-variance space

Figure 12 illustrates the decomposition in mean-variance space rather than in state-space.

First, let’s locateU�. U� is the minimum second moment return. One can see this fact
from the geometry of Figure 11:U� is the return closest to the origin, and thus the return
with the smallest “length” which is second moment. As with OLS regression, minimizing
the length ofU� and creating anU� orthogonal to all excess returns is the same thing. One
can also verify this property algebraically. Since any return can be expressed asU @ U� .

2 Its value

�� '
.E-��3 .E-W�

.E-eW�

is not particularly enlightening.
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σ(R)

E(R)

R*

RiR* + wiRe*

ni

α = 
E(R*2 )/ E(R* )

Figure 12. Orthogonal decomposition of a returnUl in mean-standard deviation space.

zUh� . q, H+U5, @ H+U�5, . z5H+Uh�5, . H+q5,. q @ 3 andz @ 3 thus give the
minimum second moment return.

In mean-standard deviation space, lines of constant second moment are circles. Thus,
the minimum second-moment returnU� is on the smallest circle that intersects the set of all
assets, or the mean-variance frontier as in the right hand panel of Figure 14. Notice thatU�

is on the lower, or “inef¿cient” segment of the mean-variance frontier. It is initially surprising
that this is the location of the most interesting return on the frontier!U� is not the “market
portfolio” or “wealth portfolio.”

Uh� moves one along the frontier. Addingq does not change mean but does change
variance, so it is anidiosyncratic return that just moves an asset off the frontier as graphed.
I’ll return to the vertical intercept� below.

A compilation of properties of U�>Uh� and {�

There are lots of interesting and useful properties of the special returns that generate the mean
variance frontier. I list a few here. Some I derived above, some I will derive and discuss below
in more detail, and some will be useful tricks later on. In every case, I urge you to draw a
little picture to go along with the algebraic discussion.
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1)

H+U�5, @
4

H+{�5,
= (43)

To derive this fact, multiply both sides of (41) byU�, take expectations, and rememberU� is
a return so4 @ H+{�U�,.

2) We can reverse the de¿nition and recover{� fromU� via

{� @
U�

H+U�5,
= (44)

To derive this formula, start with the de¿nitionU� @ {�@H+{�5, and substitute from (43) for
H+{�5,3) U� can be used to represent prices just like{�. This is not surprising, since they
both point in the same direction, orthogonal to planes of constant price. Algebraically,

H+U�5, @ H+U�U, ;U 5 U= (45)

H+U�5,s+{, @ H+U�{, ;{ 5 [=

This fact can also serve as an alternative de¿ning property ofU�. To derive (45), use4 @
H+{�U, and (44).

3)U� is the minimum second moment return.

4) Uh� represents means onUh via an inner product in the same way that{� represents
prices on[ via an inner product.Uh� is orthogonal to planes of constant mean inUh as{� is
orthogonal to planes of constant price. Algebraically, in analogy tos+{, @ H+{�{, we have

H+Uh, @ H+Uh�Uh, ;Uh 5 Uh= (46)

This fact can serve as an alternative de¿ning property ofUh�.

To see this fact, recall thatUh� is de¿ned by

Uh� � surm+4mUh,

which is analogous to{� @ surm+pm[,. Therefore,

H+Uh, @ H+4�Uh, @ H +surm+4mUh,�Uh, @ H+Uh�Uh,=

5) Uh� andU� are orthogonal,

H+U�Uh�, @ 3=

6) The mean variance frontier is given by

Upy @ U� .zUh�=
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7) SinceU� andUh� are orthogonal, the last fact implies that

U� @ minimum second moment return.

Graphically,U� is the return closest to the origin. I discuss this property at some length in
section 6 below.

The remaining properties are minor� I use them once or twice below and they make great
test questions, but are not that deep.

8) Applying fact (46) toUh� itself,Uh� has the same¿rst and second moment,

H+Uh�, @ H+Uh�5,

and therefore

ydu+Uh�, @ H+Uh�5,�H+Uh�,5 @ H+Uh�, ^4�H+Uh�,` =

9) If there is a riskfree rate, thenUh� can also be de¿ned as the residual in the projection
of 4onU� =

Uh� @ 4� surm+4mU�, @ 4� H+U�,

H+U�5,
U� @ 4� 4

Ui
U� (47)

See Figure 11! To verify this statement analytically, check thatUh� so de¿ned is an excess
return in[, andH+Uh�Uh, @ H+Uh,> H+U�Uh�, @ 3=

Riskfree return, zero beta return, and minimum variance returns

The riskfree rate is an obviously interesting point on the mean variance frontier, and it should
be no surprise that it will show up often in asset pricing formulas. Thus, it’s interesting
to characterize it by¿nding the appropriatez in U� . zUh�. When no risk-free rate is
traded, three generalizations of the riskfree rate are interesting and can take its place in as-
set pricing formulas. These are thezero-beta rate, the minimum-variance returnand the
constant-mimicking portfolioreturn. We will also characterize these quantities by ¿nding the
appropriate z in U� .zUh�.

Risk free rate

If there is a risk free rate—if the payoff space[ includes a unit payoff—thenH+U�5, @
H+U�Ui , @ H+U�,Ui > and we can recover the value of the risk free rate fromU� itself, or
{�,

Ui @
H+U�5,

H+U�,
@

4

H+{�,
= (48)

Since we have decomposed every frontier return asU�.zUh�, it is interesting to express
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the risk free rate in this way as well. There are a number of equivalent representations,

Ui @ U� .UiUh� (49)

Ui @ U� .
H+U�5,

H+U�,
Uh� (50)

Ui @ U� .
H+U�,

4�H+Uh�,
Uh� (51)

Ui @ U� .
ydu+U�,

H+U�,H+Uh�,
Uh�= (52)

To derive (49) and (50), start from (47) and multiply through byUi . To establish (51)
and (52), we need to show that if there is a risk free rate, then

Ui @
H+U�5,

H+U�,
@

H+U�,

4�H+Uh�,
@

ydu+U�,

H+U�,H+Uh�,
(53)

The¿rst equality is given by (48). To derive the second equality, take expectations of (47),
take expectations of (49), or note thatmmUh�mm5 . mmsurm+4mU�,mm5 @ 4, since the three quanti-
ties form a right triangle. To check the third equality, take expectations of (52),

Ui @ H+U�, .
H+U�5,�H+U�,5

H+U�,
@

H+U�5,

H+U�,
=

The equalities in (53) all depend on the presence of a riskfree rate. When there is no
riskfree rate, these three different expressions generate three different and interesting returns
on the frontier, and each takes the place of the riskfree return in some asset pricing formulas.

The remaining cases assume there is no riskfree rate – the unit payoff is not in[=

Zero-beta rate forU�

The riskfree rate Ui is of course uncorrelated with U�. Risky returns uncorrelated with U�

earn the same average return as the risk free rate if there is one, so they might take the place
of Ui when the latter does not exist. For any return U� that is uncorrelated with U� we have
H+U�U�, @ H+U�,H+U�,> so

� @ H+U�, @
H+U�5,

H+U�,
@

4

H+{�,
=

The ¿rst equality introduces a popular notation � for this rate.
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The zero-beta rate is the inverse of the price thatU� and{� assign to the unit payoff,
which is another natural generalization of the riskfree rate. It is called the zerobeta rate
because such thatfry+U�> U�, @ 3 implies that the regression beta ofU� onU� is zero, and
everything used to be written in terms of such regression coef¿cients rather than covariances
or second moments. More precisely, one might call it the zero beta rateon U�, since one can
calculate zero-beta rates for returns other thanU� and they are different. In particular, the
zero-beta rate on the “market portfolio” will generally be different from the zero beta rate on
U�

I drew� in 12 as the intersection of the tangency and the vertical axis. This is a property
of any return on the mean variance frontier: The expected return on an asset uncorrelated with
the mean-variance ef¿cient asset (azero-betaasset) lies at the point so constructed. To check
this geometry, use similar triangles: The length of U� in 12 is

s
H+U�5,, and its vertical

extent is H+U�,. Therefore, �@
s
H+U�5, @

s
H+U�5,@H+U�,, or � @ H+U�5,@H+U�,.

Since U� is on the lower portion of the mean-variance frontier, this zero beta rate� is above
the minimum variance return.

Note that in general� 9@ 4@H+p,. Projectingpon[ preserves asset pricing implica-
tions on[ but not for payoffs not in[. Thus if a risk free rate is not traded,{� andp may
differ in their predictions for the riskfree rate as for other nontraded assets.

We want to see the zero beta return that is also on the mean variance frontier inU�.zUh�

form. Expression (52) becomes the zero-beta return when there is no risk free rate,

U� @ U� .
ydu+U�,

H+U�,H+Uh�,
Uh�=

To check, verify that it gives the correct mean,

H+U�, @ H+U�, .
ydu+U�,

H+U�,H+Uh�,
H+Uh�, @

H+U�,5 . ydu+U�,

H+U�,
@

H+U�5,

H+U�,
=

Minimum variance return.

The riskfree rate obviously is the minimum variance return when it exists. When there is no
risk free rate, expression (51) becomes the minimum variance return

Umin. var. @ U� .
H+U�,

4�H+Uh�,
Uh�=

Taking expectations,

H+Umin. var., @ H+U�, .
H+U�,

4�H+Uh�,
H+Uh�, @

H+U�,

4�H+Uh�,
=

The minimum variance return retains the property (49) of the risk free rate above, that its
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weight onUh� is the same as its mean

Umin. var. @ U� .H+Umin. var.,Uh�=

When there is no risk free rate, the zero-beta and minimum variance returns arenot the same.

We can derive this expression for the minimum variance return by brute force: choose
z in U� .zUh� to minimize variance.

plq
z

ydu+U� .zUh�, @ H^+U� .zUh�,5`�H+U� .zUh�,5 @

@ H+U�5, . z5H+Uh�,�H+U�,5 � 5zH+U�,H+Uh�,�z5H+Uh�,5=

The¿rst order condition is

3 @ zH+Uh�,^4�H+Uh�,`�H+U�,H+Uh�,

z @
H+U�,

4�H+Uh�,
=

Variance is the size or second moment of the residual in a projection (regression) on 1.

ydu+{, @ H
�
+{�H+{,,5

�
@ H

�
+{� surm+{m4,,5� @ mm{� surm+{m4,mm5

Thus, the minimum variance return is the return closest to extensions of the unit vector.

Return on constant-mimicking portfolio.

The riskfree rate is of course the return on the unit payoff. When there is no riskfree rate,
expression (50),

aU � U� . �Uh� @ U� .
H+U�5,

H+U�,
Uh�

is the return on the traded payoff that is closest to the (nontraded) unit payoff. Precisely, this
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return has the property3

aU @
surm+4m[,

s ^surm+4m[,`
>

which is a natural generalization of the risk free rate propertyUi @ 4@s+4,. Since we form
mimicking portfolios by projecting nontraded random variables on the space of payoffs, a
natural name for this construct is theconstant-mimicking portfolio return.

Note the subtle difference: the minimum variance return is the returnclosest to an exten-
sion of the unit vector. The constant-mimicking portfolio return is the return on thepayoff
closest to 1. They are not the same object when there is no risk free rate.

5.3 Relation between R ' .E6%�c beta, and mean-variance frontiers

s @ H+p{,> � representations and mean-variance frontiers look unrelated, but in fact they
all express the same thing. This section is devoted to linking these three asset pricing repre-
sentations. An overview of the ideas:

1. s @ H+p{, , �: Givenp such thats @ H+p{,, we can derive an expected return� �
relationship.p> {�orU� all can serve as reference variables for betas. Ifp @ e3i , then

� I think this is a novel result, so here’s the algebra.f is spanned by-Wc-eW and? so we can¿nd
RoJ�E��f� ' @-W n K-eW n ? by making sure the residual is orthogonal to-Wc-eW and? G

f ' . d-WE�3 @-W 3 K-eW 3 ?�o ' .E-W�3 @.E-W2�i @ '
.E-W�

.E-W2�

f ' . d-eWE�3 @-W 3 K-eW 3 ?�o ' .E-eW�3 K.E-eW� ' fi K ' �

f ' . d?E�3 @-W 3 K-eW 3 ?�o ' .E?2� ' fi ? ' f

Thus,

RoJ�E��f� '
.E-W�

.E-W2�
-W n-eW

Its price is

R dRoJ�E��f�o '
.E-W dRoJ�E��f�o�

.E-W2�
'

�

. E-W2�

�
.E-W�

.E-W2�
.E-W2�

�
'

.E-W�

.E-W2�

and¿nally

RoJ�E��f�

R dRoJ�E��f�o
'

.E-��
.E-�5�

-W n-eW

.E-��

.E-�5�

' -W n
.E-W2�

.E-W�
-eW�
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i , surm+i m [, can serve as multiple factors in a multiple beta model.
2. s @ H+p{, , mean-variance frontier.U� is on the mean-variance frontier.
3. � , s @ H+p{,. If we have an expected return/beta model, thenp @ e3i linear in the

factors satis¿ess @ H+p{,.
4. Mean-variance frontier, s @ H+p{,. If a returnUpy is on the mean-variance frontier,

thenp @ d. eUpy linear in that return is a discount factor� it satis¿ess @ H+p{,.
5. If a return is on the mean-variance frontier, then there is an expected return/beta model

with that return as reference variable.

Figure 13 summarizes the equivalence of the three asset pricing views.

E(Ri) = α + βi’λ

p = E(mx)

Rmv on m.v.f. 

LOOP  ⇒ m exists 

f = m, x*, R*

m =  b’f

R* is on m.v.f.

m = a + bRmv

f = Rmv

proj(f|R) on m.v.f.

E(RR’) nonsingular   ⇒  Rmv exists

Figure 13. Relation between three views of asset pricing.

The following subsections discuss the mechanics of going from one representation to the
other in detail. The next chapter discusses the implications of the existence and equivalence
theorems.

5.3.1 From s @ H+p{, to a single beta representations

Single � representation using p
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s @ H+p{, implies H+Ul, @ �. �l>p�p

Start with

4 @ H+pUl, @ H+p,H+Ul, . fry+p>Ul,=

Thus,

H+Ul, @
4

H+p,
� fry+p>Ul,

H+p,

Multiply and divide byydu+p,, de¿ne� � 4@H+p, to get

H+Ul, @ �.

�
fry+p>Ul,

ydu+p,

��
�ydu+p,

H+p,

�
@ �. �l>p�p=

As advertised,4 @ H+pU, implies a single beta representation.

For example, we can equivalently state the consumption-based model as: mean asset
returns should be linear in the regression betas of asset returns on+fw.4@fw,�� . Furthermore,
the slope of this cross-sectional relationship�p is not a free parameter, though it is usually
treated as such in empirical evaluation of factor pricing models.�p should equal the ratio of
variance to mean of+fw.4@fw,�� =

The factor risk premium�p for marginal utility growth is negative. Positive expected
returns are associated with positive correlation with consumption growth, and hence negative
correlation with marginal utility growth andp. Thus, we expect�p ? 3.

Single � representation using {� and U�

4 @ H+pUl, implies a beta model with{� @ surm+pm[, or U� � {�@H+{�5, as
factors, e.g.H+Ul, @ �. �l>U� ^H+U�,� �`=

It is traditional and sometimes desirable to express a pricing model in terms of returns on
some portfolio rather than in terms of some real factor, such as consumption growth. Even
if we found the perfect measure of utility and consumption, the fact that asset return data
are measured much better and more frequently would lead us to use an equivalent return
formulation for many practical purposes.

We have already seen the idea of “factor mimicking portfolios” formed by projection. We
can use the same idea here: projectp on to[, and the result also serves as a pricing factor.
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Single beta representation with {�=

Recall thats @ H+p{, impliess @ H ^surm+p m [, {`, or s @ H+{�{,. Then we know

4 @ H+pUl, @ H+{�Ul, @ H+{�,H+Ul, . fry+{�> Ul,=

Solving for the expected return,

H+Ul, @
4

H+{�,
� fry+{�> Ul,

H+{�,
@

4

H+{�,
� fry+{�> Ul,

ydu+{�,

ydu+{�,

H+{�,
(54)

which we can write as the desired single-beta model,

H+Ul, @ �. �l>{��{� =

Notice that the zero-beta rate4@H+{�, appears when there is no riskfree rate.

Single beta representation with U�=

Recall the de¿nition,

U� @
{�

H+{�5,

SubstitutingU� for {�, equation (54) implies that we can in fact construct a returnU� from
p that acts as the single factor in a beta model,

H+Ul, @
H+U�5,

H+U�,
� fry+U�> Ul,

H+U�,
@

H+U�5,

H+U�,
.

�
fry+U�> Ul,

ydu+U�,

��
�ydu+U�,

H+U�,

�

or, de¿ning Greek letters in the obvious way,

H+Ul, @ �. �Ul>U��U� (55)

Since the factorU� is also a return, its expected excess return over the zero beta rate gives
the factor risk premium�U� . Applying equation (55) toU� itself,

H+U�, @ �� ydu+U�,

H+U�,
= (56)

So we can write the beta model in an even more traditional form

H+Ul, @ �. �Ul>U� ^H+U�,� �`= (57)

Recall thatU� is the minimum second moment frontier, on the lower portion of the mean-
variance frontier. This is whyU� has an unusual negative expected excess return or factor
risk premium,�U� @ �ydu+U�,@H+U�, ? 3. Note that� is the zero-beta rate onU� that I
de¿ned and discussed above, and is shown in Figure12.
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CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

Special cases

The one thing that can go wrong in these constructions is thatH+p,, H+{�,> orH+U�, might
be zero, so you can’t divide by them.H+p, cannot be zero since, by absence of arbitrage,
p A 3. If there is a riskfree rate, then4@Ui @ H+p, @ H+{�, @ H+U�,@H+U�5,, so the
presence of a¿nite riskfree rate also eliminates the potential problem. However, if the payoff
space[ under study does not include a riskfree rate, then some discount factors, including
{� andU� may have mean zero – they may imply an in¿nite price for the nontraded unit
payoff. We simply have to rule this out as a special case: amend the theorems to read “there
is an expected return - beta representationif H+{�, 9@ 3, H+U�, 9@ 3”. This is a technical
special case, of little importance for practice. One can easily¿nd alternative discount factors
{� . %, with nonzero mean, and use them for a single beta representation. All alternative
discount factors agree on the expected returns of the traded assets, though they disagree on
�. Moral: Don’t use mean zero discount factors for single beta representations.

s @ H+p{, to mean - variance frontier

U� is the minimum second moment return, and hence U� is on the mean-variance frontier.

U� is the minimum second moment return. SinceH+U5, @ H+U,5 . �5+U,> the mini-
mum second moment return is of course on the mean-variance frontier.

5.3.2 Mean-variance frontier to � andp

Upy is on mean-variance frontier/ p @ d. eUpy> H+Ul,� � @ �l ^H+Upy,� �`

We rule out special cases.

We have seen thats @ H+p{, implies a single�� model witha mean-variance ef¿cient
reference return, namelyU�. The converse is also true: for (almost) any return on the mean-
variance frontier, we can de¿ne a discount factorp that prices assets as a linear function
of the mean-variance ef¿cient return, and expected returns mechanically follow a single��
representation using the mean-variance ef¿cient return as reference.

Mean-variance frontier top

Theorem:There is a discount factor of the form p @ d. eUpy if and only if Upy is on the

78



SECTION 5.3 RELATION BETWEEN s @ H+p{,> BETA, AND MEAN-VARIANCE FRONTIERS

mean-variance frontier, andUpy is not the constant-mimicking portfolio return.

Graphical argument.

Geometrically, this is a straightforward theorem. The space of discount factors is{� plus
any random variables orthogonal to the space[ .We want to know when the space spanned
by the unit vector4 and a returnU includes one of these discount factors.

To think about this question, look at Figure 14. In this case[ is the whole space, in-
cluding a unit payoff or risk free rate. We want to know when the space spanned by a return
and the unit payoff includes the unique discount factor{�. Pick a vectorUpy on the mean-
variance frontier as shown. Then stretch it (eUpy) and then subtract some of the 1 vector (d).
If we pick the rightdande> we can recover the discount factor{�=

If the original return vector were not on the mean-variance frontier, thend. eUpy would
point in some of theq direction orthogonal to the mean-variance frontier, for anye 9@ 3. If
e @ 3, though, just stretching up and down the4 vector will not get us to{�= Thus, we can
only get a discount factor of the formd. eUpy if Upy is on the frontier.

Special cases

If the mean-variance ef¿cient returnUpy that we start with happens to lie right on the
intersection of the stretched unit vector and the frontier, then stretching theUpy vector and
adding some unit vector are the same thing, so we again can’t get back to{� by stretching
and adding some unit vector. The stretched unit payoff is the riskfree rate, which is the same
as the constant-mimicking portfolio return when there is a riskfree rate.

Now think about the case that the unit payoff does not intersect the space of returns.
Figure 15 shows the geometry of this case. To use no more than three dimensions I had to
reduce the return and excess return spaces to lines. The payoff space[ is the plane joining
the return and excess return sets as shown. The set of all discount factors isp @ {� . %>
H+%{, @ 3, the line through{� orthogonal to the payoff space[ in the¿gure. I draw the
unit payoff (the dot marked “1” in Figure 15) closer to the viewer than the planeU> and I
draw a vector through the unit payoff coming out of the page.

Take a payoff on the mean-variance frontier,Upy. (Since the return space only has two
dimensions, all returns are on the frontier.) For a givenUpy, the spaced. eUpy is the plane
spanned byUpy and4. This plane lies sideways in the¿gure. As the¿gure shows, there is a
vectord. eUpy in this plane that lies on the line of discount factors.

Next, the special case. This construction would go awry if the plane spanning4and the
returnUpy were parallel to the plane containing the discount factor. Thus, the construction
would not work for the return markedaU in the Figure. The special case return is an extension
of the projection of the unit vector on[, which was the de¿ning property of the constant-
mimicking portfolio returnaU=

Algebraic proof

Now, an algebraic proof that captures the same ideas. For an arbitraryU> try the discount
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R*

Re*

1

0

x* = a + bRmv

Rmv

bRmv

E - σ frontier Rf

Figure 14. There is a discount factorp @ d . eUpy if and only if Upy is on the
mean-variance frontier and not minimum variance.

factor model

p @ d. eU @ d. e+U� .zUh� . q,= (58)

I show that this model prices an arbitrary payoff if and only ifq @ 3andU is not the constant-
mimicking portfolio return.

We can determinedandeby forcingp to price any two assets. I¿ndd ande to make the
model priceU� andUh�.

4 @ H+pU�, @ dH+U�, . eH+U�5,

3 @ H+pUh�, @ dH+Uh�, . ezH+Uh�5, @ +d. ez,H+Uh�,=

Solving ford ande,

d @
z

zH+U�,�H+U�5,

e @ � 4

zH+U�,�H+U�5,
=
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0

R*

Re

R

X

Rmv
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Constant-mimicking return RDiscount factors

a+b Rmv
x*

^

Figure 15. One can construct a discount factorp @ d . eUpy from any
mean-variance-ef¿cient return except the constant-mimicking returnaU.
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Thus, if it is to priceU� andUh�, the discount factor must be

p @
z � +U� .zUh� . q,

zH+U�,�H+U�5,
=

Obviously, this construction can’t work if the denominator is zero, i.e. ifz @ H+U�5,@H+U�,.
We saw above that the constant-mimicking portfolio returnaU @ U� . H+U�5,@H+U�,Uh�,
so that is the case we are ruling out.

Now, let’s see ifp prices an arbitrary payoff{l= Any {l 5 [ can also be decomposed as

{l @ |lU� .zlUh� . ql=

(See Figure 11 if this isn’t obvious.) The price of{l is|l, since bothUh� andql are zero-price
(excess return) payoffs. Therefore, we wantH+p{l, @ |l. Does it?

H+p{l, @ H

�
+z �U� �zUh� � q,+|lU� .zlUh� . ql,

zH+U�,�H+U�5,

�

Using the orthogonality ofU�, Uh� q> H+q, @ 3 andH+Uh�5, @ H+Uh�, to simplify the
product,

H+p{l, @
z|lH+U�,� |lH+U�5,� H+qql,

zH+U�,�H+U�5,
@ |l � H+qql,

zH+U�,� H+U�5,
=

To gets+{l, @ |l @ H+p{l,, we needH+qql, @ 3= The only way to guarantee this
condition forevery payoff{l 5 [ is to insist thatq @ 3= �

We can generalize the theorem somewhat. Nothing is special about returns� any payoff of
the form|U�.zUh� or |{�.zUh� can be used to price assets� such payoffs have minimum
variance among all payoffs with given mean and price. Of course, we proved existence not
uniqueness:p @ d. eUpy . �> H+�{, @ 3 also price assets as always.

Mean-variance frontier to�

Now, let’s think about the tie between mean-variance ef¿ciency and single beta representa-
tions. We already know mean variance frontiers/ discount factor and discount factor/
single beta representation, so at a super¿cial level we can string the two theorems together.
However it is more elegant to go directly, and the special cases are also a bit simpler this way.

Theorem: There is a single beta representation with a returnUpy as factor,

H+Ul, @ �Upy . �l>Upy ^H+Upy,� �` >

if and only if Upy is mean-variance ef¿cient and not the minimum variance return.

This famous theorem is given by Roll (1976) and Hansen and Richard (1987). We rule
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out minimum variance to rule out the special caseH+p, @ 3. Graphically, the zero-beta rate
is formed from the tangency to the mean-variance frontier as in¿gure 12. If we started at the
minimum-variance return, that would lead to an in¿nite zero-beta rate.

Proof The mean-variance frontier isUpy @ U� . zUh�. Any return isUl @ U� .
zlUh� . q. Thus,

H+Ul, @ H+U�, .zlH+Uh�,

Now,

fry+Ul> Upy, @ fry
�
+U� .zUh�, > +U� .zlUh�,

�
@ ydu+U�, .zzlydu+Uh�,� +z .zl,H+U�,H+Uh�,

@ ydu+U�,�zH+U�,H+Uh�, . zl ^z ydu+Uh�,�H+U�,H+Uh�,`

Thus,fry+Ul> Upy, andH+Ul, are both linear functions ofzl. We can solvefry+Ul> Upy,
for zl, plug into the expression forH+Ul, and we’re done. To do this, of course, we must be
able to solvefry+Ul> Upy, for zl. This requires

z 9@ H+U�,H+Uh�,

ydu+Uh�,
@

H+U�,H+Uh�,

H+Uh�5,�H+Uh�,5
@

H+U�,

4�H+Uh�,

which is the condition for the minimum variance return. �

5.3.3 Beta pricing /linear discount factor models

Beta-pricing models are equivalent to linear models for the discount factor m.

p @ d. e3i / H+Ul, @ �. �3�l

We have shown thats @ H+p{, implies a single beta representation usingp> {� orU�

as factors. Let’s ask the converse question: suppose we have an expected return - beta model
(such as CAPM, APT, ICAPM, etc.), what discount factor model does this imply? I show
that an expected return - beta model is equivalent to a model for the discount factor that is
a linear function of the factors in the beta model. This is an important and central result. It
gives the connection between the discount factor formulation emphasized in this book and
the expected return/beta, factor model formulation common in empirical work.

One can write a linear factor model most compactly asp @ e3i , letting one of the factors
be a constant. However, it will be more transparent to treat a constant factor separately and
explicitly, writing p @ d. e3i .
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Theorem. Given the model

p @ d. e3i > 4 @ H+pUl,> (59)

one can¿nd� and� such that

H+Ul, @ �. �3�l> (60)

where�l are the multiple regression coef¿cients ofUl on i plus a constant. Conversely,
given a factor model of the form (60), one can¿ndd> e such that (59) holds.

Proof: We just have to construct the relation between+�>�, and+d>e, and show that it
works. Without loss of generality, fold the mean of the factorse3H+i , in the constant, so the
factors are mean zero. Start withp @ d. e3i , 4 @ H+pU,>and hence

H+U, @
4

H+p,
� fry+p>U,

H+p,
@

4

d
� H+Ui 3,e

d

�l is the vector of the appropriate regression coef¿cients,

�l�H
�
� 3

��4
H+iUl,>

so to get� in the formula, continue with

H+U, @
4

d
� H+Ui 3,H+� 3,�4H+� 3,e

d
@

4

d
� �3

H+� 3,e

d

Now, de¿ne�and� to make it work,

� � 4

H +p,
@

4

d
(61)

� � �4

d
H+� 3,e @� �H ^pi `

Using (61) we can just as easily go backwards from the expected return-beta representation
top @ d. e3i = �

Given either modelthere is a model of the other form. They are notunique. We can add to
p any random variable orthogonal to returns, and we can add risk factors with zero� and/or
� , leaving pricing implications unchanged. We can also express the multiple beta model as
a single beta model withp @ d. e3i as the single factor, or use its correspondingU�.

Equation (61) has an interesting interpretation.� captures the priceH+pi,of the (de-
meaned) factors brought forward at the risk free rate. More speci¿cally, if we start with
underlying factors�i such that the demeaned factors arei @ �i�H+�i,,

� � �� s
k
�i�H+�i,

l
@ ��

%
s+�i,�H+�i,

�

&
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� represents the price of the of the factors less their risk-neutral valuation, i.e. thefactor risk
premium. If the factors are not traded,� is the model’s predicted price rather than a market
price. Low prices are high risk premia, resulting in the negative sign.

Note that the “factors” need not be returns (though they may be)� they need not be orthog-
onal, and they need not be serially uncorrelated or conditionally or unconditionally mean-
zero. Such properties may occur as part of the economic derivation of the factor model,
i.e. showing how factors proxy for marginal utility growth, but they are not required for the
existence of a factor pricing representation.

Factor-mimicking portfolios.

It is often convenient to represent a factor pricing model in terms of portfolio returns rather
than underlying factors that are not returns.

An old trick

One common trick in this regard is to ¿nd portfolios of assets whose means are equal
to the factor risk premia. Construct a zero-cost portfolioUhd that has beta 1 on factord,
�dd @ 4 and�d{ @ 3 on all the other factors. The time series regression for this portfolio is

Uhd
w @ dd . 4� idw . 3� iew . ===. �dw > H+�dw i

l
w , @ 3= (62)

or, in a geometric language,

idw @ surm+Uhdmspace of factors,=

To construct such a portfolio, pick weights on basis assets to get the desired pattern of regres-
sion coef¿cients. The beta pricing model forUhd now implies

H+Uhd, @ �d=

Thus, even if a factor is not itself a return, we can¿nd a portfolio, related to the factors,
whose mean is the factor risk premium.

It would be nice to completely represent the asset pricing implications of the factor pricing
model in terms of portfolios likeUd, but these returns do not do the trick, because the betas
are still betas on the factor, not betas on the returns. We can interpret the returnUd from
(62) as the factor plus measurement error, so the betas of a generic returnUl on Uhd are
different from those ofUlonid. (Measurement error in right hand variables biases regression
coef¿cients.) Thus, while it is true that

H+Uhl, @ �l>idH+Uhd, . �l>ieH+Uhe, . ===>

it is not true that

H+Uhl, @ �l>UhdH+Uhd, . �l>UheH+Uhe, . ====
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A better idea

To¿nd a set of returns that can fully stand in for the factors, we have to project thefactors
on thepayoffs rather than vice versa, so that the error is orthogonal to payoffs. Recall that{�

is the projection ofp on the space of payoffs and is therefore a payoff that can stand in for
p. We have also used the idea that ifs @ H+p{, thens @ H +surm+pm[,{, to generate
a payoff in[ that captures all ofps pricing implications. We just apply the same idea to
the individual factors comprisingp: project thefactors on the space of payoffs. Since the
discount factorp is linear in the pricing factorsi , the projection is the same. I reserve the
termfactor mimicking portfolios for payoffs constructed in this way.

If, as is almost always the case, we only want to use excess returns, this projection partic-
ularly easy. Since[ @ Uh we project the factors on the set of excess returns, and the result
is itself an excess return

Uhd @ surm+idmUh,=

The factor-mimicking returnUhd then satis¿es

id @ Uhd . �d> H+�dUh, @ 3 ;Uh 5 Uh=

FromH+�dUh, @ 3> if p @ d.e3i @ d.e3 +Uh . �, prices assets, so willp @ d.e3Uh.
Thus we have found a set of excess returns that completely captures the pricing implications
of the original factors. From the above theorem relating discount factors to expected return -
beta representations, expected excess returns on all assets will obey

H+Uhl, @ �l>UhdH+Uhd, . �l>UheH+Uhe, . ====

The�l>Uhd are not equal to the�l>id andH+Uhd, 9@ �d, but the product explains expected
returns as well as the original factor model.

If we want to use returns, retaining the factor model’s predictions for the risk free rate, it
is a bit more complicated. It’s easy to de¿ne a factor mimickingpayoff by{� @ surm+pm[,,
and this would work exactly as in the last paragraph. But this payoff is not a return, since it
need not have price 1. If we want factor-mimickingreturns, we can proceed by analogy to
U�, which is created from{� byU� @ {�@s+{�,. De¿ne

{d @ surm+idm[,

and then

Ud @ � {d

� @ 4@s+{d,>

�Ud satis¿es

id @ �Ud . �d> H+�d{, @ 3 ;{ 5 [=
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Still linear functions of�Ud are linear functions ofUd sop linear in the returnsUd has the
same pricing implications asp linear ini . By the above theorem we once again can express
this as a beta pricing model,

H+Ul, @ �. �l>UdH+Ud � �, . �l>UeH+Ue � �, . ====

Again, the individual� and� @ H+Ud � �, terms are not the same as for the factors, but
the product is, so these factor-mimicking portfolios capture the full implications of the factor
model.

Why can’t we project on the space of returns directly? Because that isn’t a space: it does
not contain zero. To project on returns, you can’t just take linear combinations, you have to
add the side constraint that the weights always sum to one.

5.4 Testing for priced factors: lambdas or b’s?

em asks whether factor m helps to price assets given the other factors. em gives the multiple
regression coef¿cient of p on im given the other factors.

�m asks whether factor m is priced, or whether its factor-mimicking portfolio carries a
positive risk premium.�m gives thesingle regression coef¿cient ofp onim .

Therefore, when factors are correlated, one should testem @ 3 to see whether to include
factorm given the other factors rather than test�m @ 3.

Expected return-beta models de¿ned withsingle regression betas give rise to� with mul-
tiple regression interpretation that one can use to test factor pricing.

One is often not sure exactly what factors are important in pricing a cross-section of
assets. There are two natural ways to ask whether we should include a given factor. We can
ask whether the risk premium�m of a factor is zero, or we can ask whetherem is zero, i.e. if
the pricing factor enters in the discount factor. (Thee’s arenot the same as the�’s. e are the
regression coef¿cient ofp on i > � are the regression coef¿cients ofUl on i =)

Section 3.3 gave us the tools� In this section, I use those tools to compare the two ap-
proaches to testing factor pricing models.

e and� are related. Recall from (61) that when the model is expressedp @ d. e3i and
the factors de-meaned,

� � ��H+i i 3,e @� �H ^pi ` @� �s+i,

Thus, when the factors are orthogonal, each�m @ 3 if and only if the correspondingem @ 3.
The distinction betweene and� only matters when the factors are correlated. Factors are
often correlated however.
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�m captures whether factorim is priced. em captures whether factorim is marginally useful
in pricing assets, given the presence of other factors. Ifem @ 3, we can price assets just as
well without factorim as with it.

�m is proportional to thesingle regression coef¿cient ofpon i . �m @ �� fry+p> im,.
�m @ 3 asks the corresponding single regression coef¿cient question—“is factorm correlated
with the true discount factor?”

em is themultiple regression coef¿cient ofpon im given all the other factors. This just
follows fromp @ e3i . (Regressions don’t have to have error terms!) Amultiple regression
coef¿cient�m in | @ {� . % is the way to answer “does{m help to explain variation in|
given the presence of the other{’s?” When you want to ask the question, “should I include
factorm given the other factors?” you want to ask themultiple regression question. You want
to know if factorm hasmarginal explanatory power forp and hence for pricing assets. When
there is a difference — when the factors are correlated — you want to testem not�m .

Here is an example. Suppose the CAPM is true, which is the single factor model

p @ d. eUp

whereUp is the “market return.” Consider any other returnU{, positively correlated with
Up (x for extra). If we try a factor model with the spurious factorU{, the answer is

p @ d. eUp . 3�U{>

the correspondinge{ is obviously zero, indicating that adding this factor does not help to
price assets.

However, since the correlation ofU{ with Up and hencep is positiveU{ earns a positive
expected excess return, and�{ A 3. In the expected return - beta model

H+Ul, @ �. �lp�p . �l{�{

�p @ H+Up, � � is unchanged by the addition of the spurious factor. However, since the
factorsUp> U{ are correlated, the multiple regressionbetas of Ul on the factors change when
we add the extra factor{. For example,�lp may decline if�l{ is positive, so the new model
explains the same expected returnH+Ul,= Thus, the expected return - beta model will indicate
a risk premium for�{ exposure, and many assets will have�{ exposure (U{ for example!)
even though factorU{ is spurious.

So, as usual, the answer depends on the question. If you want to know whether factorl
is priced, look at� (or H+pi l,). If you want to know whether factorl helps to price other
assets, look atel. This is not an issue about sampling error or testing. All moments above are
population values.
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Chapter 6. Implications of existence and
equivalence theorems

Existence of a discount factor means s @ H+p{, is innocuous, and all content Àows from
the discount factor model.

The theorems apply to sample moments too� the dangers of ¿shing up ex-post or sample
mean-variance ef¿cient portfolios.

Sources of discipline in factor¿shing expeditions.

The joint hypothesis problem. How ef¿ciency tests are the same as tests of economic
discount factor models.

Factors vs. their mimicking portfolios.

Testing the number of factors.

The theorems on the existence of a discount factor, and the equivalence between thes @
H+p{,, expected return - beta, and mean-variance views of asset pricing have important
implications for how we approach and evaluate empirical work.

s @ H+p{, is innocuous

Before Roll (1976), expected return – beta representations had been derived in the con-
text of special and explicit economic models, especially the CAPM. In empirical work, the
success of any expected return - beta model seemed like a vindication of the whole structure.
The fact that, for example, one might use the NYSE value-weighted index portfolio in place
of the return on total wealth predicted by the CAPM seemed like a minor issue of empirical
implementation.

When Roll¿rst showed that mean-variance ef¿ciency implies a single beta representation,
all that changed.Some single beta representation always exists, since there is some mean-
variance ef¿cient return. The asset pricing model only serves to predict that a particular
return (say, the “market return”) will be mean-variance ef¿cient. Thus, if one wants to “test
the CAPM” it becomes much more important to be choosy about the reference portfolio, to
guard against stumbling on something that happens to be mean-variance ef¿cient and hence
prices assets by construction. This insight led naturally to the use of broader wealth indices
(Stambaugh 198x) in the reference portfolio.

(A very interesting and deep fact is that these attempts have been dismal failures. Us-
ing statistical measures, stocks are well priced by ad-hoc stock portfolios, bonds by bonds,
foreign exchange by foreign exchange and so on. More recently, stocks sorted on size,
book/market, and past performance characteristics are priced by portfolios sorted on those
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characteristics. Covariances with the returns on each form of wealth have very little explana-
tory power for expected returns of other forms of wealth. The fundamental idea that assets
gain expected return premia by covariance with, and hence diversi¿cation of, the widest pos-
sible portfolio seems to fail against the alternative that expected return premia are determined
by fairly narrow portfolios. This fact suggests that risks are not as well shared as in our
models.)

The good news in this existence theorem is that you can always start by writing an ex-
pected return-beta model, knowing that almost no structure has been imposed in so doing.
The bad news is that you haven’t gotten very far by doing this. All the economic, statistical
and predictive content comes in picking the factors.

The more modern statement of the same theorem (Ross 1978, Harrison and Kreps 1979)
is that, from the law of one price, there existssome discount factorp such thats @ H+p{,.
The content is all inp @ i+data, not in s @ H+p{,. Again, an asset pricing framework
that initially seemed to require a lot of completely unbelievable structure–the representative
consumer consumption-based model in complete frictionless markets–turns out to require
(almost) no structure at all. Again, the good news is that you can always start by writing
s @ H+p{,, and need not suffer criticism about hidden contingent claim or representative
consumer assumptions in so doing. The bad news is that you haven’t gotten very far by
writing s @ H+p{, as all the economic, statistical and predictive content comes in picking
the discount factor modelp @ i+data).

Ex-ante and ex-post.

I have been deliberately vague about the probabilities underlying expectations and other
moments in the theorems. The fact is, the theorems hold for anyset of probabilities4. Thus,
the theorems work equally well ex-anteas ex-post: H+p{,> �> H+U, and so forth can refer
to agent’s subjective probability distributions, objective population probabilities, or to the
moments realized in a given sample.

Thus, if the law of one price holds in a sample, one may form an{� from sample moments
that satis¿ess+{, @ H+{�{,> exactly, in that sample, wheres+{, refers to observed prices
andH+{�{, refers to the sample average. Equivalently, if thesample covariance matrix of
a set of returns is nonsingular, there exists anex-postmean-variance ef¿cient portfolio for
which sample average returns line up exactly with sample regression betas.

This observation, it seems to me, points to a great danger in the widespread exercise
of searching for and statistically evaluating ad-hoc asset pricing models. Such models are
guaranteed empirical success in a sample if one places little enough structure on what is
included in the discount factor function. The only reason the model doesn’t workperfectly is
whatever restrictions the researcher has imposed on the number or identity factors included
in p, or the parameters of the function relating the factors top. Since these restrictions are
the entire content of the model, they had better be interesting, carefully described and well
motivated!

e Precisely, any set of probabilities that agree on agree on impossible (zero-probability) events.
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Obviously, this is typically not the case or I wouldn’t be making such a fuss about it. Most
empirical asset pricing research posits an ad-hoc pond of factors,¿shes around a bit in that
set, and reports statistical measures that show “success,” in that the model is not statistically
rejected in pricing an ad-hoc set of portfolios. The set of discount factors is usually not large
enough to give the zero pricing errors we know are possible, yet the boundaries are not clearly
de¿ned.

Discipline

What is wrong, you might ask, with¿nding an ex-post ef¿cient portfolio or{� that prices
assets by construction? Perhaps the lesson we should learn from the existence theorems is to
forget about economics, the CAPM, marginal utility and all that, and simply price assets with
ex-post mean variance ef¿cient portfolios that we know set pricing errors to zero!

The mistake is that a portfolio that is ex-post ef¿cient in one sample, and hence prices
all assets in that sample, is unlikely to be mean-variance ef¿cient, ex-ante or ex-post, in the
next sample, and hence is likely to do a poor job of pricing assets in the future. Similarly,
the portfolio{� @ s3H+{{3,�4{ (using the sample second moment matrix) that is a discount
factor by construction in one sample is unlikely to be a discount factor in the next sample�
the required portfolio weightss3H+{{3,�4 change, often drastically, from sample to sample.

For example, suppose the CAPM is true, the market portfolio is ex-ante mean-variance ef-
¿cient, and sets pricing errors to zero if you use true or subjective probabilities. Nonetheless,
the market portfolio is unlikely to beex-postmean-variance ef¿cient in any given sample. In
any sample, there will be lucky winners and unlucky losers. Anex-postmean variance ef-
¿cient portfolio will be a Monday-morning quarterback� it will tell you to put large weights
on assets that happened to be lucky in a given sample, but are no more likely than indicated
by their betas to generate high returns in the future. “Oh, if I had only bought Microsoft in
1982...” is not a useful guide to forming a mean-variance ef¿cient portfolio today.

The only solution is to impose some kind of discipline in order to avoid dredging up
spuriously good in-sample pricing.

The situation is the same as in traditional regression analysis. Regressions are used to
forecast or to explain a variable| by other variables{ in a regression| @ {3� . %. By
blindly including right hand variables, one can produce models with arbitrarily good statis-
tical measures of¿t. But this kind of model is typically unstable out of sample or otherwise
useless for explanation or forecasting. One has to carefully and thoughtfully limit the search
for right hand variables{ to produce good models.

What makes for an interesting set of restrictions? Econometricians wrestling with| @
{3� . % have been thinking about this question for about 50 years, and the best answers
are 1) use economic theory to carefully specify the right hand side and 2) use a battery of
cross-sample and out-of-sample stability checks.

Alas, this advice is hard to follow. Economic theory is usually either silent on what
variables to put on the right hand side, or allows a huge range of variables. The same is true
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in ¿nance. “What are the fundamental risk factors?” is still an unanswered question. At the
same time one can appeal to the APT and ICAPM to justify the inclusion of just about any
desirable factor (Fama 1991 calls these theories a “¿shing license.”) Thus, you will grow old
waiting for theorists to provide useful answers to this kind of question.

Following the purely statistical advice, the battery of cross-sample and out-of-sample tests
usually reveals the model is unstable, and needs to be changed. Once it is changed, there is
no more out-of-sample left to check it. Furthermore, even if one researcher is pure enough
to follow the methodology of classical statistics, and wait 50 years for another fresh sample
to be available before contemplating another model, his competitors and journal editors are
unlikely to be so patient. In practice, then, out of sample validation is not a strong guard
against¿shing.

Nonetheless, these are the only standards we have to guard against¿shing. In my opinion,
the best hope for¿nding pricing factors that are robust out of samples and across different
markets, is to try to understand the fundamental macroeconomic sources of risk. By this I
mean, tying asset prices to macroeconomic events, in the way the ill-fated consumption based
model does viapw.4 @ �x3+fw.4,@x

3+fw,. The dif¿culties of the consumption-based model
has made this approach lose favor in recent years. However, the alternative approach is also
running into trouble: every time a new anomaly or data set pops up, a new set of ad-hoc
factors gets created to explain them! Also models speci¿ed with economic fundamentals
will always seem to do poorly in a given sample against ad-hoc variables (especially if one
¿shes an ex-post mean-variance ef¿cient portfolio out of the latter!). But what other source
of discipline do we have?

In any case, one should always ask of a factor model, “what is the compelling economic
story that restricts the range of factors used?” and / or “whatstatistical restraints are used
to keep from discovering ex-post mean variance ef¿cient portfolios, or to ensure that the
results will be robust across samples?” The existence theorems tell us that the answers to
these questions are theonly content of the exercise. If the purpose of the model is not just
to predict asset prices but also toexplain them, this puts an additional burden on careful
economic motivation of the risk factors.

There is a natural resistance to such discipline built in to our current statistical methodol-
ogy for evaluating models (and papers). When the last author¿shed around and produced a
popular though totally ad-hoc factor pricing model that generates 1% average pricing errors,
it is awfully hard to persuade readers, referees, journal editors, and clients that your econom-
ically motivated factor pricing model is better despite 2% average pricing errors. Your model
may really be better and will therefore continue to do well out of sample when the¿shed
model falls by the wayside of¿nancial fashion, but it is hard to get past statistical measures
of in-sample¿t. One hungers for a formal measurement of the number of hurdles imposed
on a factor¿shing expedition, like the degrees of freedom correction in�U5. Absent a numer-
ical correction, we have to use judgment to scale back apparent statistical successes by the
amount of economic and statistical¿shing that produced them.

Irrationality and Joint Hypothesis
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Finance contains a long history of ¿ghting about “rationality” vs. “irrationality” and
“ef¿ciency” vs. “inef¿ciency” of asset markets. The results of many empirical asset pricing
papers are sold as evidence that markets are “inef¿cient” or that investors are “irrational.” For
example, the crash of October 1987, and various puzzles such as the small-¿rm, book/market,
seasonal effects or long-term predictability (discussed below) have all been sold this way.

However, none of these puzzles documents an arbitrage opportunity5. Therefore, we
know that there isa “rational model”–a stochastic discount factor,an ef¿cient portfolio to use
in a single-beta representation—that rationalizes them all. And we can con¿dently predict
this situation to continue� real arbitrage opportunities do not last long! Fama (1970) contains
a famous statement of the same point. Fama emphasized that any test of “ef¿ciency” is ajoint
test of ef¿ciency and a “model of market equilibrium.” Translated, an asset pricing model, or
a model ofp.

But surely markets can be “irrational” or “inef¿cient” without requiringarbitrage op-
portunities? Yes, they can, if the discount factors that generate asset prices are disconnected
from marginal rates of substitution or transformation in the real economy. But now we are
right back to specifying and testing economic models of the discount factor! At best, an as-
set pricing puzzle might be so severe that we can show that the required discount factors
are completely “unreasonable” (by some standard) measures of marginal rates of substitution
and/or transformation, but we still have to saysomething about what a reasonable marginal
rate looks like.

In sum, the existence theorems mean that there are no quick proofs of “rationality” or
“irrationality.” The only game in town for the purpose ofexplaining asset prices is thinking
about economic models of the discount factor.

Mimicking portfolios

The theorem{� @ surm+pm[, also has interesting implications for empirical work. The
pricing implications of any model can be equivalently represented by its factor-mimicking
portfolio. If there is any measurement error in a set of economic variables drivingp, the
factor-mimicking portfolios will price assets better.

Thus, it is probably not a good idea to evaluate economically interesting models with
statistical horse races against models that use portfolio returns as factors. Economically in-
teresting models, even if true and perfectly measured, will just equal the performance of their
own factor-mimicking portfolios, even in large samples. They will always lose in sample
against ad-hoc factor models that¿nd nearly ex-post ef¿cient portfolios.

This said, there is an important place for models that use returns as factors.After we
have found the underlying true macro factors, practitioners will be well advised to look at
the factor-mimicking portfolio on a day-by-day basis. Good data on the factor-mimicking
portfolios will be available on a minute-by-minute basis. For many purposes, one does not

D The closed-end fund puzzle comes closest since it documents an apparent violation of the law of one price.
However, you can’t costlessly short closed end funds, and we have ignored short sales constraints so far.
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have to understand the economic content of a model. But this fact does not tell us to cir-
cumvent the process of understanding the true macroeconomic factors by simply¿shing for
factor-mimicking portfolios. The experience of practitioners who use factor models seems
to bear out this advice. Large commercial factor models resulting from extensive statistical
analysis (otherwise known as¿shing) perform poorly out of sample, as revealed by the fact
that the factors and loadings (�) change all the time.

The number of factors.

Many assets pricing tests focus on thenumber of factors required to price a cross-section
of assets. The equivalence theorems imply that this is a silly question. A linear factor model
p @ e3i or its equivalent expected return / beta modelH+Ul, @ �. �3li�i are not unique
representations. In particular, given any multiple-factor or multiple-beta representation we
can easily¿nd a single-beta representation. The single factorp @ e3i will price assets
just as well as the original factorsi , as will {� @ surm+e3i m [, or the corresponding
U�. All three options give rise to single-beta models with exactly the same pricing ability as
the multiple factor model. We can also easily¿nd equivalent representations with different
numbers (greater than one) of factors. For example, write

p @ d. e4i4 . e5i5 . e6i6 @ d. e4i4 . e5

�
i5 .

e6
e5
i6

�
@ d. e4i4 . e5 ai5

to reduce a “three factor” model to a “two factor” model. In the ICAPM language, consump-
tion itself could serve as a single state variable, in place of theV state variables presumed to
drive it.

There is a reason to be interested in a multiple factor representation. Sometimes the
factors have an economic interpretation that is lost on taking a linear combination. But the
purenumber of pricing factors is not a meaningful question.

6.1 Discount factors vs. mean, variance and beta.

The essential difference is contingent claims as the commodity space rather than portfolio
return moments.

The point of the previous chapter was to show how the discount factor, mean-variance,
and expected return- beta models are all equivalent representations of asset pricing. It seems
a good moment to contrast them as well� to understand why the mean-variance and beta
language developed¿rst, and to think about why the discount factor language seems to be
taking over.

Asset pricing started by putting mean and variance of returns on the axes, rather than
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payoff in state 1 payoff in state 2, etc. as we do now. The early asset pricing theorists posed
the question just right: they wanted to treat assets in the apples-and-oranges, indifference
curve and budget set framework of macroeconomics. The problem was, what labels to put
on the axis? Clearly, “IBM stock” and “GM stock” is not a good idea� investors do not
value securities per se, but value some aspects of the stream of random cashÀows that those
securities give rise to.

Mean and variance of portfolios returns is a natural speci¿cation of two characteristics to
be traded off. Investors plausibly want more mean and less variance. Thus, the early theorists
put portfolio mean and variance on the axes. They gave investors “utility functions” de¿ned
over this mean and variance the way standard utility functions are de¿ned over apples and
oranges. The mean-variance frontier is the “budget set”.

With this focus on portfolio mean and standard deviation, the next step was to realize
that each security’s mean return measures its contribution to the portfolio mean, and that
regression betas on the overall portfolio give each security’s contribution to the portfolio
variance. Mean return vs. beta descriptions for each security (hence,Ul) was born.

In a deep sense, the transition from mean-variance frontiers and beta models to discount
factors represents the realization that putting consumption in state 1 and consumption in
state 2 on the axes — specifying preferences and budget constraints over state-contingent
consumption — is a much more natural mapping of standard microeconomics into¿nance
than putting mean, variance, etc. on the axes. If for no other reason, the contingent claim
budget constraints are linear, while the mean-variance frontier is not. Thus, I think, the focus
on means and variance, the mean-variance frontier and expected return/beta models is all
due to an accident of history, that the early asset pricing theorists happened to put mean and
variance on the axes rather than state contingent consumption. If Arrow or Debreu (195x),
who invented state-contingent claims, had taken on asset pricing, we might never have heard
of these constructs.

Well, here we are, why prefer one language over another? I prefer the discount factor lan-
guage for its simplicity, generality, mathematical convenience, and elegance. These virtues
are to some extent in the eye of the beholder, but to this beholder, it is inspiring to be able
to startevery asset pricing calculation with one equation,s @ H+p{,. s @ H+p{, covers
all assets, including bonds, options, and real investment opportunities, while the expected re-
turn/beta formulation is not useful or very cumbersome in the latter applications. Thus, it has
seemed that there are several different asset pricing theories: expected return/beta for stocks,
yield-curve models for bonds, arbitrage models for options. In fact all three are just cases
of s @ H+p{,=As a particular example,arbitrage, in the precise sense of positive payoffs
with negative prices, has not entered the equivalence discussion at all. I don’t know of any
way to cleanly graft absence of arbitrage on to expected return/beta models. You have to tack
it on after the fact – “by the way, make sure that every portfolio with positive payoffs has a
positive price.” It is trivially easy to graft it on to a discount factor model: just addp A 3.

The choice of language isnot about normality or return distributions. There is a lot of
confusion about where return distribution assumptions show up in¿nance. I have madeno
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distributional assumptions in any of the discussion so far. Second moments show up because
s @ H+p{, involves a second moment. One does not need to assume normality to talk about
the mean-variance frontier, or for returns on the frontier to price other assets.
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Chapter 7. Conditioning information
The asset pricing theory I have sketched so far really describes prices at time w in terms of
conditional moments. The investor’s ¿rst order conditions are

swx
3+fw, @ �Hw ^x

3+fw.4,{w.4`

whereHw means expectationconditional on the investor’s timew information. Sensibly, the
price at timew should be higher if there is information at timew that the discounted payoff is
likely to be higher than usual at timew. 4= The basic asset pricing equation should be

sw @ Hw+pw.4{w.4,=

(Conditional expectation can also be written

sw @ H ^pw.4{w.4mLw`
when it is important to specify theinformation set Lw.)=

If payoffs and discount factors were independent and identically distributed (i.i.d.) over
time, then conditional expectations would be the same as unconditional expectations and
we would not have to worry about the distinction between the two concepts. But stock
price/dividend ratios, bond and option prices all change over time, which must reÀect chang-
ing conditional moments of something on the right hand side.

One approach is to specify and estimate explicit statistical models of conditional distribu-
tions of asset payoffs and discount factor variables (e.g. consumption growth). This approach
is sometimes used, and is useful in some applications, but it is usually cumbersome. As we
make the conditional mean, variance covariance and other parameters of the distribution of
(say)Q returns dependÀexibly onP information variables, the number of required param-
eters can quickly exceed the number of observations.

More importantly, this explicit approach typically requires us to assume that investors use
the same model of conditioning information that we do. We obviously don’t even observe all
the conditioning information used by economic agents, and we can’t include even a fraction
of observed conditioning information in our models. The basic feature and beauty of asset
prices (like all prices) is that they summarize an enormous amount of information that only
individuals see. The events that make the price of IBM stock change by a dollar, like the
events that make the price of tomatoes change by 10 cents, are inherently unobservable to
economists or would-be social planners (Hayek 194x). Whenever possible, our treatment of
conditioning information should allow agents to see more than we do.

If we don’t want to model conditional distributions explicitly, and if we want to avoid as-
suming that investors only see the variables that we include in an empirical investigation, we
eventually have to think about unconditional moments, or at least moments conditioned on
less information than agents see. Unconditional implications are also interesting in and of
themselves. For example, we may be interested in¿nding out why the unconditional mean
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returns on some stock portfolios are higher than others, even if every agent fundamentally
seeks high conditional mean returns. Most statistical estimation essentially amounts to char-
acterizing unconditional means, as we will see in the chapter on GMM. Thus, rather than
model conditional distributions, this chapter focuses on what implications forunconditional
moments we can derive from theconditional theory.

7.1 Scaled payoffs

sw @ Hw+pw.4{w.4, , H+sw}w, @ H+pw.4{w.4}w,

One can incorporate conditioning information by addingscaled payoffs and doing everything
unconditionally. I interpret scaled returns as payoffs tomanaged portfolios.

7.1.1 Conditioning down

The unconditional implications of any pricing model are pretty easy to state. From

sw @ Hw+pw.4{w.4,

we can take unconditional expectations to obtain6

H+sw, @ H+pw.4{w.4,= (63)

Thus, if we just interprets to stand forH+sw,, everything we have done above applies
to unconditional moments. In the same way, we can also condition down from agents’¿ne
information sets to coarser sets that we observe,

sw @ H+pw.4Uw.4 m , , H+swmL � , @ H+pw.4Uw.4 m L � ,

, sw @ H+pw.4Uw.4 m Lw � w, if sw 5 Lw=

In making the above statements I used thelaw of iterated expectations, which is important
enough to highlight it. This law states that if you take an expected value using less informa-
tion of an expected value that is formed on more information, you get back the expected value
using less information. Your best forecast today of your best forecast tomorrow is the same

S We need a small technical assumption that the unconditional moment or moment conditioned on a coarser

information set exists. For example, if f and t are normal Efc ��, then .
�
f

t
�t

�
' f but .

�
f

t

�
is in¿nite.
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as your best forecast today. In various useful guises,

H+Hw+{,, @ H+{,>

Hw�4+Hw+{w.4,, @ Hw�4+{w.4,

H ^H+{m, m L � ` @ H ^{mL`

7.1.2 Instruments and managed portfolios

We can do more than just condition down. Suppose we multiply the payoff and price by an
instrument }w observed at time w. Then,

}wsw @ Hw+pw.4{w.4}w,

and, taking unconditional expectations,

H+sw}w, @ H+pw.4{w.4}w,= (64)

This is an additional implication of the conditional model, not captured by just conditioning
down as in (63). This trick originates from the GMM method of estimating asset pricing mod-
els, discussed below. The wordinstruments for the} variables comes from theinstrumental
variables estimation heritage of GMM.

To think about equation (64), group+{w.4}w,. Call this product apayoff { @ {w.4}w,
with price s @ H+sw}w,. Then 64 reads

s @ H+p{,

once again. Rather than thinking about (64) as a instrumental variables estimate of a condi-
tional model, we can think of it as a price and a payoff, and apply all the asset pricing theory
directly.

This interpretation is not as arti¿cial as it sounds.}wUw.4 are the payoffs tomanaged
portfolios. An investor who observes}w can, rather than “buy and hold,” invest in an asset
according to the value of}w. For example, if a high value of}w forecasts that asset returns are
likely to be high the next period, the investor might buy more of the asset when}w is high and
vice-versa. If the investor follows a linear rule, he puts}w dollars into the asset each period
and receives}wUw.4 dollars the next period. If he does this,}w and}wUw.4 really are prices
and payoffs.

This all sounds new and different, but practically every test uses managed portfolios.
For example, the size, beta, industry, book/market and so forth portfolios of stocks are all
managed portfolios, since their composition changes every year in response to conditioning
information – the size, beta, etc. of the individual stocks. This idea is also closely related
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to the deep idea of dynamic spanning. Markets that are apparently very incomplete can in
reality provide many more state-contingencies through dynamic (conditioned on information)
trading strategies.

Equation (64) offers a very simple view of how to incorporate the extra information in
conditioning information:Add managed portfolio payoffs, and proceed with unconditional
moments as if conditioning information didn’t exist!

Linearity is not important. If the investor wanted to place, say, 5 . 6}5 dollars in the
asset, we could capture this desire with an instrument }5 @ 5. 6}5. Nonlinear (measurable)
transformations of time�w random variables are again random variables.

We can thus incorporate conditioning information while still looking at unconditional
moments instead of conditional moments, without any of the statistical machinery of explicit
models with time-varying moments. The only subtleties are 1) The set of asset payoffs ex-
pands dramatically, since we can consider all managed portfolios as well as basic assets,
potentially multiplying every asset return by every information variable. 2) Expected prices
of managed portfolios show up fors instead of justs @ 3 ands @ 4 if we started with basic
asset returns and excess returns.

7.2 Suf¿ciency of adding scaled returns

Checking the expected price of all managed portfolios is, in principle, suf¿cient to check
all the implications of conditioning information.

H+}w, @ H+pw.4Uw.4}w, ;}w 5 Lw , 4 @ Hw+pw.4Uw.4,

H+sw, @ H+pw.4{w.4, ; {w.4 5 [w.4 , sw @ Hw+pw.4{w.4,

We have shown that we can derivesome extra implications from the presence of con-
ditioning information by adding scaled returns. But does this exhaust the implications of
conditioning information? Are we missing something important by relying on this trick?
The answer is, in principleno.

I rely on the following mathematical fact: The conditional expectation of a variable|w.4
given an information setLw, H+|w.4 m Lw, is equal to a regression forecast of|w.4 using every
variable}w 5 Lw. Now, “every random variable” means every variable and every nonlinear
(measurable) transformation of every variable, so there are a lot of variables in this regression!
(The wordprojection andsurm+|w.4m}w, is used to distinguish the best forecast of|w.4 using
only linear combinations of}w from the conditional expectation.) Applying this fact to our
case, let|w.4 @ pw.4Uw.4 � 4= ThenH ^+pw.4Uw.4 � 4, }w` @ 3 for every}w 5 Lw implies
4 @ H+pw.4Uw.4 m Lw,. Thus, no implications are lost in principle by looking at scaled
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returns.

“All linear and nonlinear transformations of all variables observed at timew” sounds like a
lot of instruments, and it is. But there is a practical limit to the number of instruments}w one
needs to scale by, since only variables that forecast returns orp +or their higher moments)
add any information.

Since adding instruments is the same thing as including potential managed portfolios,
thoughtfully choosing a few instruments is thesame thing as the thoughtful choice of a few
assets or portfolios that one makes in any test of an asset pricing model. Even when evaluating
completely unconditional asset pricing models, one always forms portfolios and omits many
possible assets from analysis. Few studies, in fact, go beyond checking whether a model
correctly prices 10-25 stock portfolios and a few bond portfolios. Implicitly, one feels that
the chosen payoffs do a pretty good job of spanning the set of available risk-loadings (mean
returns) and hence that adding additional assets will not affect the results. Nonetheless, since
data are easily available on all 2000 or so NYSE stocks, plus AMEX and NASDAQ stocks, to
say nothing of government and corporate bonds, returns of mutual funds, foreign exchange,
foreign equities, real investment opportunities, etc., the use of a few portfolios means that a
tremendous number of potential asset payoffs are left out in an ad-hoc manner.

In a similar manner, if one had a small set of instruments that capture all the predictability
of discounted returnspw.4Uw.4, then there would be no need to add more instruments.
Thus, we carefully but arbitrarily select a few instruments that we think do a good job of
characterizing the conditional distribution of returns. Exclusion of potential instruments is
exactly the same thing as exclusion of assets. It is no better founded, but the fact that it is a
common sin may lead one to worry less about it.

There is nothing special about unscaled returns, and no economic reason to place them
above scaled returns. A mutual fund might come into being that follows the managed port-
folio strategy and then itsunscaled returns would be the same as an original scaled return.
Models that cannot price scaled returns are no more interesting than models that can only
price (say) stocks with¿rst letter A through L. (There may be econometric reasons to trust
results for nonscaled returns a bit more, but we haven’t gotten to statistical issues yet.)

Of course, the other way to incorporate conditioning information is by constructing ex-
plicit parametric models of conditional distributions. With this procedure one can in fact
checkall of a model’s implications about conditional moments. However, the parametric
model may be incorrect, or may not reÀect some variable used by investors. Including in-
struments may not be as ef¿cient, but it is still consistent if the parametric model is incorrect.
The wrong parametric model of conditional distributions may lead to inconsistent estimates.
In addition, one avoids estimating nuisance parameters of the parametric distribution model.

7.3 Conditional and unconditional models
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A conditional factor model does not imply a ¿xed-weight or unconditional factor model:

pw.4 @ e3wiw.4> sw @ Hw+pw.4{w.4, does not imply that<e v=w= pw.4 @ e3iw.4> H+sw, @
H+pw.4{w.4,=

Hw+Uw.4, @ �3w�w does not implyH+Uw.4, @ �3�=

Conditional mean-variance ef¿ciency does not imply unconditional mean-variance ef¿-
ciency.

The converse statements are true, if managed portfolios are included.

For explicit discount factor models—models whose parameters are constant over time—
the fact that one looks at a conditional vs. unconditional implications makes no difference to
the statement of the model.

sw @ Hw+pw.4{w.4, , H+sw, @ H+pw.4{w.4,

and that’s it. Examples include the consumption-based model with power utility,pw.4 @
�+fw.4@fw,

�� , and the log utility CAPM,pw.4 @ 4@UZ
w.4=

However, linear factor models include parameters that may vary over time. In these cases
the transition from conditional to unconditional moments is much more subtle. We cannot
easily condition down the model at the same time as the prices and payoffs.

7.3.1 Conditional vs. unconditional factor models in discount factor language

As an example, consider the CAPM

p @ d� eUZ

whereUZ is the return on the market or wealth portfolio. We can¿nd d ande from the
condition that this model correctly price any two returns, for exampleUZ itself and a risk-
free rate:

�
4 @ Hw+pw.4U

Z
w.4,

4 @ Hw+pw.4,U
i
w

,
;?
=

d @ 4

Uiw
. eHw+UZ

w.4,

e @
Hw+U

Z
w.4,�U

i
w

Uiw �
5
w +U

Z
w.4,

= (65)

As you can see,e A 3 andd A 3: to make a payoff proportional to the minimum second-
moment return (on the inef¿cient part of the mean-variance frontier) we need a portfolio long
the risk free rate and short the marketUZ .

More importantly for our current purposes,d and e vary over time, asHw+U
Z
w.4,> �

5
w +U

Z
w.4,,

and Ui
w vary over time. If it is to price assets conditionally, the CAPM must be a linear factor

model with time-varying weights, of the form

pw.4 @ dw . ewU
Z
w.4=
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This fact means that we can no longer transparently condition down. The statement that

4 @ Hw

�
+dw . ewU

Z
w.4,Uw.4

�
does not imply that we can ¿nd constants d and e so that

4 @ H
�
+d. eUZ

w.4,Uw.4

�
=

Just try it. Taking unconditional expectations,

4 @ H
�
+dw . ewU

Z
w.4,Uw.4

�
@ H

�
dwUw.4 . ewU

Z
w.4Uw.4

�

@ H+dw,H+Uw.4, .H+ew,H+UZ
w.4Uw.4, . fry+dw> Uw.4, . fry+ew> U

Z
w.4Uw.4,

Thus, the unconditional model

4 @ H
��
H+dw, .H+ew,U

Z
w.4

�
Uw.4

�
only holds if the covariance terms above happen to be zero. Since dw and ew are formed from
conditional moments of returns, the covariances will not, in general be zero. (To be a little
more precise, I have shown that one choice of d and e, d @ H+dw, and e @ H+ew,, will not
work. However, if there is any d and e that work, they must be d @ H+dw, and e @ H+ew,.
Thus, in fact, we have shown that there is no d and e that work, unless the covariance terms
are zero.)

On the other hand, suppose it is true that dw and ew are constant over time. Then

4 @ Hw

�
+d. eUZ

w.4,Uw.4

�
does imply

4 @ H
�
+d. eUZ

w.4,Uw.4

�
>

just like any other constant-parameter factor pricing model. Furthermore, the latter uncondi-
tional model implies the former conditional model, if the latter holds for all managed portfo-
lios.

7.3.2 Conditional vs. unconditional in an expected return / beta model

To put the same observation in beta-pricing language,

Hw+U
l, @ Ui

w . �w�w (66)

doesnot imply that

H+Ul, @ �. �� (67)
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The reason is that �w and � represent conditional and unconditional regression coef¿cients
respectively.

Again, if returns and factors are i.i.d., the unconditional model can go through. In that
case, fry+�, @ fryw+�,, ydu+�, @ yduw+�,, so the unconditional regression beta is the same as
the conditional regression beta, � @ �w. Then, we can take expectations of (66) to get (67),
with � @ H+�w,. If the betas do not vary over time, the � may still vary and � @ H+�w,.

To condition down, the covariance and variance must each be constant over time. It is not
enough that their ratio, or conditional betas are constant. If fryw and yduw change over time,
then the unconditional regression beta, � @ fry@ydu is not equal to the average conditional
regression beta, H+�w, or H+fryw@yduw,= Some models specify that fryw and yduw vary over
time, but fryw@yduw is a constant. This speci¿cation still does not imply that the unconditional
regression beta � � fry@ydu is equal to the constant fryw@yduw. Similarly, it is not enough
that � be constant, since H+�w, 9@ �. The betas must be regression coef¿cients, not just
numbers.

7.3.3 A precise statement.

Let’s formalize these observations somewhat. Let[ denote the space of all portfolios of the
primitive assets,including managed portfolios in which the weights may depend on condi-
tioning information, i.e. scaled returns.

A conditional factor pricing model is a modelpw.4 @ dw . e3wiw.4 that satis¿essw @
Hw.4+pw.4{w.4, for all {w.4 5[.

An unconditional factor pricing model is modelpw.4 @ d . e3iw.4 satis¿esH+sw, @
H+pw.4{w.4, for all {w.4 5 [. It might be more appropriately called a¿xed-weight factor
pricing model.

Given these de¿nitions, and the fact that the unconditional moment conditions are equiv-
alent to the conditional moments since all managed portfolios are in[ it’s almost trivial that
the unconditional model is just a special case of the conditional model, one that happens to
have¿xed weights. Thus,a conditional factor model does not imply an unconditional fac-
tor model(because the weights may vary) but an unconditional factor model does imply a
conditional factor model.

It’s important to remember that the unconditional model must price must price the man-
aged portfolios too. For example, we might simply check that the static (constantd> e,CAPM
captures the unconditional mean returns of a set of assets. If this model does not also price
those assetsscaled by instruments, then it is not a conditional model, or, as I argued above,
really a model at all.

Of course, everything applies for the relation between a conditional factor pricing model
using a¿ne information set (like investors’ information sets) and conditional factor pricing
models using coarser information sets (like ours). If you think a set of factors prices assets
with respect to investors’ information, that does not mean the same set of factors prices assets
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SECTION 7.3 CONDITIONAL AND UNCONDITIONAL MODELS

with respect to our, coarser, information sets.

7.3.4 Mean-variance frontiers

De¿ne the conditional mean-variance frontieras the set of returns that minimize yduw+Uw.4,
given Hw+Uw.4, (including the “inef¿cient” lower segment as usual). De¿ne theuncondi-
tional mean-variance frontieras the set of returns including managed portfolio returnsthat
minimize ydu+Uw.4, given H+Uw.4,. These two frontiers are related by:

If a return is on the unconditional mean-variance frontier, it is on the conditional
mean-variance frontier.

However,

If a return is on the conditional mean-variance frontier, it need not be on the unconditional
mean-variance frontier.

These statements are exactly the opposite of what you ¿rst expect from the language. The
law of iterated expectations H+Hw+{,, @ H+{, leads you to expect that “conditional” should
imply “unconditional.” But we are studying the conditional vs. unconditional mean-variance
frontier, not raw conditional and unconditional expectations, and it turns out that exactly the
opposite words apply.

Again, keep in mind that the unconditional mean variance frontierincludes returns on
managed portfolios. This de¿nition is eminently reasonable. If you’re trying to minimize
variance for given mean, why tie your hands to¿xed weight portfolios? Equivalently, why
not allow yourself to include in your portfolio the returns of mutual funds whose advisers
promise the ability to adjust portfolios based on conditioning information?

You could form a mean-variance frontier of¿xed-weight portfolios of a basis set of assets,
and this is what many people often mean by “unconditional mean-variance frontier.” The re-
turn on the true unconditional mean-variance frontier will, in general, include some managed
portfolio returns, and so will lie outside thismean-variance frontier of¿xed-weight portfolios.
Conversely, a return on the ¿xed-weight portfolio MVF is, in general,not on the uncondi-
tional or conditional mean-variance frontier. All we know is that the¿xed-weight frontier lies
inside the other two. It may touch, but it need not. This is not to say the¿xed-weight uncon-
ditional frontier is uninteresting. For example, returns on this frontier will price¿xed-weight
portfolios of the basis assets. The point is that this frontier has no connection to the other two
frontiers. In particular, a conditionally mean-variance ef¿cient return (conditional CAPM)
need not unconditionally price the¿xed weight portfolios.

I offer several ways to see this important statement.
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Using the connection to factor models

We have seen that the conditional CAPM pw.4 @ dw � ewU
Z
w.4 does not imply an uncon-

ditional CAPMpw.4 @ d � eUZ
w.4. We have seen that the existence of such a conditional

factor model is equivalent to the statement that the returnUZ
w.4 lies on the conditional mean-

variance frontier, and the existence of an unconditional factor modelpw.4 @ d � eUZ
w.4 is

equivalent to the statement thatUZ is on the unconditional mean-variance frontier. Then,
from the “trivial” fact that an unconditional factor model is a special case of a conditional
one, we know thatUZ on the unconditional frontier impliesUZ on the conditional frontier
but not vice-versa.

Using the orthogonal decomposition

We can see the relation between conditional and unconditional mean-variance frontiers using
the orthogonal decomposition characterization of mean-variance ef¿ciency given above. This
beautiful proof is the main point of Hansen and Richard (1987).

By the law of iterated expectations,{� andU� generate expected prices andUh� generates
unconditional means as well as conditional means:

H ^s @ Hw+{
�{,` , H+s, @ H+{�{,

H
�
Hw+U

�5, @ Hw+U
�U,

� , H+U�5, @ H+U�U,

H ^Hw+U
h�Uh, @ Hw+U

h,` , H+Uh�Uh, @ H+Uh,

This fact is subtle and important. For example, starting with{� @ s3wHw+{w.4{
3
w.4,

�4{w.4,
you might think we need a different{�> U�> Uh� to represent expected prices and uncon-
ditional means, using unconditional probabilities to de¿ne inner products. The three lines
above show that this is not the case. The same old{�, U�> Uh� represent conditional as well
as unconditional prices and means.

Recall that a return is mean-variance ef¿cient if and only if it is of the form

Upy @ U� .zUh�=

Thus,Upy is conditionally mean-variance ef¿cient ifz is any number in the timew informa-
tion set.

conditional frontier:Upy
w.4 @ U�w.4 .zwU

h�
w.4>

andUpy is unconditionally mean-variance ef¿cient ifz is any constant.

unconditional frontier:Upy
w.4 @ U�w.4 .zUh�

w.4=

Constants are in thew information set� time w random variables are not necessarily constant.
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Thus unconditional ef¿ciency (including managed portfolios) implies conditional ef¿ciency
but not vice versa. As with the factor models, once you see the decomposition, it is a trivial
argument about whether a weight is constant or time-varying.

Brute force and examples.

If you’re still puzzled, an additional argument by brute force may be helpful.

If a return is on the unconditional MVF it must be on the conditional MVF at each date.
If not, you could improve the unconditional mean-variance trade-off by moving to the con-
ditional MVF at each date. Minimizing unconditional variance given mean is the same as
minimizing unconditional second moment given mean,

plqH+U5, v=w= H+U, @ �

Writing the unconditional moment in terms of conditional moments, the problem is

plqH
�
Hw+U

5,
�
v=w= H ^Hw+U,` @ �

Now, suppose you could lowerHw+U5, at one datew without affectingHw+U, at that date.
This change would lower the objective, without changing the constraint. Thus, you should
have done it: you should have picked returns on theconditional mean variance frontiers.

It almost seems that reversing the argument we can show that conditional ef¿ciency im-
plies unconditional ef¿ciency, but it doesn’t. Just because you have minimizedHw+U5, for
given value ofHw+U, at each datew does not imply that you have minimizedH+U5, for a
given value ofH+U,. In showing that unconditional ef¿ciency implies conditional ef¿ciency
we held¿xedHw+U, at each date at�, and showed it is a good idea to minimize�w+U,. In
trying to go backwards, the problem is that a given value ofH+U, does not specify what
Hw+U, should be at each date. We can increaseHw+U, in one conditioning information set
and decrease it in another, leaving the return on the conditional MVF.

Figure 16 presents an example. Return B is conditionally mean-variance ef¿cient. It also
has zero unconditional variance, so it is the unconditionally mean-variance ef¿cient return at
the expected return shown. Return A is on the conditional mean-variance frontiers, and has
the same unconditional expected return as B. But return Ahas some unconditional variance,
and so is inside the unconditional mean-variance frontier.

As a second example,the riskfree rate is only on the unconditional mean-variance frontier
if it is a constant. Remember the expression (49) for the risk free rate,

Ui @ U� .UiUh�=

The unconditional mean-variance frontier isU�.zUh� with z a constant. Thus, the riskfree
rate is only unconditionally mean-variance ef¿cient if it is a constant.
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σt(R)

Et(R)

A

A

B

Info. set 1

Info. set 2

Figure 16. Return A is on the conditional mean-variance frontiers but not on the uncondi-
tional mean variance frontier.
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7.3.5 Implications: Hansen-Richard Critique.

Many models, such as the CAPM, imply a conditional linear factor model pw.4 @ dw .
e3wiw.4= These theorems show that such a model does not imply an unconditional model.
Equivalently, if the model predicts that the market portfolio is conditionally mean-variance
ef¿cient, this doesnot imply that the market is unconditionally mean-variance ef¿cient. We
often test the CAPM by seeing if it explains the average returns of some portfolios or (equiv-
alently) if the market is on the unconditional mean-variance frontier. The CAPM may quite
well be true (conditionally) and fail these tests� many assets may do better in terms ofuncon-
ditional mean vs. unconditionalvariance.

The situation is even worse than these comments seem, and are not repaired by simple
inclusion of some conditioning information. Models such as the CAPM imply a conditional
linear factor model with respect to investors’information sets. However, the best we can hope
to do is to test implications conditioned down on variables that we can observe and include
in a test. Thus, a conditional linear factor model is not testable!

I like to call this observation the “Hansen-Richard critique” by analogy to the “Roll Cri-
tique.” Roll pointed out, among other things, that the wealth portfolio might not be observ-
able, making tests of the CAPM impossible. Hansen and Richard point out that the condi-
tioning information of agents might not be observable, and that one cannot omit it in testing a
conditional model. Thus, even if the wealth portfoliowas observable, the fact that we cannot
observe agents’information sets dooms tests of the CAPM.

7.4 Scaled factors: a partial solution

You can expand the set of factors to test conditional factor pricing models

factors@ iw.4  }w

The problem is that the parameters of the factor pricing modelpw.4 @ dw . ewiw.4 may
vary over time. A partial solution is tomodel the dependence of parametersdw andew on
variables in the time�w information set� let dw @ d+}w,> ew @ e+}w, where}w is a vector of
variables observed at timew (including a constant). In particular, why not trylinear models

dw @ d3}w> ew @ e3}w

Linearity is not restrictive:}5w is just another instrument. The only criticism one can make
is that some instrument}mw is important for capturing the variation indw and ew, and was
omitted. For instruments on which we have data, we can meet this objection by trying}mw
and seeing whether it does, in fact, enter signi¿cantly. However, for instruments}w that are
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observed by agents but not by us, this criticism remains valid.

Linear discount factor models lead to a nice interpretation as scaled factors, in the same
way that linearly managed portfolios are scaled returns. With a single factor and instrument,
write

pw @ d+}w, . e+}w,iw.4 (68)

@ d3 . d4}w . +e3 . e4}w,iw.4

@ d3 . d4}w . e3iw.4 . e4 +}wiw.4, = (69)

Thus, in place of the one-factor model with time-varying coef¿cients (68), we have a four-
factor model (constant,}w > iw.4> }wiw.4, with ¿xed coef¿cients, 69.

Since the coef¿cients are now¿xed, wecan use the scaled-factor model with uncondi-
tional moments.

sw @ Hw ^+d3 . d4}w . e3iw.4 . e4 +}wiw.4,, {w.4` ,

H+sw, @ H ^+d3 . d4}w . e3iw.4 . e4+}wiw.4,, {w.4`

For example, in standard derivations of CAPM, the market (wealth portfolio) return is
conditionally mean-variance ef¿cient� investors want to hold portfolios on theconditional
mean-variance frontier� conditionally expected returns follow aconditional single-beta rep-
resentation, or the discount factorp follows aconditional linear factor model

pw.4 @ dw � ewU
Z
w.4

as we saw above.

But none of these statements mean that we can use the CAPMunconditionally. Rather
than throw up our hands, we can add some scaled factors. Thus, if, say, the dividend/price ra-
tio and term premium do a pretty good job of summarizing variation in conditional moments,
theconditional CAPM implies anunconditional, ¿ve-factor (plus constant) model. The fac-
tors are a constant, the market return, the dividend/price ratio, the term premium, and the
market returntimes the dividend-price ratio and the term premium.

The unconditional pricing implications of such a¿ve-factor model could, of course, be
summarized by a single�� representation. (See the caustic comments in the section on im-
plications and equivalence.) The reference portfolio would not be the market portfolio, of
course, but a mimicking portfolio of the¿ve factors. However, the single mimicking port-
folio would not be easily interpretable in terms of a single factor conditional model and two
instruments. In this case, it might be more interesting to look at a multiple�� or multiple-
factor representation.
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If we have many factors i and many instruments }, we should in principle multiply every
factor by every instrument,

p @ e4i4 . e5i4}4 . e6i4}5 . ===. eQ.4i5 . eQ.5i5}4 . eQ.6i5}5 . ===

This operation can be compactly summarized with the Kronecker product notation, d  e,
which means “multiply every element in vectord by every element in vectore> or

pw.4 @ e3+iw.4  }w,=

7.5 Summary

When you¿rst think about it, conditioning information sounds scary – how do we account for
time-varying expected returns, betas, factor risk premia, variances, covariances, etc. How-
ever, the methods outlined in this chapter allow a very simple and beautiful solution to the
problems raised by conditioning information. To express the conditional implications of a
given model, all you have to do is include some scaled or managed portfolio returns, and then
pretend you never heard about conditioning information.

Some factor models are conditional models, and have coef¿cients that are functions of
investors’ information sets. In general, there is no way to test such models, but if you are
willing to assume that the relevant conditioning information is well summarized by a few
variables, then you can just add new factors, equal to the old factors scaled by the conditioning
variables, and again forget that you ever heard about conditioning information.

You may want to remember conditioning information as a diagnostic and in economic
interpretation of the results. It may be interesting to take estimates of a many factor model,
pw @ d3 . d4}w . e3iw.4 . e4}wiw.4> and see what they say about the implied conditional
model,pw @ +d3 . d4}w, . +e3 . e4}w,iw.4. You may want to make plots of conditional
es, betas, factor risk premia, expected returns,etc. But you don’t have to worry about it in
estimation and testing.
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Chapter 8. Factor pricing models
In the second chapter, I noted that the consumption-based model, while a complete answer to
most asset pricing questions in principle, does not (yet) work well in practice. This observa-
tion motivates efforts to tie the discount factorp to other data. Linear factor pricing models
are the most popular models of this sort in¿nance. They dominate discrete time empirical
work.

Factor pricing models replace the consumption-based expression for marginal utility
growth with a linear model of the form

pw.4 @ d. e3i w.4

d ande are free parameters. As we have seen above, this speci¿cation is equivalent to a
multiple-beta model

H+Uw.4, @ �. �3�

where� are multiple regression coef¿cients of returnsU on the factorsi . Here,� and� are
the free parameters.

The big question is, what should one use for factorsiw.4? Factor pricing models look for
variables that are good proxies for aggregate marginal utility growth, i.e., variables for which

�
x3+fw.4,

x3+fw,
� d. e3i w.4 (70)

is a sensible and economically interpretable approximation.

The factors that result from this search are and should be intuitively sensible. In any
sensible economic model, as well as in the data, consumption is related to returns on broad-
based portfolios, to interest rates, to growth in GNP, investment, or other macroeconomic
variables, and to returns on production processes. All of these variables measure “wealth”
or the state of the economy. Consumption is and should be high in “good times” and low in
“bad times.”

Furthermore, consumption and marginal utility respond tonews: if a change in some
variable today signals high income in the future, then consumption risesnow, by permanent
income logic. This fact opens the door toforecasting variables: any variable that forecasts
asset returns (“changes in the investment opportunity set”) or macroeconomic variables is a
candidate factor. Variables such as the term premium, dividend/price ratio, stock returns, etc.
can be defended as pricing factors on this logic. Though they themselves are not measures of
aggregate good or bad times, theyforecast such times.

Should factors be independent over time? The answer is, sort of. If there is a constant
real interest rate, then marginal utility growth should be unpredictable. (“Consumption is a
random walk” in the quadratic utility permanent income model.) To see this, just look at the
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¿rst order condition with a constant interest rate,

x3+fw, @ �UiHw ^x
3+fw.4,`

or in a more time-series notation,

x3+fw.4,

x3+fw,
@

4

�Ui
. %w.4> Hw+%w.4, @ 3=

The real risk free rate is not constant, but it does not vary a lot, especially compared to
asset returns. Measured consumption growth is not exactly unpredictable but it is the least
predictable macroeconomic time series, especially if one accounts properly for temporal ag-
gregation (consumption data are quarterly averages). Thus, factors that proxy for marginal
utility growth, though they don’t have to be totally unpredictable, should not be highly pre-
dictable. If one chooses highly predictable factors, the model will counterfactually predict
large interest rate variation.

In practice, this consideration means that one should choose the right units: Use GNP
growth rather than level, portfolioreturns rather than prices or price/dividend ratios, etc.
However, unless one wants to impose an exactly constant risk free rate, one does not have to
¿lter or prewhiten factors to make them exactly unpredictable.

This view of factors as intuitively motivated proxies for marginal utility growth is suf¿-
cient to carry the reader through current empirical tests of factor models. The extra constraints
of a formal exposition of theory in this part have not yet constrained the factor-¿shing expe-
dition.

The precise derivations all proceed in the way I have motivated factor models: One writes
down a general equilibrium model, in particular a speci¿cation of the production technology
by which real investment today results in real output tomorrow. This general equilibrium
produces relations that express the determinants of consumption from exogenous variables,
and relations linking consumption and other endogenous variables� equations of the form
fw @ j+iw,. One then uses this kind of equation to substitute out for consumption in the basic
¿rst order conditions. (You don’t have to know more than this about general equilibrium
to follow the derivations in this chapter. I discuss the economics and philosophy of general
equilibrium models in some depth later, in Chapter 15.)

The formal derivations accomplish two things: they determine one particularlist of factors
that can proxy for marginal utility growth, and they prove that the relation should belinear.
Some assumptions can often be substituted for others in the quest for these two features of a
factor pricing model.

This is a point worth remembering:all factor models are derived as specializations of the
consumption-based model. Many authors of factor model papers disparage the consumption-
based model, forgetting that their factor modelis the consumption-based model plus extra
assumptions that allow one to proxy for marginal utility growth from some other variables.
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Above, I argued that clear economic foundation was important for factor models, since it
is the only guard against ¿shing. Alas, we discover here that the current state of factor pricing
models is not a particularly good guard against ¿shing. One can call for better theories or
derivations, more carefully aimed at limiting the list of potential factors and describing the
fundamental macroeconomic sources of risk, and thus providing more discipline for empirical
work. The best minds in ¿nance have been working on this problem for 40 years though, so
a ready solution is not immediately in sight. On the other hand, we will see that even current
theory can provide much more discipline than is commonly imposed in empirical work. For
example, the derivations of the CAPM and ICAPM do leave predictions for the risk free rate
and for factor risk premia that are often ignored. The ICAPM gives tighter restrictions on
state variables than are commonly checked: “State variables” do have to forecast something!
We also see how special and unrealistic are the general equilibrium setups necessary to derive
popular speci¿cations such as CAPM and ICAPM. This observation motivates a more serious
look at real general equilibrium models below.

8.1 Capital Asset Pricing Model (CAPM)

The CAPM is the modelp @ d . eUz> Uz = wealth portfolio return. I derive it from
the consumption based model by 1) Two period quadratic utility� 2) Two periods, exponential
utility and normal returns� 3) In¿nite horizon, quadratic utility and i.i.d. returns� 4) Log utility
and normal distributions.

The CAPM is the¿rst, most famous and (so far) most widely used model in asset pricing,
as the related consumption-based model is in macroeconomics. It ties the discount factorp
to the return on the “wealth portfolio.” The function is linear,

pw.4 @ d. eUZ
w.4=

d ande are free parameters. One can¿nd theoretical values for the parametersd ande by
requiring the discount factorp to price any two assets, such as the wealth portfolio return
and risk-free rate,4 @ H+pUZ , and4 @ H+p,Ui . (As an example, we did this in equation
(65) above.) In empirical applications, we can also pickd ande to “best” price larger cross-
sections of assets. We do not have good data on, or even a good empirical de¿nition for, the
return on total wealth. It is conventional to proxyUZ by the return on a broad-based stock
portfolio such as the value- or equally-weighted NYSE, S&P500, etc.

The CAPM is of course most frequently stated in equivalent expected return / beta lan-
guage,

H+Ul, @ �. �l>UZ ^H+Uz,� �` =
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This section brieÀy describes some classic derivations of the CAPM. Again, we need
to ¿nd assumptions that defend which factors proxy for marginal utility (UZ here), and
assumptions to defend the linearity between p and the factor.

I present several derivations of the same model. Many of these derivations use classic
modeling assumptions which are important in their own sake. This is also an interesting place
in which to see that various sets of assumptions can often be used to get to the same place.
The CAPM is often criticized for one or another assumption. By seeing several derivaitons,
we can see how one assumption can be traded for another. For example, the CAPM does not
in fact require normal distributions, if one is willing to swallow quadratic utility instead.

8.1.1 Two-period quadratic utility

Two period investors with no labor income and quadratic utility imply the CAPM.

Investors have quadratic preferences and only live two periods,

X+fw> fw.4, @ �4

5
+fw � f�,5 � 4

5
�H^+fw.4 � f�,5`= (71)

Their marginal rate of substitution is thus

pw.4 @ �
x3+fw.4,

x3+fw,
@ �

+fw.4 � f�,

+fw � f�,
=

The quadratic utility assumption means marginal utility is linear in consumption. Thus, the
¿rst target of the derivation, linearity.

Investors are born with wealth Zw in the ¿rst period and earn no labor income. They
can invest in lots of assets with prices slw and payoffs {lw.4, or, to keep the notation simple,
returns Ul

w.4= They choose how much to consume at the two dates, fw and fw.4, and the
portfolio weights �l for their investment portfolio. Thus, the budget constraint is

fw.4 @ Zw.4 (72)

Zw.4 @ UZ
w.4 +Zw � fw,

UZ @
Q[
l@4

�lU
l>

Q[
l@4

�l @ 4=

UZ is the rate of return on total wealth.
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The two-period assumption means that investors consume everything in the second pe-
riod, by constraint (72). This fact allows us to substitute wealth and the return on wealth for
consumption, achieving the second goal of the derivation, naming the factor that proxies for
consumption or marginal utility:

pw.4 @ �
UZ
w.4+Zw � fw,� f�

fw � f�
@

��f�

fw � f�
.

�+Zw � fw,

fw � f�
UZ
w.4

i.e.

pw.4 @ dw . ewU
Z
w.4=

8.1.2 Exponential utility, normal distributions

Hx+f, @ h��f and a normally distributed set of returns also produces the CAPM.

Exponential utility and normal distributions is another set of assumptions that deliver
the CAPM in a one period model. This is a particularly convenient analytical form. Since
it gives rise to linear demand curves, it is very widely used in models that complicate the
trading structure, by introducing incomplete markets or asymmetric information.

Let utility be

Hx+f, @ h��f=

� is known as thecoef¿cient of absolute risk aversion. If consumption is normally distributed,
we have

Hx+f, @ h��H+f,.
�5

5 �5+f,=

Suppose this investor has initial wealthZ which can be split between a riskfree asset
payingUi and a set of risky assets paying returnU. Let | denote the amount of this wealth
Z (amount, not fraction) invested in each security. Then, the budget constraint is

f @ |iUi . |3U

Z @ |i . |34

Plugging the¿rst constraint into the utility function we obtain

Hx+f, @ h��^|
iUi.|3H+U,`.�5

5 |3	|= (73)

As with quadratic utility, the two-period model is what allows us to set consumption to wealth
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and then substitute the return on the wealth portfolio for consumption growth in the discount
factor.

Maximizing (73) with respect to |> |i , we obtain the ¿rst order condition descrbing the
optimal amount to be invested in the risky asset,

| @ 	�4
H+U,�Ui

�

Sensibly, the consumer invests more in risky assets if their expected return is higher, less if
his risk aversion coef¿cient is higher, and less if the assets are riskier. Notice that total wealth
does not appear in this expression. With this setup, the amount invested in risky assets is
independent of the level of wealth. This is why we say that this investor has an aversion to
absolute rather than relative (to wealth) risk aversion. Note also that these “demands” for the
risky assets are linear in expected returns, which is a very convenient property.

Inverting the¿rst order conditions, we obtain

H+U,�Ui @ �	| @ � fry+U>Up,= (74)

The consumer’s total risky portfolio is|3U. Hence,	| gives the covariance of each return
with |3U, and also with the investor’s overall portfolio|iUi . |3U. If all investors are
identical, then the market portfolio is the same as the individual’s portfolio so	| also gives
the correlation of each return withUp @ |iUi . |3U. (If investors differ in risk aversion�,
the same thing goes through but with an aggregate risk aversion coef¿cient.)

Thus, we have the CAPM. This version is especially interesting because it ties the market
price of risk to the risk aversion coef¿cient. Applying (74) to the market return itself, we
have

H+Up,�Ui

�5+Up,
@ �=

8.1.3 Quadratic value function, dynamic programming.

We can let consumers live forever in the quadratic utility CAPM so long as we assume
that the environment is independent over time. Then thevalue function is quadratic, taking
the place of the quadratic second-period utility function. This case is a nice¿rst introduction
to dynamic programming.

The two-period structure given above is unpalatable, since (most) investors do in fact live
longer than two periods. It is natural to try to make the same basic ideas work with less
restrictive and more palatable assumptions.
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We can derive the CAPM in a multi-period context by replacing the second-period quadratic
utility function with a quadraticvalue function. However, the quadratic value function re-
quires the additional assumption that returns are i.i.d. (no “shifts in the investment oppor-
tunity set”). This famous observation is due to Fama (1970). It is also a nice introduction
to dynamic programming, which is a powerful way to handle multiperiod problems by ex-
pressing them as two period problems. Finally, I think this derivation makes the CAPM
more realistic, transparent and intuitively compelling. Buying stocks amounts to taking bets
overwealth� really the fundamental assumption driving the CAPM is that marginal utility of
wealth is linear in wealth and does not depend on other state variables.

Let’s start in a simple ad-hoc manner by just writing down a “utility function” de¿ned
over this period’s consumption and next period’swealth,

X @ x+fw, . �HwY +Zw.4,=

This is a reasonable objective for an investor, and does not require us to make the very ar-
ti¿cial assumption that he will die tomorrow. If an investor with this “utility function” can
buy an asset at pricesw with payoff {w.4, his ¿rst order condition (buy a little more, then
{ contributes to wealth next period) is

swx
3+fw, @ �Hw ^Y

3+Zw.4,{w.4` =

Thus, the discount factor uses next period’s marginal value of wealth in place of the more
familiar marginal utility of consumption

pw.4 @ �
Y 3+Zw.4,

x3+fw.4,

Now, suppose the value function were quadratic,

Y +Zw.4, @ ��

5
+Zw.4 �Z �,5=

Then, we would have

pw.4 @ ���
Zw.4 �Z �

x3+fw.4,
@ ���

UZ
w.4+Zw � fw,�Z �

x3+fw.4,

@

�
��Z �

x3+fw.4,

�
�
�
���+Zw � fw,

x3+fw.4,

�
UZ
w.4>

or, once again,

pw.4 @ dw . ewU
Z
w.4>

the CAPM!

Let’s be clear about the assumptions and what they do. 1)The value function only depends
on wealth. If other variables entered the value function, thenCY@CZ would depend on
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those other variables, and so would p. This assumption bought us the ¿rst objective of any
derivation: the identity of the factors. The ICAPM, below, allows other variables in the value
function, and obtains more factors. (Actually, other variables could enter so long as they
don’t affect themarginal value of wealth. The weather is an example: You like me might be
happier on sunny days, but you do not value additional wealth more on sunny than on rainy
days. Hence, covariance with weather does not affect how you value stocks.)

2) The value function is quadratic. We wanted themarginal value functionY 3+Z , be
linear, to buy us the second objective, showingp is linear in the factor. Quadratic utility and
value functions deliver a globally linear marginal value functionY 3+Z ,. By the usual Taylor
series logic, linearity ofY 3+Z , is probably not a bad assumption for small perturbations, and
not a good one for large perturbations.

Why is the value function quadratic?

You might think we are done. But economists are unhappy about a utility function that
haswealth in it. Few of us are like Disney’s Uncle Scrooge, who got pure enjoyment out
of a daily swim in the coins in his vault. Wealth is valuable because it gives us access to
more consumption. Utility functions should always be written overconsumption. One of the
few real rules in economics that keep our theories from being vacuous is that ad-hoc “utility
functions” over other objects like wealth (or means and variances of portfolio returns, or
“status” or “political power”) should be defended as arising from a more fundamental desire
for consumption.

More practically, being careful about the derivation makes clear that the super¿cially
plausible assumption that the value function is only a function of wealth derives from the
much less plausible, in fact certainly false, assumption that interest rates are constant, the
distribution of returns is i.i.d., and that the investor has no risky labor income. So, let us see
what it takes to defend the quadraticvalue function in terms of someutility function.

Suppose investors last forever, and have the standard sort of utility function

X @ �4

5
Hw

4[
m@3

�mx+fw.m,=

Again, investors start with wealthZ3 which earns a random returnUZ and they have no
other source of income. In addition, suppose that interest rates are constant, and stock returns
are i.i.d. over time.

De¿ne thevalue function as themaximized value of the utility function in this environ-
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ment. Thus, de¿ne Y +Z , as7

Y +Zw, � pd{ifw>fw.4>fw.5===�w>�w.4>===jHw

4[
m@3

�mx+fw.m, (75)

s.t. Zw.4 @ UZ
w.4+Zw � fw,> U

Z
w @ �3wUw> �

3
w4 @ 4

(I used vector notation to simplify the statement of the portfolio problem� U � ^U4The
value function is the total level of utility the investor can achieve, given how much wealth
he has and any other variables constraining him. This is where the assumptions of no labor
income, a constant interest rate, and i.i.d. returns come in. Without these assumptions, the
value function as de¿ned above might depend on these other characteristics of the investor’s
environment. For example, if there were some variable, say, “DP” that indicated returns
would be high or low for a while, then the consumer would be happier, and have a high value,
when DP is high, for a given level of wealth. Thus, we would have to writeY +Zw> GSw,

Value functions allow you to express an in¿nite period problem as a two period problem.
Break up the maximization into the¿rst period and all the remaining periods, as follows

Y +Zw, @ pd{ifw>�wj

;?
=x+fw, . �Hw

5
7 pd{
ifw.4>fw.5==>�w.4>�w.5====j

Hw.4

4[
m@3

�mx+fw.4.m,

6
8
<@
> v= w= ==

or

Y +Zw, @ pd{ifw>�wj ix+fw, . �HwY +Zw.4,j v=w= === (76)

Thus, we have defended theexistence of a value function. Writing down a two period
“utility function” over this period’s consumption and next period’swealth is not as crazy as
it might seem.

The value function is also an attractive view of how people actually make decisions. You
don’t think “If I buy a new car today I won’t be able to buy a restaurant dinner 20 years
from now” – trading off goods directly as expressed by the utility function. You think “I
can’t afford a new car” meaning that the decline in the value of wealth is not worth the
increase in the marginal utility of consumption. Thus, the maximization in (76) describes
your psychological approach to utility maximization.

The remaining question is, can the value function be quadratic? What utility function
assumption leads to a quadratic value function? Here is the fun fact:A quadratic utility
function leads to a quadratic value function in this environment. This is not a law of nature�
it is not true that for anyx+f,, Y +Z , has the same functional form. But it is true here and
a few other special cases. The “in this environment” clause is not innocuous. The value

. There is also a transversality condition or a lower limit on wealth in the budget constraints. This keeps the
consumer from consuming a bit more and rolling over more and more debt, and it means we can write the budget
constraint in present value form.
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function – the achieved level of expected utility – is a result of the utility functionand the
constraints.

How could we show this fact? One way would be to try to calculate the value function by
brute force from its de¿nition, equation (75). This approach is not fun, and it does not exploit
the beauty of dynamic programming, which is the reduction of an in¿nite period problem to
a two period problem.

Instead solve (76) as a functional equation.Guess that the value functionY +Zw.4, is
quadratic, with some unknown parameters. Then use therecursive de¿nition of Y +Zw, in
(76), and solve atwo period problem–¿nd the optimal consumption choice, plug it into (76)
and calculate the value functionY +Zw,. If the guess was right, you obtain a quadratic func-
tion for Y +Zw,, and determine any free parameters.

Let’s do it. Specify

x+fw, @ �4

5
+fw � f�,5 =

Guess

Y +Zw.4, @ ��

5
+Zw.4 �Z�,5

with � andZ � parameters to be determined later. Then the problem (76) is (I don’t write the
portfolio choice� part for simplicity� it doesn’t change anything)

Y +Zw, @ pd{
ifwj

�
�4

5
+fw � f�,5 � �

�

5
H+Zw.4 �Z �,5

�
v= w= Zw.4 @ UZ

w.4+Zw � fw,=

(Hw is nowH since I assumed i.i.d.) Substituting the constraint into the objective,

Y +Zw, @ pd{
ifwj

�
�4

5
+fw � f�,5 � �

�

5
H
�
UZ
w.4+Zw � fw,�Z �

�5�
= (77)

The¿rst order condition with respect tofw> usingaf to denote the optimal value, is

afw � f� @ ��H
��
UZ
w.4+Zw � afw,�Z �

�
UZ
w.4

�
Solving forafw>

afw @ f� . ��H
��
UZ5
w.4Zw � afwU

Z5
w.4 �Z �UZ

w.4

��

afw
�
4 . ��H+UZ5

w.4,
�
@ f� . ��H+UZ5

w.4,Zw � ��Z �H+UZ
w.4,

afw @
f� � ��H+UZ

w.4,Z
� . ��H+UZ5

w.4,Zw

4 . ��H+UZ5
w.4,

(78)
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This is a linear function of Zw. Writing (77) in terms of the optimal value of f> we get

Y +Zw, @ �4

5
+afw � f�,5 � �

�

5
H
�
UZ
w.4+Zw � afw,�Z �

�5
(79)

This is a quadratic function of Zw and af. A quadratic function of a linear function is a
quadratic function, so the value function is a quadratic function of Zw. If you want to
spend a pleasant few hours doing algebra, plug (78) into (79), check that the result really
is quadratic in Zw, and determine the coef¿cients �>Z � in terms of fundamental parameters
�> f�> H+UZ ,> H+UZ5, (or �5+UZ ,). The expressions for �>Z � do not give much insight,
so I don’t do the algebra here.

8.1.4 Log utility

Log utility rather than quadratic utility also implies a CAPM. Log utility implies that
consumption is proportional to wealth, allowing us to substitute the wealth return for con-
sumption data.

The point of the CAPM is to avoid the use of consumption data, and so to use wealth
or the rate of return on wealth instead. Log utility is another special case that allows this
substitution. Log utility is much more plausible than quadratic utility.

Suppose that the investor has log utility

x+f, @ oq+f,=

De¿ne the wealth portfolio as a claim to all future consumption. Then,with log utility, the
price of the wealth portfolio is proportional to consumption itself.

sZw @ Hw

4[
m@4

�m
x3+fw.m,

x3+fw,
fw.m @ Hw

4[
m@4

�m
fw
fw.m

fw.m @
�

4� �
fw

The return on the wealth portfolio is proportional to consumption growth,

UZ
w.4 @

sZw.4 . fw.4

sZw
@

�
4�� . 4

�
4��

fw.4
fw

@
4

�

fw.4
fw

@
4

�

x3+fw,

x3+fw.4,
=

Thus, the log utility discount factor equals theinverse of the wealth portfolio return,

pw.4 @
4

UZ
w.4

= (80)

Equation (80) could be used by itself: it attains the goal of replacing consumption data
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by some other variable. (Brown and Gibbons 1982 test a CAPM in this form.) Note that log
utility is the only assumption so far. We do not assume constant interest rates, i.i.d. returns
or the absence of labor income.

8.1.5 Linearizing any model: Taylor approximations and normal distributions.

Any nonlinear model p @ i+}, can be turned into a linear model p @ d.e} by assuming
normal returns.

It is traditional in the CAPM literature to try to derive a linear relation between p and
the wealth portfolio return. We could always do this by a Taylor approximation,

pw.4
�@ dw . ewU

Z
w.4=

We can make this approximation exact in a special case, that the factors and all asset returns
are normally distributed. First, I quote without proof the central mathematical trick as a
lemma

Lemma 1 (Vwhlq*v ohppd, If i>U are bivariate normal, j+i, is differentiable and H m
j3+i, m? 4, then

fry ^j+i,>U` @ H^j3+i,` fry+i>U,= (81)

Now we can use the lemma to state the theorem.

Theorem 2 If p @ j+i,, if i and a set of the payoffs priced by p are normally distributed
returns, and if mH^j3+i,`m ? 4, then there is a linear model p @ d . ei that prices the
normally distributed returns.

Proof: First, the de¿nition of covariance means that the pricing equation can be rewritten as
a restriction between mean returns and the covariance of returns with p:

4 @ H+pU, / 4 @ H+p,H+U, . fry+p>U,= (82)

Now, given p @ j+i,> i and U jointly normal, apply Stein’s lemma (81) and (82),

4 @ H^j+i,`H+U, .H^j3+i,`fry+i>U,

4 @ H^j+i,`H+U, . fry+H^j3+i,`> U,

Exploiting the+ part of (82), we obtain a model linear ini ,

p @ H^j+i,` .H^j3+i,`^i �H+i,`=
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�

Using this trick, and recalling that we have not assumed i.i.d. so all these moments are
conditional, the log utility CAPM implies the linear model

pw.4 @ Hw

�
4

UZ
w.4

�
�Hw

%�
4

UZ
w.4

�5
& �

UZ
w.4 �Hw+U

Z
w.4,

�
(83)

if UZ
w.4 and all asset returns to be priced are normally distributed. From here it is a short

step to an expected return-beta representation using the wealth portfolio return as the factor.

In the same way, we can trade the quadratic utility function for normal distributions in the
dynamic programming derivation of the CAPM. Starting from

pw.4 @ �
Y 3+Zw.4,

x3+fw,
@ �

Y 3
�
UZ
w.4+Zw � fw,

�
x3+fw,

we can derive an expression that linksp linearly toUZ
w.4 by assuming normality.

Using the same trick, the consumption-based model can be written in linear fashion, i.e.
expected returns can be expressed as a linear function of betas on consumption growth rather
than betas on consumption growth raised to a power. However, for large risk aversion co-
ef¿cients (more than about 10 in postwar consumption data) or other transformations, the
inaccuracies due to the normal or lognormal approximation can be very signi¿cant in dis-
crete data.

The normal distribution assumption seems rather restrictive, and it is. However, the most
popular class of continuous-time models specify instantaneously normal distributions even
for things like options that have very non-normal discrete distributions. Therefore, one can
think of the Stein’s lemma tricks as a way to get to continuous time approximations without
doing it in continuous time. The ICAPM, discussed next is an example.

8.2 Intertemporal Capital Asset Pricing Model (ICAPM)

Any “state variable”}w can be a factor. The ICAPM is a linear factor model with wealth
and state variables that forecast changes in the distribution of future returns or income.

The ICAPM generates linear discount factor models

pw.4 @ d. e3iw.4

In which the factors are “state variables” for the investor’s consumption-portfolio decision.

The “state variables” are the variables that determine how well the investor can do in
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his maximization. State variables include current wealth, and also variables that describe
the conditional distribution of income and asset returns the agent will face in the future or
“shifts in the investment opportunity set.” Therefore, optimal consumption decisions are a
functions of the state variables,fw @ j+}w,. We can use this fact once again to substitute out
consumption, and write

pw.4 @ �
x3 ^j+}w.4,`

x3 ^j+}w,`
=

Alternatively, thevalue function depends on the state variables

Y +Zw.4> }w.4,>

so we can write

pw.4 @ �
YZ +Zw.4> }w.4,

YZ +Zw> }w,

(The marginal value of a dollar must be the same in any use, so I made the denominator pretty
by writing x3+fw, @ YZ +Zw> }w,= This fact is known as theenvelope condition.)

This completes the¿rst step, naming the proxies. To obtain a linear relation, we can take
a Taylor approximation, assume normality and use Stein’s lemma, or, most conveniently,
move to continuous time (which is really just a more convenient way of making the normal
approximation.) We saw above that we can write the basic pricing equation in continuous
time as

H
gs

s
� uigw @ �H

�
g�

�

gs

s

�
=

(for simplicity of the formulas, I’m folding any dividends into the price process). The dis-
count factor is marginal utility, which is the same as the marginal value of wealth,

g�w
�w

@
gx3+fw,

x3+fw,
@

gYZ +Zw> }w,

YZ

Our objective is to express the model in terms of factors} rather than marginal utility or
value, and Ito’s lemma makes this easy

gYZ
YZ

@
ZYZZ

YZ

gZ

Z
.

YZ}

YZ
g} .

4

5
+second derivative terms)

(We don’t have to grind out the second derivative terms if we are going to takeuigw @
Hw +g�@�, > though this approach removes a potentially interesting and testable implication
of the model). The elasticity of marginal value with respect to wealth is often called the
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coef¿cient of relative risk aversion,

uud � �ZYZZ

YZ
=

Substituting, we obtain the ICAPM, which relates expected returns to the covariance of re-
turns with wealth, and also with the other state variables,

H
gs

s
� uigw @ uud H

�
gZ

Z

gs

s

�
.

YZ}

YZ
H

�
g}

gs

s

�
=

From here, it is fairly straightforward to express the ICAPM in terms of betas rather than
covariances, or as a linear discount factor model. Most empirical work occurs in discrete
time� we often simply approximate the continuous time result as

H+U,�Ui � uud fry+U>�Z , . �}fry+U>�},=

One often substitutes covariance with the wealth portfolio for covariance with wealth, and
one uses factor-mimicking portfolios for the other factorsg} as well. The factor-mimicking
portfolios are interesting for portfolio advice as well, as they give the purest way of hedging
against or pro¿ting from state variable risk exposure.

8.3 Comments on the CAPM and ICAPM

Conditional vs. unconditional models.

Do they price options?

Why bother linearizing?

The wealth portfolio.

Ex post returns.

The implicit consumption-based model.

What are the ICAPM state variables?

CAPM and ICAPM as general equilibrium models

Is the CAPM conditional or unconditional?

Is the CAPM a conditional or an unconditional factor model? I.e., are the parametersd
ande in p @ d� eUZ constants, or do they change at each time period, as conditioning in-
formation changes? We saw above that a conditional CAPM does not imply an unconditional
CAPM, so additional steps must be taken to say anything about observed average returns.
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The two period quadratic utility based derivation results in a conditional CAPM, since the
parameters d and e can (must) change over time if the conditional moments of returns change
over time. Equivalently, this two-period consumer chooses a portfolio on theconditional
mean variance frontier, which is not on theunconditional frontier. The same is true of the
multiperiod CAPM. Of course, if returns are not i.i.d. over time, the multi-period derivation
is invalid anyway.

The log utility CAPM expressed with the inverse market return is a beautiful model, since
it holds both conditionally and unconditionally. There are no free parameters that can change
with conditioning information:

4 @ Hw

�
4

UZ
w.4

Uw.4

�
/ 4 @ H

�
4

UZ
w.4

Uw.4

�
=

In fact there are no free parameters at all! Furthermore, the model makes no distributional
assumptions, so it can apply to any asset, and the model requires no speci¿cation of the
investment opportunity set, or (macro language) no speci¿cation of technology.

Linearizing the log utility CAPM comes at enormous price. The expectations in the lin-
earized log utility CAPM (83) areconditional. Thus, the apparent simpli¿cation of linearity
destroys the nice unconditional feature of the log utility CAPM. In addition, the linearization
requires normal returns and so vastly lowers the applicability of the model.

Should the CAPM price options?

As I have derived them, the quadratic utility CAPM and the nonlinear log utility CAPM
should apply toall payoffs: stocks, bonds, options, contingent claims, etc. However, if we as-
sume normal return distributions to obtain a linear CAPM from log utility, we can no longer
hope to price options, since option returns are non-normally distributed (that’s the point of
options!) Even the normal distribution for regular returns is a questionable assumption. You
may hear the statement “the CAPM is not designed to price derivative securities”� the state-
ment refers to the log utility plus normal-distribution derivation of the linear CAPM.

Why bother linearizing a model? Why take the log utility modelp @ 4@UZ which
should priceany asset, and turn it intopw.4 @ dw.ewU

Z
w.4 that loses the clean conditioning-

down property and cannot price non-normally distributed payoffs? These tricks were de-
veloped before thes @ H+p{, expression of asset pricing models, when (linear) expected
return-beta models were the only thing around. You need a linear model ofp to get an ex-
pected return - beta model. More importantly, the tricks were developed when it was hard to
estimate nonlinear models. It’s clear how to estimate a� and a� by regressions, but estimat-
ing nonlinear models used to be a big headache. Now, GMM has made it easy to estimate
nonlinear models. Thus, in my opinion, linearization is mostly intellectual baggage.

The desire for linear representations and this normality trick is one of the central reasons
why many asset pricing models are written in continuous time. In most continuous time
models, everything is locally normal. Unfortunately for empiricists, this approach adds time-
aggregation and another layer of unobservable conditioning information into the predictions
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of the model. For this reason, most empirical work is still based on discrete-time models.
However, the local normal distributions in continuous time, even for option returns, is a good
reminder that normal approximations probably aren’t that bad, so long as the time interval is
kept short.

What about the wealth portfolio?

The log utility derivation makes clear just how expansive is the concept of the wealth
portfolio. To own a (share of) theconsumption stream, you have to own not only all stocks,
but all bonds, real estate, privately held capital, publicly held capital (roads, parks, etc.), and
human capital – a nice word for “people”. Clearly, the CAPM is a poor defense of common
proxies such as the value-weighted NYSE portfolio. And keep in mind that given ex-post
mean-variance ef¿cient portfolios of any subset of assets (like stocks) out there, taking the
theory seriously is our only guard against¿shing.

Ex-post returns.

The log utility model also allows us for the ¿rst time to look at what moves returns ex-post
as well as ex-ante. (Below, we will look at this issue in more depth). Recall that, in the log
utility model, we have

UZ
w.4 @

4

�

fw.4
fw

= (84)

Thus, the wealth portfolio return is high, ex-post, when consumption is high. This holds at
every frequency: If stocks go up between 12:00 and 1:00, it must be because (on average) we
all decided to have a big lunch. This seems silly. Aggregate consumption and asset returns are
likely to be de-linked at high frequencies, buthow high (quarterly?) and by what mechanism
are important questions to be answered.

Implicit consumption-based models

Many users of alternative models clearly are motivated by a belief that the consumption-
based model doesn’t work, no matter how well measured consumption might be. This view is
not totally unreasonable� as above, perhaps transactions costs de-link consumption and asset
returns at high frequencies, and some diagnostic evidence suggests that the consumption
behavior necessary to save the consumption model is too wild to be believed. However, the
derivations make clear that the CAPM and ICAPM are notalternatives to the consumption-
based model, they arespecial cases of that model In each casepw.4 @ �x3+fw.4,@x3+fw,
still operates. We just added assumptions that allowed us to substitutefw in favor of other
variables. One cannot adopt the CAPM on the belief that the consumption based model is
wrong. If you think the consumption-based model is wrong, the economic justi¿cation for
the alternative factor models evaporates.

The only plausible excuse for factor models is a belief that consumptiondata are un-
satisfactory. However, while asset return data are well measured, it is not obvious that the
S&P500 or other portfolio returns are terri¿c measures of the return to total wealth. “Macro
factors” used by Chen, Roll and Ross (1986) and others are distant proxies for the quanti-
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ties they want to measure, and macro factors based on other NIPA aggregates (investment,
output, etc.) suffer from the same measurement problems as aggregate consumption.

In large part, the “better performance” of the CAPM and ICAPM comes from throwing
away content. Againpw.4 @ �x3+fw.4,@x3+fw, is there in any CAPM or ICAPM. The CAPM
and ICAPM make predictions concerning consumption data that are wildly implausible, not
only of admittedly poorly measured consumption data but any imaginable perfectly measured
consumption data as well. For example, equation (84) says that the standard deviation of the
wealth portfolio return equals the standard deviation of consumption growth. The latter is
about 1% per year. All the miserable failures of the log-utility consumption-based model
apply equally to the log utility CAPM. Finally, many “free parameters” of the models are not
free parameters at all.

In sum, the poor performance of the consumption-based model is an important nut to
chew on, not just a blind alley or failed attempt that we can safely disregard and go on about
our business.

Identity of state variables

The ICAPM does not tell us theidentity of the state variables}w, and many authors use
the ICAPM as an obligatory citation to theory on the way to using factors composed of ad-
hoc portfolios, leading Fama (1991) to characterize the ICAPM as a “¿shing license.” It
really isn’t: one could do a lot to insist that the factor-mimicking portfolios actually are the
projections of some identi¿able state variables on to the space of returns, and one could do
a lot to make sure the candidate state variables really are plausible state variables for an
explicitly stated optimization problem. For example, one could check that they actually do
forecast something. The¿shing license comes as much from habits of applying the theory as
from the theory itself.

General equilibrium models

The CAPM and other models are reallygeneral equilibrium models. Looking at the
derivation through general-equilibrium glasses, we have speci¿ed a set of linear technologies
with returnsUl that do not depend on the amount invested. Some derivations make further
assumptions, such as an initial capital stock, and no labor or labor income.

8.4 Arbitrage Pricing Theory (APT)

The APT: If a set of asset returns are generated by a linear factor model

Ul @ H+Ul, .
Q[
m@4

�lm �im . %l
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H+%l, @ H+%l �im, @ 3=

Then (with additional assumptions) there is a discount factor p linear in the factors p @
d. e3i that prices the returns.

The APT starts from a statistical characterization. There is a big common component
to stock returns: when the market goes up, most individual stocks also go up. Beyond the
market, groups of stocks such as computer stocks, utilities, etc. move together. Finally, each
stock’s return has some completely idiosyncratic movement. This is a characterization of
realized returns,outcomes or payoffs. The point of the APT is to start with this statistical
characterization ofoutcomes, and derive something aboutexpected returns orprices.

The intuition behind the APT is that the completely idiosyncratic movements in asset
returns should not carry any risk prices, since investors can diversify them away by holding
portfolios. Therefore, risk prices or expected returns on a security should be related to the
security’s covariance with the common components or “factors” only.

The job of this section is then 1) to describe a mathematical model of the tendency for
stocks to move together, and thus to de¿ne the “factors” and residual idiosyncratic compo-
nents, and 2) to think carefully about what it takes for the idiosyncratic components to have
zero (or small) risk prices, so that only the common components matter to asset pricing.

There are two lines of attack for the second item. 1) If there were no residual, then we
could price securities from the factors byarbitrage (really, by the law of one price, but the
current distinction between law of one price and arbitrage came after the APT was named.)
Perhaps we can extend this logic and show that if the residuals aresmall, they must have
small risk prices. 2) If investors all hold well-diversi¿ed portfolios, then only variations in
the factors drive consumption and hence marginal utility.

Much of the original appeal and marketing of the APT came from the¿rst line of attack,
the attempt to derive pricing implicationswithout the economic structure required of the
CAPM, ICAPM, or any other model derived as a specialization of the consumption-based
model. In this section, I will¿rst try to see how far we can in fact get with purely law of
one price arguments. I will conclude that the answer is, “not very far,” and that the most
satisfactory argument for the APT is in fact just another specialization of the consumption-
based model.

8.4.1 Factor structure in covariance matrices

I de¿ne and examine the factor decomposition

{l @ �l . �3li . %l> H+%l, @ 3> H+i%l, @ 3

The factor decomposition is equivalent to a restriction on the payoff covariance matrix.
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The APT models the tendency of asset payoffs (returns) to move together via a statistical
factor decomposition

{l @ �l .
P[
m@4

�lmim . %l @ �l . �3li . %l= (85)

The i ’s are thefactors, the� are thebetas or factor loadings and the% areresiduals. The
terminology is unfortunate. A discountfactor p, pricingfactors i in p @ e3i and thisfactor
decomposition (or factor structure) for returns are totally unrelated uses of the word “factor.”
Don’t blame me, I didn’t invent the terminology! The APT is conventionally written with
{l @ returns, but it ends up being much less confusing to use prices and payoffs.

It is a convenient and conventional simpli¿cation to fold the factor means into the con-
stant, and write the factor decomposition with zero-mean factors�i � i �H+i,=

{l @ H+{l, .
P[
m@4

�lm �im . %l= (86)

Remember thatH+{l, is still just a statistical characterization, not yet the prediction of a
model.

We can construct the factor decomposition as a regression equation. De¿ne the�lm as
regression coef¿cients, and then the%l are uncorrelated with the factors by construction,

H+%l �im, @ 3=

The content — the assumption that keeps (86) from describing any arbitrary set of returns —
is an assumption that the%l areuncorrelated with each other.

H+%l%m, @ 3=

(More general versions of the model allow some limited correlation across the residuals but
the basic story is the same.)

The factor structure is thus a restriction on the covariance matrix of payoffs. For example,
if there is only one factor, then

fry+{l> {m, @ H^+�l �i . %l,+�m �i . %m,` @ �l�m�
5+i, .

�
�5%l if l @ m
3 if l 9@ m

=

Thus, withQ @ number of securities, theQ+Q � 4,@5 elements of a variance-covariance
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matrix are described by Q betas, and Q . 4 variances. A vector version of the same thing is

fry+{>{3, @ ��3�5+i, .

5
97

�54 3 3
3 �55 3

3 3
. . .

6
:8 =

With more (orthogonalized) factors, one obtains

fry+{>{3, @ �4�
3
4�

5+i4, . �5�
3
5�

5+i5, . = = =. (diagonal matrix)

In all these cases, we describe the covariance matrix a singular matrix��3 (or a sum of a few
such singular matrices) plus a diagonal matrix.

If we know the factors we want to use ahead of time, say the market (value-weighted
portfolio) and industry portfolios, we can estimate a factor structure by running regressions.
Often, however, we don’t know the identities of the factor portfolios ahead of time. In this
case we have to use one of several statistical techniques under the broad heading offactor
analysis (that’s where the word “factor” came from in this context) to estimate the factor
model. One can estimate a factor structure quickly by simply taking an eigenvalue decom-
position of the covariance matrix, and then setting small eigenvalues to zero. More formal
estimates can come from maximum likelihood.

8.4.2 Exact factor pricing

With no error term,

{l @ H+{l,4 . �3l�i =

implies

s+{l, @ H+{l,s+4, . �3ls+�i,

and thus

p @ e3i > s+{l, @ H+p{l,

H+Ul, @ Ui . �3l�=

using only the law of one price.

Suppose that there are no idiosyncratic terms%l= This is called anexact factor model.
Now look again at the factor decomposition,

{l @ H+{l,4 . �3l�i =
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This initially statistical decomposition expresses the payoff in question as a portfolio of the
factors and a constant (risk-free payoff). Thus, the price can only depend on the prices of the
factorsi>

s+{l, @ H+{l,s+4, . �3ls+�i ,= (87)

Thelaw of one price assumption lets you take prices of right and left sides.

If the factors are returns, their prices are 1. If the factors are not returns, their prices are
free parameters which can be picked to make the model¿t as well as possible. Since there
are fewer factors than payoffs, this procedure is not vacuous. (Recall that the prices of the
factors are related to the� in expected return beta representations.� is determined by the
expected return of a return factor, and is a free parameter for non-return factor models.)

We are really done, but the APT is usually stated as “there is adiscount factor linear ini
that prices returnsUl,” or “there is an expected return-beta representation withi as factors.”
Therefore, we should take a minute to show that the rather obvious relationship (87) between
prices is equivalent to discount factor and expected return statements.

Assuming only the law of one price, we know there is a discount factorp linear in factors
that price the factors. We usually call it{�> but call it i� here to remind us that it prices the
factorsi . As with{�, i� @ s+i,3H+� 3,�4i satis¿ess+i, @ H+i�i,= If it prices the factors,
it must price any portfolio of the factors� hencei� @ e3i prices all payoffs{l that follow the
factor structure.

We could now go fromp linear in the factors to an expected return-beta model using the
above theorems that connect the two representations. But there is a more direct and very slick
connection. Start with (87), specialized to returns{l @ Ul and of courses+Ul, @ 4. Use
s+4, @ 4@Ui and solve for expected return as

H+Ul, @ Ui . �3l

k
�Uis+�i,

l
@ Ui . �3l�=

The last equality de¿nes�. Expected returns are linear in the betas, and the constants+�, are
related to the prices of the factors. In fact, this is the same de¿nition of � that we arrived at
above connectingp @ e3i to expected return-beta models.

8.4.3 Approximate APTs using the law of one price.

Attempts to extend the exact factor model to an approximate factor pricing model when
errors are “small,” or markets are “large,” still only using law of one price.

For¿xedp, the APT gets better and better asU5 or the number of assets increases.

However, for any¿xedU5 or size of market, the APT can be arbitrarily bad.

These observations say that we must go beyond the law of one price to derive factor
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pricing models.

Actual returns do not display an exact factor structure. There is some idiosyncratic or
residual risk� we cannot exactly replicate the return of a given stock with a portfolio of a
few large factor portfolios. However, the idiosyncratic risks are often “small.” For example,
factor model regressions of the form (85) often have very highU5, especially when portfolios
rather than individual securities are on the left hand side. And the residual risks are still
idiosyncratic: Even if they are a large price of an individual security’s variance, they should be
a small contributor to the variance of well diversi¿ed portfolios. Thus, there is reason to hope
that the APT holds approximately. Surely, if the residuals are “small” and/or “idiosyncratic,”
the price of an asset can’t be “too different” from the price predicted from its factor content?

To think about these issues, start again from a factor structure, but this time put in a
residual,

{l @ H+{l,4 . �3l�i . %l

Again take prices of both sides,

s+{l, @ H+{l,s+4, . �3ls+�i , .H+p%l,

Now, what can we say about the price of the residuals+%l, @ H+p%l,B

Figure 17 illustrates the situation. Portfolios of the factors span a payoff space, the line
connectingi� and�3li in the¿gure. The payoff we want to price,{l is not in that space, since
the residual%l is not zero. A discount factori� prices the factors, and the space of all discount
factors that price the factors is the linep orthogonal toi�. The residual is orthogonal to the
factor space, since it is a regression residual, and toi� in particular,H+i�%l, @ 3. This
means thati� assigns zero price to the residual. But the other discount factors on thep line
arenot orthogonal to%l, so generate non-zero price for the residual%l. As we sweep along
the line of discount factorsp that price thei , in fact, we generate every price from�4 to
4 for the residual. Thus, the law of one price does not nail down the price of the residual%l

and hence the price or expected return of{l=

Limiting arguments

We would like to show that the price of{l has to be “close to” the price of�3li . One notion
of “close to” is that in some appropriate limit the price of{l converges to the price of�3li =
“Limit” means, of course, that you can get arbitrarily good accuracy by going far enough in
the direction of the limit (for every% A 3 there is a�====,. Thus, establishing a limit result is
a way to argue for an approximation.

Here is one theorem that seems to imply that the APT should be a good approximation
for portfolios that have highU5on the factors. I state the argument for the case that there is a
constant factor, so the constant is in thei space andH+%l, @ 3. The same ideas work in the
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Figure 17. Approximate arbitrage pricing.
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less usual case that there is no constant factor, using second moments in place of variance.

Theorem 3 Fix a discount factor p that prices the factors. Then, as ydu+%l, $ 3, s+{l, $
s+�3li,=

Graphical argument: H+%l, @ 3 so ydu+%l, @ H+%l5, @ mm%lmm. Thus, as the size of the
%l vector in Figure 17 gets smaller, {l gets closer and closer to �3li . For any ¿xed p, the
induced pricing function (lines perpendicular to the chosen p) is continuous. Thus, as {l

gets closer and closer to �3li , its price gets closer and closer to �3li =

Regression interpretation. Remember, the factor model is de¿ned as a regression, so

ydu+{l, @ ydu+�3li, . ydu+%l,

Thus, the variance of the residual is related to the regression U5.

ydu+%l,

ydu+{l,
@ 4�U5

The theorem says that as U5 $ 4, the price of the residual goes to zero.

We were hoping for some connection between the fact that the risks are idiosyncratic and
factor pricing. Even if the idiosyncratic risks are a large part of the payoff at hand, they
are a small part of a well-diversi¿ed portfolio. The next theorem shows that portfolios with
high U5 don’t have to happen by chance� well-diversi¿ed portfolios will always have this
characteristic.

Theorem 4 As the number of primitive assets increases, the U5 of well-diversi¿ed portfo-
lios increases to 1.

Proof: Start with an equally weighted portfolio

{s @
4

Q

Q[
l@4

{l=

Going back to the factor decomposition (85) for each individual asset {l, the factor decom-
position of{s is

{s @
4

Q

Q[
l@4

�
dl . �3li . %l

�
@

4

Q

Q[
l@4

dl .
4

Q

Q[
l@4

�3li .
4

Q

Q[
l@4

%l @ ds . �
3

si . %s=

The last equality de¿nes notation�s>�s> %
s. But

ydu+%s, @ ydu

#
4

Q

Q[
l@4

%l

$

136



SECTION 8.4 ARBITRAGE PRICING THEORY (APT)

So long as the variance of %l are bounded, and given the factor assumption H+%l%m, @ 3,

olp
Q$4

ydu+%s, @ 3=

Obviously, the same idea goes through so long as the portfolio spreads some weight on all
the new assets, i.e. so long as it is “well-diversi¿ed.” �

These two theorems can be interpreted to say that the APT holds approximately (in the
usual limiting sense) for portfolios that either naturally have highU5, or well-diversi¿ed
portfolios in large enough markets. We have only used the law of one price.

Law of one price arguments fail

Now, let me pour some cold water on these results. I¿xed p and then let other things take
limits. TheÀip side is that for any nonzero residual%l, no matter how small, we can pick a
discount factorp that prices the factors and assignsany price to{l$

Theorem 5 For any nonzero residual %l there is a discount factor that prices the factors i
(consistent with the law of one price) and that assigns dq| desired price in +�4>4, to the
return Ul=

So long asmm%lmm A 3, as we sweep the choice ofp along the dashed line, the inner product
of p with %l and hence{l varies from�4 to4.

Thus, for a given sizeU5 ? 4, or a given¿nite market, the law of one price says absolutely
nothing about the prices of payoffs that do not exactly follow the factor structure. The law of
one price says that two ways of constructing the same portfolio must give the same price. If
the residual is not exactly zero, there is no way of replicating the payoff{l from the factors
and no way to infer anything about the price of{l from the price of the factors.

I think the contrast between this theorem and those of the last subsection accounts for
most of the argument over the APT. If you¿x p and take limits ofQ or %, the APT gets
arbitrarily good. But if you¿x Q or %, as one does in any application, the APT can get
arbitrarily bad as you search over possiblep.

The lesson I learn is that the effort toextend prices from an original set of securities (i in
this case) to new payoffs that are not exactly spanned by the original set of securities, using
only the law of one price, is fundamentally doomed. To extend a pricing function, you need
to add some restrictions beyond the law of one price.

Beyond the law of one price: arbitrage and Sharpe ratios.

So far, we have used only the law of one price restriction that there is anp. Perhaps we
can do better by imposing the no-arbitrage restriction thatp must be positive. Graphically,
we are now restricted to the solidp line in Figure 17. Since that line only extends a¿nite
amount, restricting us to strictly positivep3v gives rise to¿nite upper and lowerarbitrage
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bounds on the price of %l and hence {l. (The word arbitrage bounds comes from option
pricing, and we will see these ideas again in that context. If this idea worked, it would restore
the APT to “arbitrage pricing” rather than “law of one-pricing”.)

Alas, in applications of the APT (as often in option pricing), the arbitrage bounds are
too wide to be of much use. The positive discount factor restriction is equivalent to saying
“if portfolio A gives a higher payoff than portfolio B inevery state of nature, then the price
of A must be higher than the price of B.” Since stock returns and factors are continuously
distributed, not two-state distributions as I have graphed for¿gure 17, there typically are no
strictly dominating portfolios, so addingp A 3 does not help.

I think it is possible to continue in this line and derive an approximate APT that is useful
in ¿nite markets withU5 ? 4. The issue is, can we rule out the wild discount factors—way
out on the edges of the discount factor line—that one must invoke to justify a price of{l “far”
from the price of�3i . We have found that the law of one price and no-arbitrage do not rule out
such wild prices. But surely we can rule out such prices without taking the opposite extreme
of completely specifying the discount factor model, i.e. start with the consumption-based
model?

One obvious possibility is to restrict thevariance and hence the size (mmpmm @ H+p5, @
�5+p, . H+p,5 @ �5+p, . 4@Ui5, of the discount factor. Figure 17 includes a plot of
the discount factors with limited variance, size, or length in the geometry of that¿gure. The
restricted range of discount factors produces a restricted range of prices for{l. We obtain
upper and lower pricebounds for the price of{l in terms of the factor prices, and the bounds
shrink to�3s+i, as the allowed variance of the discount factor shrinks. Precisely, then, we
solve the problem

plq
ipj

+ or pd{
ipj

, s+{l, @ H+p{l, v=w= H+pi , @s+i,> p � 3> �5+p, � D

Limiting the variance of the discount factor is of course the same as limiting the maximum
Sharpe ratio (mean / standard deviation of excess return) available from portfolios of the
factors and{l. Recall that

H +Uh,

�+Uh,
� �+p,

H+p,
=

Thus, Saá-Requejo and I (1996) dub this idea “good-deal” pricing, as an extension of “arbi-
trage pricing.” Limiting�+p, rules out “good deals” as well as pure arbitrage opportunities.
Though a bound on Sharpe ratios or discount factor volatility is not a totally preference-free
concept, it clearly imposes a great deal less structure than the CAPM or ICAPM which are
essentially full general equilibrium models. Ross (1976) included this suggestion in his orig-
inal APT paper, though it seems to have disappeared from the literature since then in the
failed effort to derive an APT from the law of one price alone. Ross pointed out that devi-
ations from factor pricing could provide very high Sharpe ratio opportunities, which seem
implausible though not violations of the law of one price.
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If we impose a good-deal bound, we obtain well-behaved limits, that do not depend on
the order of “for all” and “there exists.” For givenU5, all discount factors satisfying the
good-deal bound produce price bounds, and the price bounds shrink as theU5 shrinks or
as the good-deal bound shrinks. I describe good-deal pricing in more detail below in an
option-pricing context.

8.5 APT vs. ICAPM

A factor structure in the covariance of returns or highU5 in regressions of returns on
factors are suf¿cient (APT) but not necessary (ICAPM) for factor pricing.

Differing inspiration for factors.

The disappearance of absolute pricing.

The APT and ICAPM stories are often confused. Factor structure can employ factor
pricing (APT), but factor pricing does not require a factor structure. In the ICAPM there is
no presumption that factorsi in a pricing modelp @ e3i describe the covariance matrix
of returns. The factors don’t have to be orthogonal or i.i.d. either. HighU5 in time-series
regressions of the returns on the factors may imply factor pricing (APT), but again are not
necessary. The regressions of returns on factors can have as low anU5 as one wishes in the
ICAPM.

The biggest difference between APT and ICAPM for empirical work is in the inspiration
for factors. The APT suggests that one start with a statistical analysis of the covariance matrix
of returns and¿nd portfolios that characterize common movement. The ICAPM suggests that
one start by thinking about good proxies for marginal utility growth, or state variables that
describe the conditional distribution of future asset returns and non-asset income.

The difference between the derivations of factor pricing models, and in particular an ap-
proximate law-of-one-price basis vs. a proxy for marginal utility basis seems not to have had
much impact on practice. In practice, we just test modelsp @ e3i and rarely worry about
derivations. The best evidence for this view is the introductions of famous papers. Chen,
Roll and Ross (1986) describe one of the earliest popular multifactor models, using indus-
trial production and inÀation as some of the main factors. They do not even present a factor
decomposition of test asset returns, or the time-series regressions. A reader might well cate-
gorize the paper as much closer to an ICAPM. Fama and French (199x) describe the currently
most popular multifactor model, and their introduction describes it as an ICAPM in which
the factors are state variables. But the factors are sorted on size and book/market just like the
test assets, the time-seriesU5 are all above<3(, and much of the explanation involves “com-
mon movement” in test assets captured by the factors. A a reader might well categorize the
model as much closer to an APT.
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In the ¿rst chapter, I made a distinction between relative pricing and absolute pricing. In
the former, we price one security given the prices of others, while in the latter, we price each
security by reference to fundamental sources of risk. The factor pricing stories are interesting
in that they start with a nice absolute pricing model, the consumption-based model, and
throw out enough information to end up with relative models. The CAPM pricesUl given
the market, but throws out the consumption-based model’s description of where the market
return came from.
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PART II
Estimating and evaluating asset

pricing models
Our ¿rst task in bringing an asset pricing model to data is to estimate the free parameters.
Examples of such parameters are � and � in p @ �+fw.4@fw,�� , or e in p@ e3i = Then we
want to evaluate the model. Is it a good model or not? Is another model better?

Statistical analysis helps in model evaluation by providing a distribution theory for num-
bers we create from the data. A distribution theory answers the question, if we generate
arti¿cial data over and over again from a statistical model, generating a number from the
data each time, what is the resulting probability distribution of that number? In particular,
we are interested in a distribution theory for the estimated parameters, and for the pricing er-
rors, which helps us to judge whether pricing errors are just bad luck or if they indicate a
failure of the model. We also will want to generate distributions for statistics that compare
one model to another, or provide other interesting evidence, to judge how much sample luck
affects those calculations.

All of the statistical methods I discuss in this part achieve exactly these ends. They give
methods for estimating free parameters� they provide a distribution theory for those parame-
ters, and they provide statistics for model evaluation, in particular a quadratic form of pricing
errors in the forma�3Y �4a�.

I start by focusing on the GMM approach. Then I consider traditional regression tests
and their maximum likelihood formalization. I emphasize the fundamental similarities be-
tween these three methods, as I emphasized the similarity betweens @ H+p{,, expected
return-beta models, and mean-variance frontiers. A concluding essay highlights the differ-
ences between the methods and argues that the GMM approach will be most useful for most
empirical work in the future.

I use the wordevaluation rather thantest deliberately. Statistical hypothesis testing is
one very small part of the process by which we evaluate and re¿ne asset pricing models,
or discard them in favor of new ones. Statistical tools exist only to answer the sampling
distribution questions in this process. Many models are kept that give economically small but
statistically signi¿cant pricing errors, and many more models are quickly forgotten that have
statistically insigni¿cant but economically large pricing errors, or just do not tell as clean a
story.
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Chapter 9. GMM estimation and testing
of asset pricing models
The basic idea in the GMM approach is very straightforward. The asset pricing model pre-
dicts

H+sw, @ H ^p+dataw.4>parameters, {w.4` = (88)

The most natural way to check this prediction is to examine sample averages, i.e. to calculate

4

W

W[
w@4

sw and
4

W

W[
w@4

^p+dataw.4>parameters, {w.4` = (89)

GMM estimates the parameters by making these sample averages as close to each other as
possible. It works out a distribution theory for those estimates. This distribution theory is
a generalization of the simplest exercise in statistics: the distribution of the sample mean.
Then, it suggests that weevaluate the model by looking at how close the sample averages are
to each other, or equivalently by looking at the pricing errors. It gives a statisticaltest of the
hypothesis that the underlying population means are in fact zero.

9.1 GMM in explicit discount factor models.

It’s easiest to start our discussion of GMM in the context of an explicit discount factor model,
such as the consumption-based model. I treat the special structure of linear factor models
later. I start with the basic classic recipe as given by Hansen and Singleton (1982) and then
explore the intuition behind it and useful variants.

9.1.1 Recipe
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SECTION 9.1 GMM IN EXPLICIT DISCOUNT FACTOR MODELS.

De¿nitions

xw.4+e, � pw.4+e,{w.4 � sw

jW +e, � HW ^xw+e,`

V �
4[

m@�4

H ^xw+e, xw�m+e,
3`

GMM estimate

ae5 @ dujplqe jW +e,
3 aV�4jW +e,=

Standard errors

ydu+ae5, @
4

W
+G3V�4G,�4> G � CjW +e,

Ce

Test of the model (“overidentifying restrictions”)

WMW @ Wplq
�
jW +e,

3V�4jW +e,
� � "5+&moments�&parameters,=

Discount factor models involve some unknown parameters as well as data, so I write
pw.4+e, to remind ourselves of the dependence on parameters. For example, ifpw.4 @
�+fw.4@fw,

�� > thene � ^� �`3. I write ae to denote estimates when it is important to distin-
guish estimated from other values.

Again, any asset pricing model implies

H+sw, @ H ^pw.4+e,{w.4` = (90)

It’s easiest to write this equation in the formH+�, @ 3

H ^pw.4+e,{w.4 � sw` @ 3= (91)

I use boldface for{ ands because these objects are typically vectors� we typically check
whether a model forp can price a number of assets simultaneously. Equations (91) are often
called themoment conditions.

It’s convenient to de¿ne theerrors xw+e, as the object whose mean should be zero,

xw.4+e, @ pw.4+e,{w.4 � sw

Given values for the parameterse, we could construct a time series onxw and look at its
mean.

De¿nejW +e, as the sample mean of thexw errors, when the parameter vector ise in a
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CHAPTER 9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

sample of size W :

jW +e, � 4

W

W[
w@4

xw+e, @ HW ^xw+e,` =

The last equality introduces the handy notation HW for sample means,

HW +�, @ 4

W

W[
w@4

+�,=

(It might make more sense to denote these quantities aH and aj to denote estimates, as I do
elsewhere. However, Hansen’s W subscript notation is so widespread that doing so would
cause more confusion than it solves.)

The¿rst stage estimate of e minimizes a quadratic form of the sample mean of the errors,

ae4 @ dujplqiaej jW +ae,
3ZjW +ae,

for some arbitrary matrixZ (usually,Z @ L). This estimate is consistent, asymptotically
normal, and you can and often should stop here, as I explain below.

Usingae4, form an estimateaV of

V �
4[

m@�4

H ^xw+e, xw�m+e,
3` =

(Below I discuss various interpretations of and ways to construct this estimate.) Form a
second stage estimateae5 using the matrixaV in the quadratic form,

ae5 @ dujplqe jW +e,
3 aV�4jW +e,=

ae5 is a consistent, asymptotically normal, and asymptotically ef¿cient estimate of the param-
eter vectore. “Ef¿cient” means that it has the smallest variance-covariance matrix among all
estimators that set different linear combinations ofjW +e, to zero.

The variance-covariance matrix ofae5 is

ydu+ae5, @
4

W
+G3V�4G,�4

where

G � CjW +e,

Ce

or, more explicitly,

G @ HW

�
Cxw.4+e,

Ce

�����
e@ae

@ HW

�
C

Ce
^+pw.4+e,{w.4 � sw,`

�����
e@ae
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SECTION 9.2 INTERPRETING GMM

This variance-covariance matrix can be used to test whether a parameter or group of
parameters are equal to zero, via

aelt
ydu+ae,ll

� Q+3> 4,

and

aem
k
ydu+ae,mm

l�4
aem � "5+&includede3v,

whereem @subvector> ydu+e,mm @submatrix=

Finally, thetest of overidentifying restrictions is a test of the overall¿t of the model. It
states thatW times the minimized value of the second-stage objective is distributed"5 with
degrees of freedom equal to the number of moments less the number of estimated parameters.

WMW @ Wplq
�
jW +e,

3V�4jW +e,
� � "5+&moments�&parameters,=

See Hansen (1982) or Ogaki (1993) for many important statistical assumptions. The
most important is thatp> s> and{ must bestationary random variables. so that time-series
averages converge to population means.

9.2 Interpreting GMM

Notation.

Stationarity and choice of units.

Forecast errors and instruments.

jW +e, is a pricing error.

GMM picks parameters to minimize pricing errors and evaluates the model by the size of
pricing errors.

The optimal weighting matrix tells you to pay attention to the assets with best-measured
pricing errors.

Notation� instruments and returns

Most of the effort involved with GMM is simply mapping a given problem into the very
general notation. The equation

H ^pw.4+e,{w.4 � sw` @ 3
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CHAPTER 9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

can capture a lot. Here, I translate it for the most common case.

We often test asset pricing models using returns, in which case the moment conditions are

H ^pw.4+e,Uw.4 � 4` @ 3=

It is common to add instruments as well. Mechanically, you can multiply both sides of

4 @ Hw ^pw.4+e,Uw.4`

by any variable }w observed at time w before taking unconditional expectations, resulting in

H+}w, @ H ^pw.4+e,Uw.4}w`

or

3 @ H i^pw.4+e,Uw.4 � 4` }wj = (92)

If payoffs are generated by a vector of two returns U @ ^Ud Ue`3 and one instrument },
equation (92) might look like

H

;AA?
AA=

5
997

pw.4+e, Ud
w.4

pw.4+e, U
e
w.4

pw.4+e, Ud
w.4}w

pw.4+e, U
e
w.4}w

6
::8�

5
997

4
4
}w
}w

6
::8
<AA@
AA> @

5
997

3
3
3
3

6
::8 =

Using the Kronecker product meaning “multiply every element by every other element”
we can denote the same relation compactly by

H i^pw.4+e, Uw.4 � 4` }wj @ 3> (93)

or, emphasizing the managed-portfolio interpretation ands @ H+p{, notation,

H ^pw.4+e,+Uw.4  }w,� +4 }w,` @ 3=

Stationarity

Stationarity is the most important statistical requirement for consistency and the GMM dis-
tribution theory. (“Stationary” of often misused to mean constant, or i.i.d.. The statistical
de¿nition of stationarity is that the joint distribution of{w> {w�m depends only onm and not
on w.) Sample averages must converge to population means as the sample size grows, and
stationarity implies this result.

This step usually amounts to a choice of sensible units. For example, though we could
express the pricing of a stock as

sw @ Hw ^pw.4+gw.4 . sw.4,`
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SECTION 9.2 INTERPRETING GMM

it would not be wise to do so. For stocks, s and g rise over time and so are typically not
stationary� their unconditional means are not de¿ned. It is better to divide by sw and express
the model as

4 @ Hw

�
pw.4

gw.4 . sw.4
sw

�
@ Hw +pw.4Uw.4,

The stock return is plausibly stationary.

Dividing by dividends is an alternative and I think underutilized way to achieve stationar-
ity:

sw
gw

@ Hw

�
pw.4

�
4 .

sw.4
gw.4

�
gw.4
gw

�
=

Now we map
�
4 . sw.4

gw.4

�
gw.4
gw

into {w.4 and sw
gw

into sw= This formulation allows us to focus

on prices rather than one-period returns.

Bonds are a claim to a dollar, so bond prices do not grow over time. Hence, it might be
all right to examine

sew @ H+pw.4 4,

with no transformations.

Stationarity is not always a black and white question in practice. As variables become
“less stationary”, as they experience longer and longer swings in a sample, the asymptotic
distribution can becomes a less reliable guide to a¿nite-sample distribution. For example,
the level of interest rates is surely a stationary variable in a fundamental sense: it was 6%
in ancient Babylon, about 6% in 14th century Italy, and about 6% again today. Yet it takes
very long swings away from this unconditional mean, moving slowly up or down for even
20 years at a time. The asymptotic distribution theory of some estimators will be particularly
bad approximation to the correct¿nite sample distribution theory in such a case.

It is also important to choosetest assets in a way that is stationary. For example, individual
stocks change character over time, increasing or decreasing size, exposure to risk factors,
leverage, and even nature of the business. For this reason, it is common to sort stocks into
portfolios based on characteristics such as betas, size, book/market ratios, industry and so
forth. The statistical characteristics of theportfolio returns may be much more stationary than
the characteristics of individual securities, whichÀoat in and out of the various portfolios.

Forecast errors and instruments

The asset pricing model says that, although expectedreturns can vary across time and assets,
expecteddiscounted returns should always be the same, 1. The errorxw.4 @ pw.4Uw.4 � 4
is the ex-post discounted return.xw.4 @ pw.4Uw.4� 4 represents aforecast error. Like any
forecast error,xw.4 should be conditionally and unconditionally mean zero.
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CHAPTER 9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

In an econometric context, } is an instrument because it is uncorrelated with the error
xw.4. H+}wxw.4, is the numerator of a regression coef¿cient of xw.4 on }w� thus adding
instruments basically checks that the error or ex-post discounted return is unforecastable by
linear regressions.

If an asset’s return is higher than predicted when}w is unusually high, but not on average,
scaling by}w will pick up this feature of the data. Then, the moment condition checks that the
discount rate is unusually low at such times, or that the conditional covariance of the discount
rate and asset return moves suf¿ciently to justify the high conditionally expected return.

As I explained in Chapters 2 and 7, adding instruments can also be interpreted as including
the returns of managed portfolios, strategies that put more or less money into assets as linear
functions of the information variable}.

So far I have been careful to say thatH+s, @ H+p{, is an implication of the model. As
chapter 7 emphasizes, adding instruments is in principle able to captureall of the model’s
predictions.

Pricing errors

The moment conditions are

j+e, @ H ^pw.4+e,{w.4 � sw` @ H ^pw.4+e,{w.4`�H ^sw` =

Thus, each moment is the difference between actual (H+s,) and predicted (H+p{,) price, or
pricing error.

In the language of expected returns, recall that4 @ H+pU, can be translated to a pre-
dicted expected return,

H+U, @
4

H+p,
� fry+p>U,

H+p,
=

Therefore, we can write the pricing error as

j+e, @ H+pU,� 4 @ H+p,

�
H+U,� 4

H+p,
.

fry+p>U,

H+p,

�

j+e, @
4

Ui
+actual mean return - predicted mean return.,

Similarly, if we express the model in expected return-beta language,

H+Ul, @ �l . �3l�

then the GMM objective is proportional to the Jensen’s alpha measure of mis-pricing,

j+e, @
4

Ui
�l=
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SECTION 9.2 INTERPRETING GMM

Thus, GMM picks parameters to make pricing errors as small as possible, and tests the
model by the size of its pricing errors.

First-stage estimates

If we could, we’d pick e to make every element ofjW +e, @ 3 — to have the model price
assets perfectly in sample. However, there are usually more moment conditions (returns times
instruments) than there are parameters. There should be, because theories with as many free
parameters as facts (moments) are pretty vacuous. Thus, we choosee to makejW +e, as
small as possible. The easiest way to make a vector such asjW +e, “small” is to minimize a
quadratic form,

plq
iej

jW +e,
3ZjW +e,= (94)

Z is aweighting matrix that tells us how much attention to pay to each moment, or how
to trade off doing well in pricing one asset or linear combination of assets vs. doing well in
pricing anther. For example,Z @ L says to treat all assets symmetrically. In this case, the
objective is the sum of squared pricing errors.

The sample pricing errorjW +e, may be anonlinear function ofe. Thus, you may have to
use a numerical search to¿nd the value ofe that minimizes the objective in (94). However,
since the objective is locally quadratic, the search is usually straightforward.

Second-stage estimates

What weighting matrix should you use? You might start with Z @ L, i.e., “try to price
all assets equally well”. This is an example of aneconomically interesting metric. You
might start with different elements on the diagonal ofZ if you think some assets are more
interesting or informative than others. In particular, a¿rst-stageZ that is not the identity
matrix can be used to offset differences in units between the moments.

However, some asset returns may have much more variance than other assets. For those
assets,jW @ HW +pwUw� 4, will be a much less accurate measurement ofH+pU�4,, since
it will vary more from sample to sample. Hence, one might think of paying less attention
to pricing errors from assets with high return variance. One could implement this idea by
using aZ matrix composed of inverse variances ofHW +pwUw � 4, on the diagonal. More
generally, since asset returns are correlated, one might think of using the covariance matrix of
HW +pwUw�4,. This weighting matrix pays most attention to linear combinations of moments
about which the data set at hand has the most information. Hence it is astatistical metric for
judging how “small” the momentsjW are. This idea is exactly the same as heteroskedasticity
and cross-correlation corrections that lead you from OLS to GLS in linear regressions.

The covariance matrix ofjW @ HW +xw.4, is the variance of a sample mean. Exploiting
the fact thatH+xw, @ 3> and thatxw is stationary soH+x4x5, @ H+xwxw.4, depends only on
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CHAPTER 9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

the distance between the two x’s and not on time itself, we have

ydu+jW , @ ydu

#
4

W

W[
w@4

xw.4

$
@ H

5
7# 4

W

W[
w@4

xw.4

$5
6
8 (95)

@
4

W 5

�
WH+xwx

3
w, . +W � 4,

�
H+xwx

3
w�4, .H+xwx

3
w.4,,

�
. ===

�
As W $ 4> +W � m,@W $ 4> so

ydu+jW , $ 4

W

4[
m@�4

H+xwx
3
w�m, @

4

W
V=

The last equality denotesV> known for other reasons as thespectral density matrix at fre-
quency zeroof xw. (Precisely, V so de¿ned is the variance-covariance matrix of thejW for
¿xede. The actual variance-covariance matrix ofjW must take into account the fact that we
chosee to minimizejW . I give that formula below. The point here is heuristic.)

This fact suggests that a good weighting matrix might be the inverse ofV. In fact, Hansen
(1982) shows formally that the choice

Z � @ V�4> V �
4[

m@�4

H+xwx
3
w�m,

is the statisticallyoptimal weighing matrix, in the sense that it produces estimates with lowest
asymptotic variance.

You may be more used to the formula�+x,@
s
W for the standard deviation of a sam-

ple mean. This formula is a special case that holds when thex3wv are i.i.d. In that case
Hw+xwx3w�m, @ 3> m 9@ 3> so the previous equation reduces to

ydu

#
4

W

W[
w@4

xw.4

$
@

4

W
H+xx3, @

ydu+x,

W
=

This is probably the¿rst statistical formula you ever saw – the variance of the sample mean.
In GMM, it is the last statistical formula you’ll ever see as well. GMM amounts to just gen-
eralizing the simple ideas behind the distribution of the sample mean to parameter estimation
and general statistical contexts.

As you can see, the variance formulas used in GMMdo not include the usual assumptions
that variables are i.i.d., homoskedastic, etc. You can put such assumptions in if you want to –
we’ll see how below, and adding such assumptions simpli¿es the formulas and can improve
the small-sample performance when the assumptions are justi¿ed – but you don’thave to add
these assumptions. That’s why the formulas look a little different.
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SECTION 9.3 ESTIMATING THE SPECTRAL DENSITY MATRIX

Testing

Once you’ve estimated the parameters that make a model “¿t best”, the natural question
is, how well does it¿t? It’s natural to look at the pricing errors and see if they are “big”. A
natural measure of “big” is, are the pricing errors statistically big? That’s exactly the question
answered by theMW test. Recall,

WMW @ W
k
jW +ae,

3V�4jW +ae,
l
� "5+&moments�&parameters,=

MW looks like the minimized pricing errors divided by their variance-covariance matrix. The
distribution theory just says that sample means converge to a normal, so sample means
squared divided by variance converges to the square of a normal, or"5. Thus, theMW test tells
you whether the pricing errors are “big” relative to their sampling variation under the null that
the model is true. (Ifewere¿xed,V would in fact be the asymptotic variance-covariance ma-
trix of thejW , and the result would be"5 with &moments degrees of freedom. The reduction
in degrees of freedom corrects for the fact that we chose the parameters to makejW small.
More details below.)

The¿rst and second stage estimates should remind you of procedures with standard lin-
ear regression models: if the errors are not i.i.d., then you run an OLS regression, which is
consistent, but not ef¿cient. You can then use the OLS estimate to obtain a series of residuals,
estimate a variance-covariance matrix of residuals, and then do GLS, which is also consistent
and more ef¿cient, meaning that the sampling variation in the estimated parameters is lower.

9.3 Estimating the spectral density matrix

Hints on estimating the spectral density or long run covariance matrix. 1) Remove means
2) How many covariance terms to include 3) Bartlett/Newey West and other covariance
weighting schemes 4) If you useV as a weighting matrix, don’t let the number of moments
get large relative to sample size, or impose parametric restrictions 5) Iteration and simultane-
ouse> V estimation.

The optimal weighting matrixV depends onpopulation moments, and depends on the
parameterse. Work back through the de¿nitions,

V @
4[

m@�4

H+xwx
3
w�m, @

4[
m@�4

H
�
+pw.4+e,{w.4 � sw,x

3
w�m

�
=

How do we construct this matrix? Following the usual philosophy, we estimate population
moments by their sample counterparts. Thus, use the¿rst stagee estimates and the data to
construct sample versions of the de¿nition of V. This produces a consistent estimate of the
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CHAPTER 9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

true spectral density matrix, which is all the asymptotic distribution theory requires.

In asymptotic theory, you can use consistent ¿rst stage e estimates formed by any non-
trivial weighting matrix. In practice, of course, you should use a sensible weighting matrix
like Z @ L so that the¿rst stage estimates are not ridiculously inef¿cient. There are several
additional considerations to be aware of in estimating spectral density matrices

1) Removing means. Under the null,H+xw, @ 3> so it shouldn’t matter whether one estimates
the covariance matrix by removing means, using

4

W

W[
w@4

^+xw � �x,+xw � �x,3` > �x � 4

W

W[
w@4

xw

or whether one estimates the second moment matrix by not removing means. However,
Hansen and Singleton (1982) advocate removing the means in sample, and this is generally
a good idea. Underalternatives in which H+x, is zero, removing means should give more
reliable performance.

In addition, the major obstacle to second-stage estimation is that estimatedV matrices
(and even simple variance-covariance matrices) are nearly singular. Second moment matrices
H+xx3, @ fry+x>x3, .H+x,H+x3, are even worse.

2) Correlations under the null or alternative? Under some null hypotheses,Hw+xw.4, @
3> so H+xwxw�m, @ 3 for m 9@ 3= For example, this is true in the canonical case,3 @
Hw+pw.4Uw.4 � 4, @ Hw+xw.4,. The discounted return should be unforecastable, using
past discounted returns as well as any other variable. Thus, one could exploit the null to only
includeone term, and estimate

aV @
4

W

W[
w@4

xwx
3
w=

Again, however, the null might not be correct, and the errors might be correlated. If so, you
might make a big mistake by leaving them out. If the null is correct, the extra terms will
converge to zero and you will only have lost a few degrees of freedom needlessly estimating
them. With this in mind, one might want to include at least a few extra autocorrelations, even
when the null says they don’t belong.

Monte Carlo evidence (Hodrick 199x, Campbell 1994) suggests that imposing the null
hypothesis to simplify the spectral density matrix helps to get thesize of test statistics right
– the probability of rejection given the null is true. Using more general spectral density
matrices that can accommodate alternatives can help with thepower of test statistics – the
probability of rejection given that the alternative is true.

This trade-off requires some thought. Formeasurement rather than puretesting, using
a spectral density matrix that can accommodate alternatives may make for more robust test
statistics. For example, if you are running regressions to see if a variable such as dividend-
price ratio forecasts returns, and calculating anV matrix to develop standard errors for the
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SECTION 9.3 ESTIMATING THE SPECTRAL DENSITY MATRIX

OLS regression coef¿cients, it may make sense to use more lags than required. While the
null hypothesis that nothing forecasts returns is interesting and implies the number of lags,
the spirit really is more measurement than testing.

If you are testing an asset pricing model that predicts x should not be autocorrelated, and
there is a lot of correlation – if this issue makes a big difference – then this is an indication
that something is wrong with the model� that includingx as one of your instruments} would
result in a rejection.

3) Downweight higher order correlations. Why not include all available autocorrelations?
The problem with this approach is that the last autocorrelationH+xwxw�W.4, is estimated
from one data point. Hence it will be a pretty unreliable estimate. For this reason, the
estimator using all possible autocorrelations isinconsistent. (Consistency means that as the
sample grows, the probability distribution of the estimator converges to the true value.) To get
a consistent estimate, you have to promise to let the number of included correlations increase
more slowly than sample size. Even in a¿nite sample, higher autocorrelations are more and
more badly measured, so you want to think about leaving them out.

Furthermore, evenV estimates that use few autocorrelations are not always positive def-
inite in sample. This is embarrassing when one tries to invert the estimated spectral density
matrix, as called for in the formulas. Therefore, it is a good idea to construct consistent es-
timates that are automatically positive de¿nite in every sample. One such estimate is the
Bartlett estimate, used in this application by Newey and West (1987). It is

aV @
n[

m@�n

n � mmm
n

4

W

W[
w@4

+xwx
3
w�n,= (96)

As you can see, only autocorrelations up tonth +n ? W , order are included, and higher
order autocorrelations are downweighted. A variety of other weighting schemes have been
advocated with the same effect. See Andrews (19xx).

The Newey-West estimator is basically the variance of kth sums,

Y du

3
C n[
m@4

xw�m

4
D @ nH+xwx

3
w, . +n � 4,^H+xwx

3
w�4, .H+xw�4x

3
w,` . � � �

.^H+xwx
3
w�n, .H+xw�nx

3
w,` @ n

n[
m@�n

n � mmm
n

H+xwx
3
w�n,=

This logic also gives some intuition for theV matrix. Recall that we’re looking for the
varianceacross samples of the sample meanydu+ 4W

SW
w@4 xw). We only have one sample

mean to look at, so we estimate the variance of the sample mean by looking at the variance

in a single sample of shorter sums,ydu
�
4
n

Sn
m@4 xm

�
. TheV matrix is sometimes called the

long-run covariancematrix for this reason.
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In fact, one could estimate V directly as a variance of nth sums and obtain almost the
same estimator, that would also be positive de¿nite in any sample,

yw @
n[

m@4

xw�m > �y @
4

W � n

W[
w@n.4

yw

aV @
4

n

4

W � n

W[
w@n.4

+yw � �y, +yw � �y,3 =

This estimator has been used when measurement of V is directly interesting (Cochrane 1998,
Lo and MacKinlay 1988).

What value of n> or how wide a window if of another shape, should you use? Here again,
you have to use some judgment. Too short values of n, and you don’t correct for correlation
that might be there in the errors. Too long a value ofn, and the performance of the estimate
and test deteriorates. Ifn @ W@5 for example, you are really using only two data points to
estimate the variance of the mean. The optimum value then depends on how much persistence
or low-frequency movement there is in a particular application, vs. accuracy of the estimate.

There is an extensive statistical literature about optimal window width, or size ofn. Alas,
this literature mostly characterizes therate at whichn should increase with sample size.
You must promise to increasen as sample size increases, but not as quickly,olpW$4 n @
4> olpW$4 n@W @ 3> in order to obtain consistent estimates. In practice, promises about
what you’d do with more data are pretty meaningless. (And usually broken once more data
arrives.)

4) Consider parametric structures for autocorrelation, cross-correlation, and heteroskedas-
ticity.

Monte Carlo evidence seems to suggest that if there is a lot of autocorrelation (or het-
eroskedasticity) in the data, “nonparametric” corrections such as (96) don’t perform very
well. The asymptotic distribution theory that ignores sampling variation in covariance ma-
trix estimates is a poor approximation to the¿nite-sample distribution, so one should use a
Monte-Carlo or other method to get at the¿nite-sample distribution of such a test statistic.

One alternative is to impose a parametric structure on the correlation pattern. For exam-
ple, if you model a scalarx as an AR(1) with parameter�> then you can estimate two numbers
� and�5x rather than a whole list of autocorrelations, and calculate

V @
4[

m@�4

H+xwxw�m, @ �5x

4[
m@�4

�mmm @ �5x
4 . �

4� �

If this structure is correct, imposing it can result in much more ef¿cient test statistics since
one has to estimate many fewer coef¿cients. Similar parametric structures could be used to
model the cross-sectional correlation of large number of moments, or the heteroskedasticity
structure. Of course, there is the danger that the parametric structure is wrong.
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SECTION 9.3 ESTIMATING THE SPECTRAL DENSITY MATRIX

Alternatively one could transform the data in such a way that there is less correlation to
correct for in the ¿rst place.

5) Size problems.

If you try to estimate a covariance matrix that is larger than the number of data points
(say 2000 NYSE stocks and 800 monthly observations), the estimate of V> like any other
covariance matrix, is singular by construction. This fact leads to obvious numerical problems
when you try to invert V! More generally, when the number of moments is much more than
around 1/10 the number of data points, V estimates tend to become unstable and near-singular.
Used as a weighting matrix, such anV matrix tells you to pay lots of attention to strange and
probably spurious linear combinations of the moments. For this reason, most second-stage
GMM estimations are limited to a few assets and a few instruments.

A good, but as yet untried alternative might be to impose a factor structure or other well-
behaved structure on the covariance matrix. The universal practice of grouping assets into
portfolios before analysis implies an assumption that the trueV has a factor structure. It
might be better to estimate anV imposing a factor structure on all the primitive assets.

Another response to the dif¿culty of estimatingV is to stop at¿rst stage estimates, and
only useV for standard errors. One might also use a highly structured estimate ofV as
weighting matrix, while using a less constrained estimate for the standard errors.

This problem is of course not unique to GMM. Any estimation technique requires us to
calculate a covariance matrix. Many traditional estimates simply assume that errors are cross-
sectionally independent. This leads to understatements of the standard errors far worse than
the small sample performance of any GMM estimate.

6) Alternatives to the two-stage procedure.

Hansen and Singleton (1982) describe the above two-step procedure, and it has become
popular for that reason. Two alternative procedures may perform better in practice, i.e. may
result in asymptotically equivalent estimates with better small-sample properties.

a) Iterate. The second stage estimateae5 will not imply the same spectral density as the
¿rst stage. It might seem appropriate that the estimate ofe and of the spectral density should
be consistent, i.e. to¿nd a¿xed point ofae @ plqiej^jW +e,

3V+ae,�4jW +e,`. One way to
search for such a¿xed point is to iterate:¿nde5 from

ae5 @ plq
iej

jW +e,
3V�4+e4,jW +e, (97)

wheree4 is a¿rst stage estimate, held¿xed in the minimization overe5. Then useae5 to
¿ndV+ae5,, ¿nd

ae6 @ plq
iej

^jW +e,
3V+ae5,

�4jW +e,`>

and so on. There is no¿xed point theorem that such iterations will converge, but they often
do, especially with a little massaging. (I once usedV ^+em . em�4,@5` in the beginning part
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CHAPTER 9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

of an iteration to keep it from oscillating between two values of e). Ferson and Foerster
(199x) ¿nd that iteration gives better small sample performance than two-stage GMM in
Monte Carlo experiments.

b) Pick e and V simultaneously. It is not true thatV must be held¿xed as one searches
for e. Instead, one can use a newV+e, for each value ofe. Explicitly, one can estimatee by

plq
iej

^jW +e,
3V�4+e,jW +e,` (98)

The estimates produced by this simultaneous search will not be numerically the same in
a¿nite sample as the two-step or iterated estimates. The¿rst order conditions to (97) are�

CjW +e,

Ce

�3
V�4+e4,jW +e, @ 3 (99)

while the¿rst order conditions in (98) add a term involving the derivatives ofV+e, with re-
spect toe. However, the latter terms vanish asymptotically, so the asymptotic distribution
theory is not affected. Hansen, Heaton and Luttmer (19xx) conduct some Monte Carlo ex-
periments and¿nd that this estimate may have small-sample advantages. On the other hand,
one might worry that the one-step minimization will¿nd regions of the parameter space that
blow up the spectral density matrixV+e, rather than lower the pricing errorsjW .

Often, one choice will be much more convenient than another. For linear models, one
can¿nd the minimizing value ofe from the¿rst order conditions (99) analytically. This
fact eliminates the need to search so even an iterated estimate is much faster. For nonlinear
models, each step involves a numerical search overjW +e,

3VjW +e,= Rather than perform this
search many times, it may be much quicker to minimize once overjW +e,

3V+e,jW +e,= On
the other hand, the latter is not a locally quadratic form, so the search may run into greater
numerical dif¿culties.
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Chapter 10. General formulas, other
uses of GMM
GMM procedures can be used to implement a host of estimation and testing exercises. Just
about anything you might want to estimate can be written as a special case of GMM. To do
so, you just have to remember (or look up) a few very general formulas, and then map them
into your case. I start with the general formulas and then give a few examples of interesting
but hard-looking questions that can be mapped into the formulas.

10.1 General GMM formulas

The general GMM estimatedW jW +ae, @ 3

Distribution ofae = Wfry+ae, @ +dg,�4dVd3+dg,�43

Distribution ofjW +ae, = Wfry
k
jW +ae,

l
@

�
L � g+dg,�4d

�
V
�
L � g+dg,�4d

�3
The “optimal” estimate usesd @ g3V�4

With d @ g3V�4,Wfry+ae, @ +g3V�4g,�4> W fry
k
jW +ae,

l
@ V�g+g3V�4g,�4g3, and a"5

test thatjW +e, @ 3 simpli¿es to the famousMW test,WjW +ae,3V�4jW +ae, $ "5+&moments�&parameters).

Express a model as

H^i+{w> e,` @ 3

Everything is a vector:i can represent a vector ofO sample moments,{w can beP data
series,e can beQ parameters.

De¿nition of the GMM estimate. We estimate parametersae to set some linear combination
of sample means ofi to zero,

ae = setdW jW +ae, @ 3

where

jW +e, � 4

W

W[
w@4

i+{w> e,=

This de¿nes the GMM estimate.

Any statistical procedure divides into “how to produce the number” and “what is the
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CHAPTER 10 GENERAL FORMULAS, OTHER USES OF GMM

distribution theory of that number”. The point then is then distribution theory for the estimate
ae and for the minimized moment conditionsjW +ae,=

Standard errors of the estimate. Hansen (1982), Theorem 3.1 tells us that the asymptotic
distribution of the GMM estimate is

s
W +ae� e, $ Q �

3> +dg,�4dVd3+dg,�43
�

(100)

where

g � H

�
Ci

Ce3
+{w> e,

�
@

CjW +e,

Ce3

(i.e.,g is de¿ned as the population moment in the¿rst equality, which we estimate in sample
by the second equality),

d � plim dW

V �
4[

m@�4

H ^i+{w> e,> i+{w�me,
3` =

Don’t forget the
s
W $ In practical terms, this means to use

ydu+ae, @
4

W
+dg,�4dVd3+dg,�43 (101)

as the covariance matrix for standard errors and tests.

The “optimal” choice of weighting matrix is

d @ g3V�4> (102)

This choice,g3V�4jW +ae, @ 3 is the¿rst order condition toplqiej jW +e,
3V�4jW +e,. With

this weighting matrix, the standard error formula reduces to
s
W +ae� e, $ Q �

3> +g3V�4g,�4
�
= (103)

This is Hansen’s Theorem 3.2.

Distribution of the moments. Hansen’s Lemma 4.1 gives the sampling distribution of the
jW +e, =

s
WjW +ae, $ Q

k
3>
�
L � g+dg,�4d

�
V
�
L � g+dg,�4d

�3l
= (104)

As we have seen,V would be the asymptotic variance-covariance matrix of sample means, if
we did not estimate any parameters, which sets some linear combinations of thejW to zero.
TheL � g+dg,�4d terms account for the fact that in each sample some linear combinations
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SECTION 10.2 STANDARD ERRORS OF ANYTHING BY DELTA METHOD

of jW are set to zero. Thus, this variance-covariance matrix is singular. With the optimal
weighting matrix (102), we get the simpli¿ed formula

fry+ae, @ V � g+g3V�4g,�4g3

MW and "5tests. A sum of squared standard normals is distributed"5. Therefore, it is
natural to use the distribution theory forjW to see if all thejW are “too big”. Equation 104
suggests that we form the statistic

WjW +ae,
3
k�
L � g+dg,�4d

�
V
�
L � g+dg,�4d

�3l�4
jW +ae, (105)

and that it should have a"5 distribution. It does, but with a hitch: The variance-covariance
matrix is singular, so you have to pseudo-invert it. For example, you can perform an eigen-
value decomposition

S
@ T�T3 and then invert only the non-zero eigenvalues. Also, the

"5 distribution has degrees of freedom given by the number non-zero linear combinations of
jW , the number of moments less number of estimated parameters.

If we use the optimal set of moments (102), then Hansen’s Lemma 4.2 tells us that

WjW +ae,
3V�4jW +ae, $ "5+&moments�&parameters). (106)

While one can obtain an equivalent statistic by plugging the optimal matrix (102) into the
formula (104) or (105), this result is nice since we get to use the already-calculated and
non-singularV�4.

To derive (106) from (104), Hansen factorsV @ FF3 and then¿nds the asymptotic
covariance matrix ofF�4jW +ae, using (104). The result is

ydu
ks

WF�4jW +ae,
l
@ L �F�4g+g3V�4g,�4g3F�43=

This is an idempotent matrix of rank&moments-&parameters, so (106) follows.

10.2 Standard errors of anything by delta method

Often, we can write the estimate we want as a function of sample means,

e @ ! ^H+{w,` @ !+�,=

In this case, the formula (100) reduces to

ydu+eW , @
4

W

�
g!

g�

�3 4[
m@�4

fry+{w> {
3
w�m,

�
g!

g�

�
= (107)

The formula is very intuitive. The variance of the sample mean is the covariance term inside.
The derivatives just linearize the function! near the truee.
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10.3 Using GMM for regressions

By mapping OLS regressions in to the GMM framework, we derive formulas for OLS
standard errors that correct for autocorrelation and conditional heteroskedasticity of the er-
rors. The general formula is

ydu+a�, @
4

W
H+{w{

3
w,
�4

5
7 4[
m@�4

H+xw{w{
3
w�mxw�m,

6
8H+{w{

3
w,
�4=

and it simpli¿es in special cases.

Mapping any statistical procedure into GMM makes it easy to develop an asymptotic
distribution that corrects for, or is insensitive to, statistical problems such as non-normality,
serial correlation and conditional heteroskedasticity. To illustrate, as well as to develop the
very useful formulas, I map OLS regressions into GMM.

Correcting OLS standard errors for econometric problems isnot the same thing as GLS.
When errors do not obey the OLS assumptions, OLS is consistent, and often more robust
than GLS, but its standard errors need to be corrected.

OLS picks parameters� to minimize the variance of the residual:

plq
i�j

HW

�
+|w � �3{w,

5
�
=

We ¿nd a� from the¿rst order condition, which states that the residual is orthogonal to the
right hand variable:

jW +a�, @ HW

k
{w+|w � {3wa�,

l
@ 3 (108)

This condition is exactly identi¿ed–the number of moments equals the number of parameters.
Thus, we set the sample moments exactly to zero and there is no weighting matrix (d @ L,.
We can solve for the estimate analytically,

a� @ ^HW +{w{
3
w,`
�4

HW +{w|w,=

This is the familiar OLS formula. The rest of the ingredients to equation (100) are

g @ H+{w{
3
w,

i+{w>�, @ {w+|w � {3w�, @ {wxw
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where xw is the regression residual. Then, equation (100) gives

ydu+a�, @
4

W
H+{w{

3
w,
�4

5
7 4[
m@�4

H+xw{w{
3
w�mxw�m,

6
8H+{w{

3
w,
�4= (109)

This is our general formula for OLS standard errors. Let’s look at some special cases:

Serially uncorrelated, homoskedastic errors:

These are the usual OLS assumptions. It’s good to see the usual standard errors emerge.
Formally, the assumptions are

H+xw m {w>{w�4 ===xw�4> xw�5===, @ 3 (110)

H+x5w m {w>{w�4 ===xw> xw�4===, @ constant@ �5x= (111)

The¿rst assumption means that only them @ 3 term enters the sum

4[
m@�4

H+xw{w{
3
w�mxw�m, @ H+x5w{w{

3
w,=

The second assumption means that

H+x5w{w{
3
w, @ H+x5w ,H+{w{

3
w, @ �5xH+{w{

3
w,=

Hence equation (109) reduces to our old friend,

ydu+a�, @
4

W
�5xH+{w{

3
w,
�4 @ �5x

#
W[
w@4

{w{
3
w

$�4

@ �5x +[
3[,

�4
=

The last notation is typical of econometrics texts, in which[ @
�
{4 {5 === {W

�3
rep-

resents the data matrix.

2) Heteroskedastic errors.

If we delete the conditional homoskedasticity assumption (111), we can’t pull thexout
of the expectation, so the standard errors are

ydu+a�, @
4

W
H+{w{

3
w,
�4H+x5w{w{

3
w,H+{w{

3
w,
�4=

These are known as “Heteroskedasticity corrected standard errors” or “White standard errors”
after White (19xx).

3) Hansen-Hodrick errors

161



CHAPTER 10 GENERAL FORMULAS, OTHER USES OF GMM

Hansen and Hodrick (1982) consider regressions in which the forecasting interval is
longer than the sampling interval, i.e.

|w.n @ �3{w . %w.n w @ 4> 5> ===W=

Fama and French (1988) also use regressions of overlapping long horizon returns on variables
such as dividend/price ratio and term premium. Such regressions are an important part of the
evidence for predictability in asset returns.

Under the null that returns are unforecastable, we will still see correlation in the %w due to
overlapping data. Formally, unforecastable returns | implies

H+%w%w�m, @ 3 for mmm � n

but not for mmm ? n= Therefore, we can only rule out terms in V lower than n= Since we might
as well correct for potential heteroskedasticity while we’re at it, the standard errors are

ydu+eW , @
4

W
H+{w{

3
w,
�4

5
7 n[
m@�n

H+xw{w{
3
w�mxw�m,

6
8H+{w{

3
w,
�4=

If the sum in the middle is not positive de¿nite, you could add a weighting to the sum, possibly
increasing the number of lags so that the lags nearn are not unusually underweighted. Again,
estimating extra lags that should be zero under the null only loses a little bit of power.

10.4 Problems

1. Use the delta method to derive the sampling variance of an autocorrelation coef¿cient.
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Chapter 11. GMM variations
Lots of calculations beyond formal parameter estimation and overall model testing are use-
ful in the process of evaluating a model and comparing it to others models. But one also
wants to understand sampling variation in such calculations, and mapping the questions into
the GMM framework allows us to do this easily. In addition, alternative estimation and eval-
uation procedures may be more intuitive or robust to model misspeci¿cation than the two (or
multi) stage procedure described above. As we did with OLS regressions, one can map a
wide variety of alternative methods into the general GMM framework to derive a distribution
theory.

In this chapter I discuss four such variations on the GMM method. 1) I show how to
compare two models, to see if one model drives out another in pricing a set of assets. 2)
I show how to use the GMM approach to mean-variance frontier questions 3) I argue that
it is often wise and interesting to useprespeci¿ed weighting matrices rather than theV�4

weighting matrix, and I show how to do this. 4) I show how to use the distribution theory
for thejW beyond just forming theMW test in order to evaluate the importance of individual
pricing errors.

All of these calculations are nothing more than creative applications of the general GMM
formulas for variance covariance matrix of the estimated coef¿cients, equation (101) and
variance covariance matrix of the momentsjW , equation (104).

11.1 Horse Races

How to test whether one set of factors drives out another. Teste5 @ 3 inp @ e34i4.e35i5>
and an equivalent chi-squared difference test.

An interesting exercise for linear factor models is to test whether one set of factors drives
out another. For example, Chen Roll and Ross (1986) test whether their¿ve “macroeconomic
factors” price assets so well that one can ignore even the market return. Given the large
number of ad-hoc factors that have been proposed, a statistical procedure for testing which
factors survive in the presence of the others is desirable. As I showed above, when the factors
are correlated, it is most interesting to test this proposition by testing whether thee inp @ e3i
are zero rather than testing factor risk premia, since thee tell us when a factor helps to price
assets and the� tell us whether a factor is priced.

Start by estimating a general model

p @ e34i4 . e35i5= (112)

We want to know, given factorsi4, do we need thei5 to price assets – i.e. ise5 @ 3? There
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CHAPTER 11 GMM VARIATIONS

are two ways to do this.

First and most obviously, we have an asymptotic covariance matrix for ^e4e5`, so we can
form a w test (if e5 is scalar) or "5 test for e5 @ 3 by forming the statistic

ae35ydu+ae5,
�4ae5 � "5&e5

where &e5 is the number of elements in the e5 vector. This is a Wald test..

Second, estimate a restricted system p @ e34i4. Since there are fewer free parameters and
the same number of moments than in (112), we expect the criterion MW to rise. If we use the
same weighting matrix, (usually the one estimated from the unrestricted model (112)) then
the MW cannot in fact decline. But if e5 really is zero, it shouldn’t rise “much”. How much?

WMW +restricted,� WMW +unrestricted, � "5+&of restrictions,

This is a “"5 difference” test, due to Newey and West (19xx) . It works very much like a
likelihood ratio test.

11.1.1 Mean-variance frontier and performance evaluation

A GMM, s @ H+p{, approach to testing whether a return expands the mean-variance
frontier. Just test whetherp @ d. eU prices all returns. If there is no risk free rate, use two
values ofd.

It is common to summarize asset data by mean-variance frontiers. For example, a large
literature has examined the desirability of international diversi¿cation in a mean-variance
context. Stock returns from many countries are not perfectly correlated, so it looks like one
can reduce portfolio variance a great deal for the same mean return by holding an internation-
ally diversi¿ed portfolio. But is this real, or just sampling error? Even if the value-weighted
portfolio were ex-ante mean-variance ef¿cient, an ex-post mean-variance frontier constructed
from historical returns on the roughly 2000 NYSE stocks would leave the value-weighted
portfolio well inside the ex-post frontier. So is “I should have bought Japanese stocks in
1960” (and sold them in 1990!) a signal that broad-based international diversi¿cation a good
idea now, or is it simply 20/20 hindsight regret like “I should have bought Microsoft in 1982?”
Similarly, we often want to know “can a portfolio manager exploit superior information to
form a portfolio that is better than one can form by a passive mean-variance construction, or
is a better performance in sample just due to luck?”

DeSantis (1992) and Chen and Knez (1992,1993) showed how to examine such questions
in a s @ H+p{,, GMM framework, by applying the above horse race. We exploit the con-
nection between mean-variance ef¿ciency and linear discount factor models, and the GMM
distribution theory. LetUg be a vector of domestic asset returns andUi a vector of foreign
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E(R)

σ(R)

1/E(m)

Frontiers intersect

Figure 18. Mean variance frontiers might intersect rather than coincide.

asset returns. If a discount factor p @ d. e3gU
g prices both Ug and Ui > then Ug is on the

mean variance frontier generated by Ug and Ui . We know p @ d . e3gU
g . e3iU

i prices
both sets of returns by construction, (this is {�). Thus, we can use a Wald test on ei @ 3> or
a "5 difference test.

To test a portfolio manager’s skill, let p @ d . eUz . esU
s whereUs is the return on

a portfolio managed by a portfolio manager. We want to know whether the portfolio man-
ager can exploit superior knowledge, skill, or information to get outside the mean-variance
frontier. Thus, we test fores @ 3 in a system that includes (at least)Uz andUs as moments.

There is a slight subtlety in this test. There are two ways in which a returnUpy might
be on the mean-variance frontier of a larger collection of securities: the frontiers could just
intersect atUpy, as shown in Figure 18, or the frontiers couldcoincide globally.

For intersection, p @ d . e3gU
g will price bothUg andUi only for one value ofd,

or equivalentlyH+p, or choice of the intercept, as shown. If the frontiers coincide, then
p @ d.e3g U

g prices bothUg andUi for any value ofd. Equivalently, theg portfolio is on
the+g> i, frontier forany intercept, where this is true for onlyone value of the intercept in the
case of intersection. Thus, to test for coincident frontiers, one must test whetherp @ d.e3g
Ug prices bothUg andUi for two prespeci¿ed values ofd simultaneously.
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11.2 Prespeci¿ed weighting matrices

Prespeci¿ed rather than “optimal” weighting matrices can emphasize economically inter-
esting results, they can avoid the trap of blowing up standard errors rather than improving
pricing errors, they can lead to estimates that are more robust to small model misspeci¿ca-
tions, as OLS is often preferable to GLS in a regression context, and they allow you to force
GMM to use one set of moments for estimation and another for testing. The GMM formulas
for this case are

ydu+ae, @
4

W
+G3ZG,�4G3ZVZG+G3ZG,�4

ydu+jW , @
4

W
+L �G+G3ZG,�4G3Z ,V+L �ZG+G3ZG,�4G3,=

So far, we have assumed that at some stage a matrixV will be used as the weighting
matrix, so the¿nal minimization will have the formplqe j

3
W +e,V

�4jW +e,. As we have seen,
this objective maximizes thestatistical information in the sample about a model. However,
there are several reasons why one may want to use a prespeci¿ed weighting matrix instead,
or as a diagnostic accompanying more formal statistical tests.

Keep in mind that “using a prespeci¿ed weighting matrix” and the identity matrix in
particular, isnot the same thing as ignoring cross-correlation in the distribution theory. The
V matrix will still show up in all the standard errors and test statistics.

11.2.1 How to use prespeci¿ed weighting matrices

The general theory is expressed in terms of the linear combination of the moments that is set
to zerodW jW +e, @ 3. With weighting matrixZ , the¿rst order conditions toplqiej j

3
W +e,ZjW +e,

are

+CjW +e,@Ce
3,
3
ZjW +e, @ G3ZjW +e, @ 3>

so we map into the general case withd @ G3Z= Plugging this value into (101), we obtain the
variance-covariance matrix of the estimated coef¿cients from a prespeci¿edZ estimate,

ydu+ae, @
4

W
+G3ZG,�4G3ZVZG+G3ZG,�4= (113)

Check that withZ @ V�4, this formula reduces to4@W +G3V�4G,�4.
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Plugging d @ G3Z into equation (104), we ¿nd the variance-covariance matrix of the
momentsjW

ydu+jW , @
4

W
+L �G+G3ZG,�4G3Z ,V+L �ZG+G3ZG,�4G3, (114)

One might think that the sampling error ofjW is justV� however this thought ignores the fact
that degrees of freedom are lost in estimation, so a linear combination of rows ofjW to 0. The
singular (rank #moments - #parameters) variance covariance matrices given above correct for
this fact.

Equation (114) can be the basis of"5 tests for the overidentifying restrictions. If we
interpret+,�4 to be a generalized inverse, then

j3Wydu+jW ,
�4jW � "5+&prphqwv�&sdudphwhuv,=

This procedure would work for the “optimal” weighting matrixV�4 as well� Hansen (1982)
shows thatj3WV

�4jW yields (numerically) the same result. One way to compute a generalized
inverse is to start with an eigenvalue decompositionV @ T�T3� then the generalized inverse
is V�4 @ T�.T3, where�. uses the inverse of the nonzero eigenvalues but leaves the zero
eigenvalues alone.

11.2.2 Motivations for prespeci¿ed weighting matrices

Level playing ¿eld. TheV matrix changes as the model and as its parameters change. (See the
de¿nition). As a result, comparing models by theirMW values is dangerous, since models may
“improve” because they simply blow up the estimates ofV, rather than make any progress on
lowering the pricing errorsjW . By using a weighting matrix that does not vary from model
to model, or across parameter values for a given model, one imposes a level playing¿eld and
avoids this problem when theMW test is used as a model comparison statistic.

(No one would formally use a comparison ofMW tests across models to compare them.
The minute you think carefully about it, you realize that you must use the same weighting
matrix as well as the same moments, and the"5 difference test does both. But it has proved
nearly irresistible for authors to claim success for a new model over previous ones by noting
improvedMW statistics in introductions and conclusions, despite different weighting matrices,
different moments, and sometimes much larger pricing errors..)

Robustness, as with OLS vs. GLS. When errors are autocorrelated or heteroskedastic,
every econometrics textbook shows you how to “improve” on OLS by making appropriate
GLS corrections. If you correctly model the error covariance matrix and if the regression
is perfectly speci¿ed, this procedure can improve ef¿ciency, i.e. give estimates with lower
asymptotic standard errors. However, GLS is much less robust. If you model the error
covariance matrix incorrectly, the estimates can be much worse than OLS. Also, the GLS
transformations can zero in on slightly misspeci¿ed areas of the model producing garbage.
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GLS is “best,” but OLS is “pretty darn good” and is usually much more robust than
GLS. Furthermore, one often has enough data that wringing every last ounce of statistical
precision (low standard errors) from the data is less important than producing estimates that
do not depend on questionable statistical assumptions, and that transparently focus on the
interesting features of the data. Thus, it is often a good practice to use OLSestimates, but
correct thestandard errors of the OLS estimates for these features of the error covariance
matrices, for example using the formulas we developed above.

For example, the GLS transformation for highly serially correlated errors essentially turns
a regression in levels into a regression in¿rst differences. But relationships that are quite ro-
bust in levels often disappear in¿rst differences, especially of high frequency data, because
of small measurement errors. Lucas (198x) followed a generation of money demand esti-
matesPw @ d. e\w . %w that had been run in quasi-¿rst differences following GLS advice,
and that had found small and unstable income elasticities, since day-to-day variation in mea-
sured money demand has little to do with day-to-day variation in income. Lucas ran the
regression by OLS in levels, only correcting standard errors for serial correlation and found
the pattern evident in any graph that the level of money and income track very well over years
and decades. .

GMM works the same way. First-stage or otherwise¿xed weighting matrix estimates
may give up something in (asymptotic) ef¿ciency if the statistical and economic models are
precisely right, but may be much more robust to statistical and economic problems. You still
want to use theV matrix in computing standard errors, though, as you want to correct OLS
standard errors, and the following formulas show you how to do this.

Even if in the end one wants to produce “ef¿cient” estimates and tests, it is a good idea to
calculate standard errors and model¿t tests for the¿rst-stage estimates. Ideally, the parameter
estimates should not change by much, and the second stage standard errors should be tighter.
If the “ef¿cient” parameter estimates do change a great deal, it is a good idea to diagnose
why this is so – which moments the ef¿cient parameter estimates are paying attention to –
and then decide whether the difference in results is truly due to ef¿ciency gain or not.

Near-singular S.The spectral density matrix is often near-singular, since asset returns
are highly correlated with each other, and since we often include many assets relative to the
number of data points. As a result, second stage GMM (and, as we will see below, maximum
likelihood or any other ef¿cient technique) tries to minimize differences and differences of
differences of asset returns in order to extract statistically orthogonal components. One may
feel that this feature leads GMM to place a lot of weight on poorly estimated, economically
uninteresting, or otherwise non-robust aspects of the data. In particular, portfolios of the form
433U4 � <<U5 assume that investors can in fact purchase such heavily leveraged portfolios.
Short-sale costs often rule out such portfolios or signi¿cantly alter their returns, so one may
not want to emphasize pricing them correctly in the estimation and evaluation.
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For example, suppose that V is given by

V @

�
4 �
� 4

�
=

so

V�4 @
4

4� �5

�
4 ��
�� 4

�
=

We can factor V�4 into a “square root” by the Choleski decomposition. This produces a
triangular matrixF such thatF3F @ V�4. You can check that the matrix

F @

%
4s
4��5

��s
4��5

3 4

&
(115)

works. Then, the GMM criterion

plq j3WV
�4jW

is equivalent to

plq+j3WF
3,+FjW ,=

FjW gives the linear combination of moments that ef¿cient GMM is trying to minimize.
Looking at (115), as� $ 4> the (2,2) element stays at 1, but the (1,1) and (1,2) elements get
very large and of opposite signs. For example, if� @ 3=<8> then

F @

�
6=53 �6=37
3 4

�
=

In this example, GMM pays a little attention to the second moment, but placesthree times
as much weight on thedifference between the¿rst and second moments. Larger matrices
produce even more extreme weights.

Economically interesting moments. As explained above, and as we see in the example
of the last section, the optimal weighting matrix makes GMM pay close attention to appar-
entlywell-measuredlinear combinations of moments in both estimation and evaluation. One
may want to force the estimation and evaluation to pay attention to economicallyinteresting
moments instead. The initial portfolios are usually formed on an economically interesting
characteristic such as size, beta, book/market or industry. One typically wants in the end to
see how well the model prices these initial portfolios, not how well the model prices poten-
tially strange portfolios of those portfolios. If a model fails, one may want to characterize
that failure as “the model doesn’t price small¿rms” not “the model doesn’t price a portfolio
of <33� small¿rms�933� large¿rms�5<<� medium¿rms.”
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11.2.3 Some prespeci¿ed weighting matrices

Two examples of economically interesting weighting matrices are the second-moment matrix
of returns, advocated by Hansen and Jagannathan (1992) and the simple identity matrix,
which is used implicitly in much empirical asset pricing.

Second moment matrix. Hansen and Jagannathan (1992) advocate the use of the second
moment matrix of payoffsZ @ H+{{3,�4 in place ofV. They motivate this weighting
matrix as an interesting distance measure between a model forp, say|, and the space of
truep’s. Precisely, the minimum distance (second moment) between a candidate discount
factor| and the space of true discount factors is the same as the minimum value of the GMM
criterion withZ @ H+{{3,�4 as weighting matrix.

x*

m

y

X

proj(y| X)

Nearest m

Figure 19. Distance between| and nearestp = distance betweensurm+|m[, and{�=

To see why this is true, refer to¿gure 19. The distance between| and the nearest validp
is the same as the distance betweensurm+| m [, and{�. As usual, consider the case that[
is generated from a vector of payoffs{ with prices. From the OLS formula,

surm+| m [, @ H+|{3,H+{{3,�4{

{� is the portfolio of{ that prices{ by construction,

{� @ s3H+{{3,�4{
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Then, the distance between | and the nearest valid p is:

nsurm+|m[,� {�n @
��H+|{3,H+{{3,�4{� s3H+{{3,�4{

��
@

��+H+|{3,� s3,H+{{3,�4{
��

@ ^H+|{,� s`3H+{{3,�4^H+|{,� s`

@ j3WH+{{3,�4jW

You might want to choose parameters of the model to minimize this “economic” measure
of model¿t, or this economically motivated linear combination of pricing errors, rather than
the statistical measure of¿t V�4. You might also use the minimized value of this criterion to
compare two models. In that way, you are sure the better model is better because it improves
on the pricing errors rather than just blowing up the weighting matrix.

Identity matrix. Using the identity matrix weights the initial choice of assets equally in
estimation and evaluation. This choice has a particular advantage with large systems in which
V is nearly singular, as it avoids most of the problems associated with inverting a near-singular
V matrix. It also ensures that the GMM estimation pays equal attention to the initial choice of
portfolios, which were usually selected with some care. Many empirical asset pricing studies
use OLS cross-sectional regressions, which are the same thing as a¿rst stage GMM estimate
with an identity weighting matrix.

Comparing the second moment and identity matrices.

The second moment matrix gives an objective that is invariant to the initial choice of
assets. If we form a portfolioD{ of the initial payoffs{, with nonsingularD (don’t throw
away information) then

^H+|D{,�Ds`3H+D{{3D3,�4^H+|D{,�Ds` @ ^H+|{,� s`3H+{{3,�4^H+|{,� s`=

The optimal weighting matrixV shares this property. It is not true of the identity matrix: the
results will depend on the initial choice of portfolios.

Kandel and Stambaugh (19xx) have suggested that the results of several important asset
pricing model tests are highly sensitive to the choice of portfolio� i.e. that authors inadver-
tently selected a set of portfolios on which the CAPM does unusually badly in a particular
sample. Insisting that weighting matrices have this invariance to portfolio selection might be
a good discipline against this kind of¿shing.

On the other hand, if you want to focus on the model’s predictions for economically
interesting portfolios, then it wouldn’t make much sense for the weighting matrix to undo the
speci¿cation of economically interesting portfolios! For example, many studies want to focus
on the ability of a model to describe expected returns that seem to depend on a characteristic
such as size, book/market, industry, momentum, etc.

The second moment matrix is often even more nearly singular than the spectral density
matrix, sinceH+{{3, @ fry+{, . H+{,H+{,3. Therefore, it often emphasizes portfolios
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with even more extreme short and long positions, and is no help on overcoming the near
singularity of the V matrix. If the number of moments (test assets times instruments) is much
above 1/20 -

11.2.4 Estimating on one group of moments, testing on another.

You may also want to force the system to use one set of moments forestimation and another
for testing. The real business cycle literature in macroeconomics does this extensively, typ-
ically using “¿rst moments” for estimation (“calibration”) and “second moments” (i.e.¿rst
moments of squares) for evaluation. A statistically minded macroeconomist might like to
know whether the departures of model from data “second moments” are large compared to
sampling variation, and would like to include sampling uncertainty about the parameter es-
timates in this evaluation. You might similarly want to choose parameters using one set of
asset returns (stocks� domestic assets� size portfolios,¿rst 9 size deciles) and then see how
the model does “out of sample” on another set of assets (bonds� foreign assets� book/market
portfolios, small¿rm portfolio). However, you want the distribution theory for evaluation on
the second set of moments to incorporate sampling uncertainty about the parameters in their
estimation on the¿rst set of moments.

You can do all this very simply by using an appropriate prespeci¿ed weighting matrix.
Construct a weighting matrixZ which is zero in the columns and rows corresponding to the
test moments. Then, those moments will not be used in estimation. (You could start withV for
some ef¿ciency, but the identity weighting matrix is more consistent with the philosophy of
the exercise. ) Consider this a¿xed-weighting matrix estimate, and then use formula (114)
to construct a"5 test of the moments you want to test.

11.3 Testing moments

How to test one or a group of pricing errors, such as small¿rm returns. 1) Use the formula
for ydu+jW , 2) A chi-squared difference test. How to estimate with one group of moments
and test on another.

You may want to see how well a model does on particular moments or particular pricing
errors. For example, the celebrated “small¿rm effect” states that an unconditional CAPM
+p @ d.eUZ , no scaled factors) does badly in pricing the returns on a portfolio that always
holds the smallest 1/10th or 1/20th of¿rms in the NYSE. You might want to see whether a
new model prices the small returns well.

It is a nice diagnostic for any asset pricing model to plot predicted excess returns vs.
actual excess returns in the data. Such plots generalize traditional plots of average return vs.
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estimated beta for the CAPM and allow a visual sense of how well the model explains the
cross sectional variation of average returns. Of course, one would like standard errors for
such plots, a method of computing vertical error bars or the uncertainty about the difference
between predicted moment and actual moment.

We have already seen that individual elements of jW measure the pricing errors or ex-
pected return errors. Thus, all we need is the sampling error ofjW to measure the accuracy
of a pricing error and to test whether an individual moment is “too far off” or not.

One possibility is to use the sampling distribution ofjW , (114) to construct aw-test (for
a singlejW , such as small¿rms) or"5 test (for groups ofjW , such as small¿rms instru-
ments). As usual this is theWald test.

Alternatively, you can construct a"5 difference or likelihood ratio-like test. Start with
a general model that includes all the moments, and form an estimate of the spectral den-
sity matrixV. Now set to zero the moments you want to test, and denotejvW +e, the vec-
tor of moments, including the zeros+v for “smaller”). Consider choosingev to minimize
jvW +e,

3V�4jvW +e,using the same weighting matrixV. The criterion will belower than the
original criterionjW +e,3V�4jW +e,, since there are the same number of parameters and fewer
moments. But, if the moments we want to test truly are zero, the criterion shouldn’t bethat
much lower. Thus, form a"5 difference test

WjW +ae,
3V�4jW +ae,� WjvW +aev,V

�4jvW +aev, � "5+&eliminated moments,=

Of course, don’t fall into the obvious trap of picking the largest of 10 pricing errors and
noting it’s more than two standard deviations from zero. The distribution of thelargest of 10
pricing errors is much wider than the distribution of a single one. To use this distribution,
you have to pick which pricing error you’re going to testbefore you look at the data.

11.4 Applying GMM to linear factor models

Whenpw.4 @ d. e3iw.4 and the test assets are excess returns, the GMM estimate is

ae @ �+F3ZF,�4F3ZHW +U
h,

F � HW +U
hi 3,

This is a GLScross-sectionalregression of average returns on the covariance of returns with
factors. The overidentifying restrictions test is a quadratic form in the pricing errors,

a�3Y �4�� � "5+&assets �&factors,
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Linear factor models are discount factor models of the form

pw.4 @ d. e3iw.4>

where iw.4 is a vector of time series such as portfolio returns (CAPM, APT), or “macro fac-
tors” (ICAPM, CRR), and can include factors scaled by instruments to accommodate condi-
tioning information. The linearity simpli¿es the formulas, and the GMM procedure becomes
similar to traditional two pass regression procedures.

Linear factor models are most often applied to excess returns. If we only use excess
returns,d is not identi¿ed+3 @ H+pUh, / 3 @ H+5pUh,,, so we can normalize tod @ 4
andH+i, @ 3. Then, the GMM estimate ofe is

ae @ �+F3ZF,�4F3ZHW +U
h, (116)

where

F � HW +U
hi 3,

is a matrix of covariances of returns with the factors.

To see this, proceed through the recipe as given above. The vector of sample moments or
pricing errors is

jW +e, @ HW +pUh, @ HW +Uhi 3e. 4,e @ HW +Uh, . Fe

The GMM minimization is

plq jW +e,
3ZjW +e,=

The¿rst order condition is �
CjW +e,

Ce3

�3
ZjW +e, @ 3=

Note

G @
CjW +e,

Ce3
@ HW +U

hi 3, @ F=

Writing out the¿rst order condition,

F3Z ^Fe.HW +Uh,` @ 3=

and hence (116).

This GMM estimate has a natural interpretation. As we have seen many times before,
H+pUh, @ 3 implies that expected returns should be linear in the covariance of returns with
factors. Thus, the model predicts

H+Uh, @ �Fe= (117)
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To estimate e one might naively have started by tacking on an error term representing sample
variation,

HW +U
h, @ Fe. x

and then estimated by OLS. The ¿rst-stage estimate is, from (116) exactly this OLS estimate,

ae4 @ �+F3F,�4F3HW +U
h,=

This is across-sectionalregression. The “data points” in the regression are sample average
returns+|, and covariances of returns with factors+{, across test assets. We are picking the
parametere to make the model¿t explain the cross-section of asset prices as well as possible.

The errorsx in this cross-sectional regression are correlated across equations. Thus, we
at least have to correct¿rst-stage standard errors for this correlation, and we might think
about a GLS cross-sectional regression to improve ef¿ciency. SinceV is proportional to the
covariance matrix ofx, The second-stage GMM estimate

ae5 @ �+F 3V�4F,�4F3V�4HW +U
h,

is exactly aGLS cross-sectional regression of sample mean returns on sample covariances.

The¿rst-stage or OLS cross-sectional regression standard errors are, from (113) andF @
G> exactly what we expect for an OLS regression with correlated errors,

ydu+ae4, @
4

W
+F3F,�4F3VF+F3F,�4=

while the second stage or GLS cross-sectional regression standard errors specialize to

ydu+ae5, @
4

W
+F3V�4F,�4=

Finally, the overidentifying restrictions test is a quadratic form in the pricing errors or
Jensen’s alphas,

jW +ae, @ HW +U
h, . Fae @ average return - predicted average return@ a�

From (114), this test based on the¿rst stage estimates is

a�34ydu+jW ,
.a�4 � "5+&assets�&factors,

a�4 @ jW +ae4, @ HW +U
h, . Fae4

ydu+jW , @
4

W
+L �F+F 3F,�4F3,V+L �F+F3F,�4F3,>

while the test based on the second stage estimates is most conveniently expressed as

W a�35V
�4a�5 � "5+&assets�&factors, (118)

a�5 @ jW +ae5, @ HW +U
h, . Fae4
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General Case

To evaluate a linear factor model using levels rather than just excess returns, and perhaps
using instruments as well, we go through the same mechanics with s and {, and without
renormalizing to d @ 4> H+i, @ 3. This is a slightly more re¿ned way to implement any
test, since it recognizes that setting the sample HW +i, @ 3 in applying the above formulas
introduces another estimate, whose sampling error should be accounted for in the distribution
theory. Treating the constant d� 4 as a constant factor, the model is

pw.4 @ e3iw.4=

The GMM estimate is

ae @
�
HW +i{

3,ZHW +{i
3,
��4

HW +i{
3,ZHW +s,= (119)

This is still a (potentially GLS) cross-sectional regression of average pricesHW +s, on second
momentsHW +{i

3, of payoffs with factors. The model

s @ H+p{, @ H+{i 3,e

says that prices should be proportional to second moments, so again this is a natural regres-
sion to run.
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Chapter 12. Regression-based tests
Again, our basic objective in a statistical analysis is a method of producing estimates of
free parameters, a distribution theory for those parameters, and model evaluation statistics
such as a�3Y �4a�. In this chapter, I cover the classic regression tests of linear factor models,
expressed in expected return-beta form. As you will see, they are closely related to the
s @ H+p{,>GMM tests of linear factor models we investigated in the last chapter. In the
next chapter, I cover the formalization of these regression tests via maximum likelihood, and
we will see they can also be formalized as an instance of GMM.

12.1 Time-series regressions

When the factor is also a return, we can evaluate the model

H+Uhl, @ �lH+i,

by running OLS time series regressions

Uhl
w @ �l . �liw . %lw> w @ 4> 5> ===W

for each asset, as suggested by Black, Jensen and Scholes. The OLS distribution formulas
(with corrected standard errors) provide standard errors of � and �. With errors that are i.i.d.
over time, the asymptotic joint distribution of the intercepts gives

W

%
4 .

�
HW +i,

a�+i,

�5
&�4

a�3 a	�4a� �"5Q

The Gibbons-Ross-Shanken test is a multivariate,¿xed-i counterpart,

W �Q �N

Q

�
4 .HW +i,

3 a�4HW +i,
��4

a�3 a	�4a� �IQ>W�Q�N

I show how to construct the same test statistics with heteroskedastic and autocorrelated errors,
as suggested by MacKinlay and Richardson, via GMM.

I start with the simplest case. We have a factor pricing model with a single factor which is
an excess return (for example, the CAPM, withUhp @ Up�Ui ), and the test assets are all
excess returns. We express the model in expected return - beta form. The betas are de¿ned
by regression coef¿cients

Uhl
w @ �l . �liw . %lw (120)
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and the model states that expected returns are linear in the betas:

H+Uhl, @ �lH+i,= (121)

Since the factor is also an excess return, the model applies to the factor as well, soH+i, @
4� �.

Comparing the model (121) and the expectation of the time series regression (120) we see
that the model has one and only one implication for the data:all the regression intercepts �l
should be zero. The regression intercepts are equal to the pricing errors. This prediction is
only true when the factors are themselves excess returns. With factors that are not priced by
the model, the factor risk premium� is not equal to the expected value of the factor, so the
regression intercepts do not have to be zero. There is a restriction relating means of factors
and intercepts, but it is more complicated and does not lead to such an easy regression based
test.

Given this fact, Black Jensen and Scholes (19xx) suggested a natural strategy for estima-
tion and evaluation: Run time-series regressions (120) for each test asset. If you assume that
the errors are uncorrelated over time and homoskedastic, you can use standard OLS formu-
las for a distribution theory of the parameters, and in particular you can use t-tests to check
whether the pricing errors� are in fact zero. The standard approach to OLS standard errors
can also give us a test whetherall the pricing errors arejointly equal to zero. Dividing thea�
regression coef¿cients by their variance-covariance matrix leads to a"5 test,

W

%
4 .

�
HW +i,

a�+i,

�5
&�4

a�3 a	�4a� �"5Q (122)

whereHW +i, denotes sample mean,a�5+i, denotes sample variance,a� is a vector of the
estimated intercepts,

a� @
�
a�4 a�5 === a�Q

�3
a	 is the residual covariance matrix, i.e. the sample estimate ofH+%w%3w, @ 	, where

%w @
�
%4w %5w � � � %Qw

�3
=

As usual when testing hypotheses about regression coef¿cients, this test is valid asymp-
totically. The asymptotic distribution theory assumes that�5+i, (i.e. [ 3[) and	 have
converged to their probability limits� therefore it is asymptotically valid even though the fac-
tor is stochastic and	 is estimated, but it ignores those sources of variation in a¿nite sample.
It does not require that the errors are normal, relying on the central limit theorem so thata� is
normal, but it does assume that the errors are homoskedastic (constant	) and not autocorre-
lated. I derive (122) below.

Also as usual in a regression context, we can derive a¿nite-sampleI distribution for the
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hypothesis that a set of parameters are jointly zero, for¿xed values of the right hand variable
iw>.

W �Q � 4

Q

%
4 .

�
HW +i,

a�+i,

�5
&�4

a�3 a	�4a� �IQ>W�Q�4 (123)

This is the Gibbons Ross and Shanken (198x) or GRS test statistic. TheI distribution rec-
ognizes sampling variation ina	, which is not included in (122). This distribution requires
that the errors% are normal as well as i.i.d. and homoskedastic. With normal errors, thea� are
normal anda	 is an independent Wishart (the multivariate version of a"5), so the ratio isI .
This distribution is exact in a¿nite sample� however it assumes¿xed values of the right hand
variablei . Thus, it only answers the sampling question “what if we redraw the% shocks,
with the same time series ofi?” not, “what if we redraw the entire data set?”

Tests (122) and (123) have a very intuitive form. The basic part of the test is a quadratic
form in the pricing errors,a�3 a	�4a�. If there were no�i in the model, then thea� would
simply be the sample mean of the regression errors%w. Assuming i.i.d.%w, the variance of
their sample mean is just4@W	. Thus, if we knew	 thenW a�3	�4a� would be a sum of
squared sample means divided by their variance-covariance matrix, which would have an
asymptotic"5Q distribution, or a¿nite sample"5Q distribution if the%w are normal. But we
have to estimate	, which is why the¿nite-sample distribution isI rather than"5. We also
estimate the�, and the second term in (122) and (123) accounts for that fact.

Recall that a single beta representation exists if and only if the reference return is on the
mean-variance frontier. Thus, the test can also be interpreted as a test whetheri is ex-ante
mean-variance ef¿cient, after accounting for sampling error. Even ifi is on the true or ex-
ante mean-variance frontier, other returns will outperform it in sample due to luck, so the
returni will usually be inside the ex-post mean-variance frontier. Still, it should not be too
far inside that frontier, and Gibbons Ross and Shanken show that the test statistic can be
expressed in terms of how far inside the ex-post frontier the returni is,

W �Q � 4

Q

�
�t
�t

�5
�
�
HW +i,
a�+i,

�5
4 .

�
HW +i,
a�+i,

�5 =

�
�t
�t

�5
is the Sharpe ratio of theex-posttangency portfolio (maximum ex-post Sharpe ratio)

formed from the test assets plus the factori .

If there are many factors that are excess returns, the same ideas work, with some cost of
algebraic complexity. The regression equation is

Uhl @ �l . �3liw . %lw=
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The asset pricing model

H+Uhl, @ �3lH+i,

again predicts that the intercepts should be zero. We can estimate� and� with OLS time-
series regressions. Assuming normal i.i.d. errors, the quadratic forma�3 a	�4a� has the distri-
bution,

W �Q �N

Q

�
4 .HW +i,

3 a�4HW +i,
��4

a�3 a	�4a� �IQ>W�Q�N (124)

where

Q @ Number of assets

N @ Number of factors

a @
4

W

W[
w@4

^iw �HW +i,` ^iw �HW +i ,`
3

The main difference is that the Sharpe ratio of the single factor is replaced by the natural
generalizationHW +i,

3 a�4HW +i ,.

12.1.1 Derivation of (122).

You can easily derive (122) by following the standard OLS approach to the covariance ma-
trix of estimated parameters. However, it is simpler and more elegant to derive (122) as an
instance of GMM, and this approach allows us to generate straightforwardly the required
corrections for autocorrelated and heteroskedastic disturbances. (MacKinlay and Richardson
(1991) advocate GMM approaches to regression tests in this way.) The mechanics are only
slightly different than what we did to generate distributions for OLS regression coef¿cients
in section xx, since we keep track ofQ OLS regressions simultaneously.

Write the equations for allQ assets together in vector form,

Uh
w @ �. �iw . %w=

We use the usual OLS moments to estimate the coef¿cients,

jW +e, @

�
HW +Uh

w ��� �iw,
HW ^+Uh

w ��� �iw, iw`

�
@ HW

��
%w
iw%w

��
@ 3

These moments exactly identify the parameters, so thed matrix indjW +ae, @ 3 is the identity
matrix. Solving, the GMM estimates are of course the OLS estimates,

a� @ HW +Uh
w ,� a�HW +iw,

a� @
HW ^+Uh

w �HW +Uh
w ,, iw`

HW ^+iw �HW +iw,, iw`
@

fryW +U
h
w > iw,

yduW +iw,
=
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Theg matrix in the general GMM formula is

g � CjW +e,

Ce3
@ �

�
LQ LQHW +iw,

LQHW +iw, LQHW +i
5
w ,

�
@ �

�
4 H+iw,

H+iw, H+i5w ,

�
 LQ

whereLQ is anQ �Q identity matrix. TheV matrix is

V �
4[

m@�4

H ^i+{w> e,> i+{w�me,
3` @

4[
m@�4

�
H+%w%3w�m, H+%w%3w�miw�m,
H+iw%w%3w�m, H+iw%w%3w�miw�m,

�

If we assume thati and% are independent,

V @
4[

m@�4

�
4 H+iw,

H+iw, H+iwiw�m,

�
H+%w%

3
w�m,= (125)

If we assume that the errors and factors are not correlated over time,

V �
�

H+%w%
3
w, H+%w%

3
wiw,

H+iw%w%
3
w, H+%w%

3
w�m,i

5
w

�
(126)

And if we assume thati and% are both independent and uncorrelated over time,

V @

�
4 H+iw,

H+iw, H+i5w ,

�
	 (127)

Now we can plug into the general variance-covariance matrix formula (101),

ydu+ae, @
4

W
+dg,�4dVd3+dg,�43=

Using the case (127), we obtain8

ydu

�
a�
a�

�
@

4

W

#�
4 H+iw,

H+iw, H+i5w ,

��4
	

$
@

4

W

�
4

ydu+i,

�
H+i5w , �H+iw,
�H+iw, 4

�
	

�

We’re interested in the top left corner. UsingH+i5, @ H+i,5 . ydu+i,,

ydu +a�, @
4

W

�
4 .

H+i,5

ydu+i,

�
	=

This is the traditional formula, but there is now no real reason to assume that the errors are
i.i.d. By simply calculating a sample version of (125), (126), (127), we can easily construct
standard errors and test statistics that do not require these assumptions.

H You need E�	��3� ' �3� 	�3� if you keep the simplifying	 notation.
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12.2 Cross-sectional regressions

We can ¿t

H+Uhl, @ �3l�.�l

by running a cross-sectionalregression of average returns on the betas. This technique can
be used whether the factor is a return or not.

I discuss OLS and GLS cross-sectional regressions, I¿nd formulas for the standard errors
of �> and a"5 test whether the� are jointly zero. OLS formulas for the for the standard errors
of � and� ignore the fact that� is also random. I derive Shanken’s correction for this fact as
an instance of GMM, and show how to implement the same approach for autocorrelated and
heteroskedastic errors. I show how the results are almost identical to the GMM,p @ d.e3i
formulation of linear factor models derived in section 4.

Start again with the aN factor model, written as

H+Uhl, @ �3l�> l @ 4> 5> ===Q

The central economic idea is that the model should explain why average returns vary across
assets� expected returns of an asset should be high if that asset has high betas or risk exposure
to factors that carry high risk premia.

Figure 20 graphs the case of a single factor such as the CAPM. Each dot represents one
assetl. The model says that average returns should be proportional to betas, so plot the
sample average returns against the betas. Even if the model is true, this plot will not work out
perfectly in each sample, so there will be some spread as shown.

Given these ideas, a natural idea is to run across-sectional regressionto ¿t a line through
the scatterplot of Figure 20. First ¿nd estimates of the betas from a time series regression,

Uhl
w @ dl . �3liw . %lw> w @ 4> 5> ===W for each l,

and then estimate the factor risk premia � from a regression across assets of average returns
on the betas,

HW +U
hl, @ �3l�. �l> l @ 4> 5====Q= (128)

As in the ¿gure, � are the right hand variables, � are the regression coef¿cients, and the
cross-sectional regression residuals�l are the pricing errors. One can run the cross-sectional
regression with or without a constant. The theory says that the constant or zero-beta excess
return should be zero. One can impose this restriction or estimate with a constant and then

182



SECTION 12.2 CROSS-SECTIONAL REGRESSIONS

iα

)( eiRE

iβ

Assets i

Slope λ

Figure 20. Cross-sectional regression
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see if it comes out suf¿ciently small. Importantly, one can run the cross-sectional regression
when the factor is not a return.

12.2.1 OLS cross-sectional regression

It will simplify notation to consider a single factor� the case of multiple factors looks the
same with vectors in place of scalars. Denote vectors from 4 to Q with boldface, i.e.
%w @

�
%4w %5w � � � %Qw

�3
, � @

�
�4 �5 � � � �Q

�3
, and similarly for Uh

w and �.
For simplicity take the case of no intercept. With this notation OLS cross-sectional estimates
are

a� @
�
�3�

��4
�3HW +U

h, (129)

a� @ HW +U
h,� a��=

Next, we need a distribution theory for the estimated parameters. The most natural thing to
do is to apply the standard OLS distribution formulas. I start with the traditional assumption
that the errors are i.i.d. over time, and independent of the factors. Denote	 @ H +%w%3w,.
Since the�l are just time series averages of the%lw shocks, the errors in the cross-sectional
regression have correlation matrixH +��3, @ 4

W	. Thus the conventional OLS formulas
for the covariance matrix of OLS estimates and residual with correlated errors give

�5
�
a�
�

@
4

W

�
�3�

��4
�3	�

�
�3�

��4
(130)

fry+a�, @
4

W

�
L � �

�
�3�

��4
�3
�
	
�
L � �

�
�3�

��4
�3
�

(131)

To rederive these formulas, substitute the regression (20) into the formulas for parameter
estimates (129) and take expectations. See (137) below before you use them..

We could test whether all pricing errors are zero with the statistic

a�3fry+a�,�4a� �"5Q�4= (132)

The distribution is"5Q�4 not"5Q because the covariance matrix is singular. The singularity
and the extra terms in (131) result from the fact that the� coef¿cient was estimated along
the way, and means that we have to use a generalized inverse. (If there areN factors, we
obviously end up with"5Q�N =)

12.2.2 GLS cross-sectional regression

Since the residuals in the cross-sectional regression (20) are correlated with each other, stan-
dard textbook advice is to run a GLS cross-sectional regression rather than OLS, using
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H+��3, @ 4
W	 as the error covariance matrix:

a� @
�
�3	�4�

��4
�3	�4HW +U

h, (133)

a� @ HW +U
h,� a��=

The standard regression formulas give the variance of these estimates as

�5
�
a�
�

@
4

W

�
�3	�4�

��4
(134)

fry+a�, @
4

W

�
	� �

�
�3	�4�

��4
�3
�

(135)

The comments of section 2 warning that OLS is sometimes much more robust than GLS
apply equally in this case. The GLS regression should improve ef¿ciency, i.e. give more
precise estimates. However,	 may be hard to estimate and to invert, especially if the cross-
sectionQ is large. One may well choose the robustness of OLS over the asymptotic statistical
advantages of GLS.

A GLS regression can be understood as a transformation of the space of returns, to focus
attention on the statistically most informative portfolios. Finding (say, by Choleski decom-
position) a matrixF such thatFF 3 @ 	�4, the GLS regression is the same as an OLS
regression ofFHW +Uh, onF�, i.e. of testing the model on the portfoliosFUh. The sta-
tistically most informative portfolios are those with the lowest residual variance	, therefore
GLS pays most attention to nearly riskfree portfolios formed by extreme long and short po-
sitions. The statistical theory assumes that the covariance matrix has converged to its true
value. However, in most samples, the ex-post mean-variance frontier still seems to indicate
lots of luck, and this is especially true if the cross section is large, anything more than 1/10 of
the time series. If this is true, the GLS regression is paying lots of attention to nearly riskless
portfolios that only seem so due to luck in a speci¿c sample.

Again, we could test the hypothesis that all the� are equal to zero with (132). (Though
the appearance of the statistic is the same, the covariance matrix is smaller, reÀecting the
greater power of the GLS test.) As with theMW test, (106) we can develop an equivalent test
that does not require a generalized inverse�

W a�3	�4a� �"5Q�4= (136)

To derive (136), I proceed exactly as in the derivation of theMW test (106). De¿ne, say by
Choleski decomposition, a matrixF such thatFF3 @ 	. Now,¿nd the covariance matrix ofs
WF�4a�:

fry+
s
WF�4�, @ F�4

�
FF3 � �

�
�3F�43F�4�

��4
�3
�
F�43 @ L � �

�
�3�

��4
�3

where

� @ F�4�=
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In sum,a� is asymptotically normal so
s
WF�4a� is asymptotically normal,fry+

s
WF�4a�,

is an idempotent matrix with rankQ � 4� thereforeW a�3F�43F�4a� @ W a�3	�4a� is"5Q�4=

12.2.3 Correction for the fact that � are estimated, and GMM formulas that
don’t need i.i.d. errors.

In applying standard OLS formulas to a cross-sectional regression, we assume that the right
hand variables� are¿xed. The� in the cross-sectional regression are not¿xed, of course,
but are estimated in the time series regression. This turns out to matter, even asymptotically.

In this section, I derive the correct asymptotic standard errors. With the simplifying as-
sumption that the errors% are i.i.d. and independent of the factors, the result is

�5+a�ROV, @
4

W

k
+�3�,�4�3	�

�
�3�

��4 �
4 . �3	�4i �

�
.	i

l
(137)

�5+a�JOV, @
4

W

k�
�3	�4�

��4 �
4 . �3	�4i �

�
.	i

l
where	i is the variance-covariance matrix of the factors. This correction is due to Shanken
(1992). Comparing these standard errors to (130) and (134), we see that there is a multi-

plicative correction
�
4 . �3	�4i �

�
and an additive correction	i that do not vanish, even

asymptotically.

The asymptotic variance-covariance matrix of the pricing errors is

fry+a�ROV, @
4

W

�
LQ � �

�
�3�

��4
�3
�
	
�
LQ � �+�3�,�4�3

��
4 . �3	�4i �

�
(138)

fry+a�JOV, @
4

W

�
	� �

�
�3	�4�

��4
�3
��

4 . �3	�4i �
�

(139)

Comparing these results to (131) and (135) we see the same multiplicative correction applies.

We can form the asymptotic"5 test of the pricing errors by dividing pricing errors by
their variance-covariance matrix,a�fry+a�,�4a�. Following (136), we can simplify this result
for the GLS pricing errors resulting in

W
�
4 . �3	�4i �

�
a�3JOV	

�4a�JOV � "5Q�N = (140)

Are the corrections important relative to the simple OLS formulas given above? In the
CAPM � @ H+Uhp, so�5@�5+Uhp, � +3=3;@3=49,5 @ 3=58 in annual data so the multi-
plicative term is too large to ignore. However, the mean and variance both scale with horizon
so for a monthly interval�5@�5+Uhp, � 3=58@45 � 3=35 which is quite small and ignoring
the multiplicative term makes little difference.

The additive term can be very important. Consider a one factor model, suppose all the
� are 1.0, all the residuals are uncorrelated so	 is diagonal, suppose all assets have the
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same residual covariance�5+%,, and ignore the multiplicative term. Now we can write either
covariance matrix in (137) as

�5+a�, @
4

W

�
4

Q
�5+%, . �5+i,

�

Even withQ @ 4> most factor models have fairly highU5, so�5+%, ? �5+i,. Typical
CAPM values of U5 @ 4 � �5+%,@�5 +i, for large portfolios are 0.6-0.7� and multifactor
models such as the Fama French 3 factor model haveU5 often over 0.9. Typical numbers of
assetsQ @ 43 to 83 make the¿rst term vanish compared to the second term.

This example suggests that not only is including	i likely to be an important correction,
it may even be the dominant consideration in the sampling error of thea�. Interestingly, and
despite the fact that these corrections are easy to make and have been known for almost 20
years, they are very infrequently used.

Comparing (140) to the GRS tests for a time-series regression, (122), (123), (124) we see
the same statistic. The only difference is that by estimating� from the cross-section rather
than imposing� @ H+i,, the cross-sectional regression loses degrees of freedom equal to the
number of factors. A purely statistical approach will seize on this difference and advocate the
GRS test when it can be applied, though we will see later that the cross-sectional regression
may be more robust to misspeci¿cations.

Comparing both the standard errors of� and the covariance matrix of the pricing errors
to the GMM results fors @ H+p{,> p @ d. ei representation of a linear factor model in
section 4, you see that the formulas are almost exactly identical. Thes @ H+p{, formulation
of the model for excess returns was equivalent toH+Uh, @ �Fe whereF is thecovariance
between returns and factors� thus covariancesF enter in place of betas�. TheV matrix
enters in place of	, but that is because the above formulas have assumed i.i.d. errors� when
we drop this assumption below we will get formulas that look even more similar. Thus, the
GMM, s @ H+p{, approach reduces almost exactly to this traditional approach for linear
factor models, excess returns, and i.i.d. errors. The only real difference is whether you want
to express the covariance between returns and factors in regression coef¿cient units or just
covariances. I have argued above that covariances and hencee is more interesting than�,
�, sincee measures whether a factor is useful in pricing assets while� measures whether a
factor is priced.

Derivation and formulas that don’t require i.i.d. errors.

The easy and elegant way to account for the effects of “generated regressors” such as
the� in the cross-sectional regression is to map the whole thing into GMM. Then, we treat
the moments that generate the regressors� at the same time as the moments that generate
the cross-sectional regression coef¿cient �, and the covariance matrixV between the two
sets of moments captures the effects of generating the regressors on the standard error of the
cross-sectional regression coef¿cients. Comparing this straightforward derivation with the
dif¿culty of Shanken’s (1992) paper that originally derived the corrections fora�> and noting
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that Shanken did not go on to¿nd the formulas (138) that allow a test of the pricing errors is
a nice argument for the simplicity and power of the GMM framework.

To keep the algebra manageable, I treat the case of a single factor. The moments are

jW +e, @

5
7 H+Uh

w � d� �iw,
H ^+Uh

w � d� �iw,iw`
H +Uh � ��,

6
8 @

5
7 3

3
3

6
8 (141)

The top two moment conditions exactly identifyd and� as the time-series OLS estimates.
(Note d not �. The time-series intercept is not necessarily equal to the pricing error in a
cross-sectional regression.) The bottom moment condition is the asset pricing model. It is in
general overidenti¿ed in a sample, since there is only one extra parameter+�, andQ extra
moment conditions. If we use a weighting vector�3 on this condition, we obtain the OLS
cross-sectional estimate of�. If we use a weighting vector�3	�4, we obtain the GLS cross-
sectional estimate of�. To accommodate both cases, use a weighting vector�3, and then
substitute either�3 @ �3 or �3 @ �3	�4 at the end to get OLS and GLS results.

The correct standard errors fora� come straight from the general GMM standard error
formula (101). Thea� are not parameters, but are the lastQ moments. Their covariance
matrix is thus given by the GMM formula (104) for the sample variation of thejW . All we
have to do is map the problem into the GMM notation. The parameter vector is

e3 @
�
d3 �3 �

�
Thed matrix chooses which moment conditions are set to zero in estimation,

d @

�
L5Q 3
3 �3

�
=

Theg matrix is the sensitivity of the moment conditions to the parameters,

g @
CjW
Ce3

@

5
7 �LQ �LQH+i, 3

�LQH+i, �LQH+i5, 3
3 ��LQ ��

6
8

TheV matrix is the long-run covariance matrix of the moments.

V @
4[

m@�4

H

3
C
5
7 Uh

w � d� �iw
+Uh

w � d� �iw,iw
Uh
w � ��

6
8
5
7 Uh

w�m � d� �iw�m
+Uh

w�m � d� �iw�m,iw�m
Uh
w�m � ��

6
8
34
D

To evaluate this expression, substitute%w @ Uh
w � d � �iw. Also, writeUh

w � �� @ d .
�+iw � �, . %w.

The expression simpli¿es with the assumption of i.i.d. errors independent of the factors.
The assumption that the errors are i.i.d. over time means we can ignore the lead and lag terms.
Thus, the top left corner isH+%w%3w, @ 	. The assumption that the errors are independent from
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the factorsiw simpli¿es the terms in which%w andiw are multiplied:H+%w +%
3
wiw,, @ H+i,	

for example. The result is

V @

5
7 	 H+i,	 	

H+i,	 H+i5,	 H+i,	
	 H+i,	 ��3�5+i, . 	

6
8

Multiplying d> g> V together as speci¿ed by the GMM formula for the covariance matrix of
parameters (101) we obtain the covariance matrix of all the parameters, and its (3,3) element
gives the variance ofa�. Multiplying the terms together as speci¿ed by (104), we obtain the
sampling distribution of thea�, (138). The formulas (137) reported above are derived the
same way with a vector of factorsiw rather than a scalar� the second moment condition in
(141) then readsH ^+Uh

w � d� �i w, iw`.

Once again, there is really no need to make the assumption that the errors are i.i.d. and
especially that they are conditionally homoskedastic – that the factori and errors% are inde-
pendent. It is quite easy to estimate anV matrix that does not impose these conditions and
calculate standard errors. They will not have the pretty analytic form given above, but they
will more closely report the true sampling uncertainty of the estimate.

12.3 Fama-MacBeth Procedure

I introduce the Fama-MacBeth procedure for running cross sectional regression and show
that it is numerically equivalent to pooled time-series, cross-section OLS with standard errors
corrected for cross-sectional correlation, and also to a single cross-sectional regression on
time-series averages with standard errors corrected for cross-sectional correlation.

Fama and MacBeth (1972) suggest an alternative procedure for running cross-sectional
regressions, and for producing standard errors and test statistics. This is a historically im-
portant procedure, and is still widely used (especially by Fama and coauthors), so it is im-
portant to understand it and relate it to other procedures. First, instead of estimating a single
cross-sectional regression with the sample averages, they suggest we run a cross-sectional
regressionat each time period, i.e.

Uhl
w @ �3l�w . �lw l @ 4> 5> ===Q for eachw=

(I write the case of a single factor for simplicity, but it’s easy to extend the model to multi-
ple factors.) Fama and MacBeth use¿ve year rolling regression betas at this stage, but one
can also use betas from the full-sample time-series regression. Then, they suggest that we
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estimate� and�l as the average of the cross sectional regression estimates,

a� @
4

W

W[
w@4

a�w> a�l @
4

W

W[
w@4

a�lw=

Most importantly, they suggest that we use the standard deviations of the cross-sectional
regression estimates to generate the sampling errors for these estimates,

�5+a�, @
4

W 5

W[
w@4

�
a�w � a�

�5
> �5+a�l, @

4

W 5

W[
w@4

+a�lw � a�l,
5 =

It’s 4@W 5 because we’re¿nding standard errors of sample means,�5@W

This is an intuitively appealing procedure once you stop to think about it. Sampling error
is, after all, abut how a statistic would vary from one sample to the next if we repeated the
observations. We can’t do that with only one sample, but why not cut the sample in half, and
deduce how a statistic would vary from one full sample to the next from how it varies from
the¿rst half of the sample to the next half? Proceeding, why not cut the sample in fourths,
eights and so on? The Fama-MacBeth procedure carries this idea to is logical conclusion,
using the variation in the statistic at each point in time to deduce its sampling variation.

We are used to deducing the sampling variance of the sample mean of a series{w by
looking at the variation of{w through time in the sample, using�5+�{, @ �5+{,@W @
4
W5

S
w +{w � �{,5. The Fama-MacBeth technique just applies this idea to the slope and pric-

ing error estimates. This procedure assumes that the time series is not autocorrelated, but one
could easily extend the idea to estimate the sampling variation of a sample mean using a long
run variance matrix, i.e. estimate .

�5+a�, @
4

W

[
m

4

W

W[
w@4

�
a�w � a�

��
a�w�m � a�

�

and similarly fora�. Asset return data are usually not highly correlated, but this could have
a big effect on the application of the Fama-MacBeth technique to corporate¿nance data or
other regressions in which the cross-sectional estimates are highly correlated over time.

It is natural to use this sampling theory to test whether all the pricing errors are jointly
zero as we have before. Denote by� the vector of pricing errors across assets� estimate the
covariance matrix of the sample pricing errors by

a� @
4

W

W[
w@4

a�w

fry+a�, @
4

W 5

W[
w@4

+a�w � a�, +a�w � a�,3
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and then use the test

a�3fry+a�,�4a� � "5Q�4=

12.3.1 Fama MacBeth in depth

The GRS procedure and the formulas given above for a single cross-sectional regression are
familiar from any course in regression. The Fama MacBeth procedure seems novel, and it
is a useful and simple technique that can be widely used in economics and corporate¿nance
as well as asset pricing. Is it truly different? Is there something different about asset pricing
data that requires a fundamentally new technique not taught in standard regression courses?
To answer these questions it is worth looking in a little more detail at what it accomplishes
and why.

Consider a regression

|lw @ �3{lw . %lw l @ 4> 5> ===Q > w @ 4> 5> ===W=

The data in this regression has a cross-sectional element as well as a time-series element.
In corporate¿nance, for example, one might be interested in the relationship between in-
vestment and¿nancial variables, and the data set has many¿rms (Q ) as well as time series
observations for each¿rm (W ). This expression is the same form as our asset pricing model,
with {lw standing for the�l and� standing for�.

The textbook thing to do in this context is to simply stack thel and w observations to-
gether and estimate� by OLS. I will call this thepooled time-series cross-section estimate.
However, the error terms are not likely to be uncorrelated with each other. In particular, the
error terms are likely to be cross-sectionally correlated at a given time. If one return is un-
usually high, another is also likely to be high� if one¿rm invests an unusually great amount
this year, another is also likely to do so. When errors are not uncorrelated, OLS is still con-
sistent, but the OLS distribution theory is wrong, and typically suggests standard errors that
are much too small. In the extreme case that theQ errors are perfectly correlated at each
time period, it is as if there is only one observation for each time period, so one really has
W rather thanQW observations. Therefore, a real pooled time-series cross-section estimate
must include corrected standard errors. People often ignore this fact and report OLS standard
errors.

Another thing we could do is¿rst take time series averages and then run apure cross-
sectionalregression of

HW +|lw, @ �3HW +{lw, . xl l @ 4> 5> ===Q

This would lose any information due to variation of the {lw over time, but at least it might
be easier to ¿gure out a variance-covariance matrix forxl and correct the standard errors for
residual correlation. (You could also average cross-sectionally and than run a single time-
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series regression. We’ll get to that option later.)

In either case, the standard error corrections are just applications of the standard formula:
for an OLS regression

\ @ [� . x> H+xx3, @ 

the standard errors of the OLS estimate

a�ROV @ +[3[,�4[3\

are

�5+a�ROV, @ +[ 3[,�4 [3[ +[3[,�4=

Finally, we could run the Fama-MacBeth procedure: run a cross-sectional regression at
each point in time� average the cross-sectionala�w estimates to get an estimatea�, and use the
time-series standard deviation ofa�w to estimate the standard error ofa�.

It turns out that the Fama MacBeth procedure is just another way of calculating the stan-
dard errors, corrected for cross-sectional correlation.

Proposition 6 If the {lw variables do not vary over time, and if the errors are cross-sectionally
correlated but not correlated over time, then the Fama-MacBeth estimate, the pure cross-
sectional OLS estimate and the pooled time-series cross-sectional OLS estimates are identi-
cal. Also, the Fama-MacBeth standard errors are identical to the cross-sectional regression
or stacked OLS standard errors, corrected for residual correlation. None of these relations
hold if the{ vary through time.

Since they are identical procedures, whether one calculates estimates and standard errors
in one way or the other is a matter of taste.

I emphasize one procedure that is incorrect: pooled time series and cross section OLS with
no correction of the standard errors. The errors are so highly cross-sectionally correlated in
most¿nance applications that the standard errors so computed are often off by a factor of 10.

The assumption that the errors are not correlated over time is probably not so bad for
asset pricing applications, since returns are close to independent. However, when pooled
time-series cross-section regressions are used in corporate¿nance applications, errors are
likely to be as severely correlated over time as across¿rms, if not more so. The “other
factors” (%) that cause, say, companyl to invest more at timew than predicted by a set of right
hand variables is surely correlated with the other factors that cause companym to invest more.
But such factors are especially likely to cause companyl to invest more tomorrow as well. In
this case, any standard errors must also correct for serial correlation in the errors� the GMM
based formulas in section 3 can do this easily.

The Fama-MacBeth standard errors also do not correct for the fact thata� are generated
regressors. If one is going to use them, it is a good idea to at least calculate the Shanken
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correction factors outlined above. Again, the GMM setup used above to derive the Shanken
corrections makes this easy.

Proof: We just have to write out the three approaches and compare them. Having assumed
that the{ variables do not vary over time, the regression is

|lw @ {3l� . %lw=

We can stack up the cross-sectionsl @ 4===Q and write the regression as

|w @ {� . %w=

{ is now a matrix with the{3l as rows. The error assumptions meanH+%w%
3
w, @ 	.

Pooled OLS: To run pooled OLS, we stack the time series and cross sections by writing

\ @

5
9997

|4
|5
...
|W

6
:::8 > [ @

5
9997

{
{
...
{

6
:::8 > � @

5
9997

%4
%5
...
%W

6
:::8

and then

\ @ [� . �

with

H+��3, @  @

5
97

	
...

	

6
:8

The estimate and its standard error is then

a�ROV @ +[3[,
�4

[3\

fry+a�ROV, @ +[3[,
�4

[3[ +[3[,
�4

Writing this out from the de¿nitions of the stacked matrices, with[3[ @W{3{>

a�ROV @ +{3{,
�4

{3
4

W

W[
w@4

|w

fry+a�ROV, @
4

W
+{3{,

�4
+{3	{, +{3{,

�4
=
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We can estimate this sampling variance with

a	 @
4

W

W[
w@4

a%wa%
3
w> (142)

a%w � |w � {a�ROV

Pure cross-section: The pure cross-sectional estimator does one cross-sectional regres-
sion of the time-series averages. So, take those averages,

HW +|w, @ {� .HW +%w,

whereHW @ 4
W

SW
w@4 and{ @ HW +{ , since{ is constant. Having assumed i.i.d. errors over

time, the error covariance matrix is

H +HW +%w,HW +%3w,, @
4

W
	=

The cross sectional estimate and corrected standard errors are then

a�[V @ +{3{,
�4

{3HW +|w,

�5+a�[V, @
4

W
+{3{,

�4
{3	{�4 +{3{,

�4

Thus, the cross-sectional and pooled OLS estimates and standard errors are exactly the same,
in each sample.

Fama-MacBeth: The Fama–MacBeth estimator is formed by¿rst running the cross-
sectional regression at each moment in time,

a�w @ +{3{,
�4

{3|w=

Then the estimate is the average of the cross-sectional regression estimates,

a�IP @ HW

�
a�w

�
@ +{3{,

�4
{3HW +|w, =

Thus, the Fama-MacBeth estimator is also the same as the OLS estimator, in each sample.
The Fama-MacBeth standard error is based on the time-series standard deviation of thea�w.
UsingfryW to denote sample covariance,

fry
�
a�IP

�
@

4

W
fryW

�
a�w

�
@

4

W
+{3{,

�4
{3fryW +|w,{ +{3{,

�4
=

with

|w @ {�IP . a%w
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we have

fryW +|w, @ HW +a%wa%
3
w, @ a	

and¿nally

fry
�
a�IP

�
@

4

W
+{3{,

�4
{3 a	{ +{3{,

�4
=

Thus, the FM estimator of the standard error is also numerically equivalent to the OLS cor-
rected standard error.

Varying x If the {lw vary through time, none of the three procedures are equal anymore,
since the cross-sectional regressions ignore time-series variation in the{lw. As an extreme
example, suppose a scalar{lw varies over time but not cross-sectionally,

|lw @ �. {w� . %lw> l @ 4> 5> ===Q > w @ 4> 5> ===W=

The grand OLS regression is

a�ROV @

S
lw �{w|lwS
lw �{

5
w

@

S
w �{w

4
Q

S
l |lwS

w �{
5
w

where�{ @ {�HW +{, denotes the demeaned variables. The estimate is driven by the covari-
ance over time of{w with the cross-sectional average of the|lw, which is sensible because
all of the information in the sample lies in time variation. However, you can’t even run a
cross-sectional estimate, since the right hand variable is constant acrossl. As a practical ex-
ample, you might be interested in a CAPM speci¿cation in which the betas vary over time
(�w, but not across test assets. This sample still contains information about the CAPM: the
time-variation in betas should be matched by time variation in expected returns. But any
method based on cross-sectional regressions will completely miss it. �

195



Chapter 13. Maximum likelihood
Maximum likelihood is, like GMM, a general organizing principle that is a good place to
start when thinking about how to choose parameters and evaluate a model. It comes with a
useful asymptotic distribution theory, which, like GMM, is a good place to start when you
are unsure about how to treat various problems such as the fact that betas must be estimated
in a cross-sectional regression.

As we will see, maximum likelihood is a special case of GMM. It prescribes which mo-
ments are statistically most informative. Given those moments ML and GMM are the same.
Thus, ML can be used to defend why one picks a certain set of moments, or for advice on
which moments to pick if one is unsure. In this sense, maximum likelihood justi¿es the re-
gression tests above, as it justi¿es standard regressions. On the other hand, ML does not
easily allow you to use other moments, if you suspect that ML’s choices are not robust to
misspeci¿cations of the economic or statistical model.

13.1 Maximum likelihood

The maximum likelihood principle says to pick the parameters that make the observed
data most likely. Maximum likelyhood estimates are asymptotically ef¿cient. The informa-
tion matrix gives the asymptotic standard errors of ML estimates.

The maximum likelihood principle says to pick that set of parameters that makes the
observed data most likely. This is not “the set of parameters that are most likely given the
data” – in classical (as opposed to Bayesian) statistics, parameters are numbers not random
variables.

To implement this idea, you¿rst have to¿gure out what the probability of seeing a data
seti{wj is, given the free parameters� of a model. This probability distribution is called the
likelihood function i+i{wj > �,. Then, the maximum likelihood principle says to pick

a� @ dujpd{
i�j

i+i{wj > �,=

For reasons that will soon be obvious, it’s much easier to work with the log of this probability
distribution

O+i{wj > �, @ oq i+i{wj > �,>
Maximizing the log likelihood is the same things as maximizing the likelihood.

Finding the likelihood function isn’t always easy. In a time-series context, the best way
to do it is often to¿rst¿nd the logconditional likelihood function, the chance of seeing{w.4
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given {w> {w�4> === and given values for the parameters, i+{wm{w�4> {w�5> ==={3> �,. Since joint
probability is the product of conditional probabilities, the log likelihood function is just the
sum of the conditional log likelihood functions,

O+i{wj > �, @
W[
w@4

oq i+{wm{w�4> {w�5==={3> �,= (143)

More concretely, we usually assume normal errors, so the likelihood function is

O @ �W

5
oq +5� m	m,� 4

5

W[
w@4

%3w	
�4%w (144)

where %w denotes a vector of shocks� %w @ {w � H+{wm{w�4> {w�5==={3> �,. Then, just invert
whatever model you have that produces data {w from errors %w to express the likelihood
function in terms of data {w, and maximize.

(There is a small issue about how to start off a model such as (143). Ideally, the ¿rst
observation should be the unconditional density, i.e.

O+i{wj > �, @ oq i+{4> �, . oq i+{5m{4> �, . oq i+{6m{5> {4> �,===

However, the whole point is that it is usually hard to evaluate the unconditional density or
the ¿rst terms. Therefore, if as usual the conditional density can be expressed in terms of
a ¿nite number n of lags of {w, one often maximizes the conditional likelihood function
(conditional on the ¿rst n observations), treating the ¿rst n observations as ¿xed rather than
random variables.

O+i{wj > �, @ oq i+{n.4m{n> {n�4==={4> �, . oq i+{n.5m{n> {n�4==={5> �, . ===

Alternatively, one can treat the pre-sample valuesi{3> {�4> ==={�n.4j as additional parame-
ters over which to maximize the likelihood function.)

Maximum likelihood estimators come with a useful asymptotic (i.e. approximate) distri-
bution theory. First, the distribution of the estimates is

a��Q
#
�>

�
� C5O
C�C�3

��4$
(145)

If the likelyhoodO has a sharp peak ata�, then we know a lot about the parameters, while
if the peak isÀat, other parameters are just as plausible. The maximum likelihood estimator
is asymptotically ef¿cient meaning that no other estimator can produce a smaller covariance
matrix.
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The second derivative in (145) is known as the information matrix,

L @ � 4

W

C5O
C�C�3

@ � 4

W

W[
w@4

C5 oq i+{w.4m{w> {w�4> ==={3> �,
C�C�3

= (146)

(More precisely, the information matrix is de¿ned as the expected value of the second partial,
which is estimated with the sample value.) The information matrix can also be estimated as
a product of ¿rst derivatives. The expression

L @ � 4

W

W[
w@4

�
C oq i+{w.4m{w> {w�4> ==={3> �,

C�

��
C oq i+{w.4m{w> {w�4> ==={3> �,

C�

�3
=

converges to the same value as (146). (Hamilton 1994 p.429 gives a proof.)

If we estimate a model restricting the parameters, then the maximum value of the like-
lihood function will necessarily be lower. However, if the restriction is true, it shouldn’t be
that much lower. This intuition is captured in thelikelihood ratio test

5+Ounrestricted �Orestricted,�"5number of restrictions (147)

The form and idea of this test is much like the"5 difference test for GMM objectives that we
met in section xx.

13.2 When factors are returns, ML prescribes a time-series
regression.

I add to the economic model H +Uh, @ �H+i, a statistical assumption that the regression
errors are independent over time and independent of the factors. ML then prescribes a time-
series regression with no constant. To prescribe a time series regression with a constant, we
drop the model prediction� @ 3. I show how the information matrix gives the same result
as the OLS standard errors.

Given a linear factor model whose factors are also returns, as with the CAPM, ML pre-
scribes a time-series regression test. To keep notation simple, I again treat a single factori .
The economic model is

H +Uh, @ �H+i, (148)

Uh is anQ � 4 vector of test assets, and� is anQ � 4 vector of regression coef¿cients of
these assets on the factor (the market returnUhp in the case of the CAPM).

To apply maximum likelihood, we need to add an explicit statistical model that fully
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describes the joint distribution of the date. I assume that the market return and regression
errors are i.i.d. normal, i.e.

Uh
w @ �. �iw . %w (149)

iw @ H+i, . xw�
%w
xw

�
�Q

��
3
3

�
>

�
	 3
3 �5x

��

Equation (149) has no content other than normality. The zero correlation betweenxw and%w
identi¿es� as a regression coef¿cient. You can in fact be even more principled and just write
Uh> Uhp as a general bivariate normal, and a problem asks you to try this approach.

The economic model (148) implies restrictions on this statistical model. Taking expecta-
tions of (149), the CAPM implies that the intercepts� should all be zero. Again, this is also
the only restriction that the CAPM places on the statistical model (149).

The most principled way to apply maximum likelihood is to impose the null hypothesis
throughout. Thus, we write the likelihood function imposing� @ 3= As above, to construct
the likelihood function, we reduce the statistical model to independent error terms, and then
add their log probability densities to get the likelihood function.

O @ +const)� 4

5

W[
w@4

+Uh
w � �iw,

3	�4 +Uh
w � �iw,� 4

5

W[
w@4

+iw �H+i,,5

�5x

The estimates follow from the¿rst order conditions,

CO
C�

@ 	�4
W[
w@4

+Uh
w � �iw, iw @ 3 , a� @

#
W[
w@4

i5w

$�4 W[
w@4

Uh
wiw

CO
CH+i,

@
4

�5x

W[
w@4

+iw �H+i,, @ 3 , Ĥ+i, @ a� @
4

W

W[
w@4

iw

(CO@C	 andCO@C�5 also produce ML estimates of the covariance matrices, which turn out
to be the standard averages of residuals.)

The ML estimate of� is the OLS regressionwithout a constant. The null hypothesis says
to leave out the constant, and the ML estimator uses that fact to avoid estimating a constant.
Since the factor risk premium is equal to the market return, it’s not too surprising that the�
estimate is the same as that of the average market return.

The asymptotic standard errors follow from either estimate of the information matrix, for
example

C5O
C�C�3

@ �	�4
W[
w@4

i5w @ 3
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Thus,

fry+a�, @
4

W

4

H+i5,
	 @

4

W

4

H+i,5 . �5+i,
	= (150)

This is the standard OLS formula.

We can also apply maximum likelihood to estimate an unconstrained model, containing
intercepts, and then use Wald tests (estimate/standard error) to test the restriction that the
intercepts are zero. We also need the unconstrained model to run the likelihood ratio test of
the constrained model vs. the unconstrained model. The unconstrainted likelihood function
is

O @ +const.) � 4

5

W[
w@4

+Uh
w ��� �iw,

3	�4 +Uh
w ��� �iw, . ===

(I ignore the term in the factor, since it will again just tell us to use the sample mean to
estimate the factor risk premium.)

The estimates are now

CO
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+Uh
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,� a�HW +iw,
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w ��� �iw, iw @ 3 , a� @

fryW +Uh
w > iw,

�5W +iw,

Unsurprisingly, the maximum likelihood estimates of � and � are the OLS estimates, with a
constant.

The inverse of the information matrix gives the asymptotic distribution of these estimates.
Since they are just OLS estimates, we’re going to get the OLS standard errors, but it’s worth
seeing it come out of ML.
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The covariance matrices ofa� anda� are thus

fry+a�, @
4

W

%
4 .

�
H+i,

�+i,

�5
&
	

fry+a�, @
4

W

4

�5+i,
	= (151)

These are just the usual OLS standard errors, which we derived above as a special case of
GMM standard errors for the OLS time-series regressions when errors are uncorrelated over
time and independent of the factors, or by specializing�5+[3[,�4.

You cannot just invertC5O@C�C�3 to¿nd the covariance ofa�. That would give just	 as
the covariance matrix ofa�, which would be wrong. You have to invert the entire information
matrix to get the standard error of any parameter. Otherwise, you are ignoring the effect that
estimating� has on the distribution ofa�. In fact, what I presented is really wrong, since we
also must estimate	. However, it turns out thata	 is independent ofa� anda�, so the top left
two elements of the true information matrix is the same as I have written here.

The variance ofa� in (151) is larger than it is in (150) was when we impose the null
of no constant. ML uses all the information it can to produce ef¿cient estimates – esti-
mates with the smallest possible covariance matrix. The ratio of the two formulas is equal
to 4 . H+i,5@�5+i,, which we studied above in section xx. In annual data for the CAPM,
�+Uhp, @ 49(, H+Uhp, @ ;(, means that unrestricted estimate (151) has a variance
25% larger than the restricted estimate (150), so the gain in ef¿ciency can be important. In
monthly data, however the gain is smaller since variance and mean both scale with the hori-
zon. This is also a warning: ML can prescribe silly procedures (running a regression without
a constant) in order to get any small improvement in ef¿ciency.

We can use these covariance matrices to construct a Wald (estimate/standard error) test
the restriction of the model that the alphas are all zero,

W

#
4 .

�
H+Uhp,

�+Uhp,

�5
$�4

a�3	�4a� �"5Q = (152)

Again, we already derived this"5 test in (122), and its¿nite sampleI counterpart, the
GRSI test (123). The other test of the restrictions is the likelihood ratio test (147). Quite
generally, likelihood ratio tests are asymptotically equivalent to Wald tests, and so gives the
same result. Showing it in this case is not worth the algebra.

13.3 When factors are not excess returns, ML prescribes a
cross-sectional regression

If the factors are not returns, we didn’t have a choice between time-series and cross-sectional
regression, since the intercepts are not zero. As you might suspect, ML prescribes a cross-
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sectional regression in this case.

The factor model, expressed in expected return beta form, is

H+Uhl, @ �l . �3l�> l @ 4> 5> ==Q (153)

The betas are de¿ned from time-series regressions

Uhl
w @ dl . �3liw . %lw (154)

The interceptsdl in the time-series regressions need not be zero, since the model does not
apply to the factors. They are not unrestricted, however. Taking expectations of the time-
series regression (154) and comparing it to (153) (as we did to derive the restriction� @ 3
for the time-series regression), the restriction� @ 3 implies

dl @ �3l +��H+iw,, (155)

Plugging into (154), we can say that the time series regressions must be of the restricted form

Uhl
w @ �3l�. �3l ^iw �H+iw,` . %lw= (156)

In this form, you can see that�l� determines the mean return. Since there are fewer factors
than returns, this is a restriction on the regression (156).

Stack assetsl @ 4> 5> ===Q to a vector� and introduce the auxiliary statistical model that
the errors and factors are i.i.d. normal and uncorrelated with each other. Then, the restricted
model is

Uh
w @ E�.E ^iw �H+i w,` . %w> %w � Q +3>	,

iw @ H+i , . xw> xw � Q +3> Y ,�
%w
xw

�
� Q

�
3>

	 3
3 Y

�

whereE denotes aQ �N matrix of regression coef¿cients of theQ assets on theN factors.
The likelihood function is

O @ +const.)� 4
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�4xw
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Maximizing the likelihood function,
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The solution to this pair of equations is

Ĥ+i, @
4

W

W[
w@4

iw (157)

a� @
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��4
E3	�4

4

W

W[
w@4

Uh
w = (158)

The maximum likelihood estimate of the factor risk premium is a GLS cross-sectional
regression of average returns on betas.

As with the CAPM, the maximum likelihood estimates of the regression coef¿cients E
are slightly altered from the unrestricted OLS values:

CO
CE

=
W[
w@4

	�4 +Uh
w�E ^�. iw �H+i,`, ^�. iw �H+i,`3 @ 3 (159)

aE @
W[
w@4

Uh
w ^iw . ��H+i,`3

#
W[
w@4

^iw . ��H+i,` ^iw . ��H+i,`3
$�4

This is true, even though the E are de¿ned in the theory as population regression coef¿cients.
The restricted ML uses the restrictions to improve on OLS estimates in a sample. (The matrix
notation hides a lot here! If you want to rederive these formulas, it’s helpful to start with scalar
parameters, e.g.Elm , and to think of it asCO@C� @

SW
w@4 +CO@C%w,3 C%w@C�= ) Therefore, to

really implement ML, you have to solve (158) and (159) simultaneously fora�, aE, along with
a	 whose ML estimate is the usual second moment matrix of the residuals. This can usually
be done iteratively: Start with OLSaE, run an OLS cross-sectional regression fora�, form a	,
and iterate.

13.4 Time series vs. cross-section

I track down why ML prescribes a time-series regression when factors are returns and
a cross-sectional regression when factors are not returns. I argue that the cross-sectional
regression may be more robust to model misspeci¿cation. I show that the time-series / cross-
sectional regression issue is the same as the OLS / GLS cross-sectional regression issue, and
similar to the issue whether one runs time-series regressions with no intercept, both cases in
which one may trade ef¿ciency for robustness.

The issue

When factors are not returns, ML prescribed a cross-sectional regression When the fac-
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Figure 21. Time-series vs. cross-sectional regression estimates.

tors are returns, ML prescribes a time-series regression. Figure 21 illustrates the difference
between the two approaches. The time-series regression estimates the factor risk premium
from the average of the factors alone, ignoring any information in the other assets. For ex-
ample in the CAPM,a� @ HW +U

hp,. Thus, a time-series regression draws the expected
return-beta line across assets by making it¿t precisely on two points, the market return and
the riskfree rate, and the market and riskfree rate have zero estimated pricing error in every
sample. The cross-sectional regression draws the expected return-beta line by minimizing
the squared pricing error across all assets. It allows some pricing error for the market return
and (if the intercept is free) the riskfree rate, if by doing so the pricing errors on other assets
can be reduced.

Of course, if the model is correct, the two approaches should converge as the sample gets
larger. However, the difference between cross-sectional and time-series approaches can often
be large and economically important in samples and models typical of current empirical work.
The ¿gure shows a stylized version of CAPM estimates on the size portfolios. High beta
assets (the small¿rm portfolios) have higher average returns than predicted by the CAPM.
However, the estimated pricing error for these assets is much smaller if one allows a cross-
sectional regression to determine the market price of risk. Classical tests of the CAPM based

204



SECTION 13.4 TIME SERIES VS. CROSS-SECTION

on beta-sorted portfolios often turn out the other way: the cross-sectional regression market
line isÀatter than the time-series regression, with an intercept that is higher than the sample
riskfree rate. As another example, Fama and French (19xx) report important correlations
between betas and pricing errors in a time-series test of a three-factor model on industry
portfolios. This correlation cannot happen with an OLS cross-sectional estimate, as the cross-
sectional estimate sets the correlation between right hand variables (betas) and error terms
(pricing errors) to zero by construction. Thus, such a correlation is an indication that a cross-
sectional regression would give quite different results.

(The difference is not always large of course, and there is one special case in which time-
series and cross-section agree by construction. If one is testing CAPM and the market return
is an equally weighted portfolio of the test assets, then an OLS cross-sectional regression
with an estimated intercept passes through the market return, since the average pricing error
is set to zero by the cross-sectional regression. In this case, though, time series regression
imposes a zero intercept and cross-sectional regression can leave the intercept free.)

When there is a choice – when one is testing a linear factor model in which the factors are
also portfolio returns – should one use a time-series or a cross-sectional regression? Since the
¿nal evaluation of any model depends on the size of pricing errors, it would seem to makes
sense to estimate the model by choosing free parameters to make the pricing errors as small
as possible. That is exactly what the cross-sectional regression accomplishes. However, the
time-series regression is the maximum likelihood estimator, and thus asymptotically ef¿cient.
This seems like a strong argument for the pure time-series approach.

Why ML does what it does

To resolve this issue, we have to understand why ML prescribes such different procedures
when factors are and aren’t returns. Why does ML ignore all the information in the test asset
average returns, and estimate the factor premium from the average factor return only? The
answer lies in the structure that we told ML to assume when looking at the data. First, when
we writeUh @ d . �iw . %w and% independent ofi , we tell ML that a sample of returns
already includes the same sample of the factor, plus extra noise. Thus, the sample of test
asset returns cannot possibly tell ML anything more than the sample of the factor alone about
the mean of the factor. Second, we tell ML that the factor risk premium equals the mean of
the factor, so it may not consider the possibility that the two are different in trying to match
the data. When the factor is not also a return, ML still ignores anything but the factor data in
estimating the mean of the factor, but now it is allowed to change a different parameter to¿t
the returns, which it does by cross-sectional regression.

The time-series vs. cross-section issue is essentially the same as the OLS vs. GLS issue.
ML prescribes a GLS cross-sectional regression,

a� @
�
�3	�4�

��4
�3	�4HW +U

h,=

The assets are weighted by inverse of theresidual covariance matrix	, not the return covari-
ance matrix= If we include as a test asset a portfolio that is nearly equal to the factor but with
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a very small variance, then the elements of 	 in that row and column will be very small and
	�4 will overwhelmingly weight that asset in determining the risk premium. If the limit that
we actually include the factor as a test asset,

�
�3	�4�

��4
�3	�4 becomes a vector of zeros

with a unit element in the position of the factor and we return to a� @ HW +i,.

Model misspeci¿cation

As I argued in section 2 and in section 2, it may well be a good idea to use OLS cross-
sectional regressions or¿rst-stage GMM rather than the more ef¿cient GLS, because the OLS
regression can be more robust to small misspeci¿cations of the economic or statistical model,
and OLS may be better behaved in small samples in which	�4 is hard to estimate.

Similarly, time-series regressions are almost universally run with a constant, though ML
prescribes a regression with no constant. The reason must be that researchers feel that omit-
ting some of the information in the null hypothesis, the estimation and test is more robust,
though some ef¿ciency is lost if the null economic and statistical models are exactly correct.
Since ML prescribes a cross-sectional regression if we drop the restriction� @ H+i,, run-
ning a cross-sectional regression may also be a way to gain robustness at the expense of one
degree of freedom.

Here is an example of a common small misspeci¿cation that justi¿es a cross-sectional
rather than a time-series approach. Suppose that the test portfolios do follow a single factor
model precisely, with an excess returniw as the single factor. However, we have an imprecise
proxy for the true factor,

isw @ iw . �w= (160)

Most obviously, the market return is an imperfect proxy for the wealth portfolio that the
CAPM speci¿es as the single factor. Multifactor models also use return factors that are
imperfect proxies for underlying state variables. For example Fama and French (1993) use
portfolios of stocks sorted by book/market value as a return factor, with the explicit idea that
it is a proxy for a more rigorously-derivable state variable.

The true model is

Uh @ �iw . %w= (161)

There is no intercept sincei is a return. For the statistical part of the model, I again assume
that%w andiw are jointly normal i.i.d. and independent of each other.

If we had data oniw, the ML estimate of this model would be, like the CAPM, a pure
time series regression. We have to work out what a model using the proxyis as reference
portfolio looks like. This is an example, and to keep it simple I assume that�w is mean zero,
and uncorrelated withiw and%w.

H+�, @ 3> H+�i, @ H+�%, @ 3=

(This is a poor assumption for the CAPM. Since the market portfolio is a linear combination
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of the test assets, the error inUp is the sum of the errors% and thus unlikely to be uncorrelated
with them. This is a more plausible assumption for non-market factors in multifactor models.
Similar examples withH+i%, 9@ 3 generate the same sorts of misspeci¿cation, but also
introduce pricing errors in the test assets.)

Now, if we use the proxyis rather thani as the factor, thetest assets still follow the
factor model exactly, but the factor portfolio does not, and the risk premium is no longer
equal to the mean of the factor portfolio:

H+Uh, @ �s�s (162)

H+is, @ �s � �s

and�s is the regression coef¿cient ofUh on the proxyis. Therefore, if you spell out the
misspeci¿cation, the ML estimate of the factor model is now a cross-sectional regression, not
a time-series regression! A similar misspeci¿cation occurs when we suspect that the riskfree
rate is “too low” and again leads to cross-sectional estimates.

The algebra behind (162) is straightforward,

fry+Uh> is, @ fry+Uh> i . �, @ fry+Uh> i,

H+Uh, @
fry+Uh> i,

�5+i,
� @

fry+Uh> is,

�5+is,

�5+is,

�5+i,
� @ �s�s

H+is, @ H+i, @ � @ �s
�5+i,

�5+is,
@ �s � �

�
�5+�,

�5+i,

�
@ �s � �s

where I have introduced the notation

�s �
�
4 .

�5 +�,

�5+i,

�
�

�s �
�
�5+�,

�5+i,

�
�=
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Chapter 14. ML, GMM and Regression
As you probably have already noticed, GMM, regression and ML approaches to asset pricing
models all look very similar. In each case one estimates a set of parameters, such as the
d>e in pw @ d � ei w> the �> � in pw @ � +fw@fw�4,

�� or the �l in Uhl @ d . �liw . %lw.
Then, we calculate pricing errors and evaluate the model by a quadratic form in the pricing
errors. Here I draw some additional connections and highlight the distinctions between the
three approaches. I start with two facts that help to anchor the discussion: 1) ML is a special
case of GMM, 2) one can approach either s @ H+p{, or expected return/beta expressions of
asset pricing models with either ML or GMM approaches to estimation. .

14.1 ML is GMM on the scores

We can regard ML as a special case of GMM. ML uses the information in the auxiliary sta-
tistical model to derive statistically most informative moment conditions, moment conditions
that fully exhaust the model’s implications. To see this fact, start with the¿rst order condi-
tions for maximizing a likelihood function

CO+i{wj > �,
C�

@
W[
w@4

C oq i+{wm{w�4{w�5===> �,
C�

@ 3= (163)

This is a GMM estimate. It is the sample counterpart to a population moment condition

j+�, @ H

�
C oq i+{wm{w�4{w�5===> �,

C�

�
@ 3> (164)

The termC oq i+{wm{w�4{w�5===> �,@C� is known as the “score”. It is a random variable,
formed as a combination of current and past data+{w> {w�4===,. Thus, maximum likelihood is
a special case of GMM, a special choice of which moments to examine (163).

For example, suppose that{ follows an AR(1) with known variance,

{w @ �{w�4 . %w=

Then,

oq i+{wm{w�4> {w�5===> �, @ const.� %5w
5�5

@ const� +{w � �{w�4,
5

5�5

and the score is

C oq i+{wm{w�4{w�5===> �,
C�

@
+{w � �{w�4,{w�4

�5
=
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The ¿rst order condition for maximizing likelihood, (163), is

4

W

W[
w@4

+{w � �{w�4,{w�4 @ 3=

This expression as a moment condition, and you’ll recognize it as the OLS estimator of�,
which we have already regarded as a case of GMM.

The example shows another property of scores:The scores should be unforecastable. In
the example,

Hw�4

�
+{w � �{w�4,{w�4

�5

�
@ Hw�4

k%w{w�4
�5

l
@ 3= (165)

Intuitively, if we used a combination of the{ variablesH+j+{w> {w�4> ===,, @ 3 that was
predictable, we could form another moment that described the predictability of thej variable
and use that moment to get more information about the parameters. To prove this property
more generally, start with the fact thati+{wm{w�4> {w�5> ===> �, is a conditional density and
therefore must integrate to one,

4 @

]
i+{wm{w�4> {w�5> ===> �,g{w

3 @

]
Ci+{wm{w�4> {w�5> ===> �,

C�
g{w

3 @

]
C oq i+{wm{w�4> {w�5> ===> �,

C�
i+{wm{w�4> {w�5> ===> �,g{w

3 @ Hw�4

�
C oq i+{wm{w�4> {w�5> ===> �,

C�

�

Furthermore, as you might expect,the GMM distribution theory formulas give the same
result as the ML distribution, i.e., the information matrix is the asymptotic variance-covariance
matrix. To show this fact, apply the GMM distribution theory (100) to (163). The derivative
matrix is

g @
CjW +�,

C�3
@

4

W

W[
w@4

C5 oq i+{wm{w�4{w�5===> �,
C�C�

3
@ L

This is the second derivative expression of the information matrix. TheV matrix is

H

�
C oq i+{wm{w�4{w�5===> �,

C�

C oq i+{wm{w�4{w�5===> �,
C�

3�
@ L

The lead and lag terms inV are all zero since we showed above that scores should be un-
forecastable. This is the outer product de¿nition of the information matrix. There is nod
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CHAPTER 14 ML, GMM AND REGRESSION

matrix, since the moments themselves are set to zero. The GMM asymptotic distribution of
a� is therefore

s
W +a� � �, $ Q �

3> g�4Vg�43
�
@ Q �

3> L�4� =
We recover the inverse information matrix, as speci¿ed by the ML asymptotic distribution
theory.

14.2 ML approach to a consumption-based model

There is nothing that forces us to pair GMM with s @ H+p{, type models or ML with
regression tests. We have already used the GMM principle to construct tests of expected
return - beta models. We can also use the MLprinciple to construct estimates and tests of
s @ H+p{, type models, and many authors do so. For example, we could start with the
same statistical assumption thatUw andiw are jointly normally distributed and i.i.d. over time.
4 @ H+pU,> p @ d . ei , and, if the factors are returns,4 @ H+pi,, imply restrictions
across the mean and covariance matrix ofUh

w and iw. We can then write the likelyhood
function, and maximize it to¿nd estimates ofd> e=

To investigate a less trivial example, here is how we might handle an explicit consumption-
based model, taken from Hansen and Singleton (198x). Start with the simplest model with
power utility. Using a set of returnsUw the model predicts

Hw

#
�

�
Fw.4
Fw

���
Uw.4

$
@ 4

To apply maximum likelihood, we need auxiliary statistical assumptions, just as we added
to the regression model of the CAPM the assumption that the errors were i.i.d. normal. A
natural starting place is to model log consumption growth and log returns as jointly normal
and i.i.d. .Then the pricing equation becomes

Hw

�
h��h���fw.4huw.4

�
@ 4

and, taking logs,

� � �H�f.Hu.
4

5
�5�5�f .

4

5
�5+u,� �fry+�f> u, @ 3 (166)

I use small letters for logs of capital letters,u @ oqU> f @ oqF, etc., and in the last equality
I suppressw subscripts since returns are i.i.d. It will simplify matters to focus on return
differences (not really excess returns since we took logs)� thus choose one assetuQ.4 and
denoteuh @ u�uQ.4. Then we can difference (166) to give

Huh .
4

5
�5+uh,� �fry+�f> uh, @ 3
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In sum, we have assumed joint normal log returns and consumption growth,�
�fw.4
uhw.4

�
�Q

��
H�f
Huh

�
> Y @

�
�5�f fry+�f> uh,

fry+�f> uh, 	

��
(167)

and in this context, the economic model restricts this statistical description by linking some
of the free parameters,

Huh @ �fry+�f> uh,� 4

5
diag	 (168)

The standard ML method then is to estimate the restricted model, calculate Wald statistics for
the parameters, and test the restriction by comparing the likelihood of the restricted model
to that of an unrestricted model, one that freely estimates the mean and covariance matrix in
(167)

We can substitute the restriction in the likelyhood function to eliminate the parameter
H+uh, and to write the restricted likelihood function as

O @ �W

5
oq +5� mY m,� 4

5

W[
w@4

%3wY
�4%w

%w @

�
�fw �H�f

uhw � �fry +�f> uh, . 4
5diag	

�

The arguments of the likelihood function areO+i�fw> u
h
wj >�>H�f> fry +�f> uh, >	,, includ-

ing both statistical and economic parameters.

When we maximize the likelihood function you fairly easily see thatH�f @ 4
W	

W
w@4�fw

is the maximum likelihood estimate. Taking the derivative with respect to�>

CO
C�

@
�
3 fry+�f> uh3,

�
Y �4

W[
w@4

%w @ 3

and hence

fry+�f> uh3,	�4
4

W

W[
w@4

�
uhw � �fry +�f> uh, .

4

5
diag	

�
@ 3= (169)

(to derive this last equation you have to use the partitioned matrix inverse formula onY and
then recognize that using the sample mean forH�f means the¿rst row is automatically
satis¿ed.)

As we saw above, ML is equivalent to GMM with a speci¿c choice of moments. In
this case, the moments prescribed by ML are just a speci¿c linear combination of the pricing
errors. The leading terms in (169) are a weighting matrix in GMM language.fry+�f uh3,	�4

is a4�Q matrix that tells you which linear combination of pricing error moments to set to
zero in order to estimate�. In fact, if you had followed GMM, you might have started with

211



CHAPTER 14 ML, GMM AND REGRESSION

the terms following 4
W in the last equation and treated those as your moment conditions for

estimating �. (169) is precisely the “optimal” second-stage GMM estimate in this case.

We can solve equation (169) for the estimate of�, and it is

a� @
�
fry+�f> uh3,	�4fry +�f> uh,

��4
fry+�f> uh3,	�4

#
4

W

W[
w@4

uhw .
4

5
diag	

$

Once again, this estimate is a cross-sectional GLS regression of average returns, with a log-
normal variance correction term, on covariances.

True ML is not quite so simple. Thefry +�f> uh, and	 are also parameters that must be
estimated. Since they enter the model restrictions, (168), their ML estimates will not be the
usual unconstrained estimates. (Similarly, the ML estimate of a time series regression is not
the usual estimate, since we force the constant to zero.)

14.3 ML vs. GMM

I have emphasized the many similarities between ML GMM and regressions. In the classic
environments we have examined, all methods basically pick parameters to minimize the pric-
ing errors, and test the model’s overall¿t by whether the minimized pricing errors are larger
than sampling variation would suggest.

However, there are differences, and it is time to stop and think about which technique to
use. Furthermore, though ML, GMM and regression are quite similar in the classic case of a
factor model, excess return, and i.i.d. normal returns and factors, they can suggest quite dif-
ferent procedures in other situations including more sophisticated consumption-based mod-
els, explicit term structure models, or option pricing models that require thoughtful treatment
of changing volatility and non-normality.

As we have seen, ML is a special case of GMM: it gives a particular choice of moments
that are statistically optimal in a well-de¿ned sense. GMM can be used to derive an asymp-
totic distribution theory for ML as well as lots of other estimation procedures. Thus, the issue
is really about when it is important to use ML estimates or whether it is a good idea to use
other moments. As with OLS vs. GLS, sub-optimal estimation methods (OLS) can be more
robust to model misspeci¿cations. On the other hand, if the statistical model is tractable,
right, and if one is unsure about which moments are informative, ML can be an important
guide.

14.3.1 Speci¿cation errors

ML is often ignored

As we have seen, ML plus the assumption of normal i.i.d. disturbances leads to easily
interpretable time-series or cross-sectional regressions. However, asset returns arenot nor-
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mally distributed or i.i.d.. They have fatter tails than a normal, they are heteroskedastic (times
of high and times of low volatility), they are autocorrelated, and predictable from a variety of
variables. If one were to take the ML philosophy seriously, one should model these features
of returns. The result would be a different likelihood function, and its scores would prescribe
different moment conditions than the familiar and intuitive time-series or cross-sectional re-
gressions.

Interestingly, most empirical workers practically never do this. (The exceptions tend to be
papers whose primary point is illustration of econometric technique rather than substantive
issues.) ML seems to be¿ne when it suggests easily interpretable regressions� when it
suggests something else, people use the regressions anyway. For example, as we have seen,
a ML estimation of the CAPM prescribes that one estimate�s using time-series regressions
without a constant, exploiting that prediction of the theory. Yet�s are almost universally
estimated with a constant. Despite ML’s speci¿cation of a GLS cross-sectional regression,
most empirical work uses OLS cross-sectional regressions. And of course, the above “ML”
estimates and test statistics continue to be used, despite the technical feasibility of addressing
non-normal and non-i.i.d. returns.

This fact tells us something interesting about the nature of empirical work: researchers
don’t really believe that their null hypotheses, statistical and economic, are exactly cor-
rect. They want to produce estimates and tests that arerobust to reasonable model mis-
speci¿ciations. They also want to produce estimates and tests that are easily interpretable,
that capture intuitively clear stylized facts in the data. Such estimates are persuasive in large
part because the reader can see that they are robust.

ML does not necessarily produce robust or easily interpretable estimates. It wasn’t de-
signed to. The point and advertisement of ML is that it providesef¿cient estimates� it uses
every scrap of information in the statistical and economic model in the quest for ef¿ciency.
It does the “right” ef¿cient thing if model is true. It does not necessarily do the “reasonable”
thing for “approximate” models.

Examples

For example, we have seen that ML speci¿es a time-series regression when the factor
is a return, but a cross-sectional regression when the factor is not a return. The time-series
regression gains one degree of freedom, but we have also seen that an even slight proxy error
in the factor leads to the more intuitive cross-sectional regression. We have also discussed
reasons why researchers use OLS cross-sectional regressions rather than more “ef¿cient”
GLS. GLS requires modeling and inverting anQ � Q covariance matrix, and then focuses
attention on portfolios with strong positive and negative weights that seem to have lowest
variance in a sample. But such portfolios may be quite sensitive to small transactions costs,
and the sampling error in large covariance matrices may ruin the asymptotic advantages of
GLS in a¿nite sample. Similarly, if one asked a researcher why he included a constant in
estimating a beta while applying the CAPM, he might well respond that he doesn’t believe
the theory that much.
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In estimating time-series models such as the AR(1) example above, maximum likelyhood
minimizes one-step ahead forecast error variance,

S
%5w . But any time-series model is only

an approximation, and the researcher’s objective may not be one-step ahead forecasting. For
example, one may be interested in the long-run behavior of a slow-moving series such as
the short rate of interest. The approximate model that generates the smallest one-step ahead
forecast error variance may be quite different from the model that best matches long-run
autocorrelations, so ML will pick the wrong model and make very bad predictions for long-
run responses. (Cochrane 1986 contains a more detailed analysis of this point.)

Models of the term structure of interest rates and real business cycle models in macroe-
conomics give even more stark examples. These models arestochastically singular. They
generate predictions for many time series from a few shocks, so the models predict that there
are combinations of the time series that leave no error term. Even though the models have rich
and interesting implications, ML will seize on this economically uninteresting singularity to
reject any model of this form.

The simplest example of the situation is the linear-quadratic permanent income model
paired with an AR(1) speci¿cation for income. The model is

|w @ �|w�4 . %w

fw � fw�4 @ +Hw � Hw�4,
4

4� �

4[
m@3

�m|w.m @
4

+4� ��, +4� �,
%w

This model generates all sorts of important and economically interesting predictions for the
joint process of consumption and income. Consumption should be roughly a random walk,
and should respond only to permanent income changes� investment should be more volatile
than income and income more volatile than consumption. Since there is only one shock
and two series, however, the model taken literally predicts a deterministic relation between
consumption and income.

fw � fw�4 @
u�

4� ��
+|w � �|w�4, =

ML will notice that this is thestatistically most informative prediction of the model. In any
real data set there isno con¿guration of the parametersu> �> � that make this restriction hold,
data point for data point. The probability of observing a data setifw> |wj is exactly zero, and
the log likelyhood function is�4 for any set of parameters. ML says to throw the model
out.

The popular af¿ne yield models of the term structure of interest rates act the same way.
They specify that all yields at any moment in time are deterministic functions of a few state
variables. Such models capture much of the important qualitative behavior of the term struc-
ture, including rising, falling and humped shapes, the time-evolution of those shapes (i.e. that
a rising yield curve forecasts changes in future yields and bond holding period returns), and
they are very useful for derivative pricing. But it is never the case in actual yield data that
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yields of all maturities are exact functions of three yields. Actual data on Q yields always
require Q shocks, even if the last Q � 6 have very small variances. Again, a ML approach
reports a �4 log likelyhood function for any set of parameters.

Addressing model mis-speci¿cation.

The ML philosophy offers an answer to the model mis-speci¿cation question: specify
theright model, and then do ML. If regression errors are correlated, model and estimate the
covariance matrix and do GLS. If one is worried about proxy errors in the pricing factor, short
sales costs or other transactions costs in the test assets, time-aggregation or mismeasurement
of consumption data, or small but nonzero violations of the model simpli¿cations such as
time-varying betas and factor risk premia� additional pricing factors and so on, write them
down, and then do ML.

For example, researchers have added “measurement errors” to real business cycle models
and af¿ne yield models in order to break the predictions of stochastic singularity. The trouble
is, of course, that the assumed structure of the measurement errors now drives what moments
ML pays attention to. Also, modeling and estimating stochastic structure of measurement
errors takes us further away from the economically interesting parts of the model.

More generally, as we have seen, authors tend not to follow this advice, for the simple
reason that it is infeasible. Economics in general and¿nancial economics in particular neces-
sarily studies quantitative parables rather than completely speci¿ed models. It would be nice
if we could write down completely speci¿ed models, if we could quantitatively describe all
the possible economic and statistical model and speci¿cation errors, but we can’t.

The GMM framework, used judiciously, offers an alternative way to address model mis-
speci¿cation. Where ML only gives us a choice of OLS, whose standard errors are wrong,
or GLS, GMM allows us to keep an OLS estimate, but correct the standard errors (at least
asymptotically) for any statistical problems. More generally, GMM allows one to specify an
economically interesting set of moments, or a set of moments that one feels will be robust
to misspeci¿cations of the economic or statistical model,without having to spell out exactly
what is the source of model mis-speci¿cation that makes those moments “optimal”. It allows
one to accept the lower “ef¿ciency” of the estimates if the null really is exactly true, in return
for such robustness.

At the same time, it allows one toÀexibly incorporate statistical model misspeci¿cations
in the distribution theory. For example, knowing that returns are not i.i.d. normal, one may
want to use the time series regression technique to estimate betas anyway. This estimate is not
inconsistent, but thestandard errors that ML formulas pump out under this assumption are.
GMM gives aÀexible way to derive at least and asymptotic set of corrections for statistical
model misspeci¿cations of the time-series regression coef¿cient. Similarly, a pooled time-
series cross-sectional OLS regression is not inconsistent, but standard errors that ignore cross-
correlation of error terms are far too small.

The “calibration” of real business cycle models is really nothing more than GMM, using
economically sensible moments such as average output growth, consumption/output ratios
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etc. to avoid the stochastic singularity. Calibration exercises usually do not compute standard
errors, nor do they report any distribution theory associated with the “evaluation” stage when
one compares the model’s predicted second moments with those in the data. (I guess reporting
no distribution theory is better than reporting awrong distribution theory, but not much!)
Following Christiano and Eichenbaum (19xx) however, it’s easy enough to calculate such
a distribution theory by listing the¿rst and second moments together. AMW test probably
doesn’t make much sense in this case, since we know the model can be rejected at any level
of signi¿cance by choosing different moments.

“Used judiciously” is an important quali¿cation. Many GMM estimations and tests suffer
from lack of thought in the choice of moments, test assets and instruments. For example,
early GMM papers tended to pick assets and especially instruments pretty much at random.
Authors often included many lags of returns and consumption growth as instruments to test a
consumption-based model. However, the 7th lag of returns really doesn’t predict much about
future returns given lags 1-12, and the¿rst-order serial correlation in seasonally adjusted, ex-
post revised consumption growth may be economically uninteresting. Therefore, more recent
tests tend to emphasize a few well-chosen assets and instruments that capture important and
economically interesting features of the data.

14.3.2 Other arguments for ML vs. GMM

Finite sample distributions

Many authors say they prefer regression tests and the GRS statistic in particular because
it has a¿nite sample distribution theory, and they distrust the¿nite-sample performance of
the GMM asymptotic distribution theory.

This is not useful argument. First, the “¿nite sample” theory is, as usual in regression,
only trueconditional on the factor return. If you want to include sampling variation in the
factor return in the conceptual sampling experiment, then even regression tests can only pro-
vide asymptotic answers. Second, the¿nite sample distribution only holds if returns really
are normal and i.i.d., and if the factor is perfectly measured. Since these assumptions do not
hold, it is not obvious that a¿nite-sample distribution that ignores all these effects will be a
better approximation than an asymptotic distribution that corrects for them.

It is true that the GMM asymptotic distribution theory can be a poor approximation to a
¿nite-sample distribution theory, especially when one asks “non-parametric” corrections for
autocorrelation or heteroskedasticity to provide large corrections and when the number of
moments is large compared to the sample size. However, a “¿nite sample” distribution theory
that ignores the effects for which GMM is correcting is not obviously better.

As detailed in section xx, an underused idea (at least in my opinion) is to describe the
cross-correlation, autocorrelation, heteroskedasticity, etc. by parametric models as one would
in ML when calculating the GMM distribution theory. For example, rather than calculateS4

m@�4H+xwxw�m, from its sample counterpart, modelxw @ �xw�4 . %w, estimate�, and
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then calculate �5+x,
S4

m@�4 �m @ �5+x,4.�4�� . This approach may give better small sample
performance than the “nonparametric” corrections.

Once you have picked the estimation method – how you will generate a number from
the data� or which moments you will use –¿nding its¿nite sample distribution, given an
auxiliary statistical model, is simple. Just run a Monte Carlo or bootstrap. Thus, picking an
estimation method because it delivers analytic formulas for a¿nite sample distribution (under
false assumptions) should be a thing of the past. Analytic formulas for¿nite sample distri-
butions are useful for comparing estimation methods and arguing about statistical properties
of estimators, but they are not necessary for the empiricists’ main task.

Auxiliary model

ML requires an auxiliary, parametric, statistical model. In studying the classic ML for-
malization of regression tests, we had to stop to assume that returns and factors are jointly
i.i.d. normal. In the ML estimate of a consumption-based model, we had to worry equally
about estimating statistical parameters+Y>�f, of the consumption-return distribution along
with the economic parameters (� in this case) that we really care about. As the auxiliary sta-
tistical model becomes more and more complex and hence realistic, more and more effort is
devoted to estimating the auxiliary statistical model. ML has no way of knowing that some
parameters (risk aversion�, � and�) are more “important” than others.

A very nice feature of GMM is that it does not require such an auxiliary statistical model.
For example, in studying GMM we went straight froms @ H+p{, to moment conditions,
estimates, and distribution theory. This is most important as a saving of the researcher’s and
the reader’s time effort and attention.

All of ML’s complexity buys us one thing: a parametric expression for the optimal linear
moments to set to zero. If one judges that the regularV matrix calculation does a good enough
job of squeezing statistical information out of the sample, perhaps already trading too much
ef¿ciency for robustness, ML is not very attractive.

However, the absence of statistical modeling in GMM does rest on the asymptotic nor-
mality of sample means, together with “nonparametric” corrections for correlation and het-
eroskedasticity. The nonparametric corrections don’t work that well in small samples, so one
may want to model correlation and heteroskedasticity explicitly� in doing so one will again
have to worry about the speci¿cation and estimation of an auxiliary statistical model.

The case for ML

There are cases in which ML, or a statistically motivated choice of moments, has impor-
tant advantages. For example, Jacquier, Polson and Rossi (1994) study the estimation of a
time-series model with stochastic volatility. This is a model of the form

gVw@Vw @ �gw. Ywg]4w

gYw @ �Y +Yw,gw. �+Yw,g]5w>

andV is observed butY is not. The obvious and easily interpretable moments include the
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autocorrelation of squared returns, or the autocorrelation of the absolute value of returns.
However, they ¿nd in a simulation study that the resulting estimates are far less ef¿cient than
those resulting from the scores.

In advocating GMM so far, I have implicitly assumed that the economic model is approx-
imate, the true economic model is unknown and the statistical model is approximate, and that
the ef¿ciency gain from ML is small. This is often true, but, as in this example, not always.
ML’s suggestion of moments can be valuable when the model is right (exactly right in any
simulation study) so there is no tension between the moments in which one is interested and
the scores on which ML focuses, when economically important moments are not obvious,
and when the ef¿ciency gain can be large.

Even in the canonical OLS vs. GLS case, a wildly heteroskedastic error covariance matrix
can mean that OLS spends all its time¿tting unimportant data points. A judicious application
of GMM (OLS) in this case would require at least some transformation of units so that OLS
is not wildly inef¿cient.

Conditioning information

Another advantage of the GMM approach with pricing error moments comes when we
take seriously time-variation in mean returns and their standard deviation, and the fact that
agents have a lot more information than we do. As we saw above, the GMM-pricing er-
ror method accommodates both features easily:H+H+p{mL,, @ H+p{,. To model time-
variation in returns in a ML context, you have to write out a parametric model of the time-
varying return distribution� the scores will now be related to forecast errors rather than the
returns themselves. Scores in such models are typically not easily interpretable as pricing er-
rors, as the scores for simple i.i.d. models were. ML really doesn’t allow us to think easily
about agents who might have more information than we do.

General comments on statistical arguments

The history of statistical work that has been persuasive – that has changed people’s under-
standing of the facts in the data and which economic models understand those facts – looks a
lot different than the statistical theory preached in econometrics textbooks.

The CAPM was taught and believed in and used for years despite formal statistical re-
jections such as the GRS test. It only fell by the wayside when other, coherent views of the
world were offered in the multifactor models. And the multifactor models are also rejected!
It seems that “it takes a model to beat a model.” Even when evaluating a speci¿c model, most
of the interesting tests come from examining speci¿c alternatives rather than overall pricing
error tests. The original CAPM tests focused on whether the intercept in a cross-sectional re-
gression was higher or lower than the risk free rate, and whether individual variance entered
into cross-sectional regressions. The CAPM fell when it was found that characteristics such
as size and book/market do enter cross-sectional regressions, not when generic pricing error
tests rejected.

In the history of¿nance and economics – actually in the history of science generally –
no important issue has been decided by purely statistical considerations when methods of
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varying power disagree. Issues are decided when the profession collectively decides that the
data sing a clear song, no matter what the t-statistics say.

InÀuential empirical work tells a story, not a t-statistic. The most ef¿cient procedure
does not seem to convince people if they cannot transparently see what stylized facts in
the data drive the result. A test of a model that focuses on its ability to account for the
cross section of average returns of interesting portfolios via their covariances with a state
variable will in the end be much more persuasive than one that (say) focuses on the model’s
ability to explain the¿fth moment of the second portfolio, even if ML¿nds the latter moment
much more statistically informative. The papers that convinced the profession that returns are
predictable at long horizons, or that factors past the market return are important in accounting
for the cross-section of average returns, used no techniques past regression, but they made
crystal clear what stylized and robust fact in the data drives the results. On the other hand,
I can think of no case in which substantial changes in the way people thought about an
issue resulted from the application of clever statistical models that wrung the last ounce of
ef¿ciency out of a dataset, changing t statistics from 1.5 to 2.5.

Given the non-experimental nature of our data, the inevitable¿shing biases of many re-
searchers examining the same data, and the unavoidable fact that our theories are really quan-
titative parables more than literal descriptions of the way the data are generated, the way the
profession has decided things makes a good deal of sense. Statistical inference – classical
or Bayesian – provides a poor description of the decision process we face in evaluating as-
set pricing models or any economic theory for that matter. Our objective is not to “accept”
or “reject” a theory invented out of the blue, but always to re¿ne it, to take a theory gener-
ated with some knowledge of the data,¿nd out what aspects of the data it captures and what
aspects it does not capture, and think about how it might be improved. To that end, lots of
calculations are more revealing than test statistics.

Furthermore, the pretense of statistical purity is an illusion. Classical statistics requires
that nobody ever looked at the data before specifying the model. Yet more regressions have
been run than there are data points in the CRSP database. Bayesian econometrics can in
principle incorporate the information of previous researchers, yet it never applied in this
way – each study starts anew with a “uninformative” prior. Statistical theory draws a sharp
distinction between themodel – which we know is right� utility is exactly power� and the
parameters which we estimate. But this distinction isn’t true� we are just as uncertain about
functional forms as we are about parameters.

We spend a lot of time on statistical theory, but we must realize that it is really a subsidiary
question. The¿rst question is, what is your economic model or explanation? Second, how
did you produce your numbers from the data at hand, and was that a reasonable way to go
about it? Third, are the model predictions robust to the inevitable simpli¿cations? (Does the
result hinge on power utility vs. another functional form? What happens if you add a little
measurement error, or if agents have an information advantage, etc.) Finally, someone in the
back of the room might raise his hand and ask, “if the data were generated by (say) a draw
of i.i.d. normal random variables over and over again, how often would you come up with

219



CHAPTER 14 ML, GMM AND REGRESSION

a number this big or bigger?” That’s an interesting and important robustness check on what
you did, but not necessarily the¿rst such check, and not the central question in your and
the profession’s evaluation of whether your analysis of the data and models should change
their minds. Similarly, statistical testing answers a very small and perhaps not very important
question. It answers the question, “if your model were exactly true, and given an auxiliary
statistical model, how often would you see a result this big (a parameter estimate, or a sum
of squared pricing errors) due only to sampling variation?”

As we have seen, a lot of the arguments for GMM vs. maximum likelihood are statistical.
The asymptotic distribution theory for GMM estimators and test statistics does not require
one to use an explicit parametric model of distributions, and can therefore be robust to non-
normality, conditional heteroskedasticity, serial correlation, and other statistical problems in
the data. On the other hand, if the auxiliary statistical models are right, maximum likelyhood
is more “ef¿cient,” and the “nonparametric” corrections often used in GMM applications
may have poor small sample properties. However, if auxiliary statistical models are wrong,
maximum likelyhood can provide very misleading estimates.

But in the end,statistical properties may be a poor way to choose statistical methods.
I prefer GMM in most cases because it is a tool that allows me to evaluate the model in
the simplest, most natural and most transparent way– just use sample averages in place of
the population moments that are most economically important to the quantitative parable of
the theory. Each step of the way has a clear intuition, and it is easy to trace results back
to stylized facts of the data that generate them. There is no need to separate theorists from
empirical workers with that approach. Even more important, the procedures one follows in
constructing GMM estimates and tests are very easy. (Proving that GMM works in very
general setups is hard, which is where it gets its unfortunate high-tech reputation.)

Both ML and GMM are best thought of tools that a thoughtful researcher can use in learn-
ing what the data says about a given asset pricing model, rather than as stone tablets giving
precise directions that lead to truth if followed literally. If followed literally and thought-
lessly, both ML and GMM can lead to horrendous results.

14.4 Problems

1. When we express the CAPM in excess return form, can the test assets be differences
between risky assets,Ul �Um? Can the market excess return also use a risky asset, or
must it be relative to a risk free rate?
(A: The test assets can be risky return differences, but the market excess return
must be relative to a risk free rate proxy (which may be an estimated parameter).
H+Ul,�Ui @ �l>p

�
H+Up,�Ui

�
impliesH+Ul �Um, @ �l�m>pH+Up �Ui , but

not@ �l�m>p�m
�
H+Up �Um

�
,

2. Can you run the GRS test on a model that uses industrial production growth as a factor?
3. Show that if CAPM holds for a set of test assets it holds for market, IF the market is
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spanned by the test assets. Is this true for any return-based factor model? (A: no).
4. Try to formulate a ML estimator based on an unrestricted regression when factors are

not returns, equation (120). i.e. add pricing errors�l to the regression as we did for the
unrestricted regression in the case that factors are returns. What is your estimate ofE> �>
�> H+i,B (TreatY and	 as known to make the problem easier.)
Answer: Adding pricing errors to (156), we obtain

Uhl
w @ �l . �3l�. �3l ^iw �H+iw,` . %lw=

Stacking assetsl @ 4> 5> ===Q to a vector

Uh
w @ �.E�.E ^iw �H+iw,` . %w

whereE denotes aQ �N matrix of regression coef¿cients of theQ assets on theN
factors.
If we ¿t this model, maximum likelyhood will give asset-by asset OLS estimates of the
interceptd @ � . E+� � H+i w,, and slope coef¿cientsE. It will not give separate
estimates of� and�. The most that the regression can hope to estimate is one intercept�
if one chooses a higher value of�, we can obtain the same error term with a lower value
of �. The likelyhood surface isÀat over such choices of� and�. One could do an
ad-hoc second stage, minimizing (say) the sum of squared� to choose� givenE, H+i w,
andd. This intuitively appealing procedure is exactly a cross-sectional regression. But it
would be ad-hoc, not ML.

5. Instead of writing a regression, build up the ML for the CAPM a little more formally.
Write the statistical model as just the assumption that individual returns and the market
return are jointly normal,�

Uh

Uhp

�
�Q

��
H+Uh,
H+Uhp,

�
>

	 fry+Uhp>Uh3,
fry+Uhp>Uh, �5p

�

The model’s restriction is

H+Uh, @ �fry+Uhp>Uh,=

Estimate� and show that this is the same time-series estimator as we derived by
presupposing a regression.

6. Fama and French (19xx) report that pricing errors are correlated with betas in a test of a
factor pricing model on industry portfolios. How is this possible?
A:Yes with time-series regressions. No with a cross-sectional OLS regression.

14.5 References

Hamilton (1994) p.142-148 are a nice summary of maximum likelyhood facts. The appendix
in Campbell Lo MacKinlay (199x) is also a nice maximum likelyhood reference, and their
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Chapter 5 and 6 treat regression based tests and maximum likelyhood in more depth than I
do here.

E. Jacquier N. Polson and Peter Rossi, “Bayesian Analysis of Stochastic Volatility Mod-
els,” Journal of Business and Economic Statistics (1994), 12 , 371-418.
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Chapter 15. General Equilibrium
So far, we have not said where the joint statistical properties of the payoff {w.4 and marginal
utility pw.4 or consumption fw.4 come from. We have also not said anything about the
fundamental exogenous shocks that drive the economy. The basic pricing equation s @
H+p{, tells us only what the price should be, given the joint distribution of consumption
(marginal utility, discount factor) and the asset payoff.

Similarly, there is nothing that stops us from writing the basic pricing equation as

x3+fw, @ Hw ^�x
3+fw.4,{w.4@sw` =

Now, we can think of this equation as determining today’s consumption given asset prices
and payoffs, rather than determining today’sasset price in terms of consumption and pay-
offs. Thinking about the basic¿rst order condition in this way, with asset prices as given
and consumption as the quantity to be determined, is exactly the basis of the permanent in-
come model of consumption. Which is the chicken and which is the egg? Which variable is
exogenous and which is endogenous?

The answer for now is, neither. The¿rst order conditions characterize any equilibrium� if
you happen to knowH+p{,, you can use them to determines� if you happen to knows, you
can use them to determine consumption and savings decisions.

An obvious next step, then is to complete the solution of our model economy� to ¿nd f
ands in terms of truly exogenous forces. The results will of course depend on what the rest
of the economy looks like, in particular what theproduction technology is and what the set
of markets is.

Figure 22 shows one possibility for a general equilibrium. Suppose that the production
technologies are linear: the real, physical rate of return (the rate of intertemporaltransfor-
mation) is not affected by how much is invested. Now consumption must adjust to these
technologically given rates of return. If the rates of return on the intertemporal technolo-
gies were to change, the consumption process would have to change. This is, implicitly, how
the permanent income model works. More explicitly, this is how many¿nance theories such
as the CAPM and (more explicitly) the Cox, Ingersoll and Ross (1986) model of the term
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Figure 22. Consumption adjusts when the rate of return is determined by a linear technol-
ogy.

Figure 23 shows another extreme possibility for the production technology. This is an “en-
dowment economy.” Nondurable consumption appears (or is produced) every period. There
is nothing anyone can do to save, store, invest or otherwise transform consumption goods
this period to consumption goods next period. Hence, asset prices must adjust until people
are just happy consuming the endowment process. In this case consumption is exogenous
and asset prices adjust. Lucas (1978) and Mehra and Prescott (1985) are two very famous
applications of this sort of “endowment economy.”

Which of these possibilities is correct? Well, neither of course. The real economy and all
serious general equilibrium models look something like¿gure 24: one can save or transform
consumption from one date to the next, but at a decreasing rate. As investment increases,
rates of return decline

Does this observation invalidate any modeling we do with the linear technology (CAPM,
CIR) model, or endowment economy model? No. Start at the equilibrium in¿gure 24. Sup-
pose we model this economy as a linear technology, but we happen to choose for the rate
of return on the linear technologies exactly the same stochastic process that emerges from
the general equilibrium. The resulting joint consumption, asset return process is exactly the
same as in the original general equilibrium! Similarly, suppose we model this economy as
an endowment economy, but we happen to choose for the endowment process exactly the
stochastic process for consumption that emerges from the equilibrium with a concave tech-
nology. Again, the joint consumption-asset return process is exactly the same.
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Ct
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R

Figure 23. Asset prices adjust to consumption in an endowment economy.

Ct

Ct+1

R

Figure 24. General equilibrium. The solid lines represent the indifference curve and pro-
duction possibility set. The dashed straight line represents the equilibrium rate of return.
The dashed box represents an endowment economy that predicts the same consumption-asset
return process.
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Therefore, there is nothing empirically wrong in adopting one of the following strate-
gies: 1) Form a statistical model of bond and stock returns, solve the optimal consumption-
portfolio decision. 2) Form a statistical model of the consumption process, calculate asset
prices and returns from the basic pricing equations @ H+p{,. If the statistical models are
right, and if they coincide with the equilibrium consumption or return process generated by
the true economy, with concave technology, each approach will give correct predictions for
the joint consumption-asset return process.

As we will see, most¿nance models, developed from the 1950s through the early 1970s,
take the return process as given, implicitly assuming linear technologies. The endowment
economy approach, introduced by Lucas (1978), is a breakthrough because it turns out to be
much easier. It is much easier to evaluates @ H+p{, for ¿xedp than it is to solve joint
consumption-portfolio problems for given asset returns. To solve a consumption-portfolio
problem we have to model the investor’s entire environment: we have to specifyall the assets
to which he has access, what his labor income process looks like (or wage rate process, and
include a labor supply decision). Once we model the consumption stream directly, we can
look at each asset in isolation, and the actual computation is almost trivial.

Most uses ofs @ H+p{, do not require us to take any stand on exogeneity or endo-
geneity, or general equilibrium. This is a condition that must hold for any asset, for any
production technology. Having a taste of the extra assumptions required for a general equi-
librium model, you can now appreciate why people stop short of full solutions when they can
address an application using only the¿rst order conditions, using knowledge ofH+p{, to
make a prediction abouts.

It is enormously tempting to slide into an interpretation thatH+p{, determines s. We
routinely think of betas and factor risk prices – components ofH+p{, – asdetermining
expected returns. For example, we routinely say things like “the expected return of a stock
increasedbecause the¿rm took on riskier projects, thereby increasing its�”. But the whole
consumption process, discount factor, and factor risk premia change when the production
technology changes. Similarly, we are on thin ice if we say anything about the effects of
policy interventions, new markets and so on. The equilibrium consumption or asset return
process one has modeled statistically may change in response to such changes in structure.

15.0.1 Normal-exponential example.

The normal-exponential model is a nice place in which to see how the general equilibrium
aspects of our models work out. If you recall, by assuming normally distributed returnsU
with meanH+U, and covariance matrix	, a riskfree rateUi , a stock of initial wealthZ that
must be divided among assetsZ @ |i . |34, and exponential utilityHx+f, @ h{s+��f,,
we derived¿rst order conditions

H+U,�Ui @ �	| @ � fry+U>Up,= (170)
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There are two ways to complete this model and describe the general equilibrium. This is
the same thing as thinking about the supply of assets. First, we can think of the returns as
corresponding to linear technologies. Then the returns are invariant to the amounts invested
|. How can this model then “determine” expected returns, if they are immutable features of
the technology? It doesn’t. If an expected returnH+Ul, is really high, then investors will buy
more of it, raising|l. As they keep doing this, the share ofUl in the market return keeps
rising, andfry+Ul>Up, keeps rising, until the two sides are equated. Thus, if we pair these
preferneces with a linear technology, the amounts invested| are endogenous, and it is the
market return rather than the individual expected returns or covariances which adjust.

Second, let us complete this model with a¿xed supply of assets, or a Leontief technol-
ogy. Each asset corresponds to a payoff{l, which is normally distributed and¿xed. Larger
amounts invested in each asset do not raise the payoff at all. Now, the prices of each payoff{l

or equivalently the returnsUl @ {l@sl are the quantities that adjust to achieve equilibrium.
The total quantity invested in each technology is equal to the price of payoff{l, |l @ sl=
Substituting, and multiplying through by prices, (170) is equivalent to

H+{,� sUi @ �	{4

where	{ is the covariance matrix of the payoffs{, or,

s @
4

Ui
+H+{,� �	{4, = (171)

Again, we have a beautiful equation. The¿rst term is of course the risk neutral present value
formula. The second term is a risk correction. Prices are lower if risk aversion is higher, and
if a security has a higher covariance with wealth ={34. This equation is also linear, which is
a reason that this model is very popular for theoretical work.

(170) and (171) are of course the same thing� each holds under the other’s general equi-
librium assumptions. All I have done in each case is solve for the variable that is endogenous,
| or s in each case.

15.1 General Equilibrium Recipe

1) ¿nd quantity dynamics 2) price assets from consumption-based model

15.2 Endowment economies

15.2.1 Mehra-Prescott style
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15.2.2 Arbitrary law of motion for consumption

15.2.3 Show how b’s etc. are all determined in the model

15.2.4 Beware stochastic singularities

dividend example

15.3 Production economies

15.3.1 Log Cobb-Douglas model

15.3.2 Linear - quadratic model

15.3.3 Any model

15.4 Justi¿cation for the procedure

15.4.1 Welfare theorems

15.4.2 Aggregation to representative consumer

15.4.3 Asset pricing in distorted economies

15.5 Risk sharing and security design.

Complete risk sharing.

CAT story
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15.6 Incomplete markets economies.

Risk sharing in an incomplete market

Heaton/Lucas, Constantinides/Duf¿e.. saving up to avoid constraints,

15.7 Outlook

(move to appropriate sections)

GE fundamental question seems farther off than ever.

rationality has hardest time at every turn. Perhaps illiquid, sloping demand curves.

Testing: individual securities rather than portfolios. covariance matrix restrictions
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Chapter 16. Continuous time and
derivative pricing
Continuous time models have a fearsome reputation. Unfortunately the language of much
continuous time ¿nance is often so different that much of the profession has separated into
discrete-time and continuous-time camps that communicate very little. This is as unnecessary
as it is unfortunate. In this chapter, I’ll show how all the ideas of the previous chapters extend
naturally to continuous time.

The choice of discrete vs. continuous time is merely one of modeling convenience. The
richness of the theory of continuous time processes often allows you to obtain analytical
results that would be unavailable in discrete time. On the other hand, in the complexity of
most practical situations, one ends up resorting to numerical simulation of a discretized model
anyway. In those cases, it might be clearer to start with a discrete model. But I emphasize
this is all a choice of language. One should become familiar enough with discrete as well as
continuous time representations of the same ideas to pick the one that is most convenient for
a particular application.

16.1 Diffusion models

g} is de¿ned by}w.�w � }w � Q +3>�w,=

Diffusion modelsg{ @ �+�,gw. �+�,g}

Diffusion models are the standard way to represent random variables in continuous time.

16.1.1 Brownian motion and diffusion

The simplest example is aBrownian motion which is the natural generalization of a random
walk in discrete time. For a random walk

}w � }w�4 @ %w

the variance scales with time� ydu+}w.5 � }w, @ 5ydu+}w.4 � }w,. Thus, de¿ne a Brownian
motion as a process}w for which

}w.�w � }w � Q +3>�w,=

We have added the normal distribution to the usual de¿nition of a random walk. Brownian
motions have the interesting property that the sample paths (}w plotted as a function ofw) are
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continuous but nowhere differentiable.

In discrete time, uncorrelated random variables are the basic building blocks of time se-
ries. We can use the increments to Brownian motions the same way in continuous time.
Construct a series

{w.�w � {w @ �+�,�w. �+�,+}w.�w � }w,

or, usingg to denote arbitrarily small increments,

g{ @ �+�,gw. �+�,g}

� and� can be functions of time directly, or of state variables. For example, we might have
�+�, @ �+{> w,. In discrete time, we are used to analogs to� that are only linear functions of
past values, but in continuous time we can tractably handle nonlinear functions� and� as
well.

It’s important to be clear about the notation.g{means{w.�w � {w. We often bandy
aboutg{ thinking about the derivative of a function, but since a Brownian motion is not a
differentiable function of time,g} @ g}+w,

gw gw makes no sense. So letg{ mean the increment�
if { is a differentiable function of time,g{ @ g{+w,@gw gw will be meaningful, but not
otherwise. (We’ll soon see how to modify this equation so it does make sense.)

A natural step is to take adifferential equation like this one and simulate (integrate) it
forward through time to obtain the¿nite-time random variable{w.�w. Sticklers for precision
in continuous time prefer to always think of random variables this way rather than through
the differential notation. Putting some arguments in for� and� for concreteness, you can
think of evaluating the integral

{W � {3 @

] W

3

g{w @

] W

3

�+{w> w> ==,gw.

] W

3

�+{w> w> ==,g}w=

Initially, it’s a little disconcerting to seeg}w andgw as separate arguments, but we have to
do this. } is not differentiable, so you can’t writeg} @ +g}@gw,gw. But you can add up the
increments tog} to ¿nd out where} ends up just as you can add up the increments togw to
¿nd out wherew ends up, and you can multiply each incrementg} by some amount�+{w> w> ==,
before you add it up. The notation

U W
3
�+{w> w> ==,g}w just tells you to add up increments.

If you have functional forms for� and� and are good at integrating, you can see this pro-
cedure will give us thedistribution of { at some future date, or at least some characterizations
of that distribution such as conditional mean, variance etc.

16.1.2 A little toolkit of processes.
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g{ @ �gw. �g}=

g{w @ �!+{� �, gw. � g}

g{w @ �!+{� �, gw. �
s
{ g}

gs
s @ �gw. �g}=

Like the AR(1) and MA(1), there are some standard useful workhorse examples of diffu-
sion models.

Random walk with drift. The simplest example is to let� and� be constants. Then

g{ @ �gw. �g}=

It’s easy to¿gure out discrete time implications for this process,

{w.v @ {w . �v. �+}w.v � }w,

or

{w.v @ {w . �v. %w.v> %w.v�Q +3> �v,

a random walk with drift.

AR(1). The simplest discrete time process is an AR(1)� this is its obvious continuous time
counterpart. In discrete time,

{w @ +4� �,�. �{w�4 . %w

can be written

{w � {w�4 @ +�� 4,+{w�4 � �, . %w

In continuous time, write

g{w @ �!+{� �, gw. � g}

The drift�!+{� �, pulls{ back to its steady state value�.

Square root process. Like its discrete time counterpart, the continuous time AR(1) ranges
over the whole real numbers. It would be nice to have a process that was always positive, so
it could capture a price or an interest rate. A natural extension of the continuous time AR(1)
is a workhorse of such applications,

g{w @ �!+{� �, gw. �
s
{ g}=

Now, as{approaches zero, the volatility declines. At{ @ 3, the volatility is entirely turned
off, so{ drifts up to b�= We will show more formally below that this behavior keeps{ � 3
always� the conditional and unconditional distributions of such a process stop at zero.
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CHAPTER 16 CONTINUOUS TIME AND DERIVATIVE PRICING

This is a nice example because it is decidedly nonlinear. We could write its discrete time
analogue, but standard time series tools would fail us. We could not, for example, give a
pretty equation for the distribution of {w.v for ¿nite v. We can do this in continuous time.

Price processes A modi¿cation of the random walk with drift is the most common model
for prices. We want the return or proportional increase in price to be uncorrelated over time.
The most natural way to do this is to specify

gs @ s�gw. s�g}

or more simply

gs

s
@ �gw. �g}=

We most easily capture dynamics – variation in expected returns or conditional variance of
returns – by making the�and� in this representation vary over time or in response to state
variables.

16.2 Ito’s lemma

Do second order Taylor expansions, keep g}> gw>and g}5 @ gw terms.

g| @ i 3+{,g{. 4
5i

33+{,g{5

g| @
�
i 3+{,�{ .

4
5i

33+{,�5{
�
gw. i 3+{,�{g}

You often have a diffusion representation for one variable, say

g{ @ �{+�,gw. �{+�,g}=
Then you de¿ne a new variable in terms of the old one,

| @ i+{,=

Naturally, you want a diffusion representation for |. Ito’s lemma tells you how to get it. It
says,

Use asecond order Taylor expansion, and think ofg} as
s
gw� thus as�w $ 3 keep terms

g}> gw, andg}5 @ gw, but termsgwg} and beyond go to zero.

Let’s go step by step. Start with the second order expansion

g| @
gi+{,

g{
g{.

4

5

g5i+{,

g{5
g{5
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Now

g{5 @ ^�{gw. �{g}`
5 @ �5{gw

5 . �5{g}
5 . 5�{�{gwg}=

But gw5 @ 3, g}5 @ gw andgwg} @ 3. Thus,

g{5 @ �5{gw

Substituting forg{ andg{5,

g| @
gi+{,

g{
^�{gw. �{g}` .

4

5

g5i+{,

g{5
�5{gw

@

�
gi+{,

g{
�{ .

4

5

g5i+{,

g{5
�5{

�
gw.

gi+{,

g{
�{g}

Thus,Ito’s lemma.

g| @

�
gi+{,

g{
�{+�, .

4

5

g5i+{,

g{5
�5{+�,

�
gw.

gi+{,

g{
�{+�,g}

The surprise here is the second term in the drift. Intuitively, this term captures a “Jensen’s
inequality” effect. Ifd is a mean zero random variable ande @ d5 @ i+d,, then the mean of
e is higher than the mean ofd. The more variance ofd, and the more concave the function,
the higher the mean ofe.

The only thing you have to understand is, why isg}5 @ gwB Once you knowg}5 @ gw
it’s clear we have to keep theg} andg}5 terms in an expansion, and we need second order
expansions to do so. Think of whereg} came from.g} @ }w.�w � }w is a normal random
variable with variance�w. That means itsstandard deviation is

s
�w. Thus, clearlyg}5 is

of order gw, andg} of order, or “typical size”
s
gw. In fact,g}5 really equalsgw� in the limit

g}5 becomes deterministic.

16.2.1 Examples

1) Log. A classic example and a common fallacy. Suppose a price follows

gs

s
@ �gw. �g}

What is the diffusion followed by the log price,

| @ oq+s,B

Applying Ito’s lemma,

g| @
4

s
gs� 4

5

4

s5
gs5 @

�
�� 4

5
�5

�
gw. �g}=
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CHAPTER 16 CONTINUOUS TIME AND DERIVATIVE PRICING

Not

g| @ �gw. �g}=

It is not true that g| @ g+oq+s,, @ gs@s. You have to include the second order terms.

2) xy. Usually, we write

g+{|, @ {g| . |g{

But this expression comes from the usual ¿rst order expansions. When { and | are diffusions,
we have to keep second order terms. Thus,

g+{|, @ {g| . |g{. g|g{

16.3 Densities

One of the nice things about continuous time processes is that we can analytically characterize
the distributions of nonlinear processes.

16.3.1 Forward and backward equations

16.3.2 Stationary density

The stationary density of a stationary process is the unconditional density, or the limit of
the conditional density as time increases. The stationary density i+{, of a diffusion g{ @
�+{,gw. �+{,g}, if it exists, satis¿es

�+{,i+{, @
4

5

g

g{

�
�5+{,i+{,

�
or

g

g{

�
h
�5

U
{ gy

�+y,

�5+y,�5+{,i+{,

�
@ 3=

Hence,

i+{, @
Nh

5
U
{ gy �+y,

�5+y,

�5+{,
=
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More simply, let

v+{, @
h
5
U
{ gy

�+y,

�5+y,

�5+{,

then 4 @
U
i+{, implies

i+{, @
v+{,U
v+{,g{

=

16.4 Tricks

If { follows a diffusion, there are no attracting boundaries, and the process is stationary, then
the drift diffusion and stationary density are realted by

�+{, @
4

5

�
i 3+{,

i+{,
�5+{, .

g

g{
�5+{,

�

(Ait-sahalia 1986 uses this fact to esimate the diffusion function from the drift and stationary
density.

16.5 Tricks

If { follows a diffusion, there are no attracting boundaries, and the process is stationary, then
the drift diffusion and stationary density are realted by

�+{, @
4

5

�
i 3+{,

i+{,
�5+{, .

g

g{
�5+{,

�

(Ait-sahalia 1986 uses this fact to esimate the diffusion function from the drift and stationary
density.

16.6 Black Scholes with discount factors

Write a process for stock and bond, then use�� to price the option. The Black-Scholes
formula results.

As an immediate application we can derive the Black-Scholes formula. This case shows
some of the interest and engineering complexity of continuous time models. Though at each
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CHAPTER 16 CONTINUOUS TIME AND DERIVATIVE PRICING

instant the analysis is trivial law of one price, chaining it together over time is not trivial
either mathematically or in the result we get. I also want to show how thinking of the world
in terms of a discount factor is (at least) as easy as other approaches.

The standard approach to the Black-Scholes formula rests on explicitly constructing port-
folios: at each date we construct a portfolio of stock and bond that replicates the instantaneous
payoff of the option� we reason that the price of the option must equal the price of the repli-
cating portfolio. Instead, I’ll follow the discount factor approach: at each date construct a
discount factor that prices the stock and bond, and use that discount factor to price the option.

A stock follows

gV

V
@ �Vgw. �Vg}=

There is also a money market security that pays the real interest rateugw.

We use the theorem of the last section: to price the stock and interest rate, the discount
factor must be of the form

g�

�
@ �ugw� +�V � u,

�v
g} � gz> H+gzg}, @ 3=

(you might want to check that this set of discount factors does in fact price the stock and
interest rate.) Now we price the call option with this discount factor, and show that the Black-
Scholes equation results. Importantly, the choice of discount factor via choice ofgz hasno
effect on the resulting option price.Every discount factor that prices the stock and interest
rate gives the same value for the option price. The option is therefore priced using the law of
one price alone.

16.6.1 Method 1: Price using discount factor

Let us use the discount factor to price the option directly:

Fw @ Hw

�
�W
�w

pd{ +VW �[> 3,

�
@

]
�W
�w

pd{ +VW �[> 3, gi +�W > VW ,

where�W andVW are solutions to

gV

V
@ �Vgw. �Vg}

g�

�
@ �ugw� �V � u

�V
g} � gz=

I start by settinggz to zero, and then I show that addinggz does not change the option price.

We can¿nd analytical expressions for the solutions to these differential equations, (Arnold,
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P. 138):

g[

[
@ �gw. �g}

has solution

oq[w @ oq[3 .

�
�� �5

5

�
w. � +}w � }3,

i.e., oq[ is conditionally normal with mean oq[3 .
�
�� �5

5

�
w and variance �5w=

Thus,

oqVW @ oqVw .

�
�V � �5V

5

�
+W � w, . �V +}W � }w,

oq�W @ oq�w �
#
u .

4

5

�
�V � u

�V

�5
$
+W � w,� �V � u

�V
+}W � }w,

or, with

{ @
}W � }ws
W � w

� Q +3> 4, >

we have

oqVW @ oqVw .

�
�V � �5V

5

�
+W � w, . �V

s
W � w{

oq�W @ oq�w �
#
u .

4

5

�
�V � u

�V

�5
$
+W � w,� �V � u

�V

s
W � w{=

Then, we evaluate the call option from the integral

Fw @

] 4

VW@[

�W
�w

+VW �[, gi +�W > VW , @

@

] 4

VW@[

�W
�w

VW gi +�W > VW ,�
] 4

VW@[

�W
�w

[ gi +�W > VW , =

The objects on the right hand side are known. We know the distribution of the terminal
stock price VW and discount factor �W = To ¿nd the call price, we just have to evaluate an
expectation or integral. Often this is done numerically, but this example has enough structure
that we can ¿nd an analytical formula at some cost in algebra.

Doing the integral
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In general, we have to ¿nd a joint distribution for �W and VW . But VW and �W are
transforms of the same Normal(0,1), which I’ll denote{> so we can reduce the problem to a
single integral over{. Plugging in the above expressions forVW and�W >

Fw @

] 4

VW@[

h{s

#
�
#
u .

4

5

�
�V � u

�V

�5
$
+W � w,� �V � u

�V

s
W � w{

$
�

�Vw h{s

�
.

�
�V � �5V

5

�
+W � w, . �V

s
W � w{

�
gi +{,�

�[

] 4

VW@[

h{s

#
�
#
u .

4

5

�
�V � u

�V

�5
$
+W � w,� �V � u

�V

s
W � w{

$
gi +{,

I change variables to express the result as the integral of aQ +3> 4, rather than the expectation
of a function of anQ +3> 4,. Organize in powers of{,

Fw @
4s
5�

Vw

] 4

VW@[

h{s

+%
�V � u � �5V

5
� 4

5

�
�V � u

�V

�5
&
+W � w,

.

�
�V � �V � u

�V

�s
W � w{� 4

5
{5

�
g{

� 4s
5�

[

] 4

VW@[

h{s

#
�
%
u .

4

5

�
�V � u

�V

�5
&
+W � w,� �V � u

�V

s
W � w{� 4

5
{5

$
g{=

Express as quadratic functions of{,

Fw @
4s
5�

Vw

] 4

VW@[

h{s

+
�4

5

�
{�

�
�V � �V � u

�V

�s
W � w

�5
,
g{

� 4s
5�

[h�u+W�w,
] 4

VW@[

h{s

+
�4

5

�
{.

�V � u

�V

s
W � w

�5
,
g{=

The lower boundVW @ [ is, in terms of{,

oq[ @ oqVW @ oqVw .

�
�V � �5V

5

�
+W � w, . �V

s
W � w{
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{ @
oq[ � oqVw �

�
�V � �5V

5

�
+W � w,

�V
s
W � w

Finally, we use

4s
5�

] 4

d

h�
4
5 +{��,

5

g{ @ �+�� d,

i.e., �+, is the area under the left tail of the normal distribution, to get

Fw @ Vw�

3
C�

oq[ � oqVw �
�
�V � �5V

5

�
+W � w,

�V
s
W � w

.

�
�V � �V � u

�V

�s
W � w

4
D

�[h�u+W�w,�

3
C�

oq[ � oqVw �
�
�V � �5V

5

�
+W � w,

�V
s
W � w

� �V � u

�V

s
W � w

4
D

Simplifying, we get the Black-Scholes formula

Fw @ Vw�

#
oqVw@[ .

�
u . 4

5�
5
V

�
+W � w,

�V
s
W � w

$
�[h�u+W�w,�

#
oqVw@[ .

�
u � 4

5�
5
V

�
+W � w,

�V
s
W � w

$
=

16.6.2 Method 2: Derive Black-Scholes differential equation

Guess that the solution for the call price is a function of stock price and time to expiration,
Fw @ F+V> w,. We can use the basic pricing equation 3 @ Hw +g�F, to derive a differential
equation for the call price function of stock price and time to expiration, .

3 @ Hw +g�F, @ FHwg�. �HwgF .Hwg�gF=

We use Ito’s lemma to¿nd derivatives ofF+V> w,,

gF @ Fwgw.FVgV .
4

5
FVVgV

5

gF @

�
Fw .FVV�V .

4

5
FVVV

5�5V

�
gw.FVV�Vg}

Plugging into the¿rst order condition and canceling�gw, we get

3 @ �uF . Fw .FVV�V .
4

5
FVVV

5�5V � V +�V � u,FV =
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3 @ �uF .Fw . VuFV .
4

5
FVVV

5�5V =

This is the Black-Scholes differential equation (Duf¿e p.238)� solved with boundary condi-
tion

F @ pd{ iVW �[> 3j
it yields the familiar formula.

16.7 Arbitrage bounds using discount factors
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Chapter 17. “Good-deal” pricing
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Chapter 18. Term structure of interest
rates

18.1 Overview

18.2 Models based on a short rate process

18.3 Ho-Lee approach

18.4 Use to price options
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Chapter 19. Frictions
Short sale borrowing constraints transactions costs.

all cases of short sale constraints

Sublinear extension of basic theorems.

Luttmer T bill results

Constantinides trade less often results
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PART IV
Empirical survey
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Chapter 20. Return Predictability

20.1 Stocks

20.1.1 Univariate: Long horizon regressions and variance ratios,

20.1.2 Multivariate: Term, d/p, and anomalies.

20.2 Term structure

Fama/Bliss, Campbell

20.3 Comparison to continuous-time models

20.4 Foreign exchange

20.5 Econometric issues

Big picture: yield differences don’t predict right changes.

20.6 Conditional variance
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20.7 Conditional Sharpe ratios and portfolio implications

Conditional mean vs. conditional variance. Some ARCH evidence on c var

Want to estimate E(R)/sigma(R). Brandt
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Chapter 21. Present value tests
Issue ex-post volatility, R5

Volatility tests. bound and decomposition.

Equivalence to forecastability

Bubbles and sunspots

Use ks to illustrate identity.

Cross-sectional
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Chapter 22. Factor pricing models

22.1 Capm

22.2 Chen Roll Ross model

22.3 Investment and macro factors

Jagannathan Wang

Campbell

22.4 Book to market

22.5 Momentum and more

22.6 Digesting the tests

22.6.1 Statistics versus plots

Statistics never convinced anyone. But plots depend on portfolios.

Solution: individual securities?

22.6.2 Portfolios

Recently followed anomalies. Why size etc portfolios? some portfolio based on character-
istic. Natural characteristic is beta, Fama McBeth did beta. But ad-hoc seem to give better
spread in E(R), so chasing ad-hoc characteristics.

What happened to APT?

250



Chapter 23. Consumption based model
tests

23.1 CRRA utility

Hansen and Singleton, updates

23.2 Durable goods

23.3 Habits

23.4 State-nonseparabilities

Utility function modi¿cations Epstein Zin, habits, etc.

251



Chapter 24. Hansen-Jagannathan
bounds and equity premium puzzle.
Much work on the consumption-based model has proceeded by shooting in the dark. A model
is rejected, for reasons that are unclear. One then uses introspection to dream up a new utility
function, tries it out on the data, rejects it, and iterates. Progress is slow in this loop. It would
clearly be more productive to¿nd what qualitative properties of the data drive rejections of
a given model. This knowledge could give our search for new models ofp some target.
The GMM diagnostics described above are one approach to this characterization. Hansen-
Jagannathan bounds are another approach todiagnosing the failures of a model.

As another motivation, it is desirable to say more about the performance of a model than
just to “reject” or “fail to reject” it. Statistical tests answer the questions “is this model
literally true, except for sampling variation?” That’s often not a usefulquestion. We are
interested in ways of characterizing the performance of false models as well as testing for
truth. For instance, it is interesting to know if a rejected model produces expected return
errors of 0.001% rather than 10%. Above, I advocated examination of the pricing errors,
along with GMM-based standard errors and ad-hoc weighting matrices to this end. The
Hansen-Jagannathan bound provides another set of characterization tools.

The basic idea is to summarize a set of asset data by “what discount factors are consistent
with this set of asset data?” Then, we can try on each model in turn, to see if its discount factor
satis¿es the characterization. Instead of performing (#data sets� # models) tests, we need
only perform #data sets + #models calculations. Better yet, knowing what characteristics
of the discount factor we need should be helpful information in constructing new models.
For example, Campbell and I (1997) reverse-engineered a utility function to generate the
conditional heteroskedasticity in the discount factor that we knew we needed, from this kind
of diagnostic.

The basic Hansen-Jagannathan bound characterizes discount factors by mean and vari-
ance. Knowledge that standard data sets require a large discount factor variance been a great
spur to development of the consumption-based model. I’ll also survey extensions of the
bound from Cochrane and Hansen (1991) that characterize the correlation of discount factors
with asset returns, and the predictability and conditional heteroskedasticity of the discount
factor. Much work remains to be done on¿nding other interesting moments or characteriza-
tions that will be useful for constructing asset pricing models.

Shiller (198x) made the¿rst calculation that showed either a large risk aversion coef¿-
cient or counterfactually large consumption variability was required to explain means and
variances of asset returns. Mehra and Prescott (198x) labeled this fact the “equity premium
puzzle” and described the risk free rate puzzle discussed below. However, they described
these puzzles in the context of a two-state Markov model for consumption growth, identi-
fying a stock as a claim to consumption and a risk free bond. As we will see, the equity
premium-risk free rate puzzle can be deduced from4 @ H+pU, and the basic moments of
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asset returns, without all the rest of the Mehra-Prescott structure.

24.1 The basic HJ bound and equity premium

�+p,

H+p,
� H+Uh,

�+Uh,
=

In postwar US data, this calculation implies�+p, � 83(on an annual basis, requiring huge
risk aversion or consumption growth volatility.

Recall that in chapter (ref), we started with a consumption-based model, and related the
slope of the mean-variance frontier to the volatility of the discount factor. Reviewing the
logic,

3 @ H+pUh, @ H+p,H+Uh, . ��+p,�+Uh,=

implies

�+p, @ H+p,
4

+��,

H+Uh,

�+Uh,
=

Correlation coef¿cients must be less than one, soany discount factor m that prices the excess
return Uh must have standard deviation

�+p,

H+p,
� H+Uh,

�+Uh,
=

In chapter (ref) we took thediscount factor as given, and used this equation to characterize
the mean-variance frontier. Here, we use the opposite interpretation. Given theSharpe ratio
of assets, what do we learn aboutdiscount factors that might price them? The answer is a
restriction on their means and variances. As graphed in¿gure (ref),�+p, must lie above a
line with slopeH+Uh,@�+Uh,= The latter is the slope of the mean-variance frontier or Sharpe
ratio.

Numbers. The essence of the Hansen-Jagannathan distillation of the equity premium
puzzle is straightforward now. The postwar mean value weighted NYSE is about 8% per
year over the T-bill rate, with a standard deviation of about 16%. Thus,H+Uh,@�+Uh, is
about 0.5 in annual data, or 0.25 in quarterly data. (Standard deviations scale with the square
root of the horizon.) If there was a constant risk free rate,H+p, @ 4@Ui would nail down
H+p,. The t-bill rate is not very risky, soH+p, is not far from the inverse of the mean T-bill
rate, or about 0.99. Thus, these basic facts about the mean and variance of stocks and bonds
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imply �+p, A 3=8 @ 83(> or 25%, in quarterly data.

In the standard consumption-based model,pw @ �+fw@fw�4,
�� . Per capita consumption

growth has standard deviation about 1% per year. With log utility, that implies�+p, @
3=34 @ 4( which off by a factor of 50!. Raising the risk aversion coef¿cient helps. But, to
¿rst order�^+fw@fw�4,�� ` @ ��^fw@fw�4` so huge risk aversion coef¿cients are required.

The difference between the bound and log utility�+p, poses a huge challenge for the
consumption-based model. Mismeasurement of consumption data or lack of aggregation
due to uninsurable individual risk are often mentioned as possible solutions to asset pric-
ing puzzles, but we can see they won’t help here. It’s not credible that perfectly measured
aggregate or individual consumption growth varies by50% per year! (25% per quarter, or
83@

s
45 * 48( @ per month.) Mine doesn’t. Does yours?

Retreating to the CAPM or other models really doesn’t help, either. For example, the
best derivation of the CAPM starts with the consumption-based model and log utility. The
log utility consumption-based model is in there! Most implementations of the CAPM take
the market premium as given� but to believe the market Sharpe ratio of 0.5 and the CAPM,
you have to believe that properly measured consumption growth has a 50% per year standard
deviation!

I now digress into better ways of making the calculation. Then I return to the numbers
and extensions of the calculation.

24.2 Many returns–formulas

Technically, it’s clear we want to calculate a bound oni�+p,> H+p,jusing a vector of re-
turns rather than a single return. I present several ways to make this calculation. I return to
the results later.

24.2.1 A quick argument.

A quick derivation of the Hansen-Jagannathan bound with no restrictionp � 3,

�5+p, � +s�H+p,H+{,,	�4 +s�H+p,H+{,, =

Hansen and Jagannathan give a quick regression derivation. Take any validp, i.e. anp
such thats @ H+p{,= Think of running a regression ofp on the asset payoffs in question,

pw @ H+p, . +{w �H+{,,3� . �w
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We can infer the regression coef¿cient� by the requirement thatp correctly price the assets.

s @ H+p{, @H+p,H+{, . 	�

where [
@ fry+{>{3,

and, by de¿nition of a regression,H+%w{, @ H+%w, @ 3= Solving,

� @ 	�4 +s�H+p,H+{,, =

Again, the latter equality holds becausep must price the assets.

Now, regression residuals are uncorrelated with right hand variables, by construction.
Thus,

�5+p, @ �5
�
+{w �H+{,,3�

�
. �5+�,

and¿nally, theHansen-Jagannathan Bound:

�5+p, � +s�H+p,H+{,,	�4 +s�H+p,H+{,, = (172)

This is a parabolic region in
�
H+p,> �5+p,

�
space, or a hyperbola in iH+p,> �+p,j as

illustrated in Figure (ref)

24.2.2 A projection argument.

The mean-variance frontier of discount factors can be characterized analogously to the
mean-variance frontier of asset returns,

p @ {� .zh� . q

The projection or regression ofp onto asset payoffs ought to remind you of the geometric
arguments used in Chapter (ref) to discuss arbitrage and mean-variance frontiers. In fact,
same geometry and arguments generate the mean-variance frontier ofdiscount factors9.

Recall that there is always an{� in the payoff space[ that prices all payoffs in[.
Furthermore, anyp must be equal to{� plus some random variable orthogonal to[, and{�

is the projection of anyp on the space of payoffs� s @ H+{�{, / s @ H^+{� . %,{` where
H+%{, @ 3.

b As a note in the history of thought, this was the argument in the ¿rst draft of Hansen and Jagannathan’s paper�
the more intuitive arguements came later. This presentation can be found in Gallant Hasnen and Tauchen (1989).
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We can construct a three-way orthogonal decomposition of discount factorsp just as we
did for returns, as illustrated in¿gure 25. (In fact this is the same drawing with different
labels.) Anyp must line in the plane markedP , perpendicular to[ through{�. Any p
must be of the form

p @ {� .zh� . q

h� is de¿ned as the residual from the projection of4 onto[ or, equivalently the projection
of 4 on the spaceH of “excessp’s”, random variables of the formp� {�=

h � 4� surm+4m[, @ surm+4mH,=

h� generates means ofp just asUh� did for returns:

H+p� {�, @ H^4� +p� {�,` @ H^surm+4mH,+p� {�,`

Finally q, de¿ned as the leftovers, has mean zero since it’s orthogonal to4 and is orthogonal
to[. As with returns, then, the mean-variance frontier ofp3s is given by

p� @ {� .zh=

(If all this seems a bit rushed, go back to Chapter (ref). It isexactly the same argument.)

x*

e*

1

n

m = x*+we*+n

0

E(.)=0
E(.)=1

x*+we*

E = space of m-x*

M = space of discount factors

X = payoff space

proj(1| X)

Figure 25. Decomposition of any discount factorp @ {� .zh. q=

This construction can be used to derive a formula for the Hansen-Jagannathan bound
for the¿nite-dimensional cases discussed above. It’s more general, since it can be used in
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in¿nite-dimensional payoff spaces as well. It extends to conditional vs. unconditional bounds
in the same way, and more easily than the regression approach given above.

Now, to give equations for the construction and¿nd the mean-variance frontier of discount
factors. We¿nd{� as before, it is the portfoliof3{ in [ that prices{ (see (ref)):

{� @ s3H+{{3,�4{=

Similarly, let’s ¿nd h�. Using the standard OLS formula and remembering thatH+{4, @
H+{,> the projection of4 on[ is

surm+4m[, @ H+{,3H+{{3,�4{=

(After a while you get used to the idea of running regressions with 1 on the left hand side and
random variables on the right hand side!) Thus,

h� @ 4�H+{,3H+{{3,�4{=

Again, you can construct time-series of{�andh� from these de¿nitions.

Finally, we now can construct our variance minimizing discount factors

p� @ {� .zh� @ s3H+{{3,�4{.z
�
4�H+{,3H+{{3,�4{

�
or

p� @ z . ^s�zH+{,`3 H+{{3,�4{ (173)

As z varies, we trace out discount factorsp�on the frontier with varying means and vari-
ances. It’s easiest to¿nd mean and second moment:

H+p�, @ z . ^s�zH+{,`3 H+{{3,�4H+{,

H+p�5, @ ^s�zH+{,`3H+{{3,�4 ^s�zH+{,` >

variance follows from�5+p, @ H+p5, � H+p,5= With a little algebra one can also show
that these formulas are equivalent to equation (172).

What if there is a riskfree rate?

So far I have assumed that the payoff space does not include a (constant) riskfree rate.
What if it does? The answer is, of course, thatUi @ 4@H+p, nails down the mean discount
factor, so the “cup” reduces to a vertical line. In this case, the mean-variance frontier of
discount factors is thepoint {� alone. If this isn’t clear from the picture, we can characterize
any discount factor algebraically asp @ {� . % with H+{%, @ 3= With 4 5 [, H+{%, @ 3
impliesH+%, @ 3. Thus,any p must have the sameH+p, @ H+{�,. The minimumsecond
moment discount factor> {�, is then also the minimumvariance discount factor.

This observation leads to another way of thinking about the Hansen-Jagannathan frontier
for payoff spaces that donot contain a unit payoff. Add a unit payoff, supposing that its
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price is a prespeci¿ed value ofH+p,> then¿nd {� and take its variance. Note that all the
above formulas for Hansen-Jagannathan minimizersp� consist of some unit payoff and some
combination of the original asset returns. A good exercise is to go through the construction
of {� in augmented payoff spaces and show that you get the same answer

24.2.3 Brute force.

You can obtain the same result with a brute force minimization, pickingp state-by-state
or date-by-date to minimize variance.

A brute force approach to the bound is also useful. It is a technique that is easily adapt-
able to¿nding more interesting bounds on fancier moments, and bounds with frictions. It
also shows graphically how we are constructing astochastic process for the discount fac-
tor Finally, though the derivations given below are much more elegant and short, it’s hard to
see how one would ever have thought of them. It’s comforting to see that one can get di-
rectly and constructively to the same answer. (In fact, I know that at least a few of the bounds
in Cochrane and Hansen (199x) were¿rst derived this way, and then presented with more
beautiful arguments like the above!)

By brute force, I mean, solve the problem

plq
ipj

ydu+p, givenH+p,> s @ H+p{,=

where{ is a vector of asset payoffs with prices. We need to pick therandom variable p,
state-by-state or date-by-date. Since the mean is held¿xed, we can minimize second moment
as well as variance, or

plq
ipwj

4

W

W[
w@4

p5
w given

4

W

W[
w@4

pw> s @
4

W

W[
w@4

pw{w=

If you prefer, you can get the same answer starting with

plq
ip+v,j

[
v

�+v,p+v,5 given
[
v

�+v,p+v,> s @
[
v

�+v,p+v,{+v,=

Introduce a Lagrange multiplier5� on the¿rst constraint and5� on the second. Then the
¿rst order conditions are

C

Cpw
= p�

w @ �. �3{w

Thus,the variance minimizing discount factor p� is a combination of a constant and a linear
combination of {w.
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The next step (as in any Lagrangian minimization) is to determine� and� to satisfy the
constraints. It is more convenient to reparameterize the variance minimizing discount factor

p�
w @ H+p, . +{w �H+{,,3�=

This is still some combination of a constant and a payoff of{3v so nothing has changed. Now
we are back where we started with the regression derivation. (If you writep�

w @ � . �3{w
you are at the same point in the mean-variance characterization, and will get the same answer
as equation (173).) TheH+p, constraint is obviously satis¿ed, so we only have to pick� to
satisfy the pricing constraint

H+s, @ H
�
H+p,{w . {w+{w �H+{,,3�

�
@ H+p,H+{, . 	�

where	 is the variance-covariance matrix of the payoffs{. Thus,

� @ 	�4 ^s�H+p,H+{,`

and,¿nally,

p�
w @ H+p, . ^{w �H+{,`3	�4 ^s�H+p,H+{,` (174)

�5+p�, @ ^s�H+p,H+{,`3	�4 ^s�H+p,H+{,`

just as before.

Equation (174) is useful. You can use it toplot the time series of the variance-minimizing
discount factor and see what it looks like.

24.2.4 Sharpe ratio intuition

How to connect the Hansen-Jagannathan bound to the Mean-variance frontier.

In a single excess return case, we found

�+p,

H+p,
� H+Uh,

�+Uh,
=

This suggests a graphical way to¿nd a Hansen-Jagannathan bound with many assets: For
any hypothetical risk-free rate,¿nd the highest Sharpe ratio. That is, of course the tangency
portfolio. Then the slope to the tangency portfolio gives the ratio�+p,@H+p,= Figure 26
illustrates.

As we sweep through values ofH+p,> the slope to the tangency becomes lower, and
the Hansen-Jagannathan bound declines. At the mean return corresponding to the minimum
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E(R)

σ(R)

1/E(m) E(Re)/σ(Re)

E(m)

σ(m) = 
Ε(Re)/σ(Re)

Figure 26. Graphical construction of the Hansen-Jagannathan bound.
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variance point, the HJ bound attains its minimum. Continuing, the Sharpe ratio rises again
and so does the bound.

This fact emphasizes the equivalence between Hansen-Jagannathan frontiers and mean-
variance frontiers. For example, an obvious exercise is to see how much the addition of
assets raises the Hansen-Jagannathan bound. This isexactly the same as asking how much
those assets expand the mean-variance frontier. It was, in fact, this link between Hansen-
Jagannathan bounds and mean-variance frontiers rather than the logic I described that in-
spired Knez and Chen (1996) and DeSantis (1994) to test for mean-variance ef¿ciency using,
essentially, Hansen-Jagannathan bounds.

24.2.5 A beautiful inequality

Another way of stating the relation between bounds and Sharpe ratios is the following:

plq
iall p that price {5[j

�+p,

H+p,
@ pd{

iall excess returns Uh in [j

H+Uh,

�+Uh,
= (175)

24.2.6 Positive Discount factors

The discount factors produced by consumption based models are always positive, while the
discount factors produced by the Hansen-Jagannathan procedure can be negative at times.
({� is one of them.) We will get a tighter bound if we construct the space of allpositive
discount factors.

More generally, this is the main advantage of using the discount factor language rather
than expected return and mean-variance frontier language. In that language, it is very hard to
incorporate positivity and arbitrage, while it is seamless in discount factor language.

Direct approach

To derive this bound, try the brute force method.

plq H+p5, given H+p,> s @ H+p{,> p � 3=

plq
4

W

[
w

p5
w given

4

W

[
w

pw> s @
4

W

[
w

pw{w> pw � 3=

Denote the Lagrange multipliers on the¿rst two constraints5� and5�>and the Kuhn-Tucker
multiplier on the last constraint5�w. The¿rst order conditions are

C

Cpw
= p�

w @ �. �3{w . �w >

�
�w A 3 if pw @ 3
�w @ 3 if pw A 3
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Equivalently,

p� @ pd{+�. �3{> 3, � �
�. �3{

�.
=

The last equality de¿nes thê�`. notation for the truncation of a random variable.

This formula has a nice interpretation:p�
w is a call option with zero strike price on a

portfolio of payoffs{ augmented by a constant.

Note that if the previous formula happened to produce a positivep�> then it solves this
problem as well. If it did not, then we now get a tighter bound.

As before, we have to determine� and� in order to satisfy the mean and pricing con-
straints. Since the problem is no longer linear, this must be done numerically. One approach
is obvious: hand the two equations in two unknowns

H
��
�. �3{

�.�
@ H+p,

H
��

�. �3{
�.

{
�
@ s

to a nonlinear equation solver. Good starting values are the solutions to the HJ bound without
positivity, or the solution at a nearbyH+p,> since you will typically do this for a grid of
H+p,3v =

An approach using a minimization.

Nonlinear equations solvers often get stuck, so a second approach that uses straight mini-
mization often works better. Remember that the variance minimizingp at a givenH+p, can
be found by augmenting the payoff space with a unit payoff, supposing its price to beH+p,>
and¿nding{�= The same approach adapts easily to¿nding the bound with positivity, and
yields a numerically more stable procedure.

Recall that{� @ U�@H+U�5, whereU� is the minimum second momentreturn. We
know that the non-negative variance minimizing discount factor will be a truncated payoff
of the frompd{+� . �3{w> 3,= Thus, consider the payoff space composed of the original
payoffs, the unit payoff with priceH+p, and truncations of these. All we have to do is¿nd
the minimum second moment return in this payoff space,¿nd{�, and take its variance.

To be speci¿c, suppose we start with two returns,Ud andUe= The return on the unit
payoff is4@H+p,. Then,U� solves

H+U�5, @ plq
ifd>fej

H

%
pd{

�
fdUd . feUe . +4� fd � fe,

4

H+p,
> 3

�5
&

at the optimal choice offd> fe. You still have to use a search routine to¿nd fd and fe,
but you are searching for the minimum of a “quadratic” function, which is a lot easier nu-
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merically than solving systems of equations. Finally, you construct�5+{�5, @ H+{�5, �
H+{�,5 @ 4@H+U�5, � H+p,5= Do all this for a range ofH+p,, and you trace out the
Hansen-Jagannathan bound with positivity.

A duality approach.

Here’s another way to calculate the bound. Write the original problem in Lagrangian form as

plq
ip�3j

pd{
i�>�j

H+p5,� 5� ^H+p,� �`� 5�3 ^H+p{,� s` =

We can interchangeplq and max yielding

pd{
i�>�j

plq
ip�3j

H+p5,� 5� ^H+p,� �`� 5�3 ^H+p{,� s`

Do the inner minimization: For given� and� state-by-state minimization gives

p� @
�
�. �3{

�.
=

Now the problem is simply

pd{
i�>�j

H
k�
�. �3{

�.5l� �
k
H
��

�. �3{
�.�� �

l
� �3

k
H
��
�. �3{

�.
{
�
�s

l

While our original minimization problemplqipj meant choosingp in every state (or
date, in a¿nite sample), this conjugate or dual minimization only chooses one�and�, a
vector with as many elements as payoffs. It is quite straightforward to hand this problem
directly to a numerical maximizer.

Arbitrage bounds

While the original Hansen-Jagannathan bound is parabolic, the bound with positivity rises to
in¿nity at ¿nite values ofH+p,. Thus, it appears that there are values ofH+p, for which
we cannot construct any positive discount factor. It must be that they imply an arbitrage
opportunity.

We can calculate the arbitrage bounds onH+p, directly. Suppose a payoff{ is always
greater than 1,{ A 4 Then price of this payoff must satisfys +{, A s+4, @ H+p, by absence
of arbitrage. Interpreting the equation backwards, we learnH+p, ? s+{,. (Or, the minimum
variance of a positive discount factor with mean greater thans+{, is in¿nite.)

You will generally be able to construct such a payoff in a¿nite sample. For example,
10 times the T-bill return will undoubtedly be greater than 1 at every data point. (These
arepayoffs, not portfolios — the weights do not have to sum to one.) Then, we know that
H+p, ? 43.

If 1 was in the payoff space (if there was a real risk free rate) then we would know H+p,
exactly. If the payoff space does not contain 1, it may well contain a payoff (payoff, not
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return) that is alwaysgreater or smaller than one. The price of these payoffs gives de¿nite
limits on the range ofH+p,.

Finding the arbitrage bounds is straightforward. We want the payoff greater than one
with smallest price. So search for it. In our two-return example payoffs are combinations
fdUd . feUe, and have pricefd . fe= Thus, you want to¿nd

plq
ifd>fej

�
fd . fe

�
v=w= fdUd

w . feUe
w � 4 for all t.

Again, we donot imposefd . fe @ 4> these are payoffs, not necessarily returns. Similarly,
you can¿nd the lower arbitrage bound by¿nding the payoff with largest price that is always
less than one.

You should already be concerned about the¿nite-sample performance of this procedure.
For example, suppose returns are lognormally distributed. Then, any return will eventually
be arbitrarily close to zero and arbitrarily large, so there is no arbitrage bound using the
population moments. But of course, any sample will feature a minimum and a maximum
return, so that it will look like there is an arbitrage bound in any sample.

24.3 Results

24.4 Beyond mean and variance.

The point of the bound is to characterize discount factors in ways that will be useful to the
construction of asset pricing models. By now, it is well known that discount factors must
be quite volatile. But whatother moments must a successful discount factor posses? Work
is just beginning on this question. Here I report two calculations, taken from Cochrane and
Hansen (1992).

24.4.1 Correlation Puzzle

Go back to the derivation simplest one excess return bound, we manipulated3 @ H+puh, to
obtain

�+p, @ �H+p,H+Uh,

��+Uh,
= (176)

At this point, we noted thatm�m ? 4, yielding the HJ bound. This means that thep on the
bound isperfectly correlated with the excess return. More generally, Hansen-Jagannathan
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minimizers are of the form p @ y.U3� and so are perfectly correlated with some portfolio
of asset returns..

This problem is more general. The stock returns in the Mehra-Prescott model are also
nearly perfectly correlated with consumption growth. Most general equilibrium models also
feature consumption growth highly or perfectly correlated with stock returns. At an elemental
level, most general equilibrium models use only one shock, so there is a sense in whichall
time series are perfectly correlated (stochastically singular).

But consumption growth isnot highly correlated with returns. In quarterly data, the corre-
lation of consumption growth with the VW excess return is about 0.2. Using equation (176),
this observation raises the required variance ofp by a factor of 5, to about 1.0 or 100% per
quarter!

Furthermore, it’s easy to modify a discount factor model to give you lots of variance: Just
add an i.i.d. error.H ^+p. �,U` @ H+pU, so this has no effect whatsoever on the pricing
predictions� but obviously gives a much bigger variance.

Finally, correlation is what asset pricing is fundamentally all about.H+Uh, @ �fry+p>Uh,@H+p,
so anp only explains expected return variation if it is correlated with returns. We don’t want
to produce models with variable discount factors uncorrelated with returns!

A simple bound

Based on equation (176) we could thus generalize the previous bound to a minimum
variance ofp given the mean ofp and a correlation ofp and excess returns not to exceed a
given value�. This calculation yields bounds proportionately higher than the original bound.

A multivariate version

One can do the same thing in a multivariate context. Think of running anyp on the set
of asset returns under consideration and a constant,

pw @ H+p, . ^{w �H+{,`� . �w

We know what̂{w � H+{,`� should be� that’s the HJ minimizerp� at this value ofH+p,.
Thus,

�5+p, @ �5+p�, . �5+�,=

TheU5 of the regression ofp on{ is

U5 @ �5+p�,@�5+p,

Thus, for any discount factor,

�5+p, @ �5+p�,@U5=

Here’s what it means. Take the Hansen-Jagannathan bound, and divide by a value of
U5, say 0.2. This is the minimum variance of allp3v with the given meanH+p, and that,
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when regressed on asset returns, have anU5 no less than 0.2. Formally, denote byUpd{ 5 the
desired upper bound of theU5 of the discount factor on asset payoffs. The problem

plq�5+p, s.t.s @ H+p{,>U5 � Upd{5

has solution

�5+p, @ �5+p�,@U5=

Obviously, you get a series of higher and higher bounds, asU5 is lower and lower.

Changing the m rather than the bound.

Instead of changing thebound, we can achieve the same thing by changing thecandidates.
Consider the problem

plq�5+surm+pm[,, s.t.s @ H+p{,

Sincep� @ surm+pm[> 4,, we have the answer to this problem,

�5+surm+pm[,, @ �5+p�,

The Hansen-Jagannathan bound doesn’t only apply to the actual discount factor� it applies
just as well to theprojection of the discount factor on the space of asset payoffs (with a
constant). If a discount factor model has lots of variance, but is uncorrelated with asset
payoffs, it may¿t in the HJ bound, but it will utterly fail this test, revealing (or diagnosing)
its problem: lack ofcorrelation with asset returns.

Conditional mean vs. variance

24.5 What do we know about discount factors: a summary

24.6 Comments on the Hansen-Jagannathan bound.

It’s fairly easy to produce a discount factor that has a lot ofvariance. Given a miserable
candidate,p, thenp . �> H+�{, @ 3 prices assets just as badly asp but has a lot more
variance!

Thus, the HJ bound seems most useful for evaluating models such as the standard consumption-
based model that produce a unique series forthe discount factorp= One evaluates habit per-
sistence with pricing objects in the classp.� that may have a lot more variance than the true
p. The HJ bound is basically useless for evaluating factor models� these make no pretence
at beingthe p=
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The most lasting impact of the HJ bound may come from its impact on other questions in
Finance.

We can exploit HJ bounds to ask questions about mean-variance frontiers, and apply the
above GMM testing methodology to those questions. It’s natural to ask whether adding an
asset return or group of asset returns makes bounds go up. This isexactly the same question
as asking whether the addition of a return makes the mean-variance frontier expand. Snow
(1991) uses this idea to test whether the addition of small¿rm returns expands the mean-
variance frontier beyond what is available using large¿rm returns. This is a nice test of the
“small ¿rm effect.” DeSantis (1993) uses the same idea to test whether one can really expand
the mean-variance frontier by international diversi¿cation. Like adding domestic returns,ex-
postmean variance frontier can enlarge a great deal by adding assets, but this is probably
spurious. By testing, we can see if the ex-antemean variance frontier is enlarged by adding
some asset returns.. This is an important test of international diversi¿cation.

More generally, the Hansen-Jagannathan methodology is the inspiration for testing factor
pricing models by testing models of the formp @ d . e3i . These models look just like
Hansen-Jagannathan candidate discount factors, and they are. By testing such a model, we
are testing whether the factorsi span the mean-variance frontier of the assets.
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Chapter 26. Notation
I use bondface to distinguish vectors from scalars. For example { is a scalar, but { is a vector.
I use capital letters for matrices, though not all capital letters are matrices (e.g. U). A partial
list of frequently-used symbols:

{ @ payoff

s> s+{, @ price, price of payoff x

U @ {@s @ gross return

u @ U� 4or oq+U, @ net or log return

Uh @ excess return

Ul @ notation to indicate one among many asset returns.l @ 4> 5> ==Q is implicit.

p @ discount factor> s @ H+p{,

x+f,> x3+f, @ utility, marginal utility

[ @ space of all payoffs{ 5 [

{� @ payoff that acts as discount factor,s @ H+{�{,

U� @ return that acts as discount factorU� @ {�@s+{�,

� subjective discount factorx+fw, . �x+fw.4, and to denote regression coef¿cient

�> �|>{ regression coef¿cients.

� @ factor risk premium in beta pricing model

iw @ factor e.g., market return for the CAPM

}w> g}w @ standard Brownian motion

Returns I use capitalU to denote agross return, e.g.

U @
'back
'paid

=
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For a stock that pays a dividend G, the gross return is

Uw.4 @
Sw.4 .Gw.4

Sw
@

'backw.4
'paidw

+for example, 4=43)

U is a number like 1.10 for a 10% return.

Several other units for returns are convenient. The net return is

uw.4 @ Uw.4 � 4 (For example, 3=43,=

The percent return is

433� uw.4 (For example, 43(,

The log or continuously compounded return is

uw @ oqUw (For example, oq+4=43, @ 3=3<864 or <=864(,

The real return corrects for inÀation,

Ureal
w.4 @

Goods backw.4
Goods paidw

=

The consumer price index is de¿ned as

FSLw � 'w
Goodsw

> �w.4 � FSLw.4
FSLw

Thus, we can use CPI data to ¿nd real returns as follows.

Ureal
w.4 @

'w.4 � Goodsw.4
'w.4

'w � Goodsw
'w

@
'w.4

4
FSLw.4

'w
4

FSLw

@ Unomial
w.4

FSLw
FSLw.4

@
Unominal
w.4

�w.4
=

I.e., divide the gross nominal return by the gross inÀation rate to get the gross real return.

You’re probably used tosubtracting inÀation from nominal returns. This is exactly true
for log returns. Since

oq+D@E, @ oqD� oqE>

we have

oqUreal
w.4 @ oqUnomial

w.4 � oq�w.4=

For example, 10%-5% = 5%. It is approximately true that you can subtract net returns this
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way,

Unominal
w.4

�w.4
@

�
4 . uqrpldo

�
4 . �

� 4 . uqrp � �=

The approximation is ok for low inÀation (10%) or less, but really bad for 100% or more
inÀation.

Using the same idea as for real returns, you can ¿nd dollar returns of international secu-
rities. Suppose you have a German security, that pays a gross Deutchmark return

UGP
w.4 @

GP backw.4
GP paidw

Then change the units to dollar returns just like you did for real returns. The exchange rate is
de¿ned as

h
'@GP
w @

'w
GPw

=

Thus,

U'
w.4 @

'w.4
'w

@
GPw.4

GPw
� 'w.4@GPw.4

'w@GPw
@ UGP

w.4 � h
'@GP
w.4

h
'@GP
w

=

Compound returns Suppose you hold an instrument that pays 10% per year for 10 years.
What do you get for a $1 investment? The answer is not $2, since you get “interest on the
interest.” The right answer is thecompound return. Denote

Yw @ value at time t

Then

Y4 @ UY3 @ +4 . u,Y3

Y5 @ U� +UY3, @ U5Y3

YW @ UWY3

Thus,UW is thecompound return.

As you can see, it’s not obvious what the answer to 10 years at 10% is. Here is why log
returns are so convenient. Logs have the property that

oq +de, @ oqd. oq e> oq
�
d5
�
@ 5 oqd=
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Thus

oqY4 @ oqU. oqY3

oqYW @ W oqU. oqY3

Thus the compound log return is W times the one-period log return.

More generally, log returns are really handy for multi-period problems. TheW period
return is

U4U5===UW

while theW period log return is

oq+U4U5===UW , @ oq+U4, . oq+U5, . === oq+UW ,

Within period compounding This is best explained by example. Suppose a bond that
pays 10% is compounded semiannually, i.e. two payments of 5% are made at 6 month inter-
vals. Then the total annual gross return is

compounded semi-annually:+4=38, +4=38, @ 4=4358 @ 43=58(

What if it is compounded quarterly? Then you get

compounded quarterly+4=358,7 @ 4=436; @ 43=6;(

Continuing this way,

compounded N times:
�
4 .

u

Q

�Q
What if you go all the way and compoundcontinuously? Then you get

olp
Q$4

�
4 .

u

Q

�Q
@ 4 . u .

4

5
u5 .

4

6� 5
u6=== @ hu=

Well, if the gross returnU @ hu, thenu @ oqU. For example a stated rate of 10%, continu-
ously compounded is really a gross return ofh3=43 @ 4=4384:3< @ 43=84:(=

Both kinds of compounding If you really want a headache, what is the two year return
of a security that pays a stated rateU, compunded semiannually? Well, again withu @ U�4,
it must be �

4 .
u

5

�5
=

Similarly, the continuously compoundedW year return is

huW =
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Chapter 27. Utility functions
The standard representation of investor preferences or utility is

Hw

4[
m@3

�mx+fw.m,=

This maps a consumption stream into “utility” or “happiness.” Theperiod utility function
x+f, is an increasing function – more consumption makes you happier– but concave – the
extra dollar of consumption increases happiness less and less the more you have.

Standard functional forms:Power or constant relative risk aversion utility is

x+f, @
f4��

4� �

a special case when� @ 4 is log utility

x+f, @ oq+f,=

We sometimes usequadratic utility

x+f, @ �4

5
+f� f�,

it’s convenient for solving problems, but obviously limited tof ? f�= It has the unattractive
property that you get more risk averse as consumption rises.

This concavity of the utility function also generatesrisk aversion. For example if there
are two possible events,d @ win '433 ande @ lose'433 then

X+bet, @ �dx+fd, . �ex+fe, @ H ^x+{,` =

the concavity of utility meansrisk aversion, people will pay to avoid fair bets. In equations,

H^x(bet)] =�dx+fd, . �ex+fe, � x+�dfd . �efe, @ x^H(bet)]

Risk aversion means that an equal chance of getting or losing $100 (say) of consumption
makes you worse off. If utility isÀat (linear), the investor isrisk-neutral and indifferent to
such a bet. The utility of such a bet is expected utility, not utility of expected consumption.

The sum part of the utility function captures the effect of time. You prefer consumption
today to consumption 10 years from now. To capture this, the momentary utility x+f, is
multiplied by a subjective discount factor�, somewhat less than one.
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Chapter 28. Probability and statistics

28.1 Probability

28.1.1 Random variables

We model returns as random variables. A random variable can take on one of many values,
with an associated probability. For example, the gross return on a stock might be one of four
values.

U @

Value Probability
4=4 4@8
4=38 4@8
4=33 5@8
3=33 4@8

Each value is a possible realization of the random variable. Of course, stock returns can
typically take on a much wider range of values, but the idea is the same. Many ¿nance texts
distinguish the random variable from its realization by using �U for the random variable and
U for the realization. I don’t.

Thedistribution of the random variable is a listing of the values it can take on along with
their probabilities. For example, the distribution of return in the above example is

(Real statisticians call this thedensity and reserve the worddistribution for thecumulative
distribution, a plot of values vs. the probability that the random variable is at or below that
value.)

A deeper way to think of a random variable is afunction. It maps “states of the world”
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into real numbers. The above example might really be

U @

Value State of the world Probability
4=4 New product works, competitor burns down 4@8
4=38 New product works, competitor ok. 4@8
4=33 Only old products work. 5@8
3=33 Factory burns down, no insurance. 4@8

The probability really describes the external events that de¿ne the state of the world. How-
ever, we usually can’t name those events, so we just think about the probability that the stock
return takes on various values.

In the end, all random variables have a discrete number of values, as in this example.
Stock prices are only listed to 1/8 dollar, all payments are rounded to the nearest cent, com-
puters can’t distinguish numbers less than 10�633 or so apart. However, we often think of
continuous random variables, that can be any real number. Corresponding to the discrete
probabilities above, we now have a continuous probabilitydensity, usually denotedi +U,.
The density tells you the probability per unit ofU� i +U3,�U tells you the probability that
the random variableU lies betweenU3 andU3 .�U=

A common assumption is that returns (or log returns) arenormally distributed. This
means that the density is given by a speci¿c function,

i +U, @
4s
5��

h{s

%
�+U� �,5

5�5

&
=

The graph of this function looks like

About 30% (really 31.73%) of the probability of a normal distribution is more than one
standard deviation from the mean and about 5% is more than two standard deviations from
the mean (really 4.55%, the 5% probability line is at 1.96 standard deviations). That means
that there is only one chance in 20 of seeing a value more than two standard deviations from
the mean of a normal distribution. Stock returns have “fat tails” in that they are slightly more
likely to take on extreme values than the normal distribution would predict.
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28.1.2 Moments

Rather than plot whole distributions, we usually summarize the behavior of a random variable
by a few moments such as the mean and variance.

I’ll denote the values thatU can take on asUl with associated probabilities�l. Then the
mean is de¿ned as

Mean:H +U, @
[

possible values i

�lUl=

The mean is ameasure of central tendency, it tells you whereU is “on average.” A high mean
stock return is obviously a good thing!

Thevariance is de¿ned as

Variance:�5 +U, @ H
k
+U�H +U,,5

l
@

[
l

�l ^Ul �H +U,`5

Since squares of negative as well as positive numbers are positive, variance tells you how far
away from the meanU typically is. It measures the spread of the distribution. High variance
is not a good thing� it will be one of our measures ofrisk.

Thecovariance is

Covariance:fry
�
Ud> Ue

�
@ H

�
+Ud �H +Ud,,

�
Ue �H

�
Ue

���

@
[
l

�l ^U
d
l �H +Ud,`

�
Ue
l �H

�
Ue

��
It measures the tendency of two returns to move together. It’s positive if they typically move
in the same direction, negative if one tends to go down when the other goes up, and zero if
there is no tendency for one to be high or low when the other is high.

The size of the covariance depends on the units of measurement. For example, if we
measure one return in cents, the covariance goes up by 100, even though the tendency of
the two returns to move together hasn’t changed. Thecorrelation coef¿cient resolves this
problem.

Correlation:fruu
�
Ud> Ue

�
@ � @

fry
�
Ud> Ue

�
� +Ud,� +Ue,

=

The correlation coef¿cient is always between -1 and 1.

For continuously valued random variables, the sums become integrals. For example, the
mean is

H +U, @

]
U i +U,gU=
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The normal distribution de¿ned above has the property that the mean equals the parameter �>
and the variance equals the parameter �5. (To show this, you have to do the integral.)

28.1.3 Moments of combinations

We will soon have to do a lot of manipulation of random variables. For example, we soon
will want to know what is the mean and standard deviation of a portfolio of two returns. The
basic results are

1) Constants come out of expectations and expectations of sums are equal to sums of
expectations. If f and g are numbers,

H +fUd, @ fH +Ud,

H
�
Ud .Ue

�
@ H +Ud, .H

�
Ue

�
or, more generally,

H
�
fUd . gUe

�
@ fH +Ud, . gH

�
Ue

�
=

2) Variance of sums works like taking a square,

ydu
�
fUd . gUe

�
@ f5ydu +Ud, . g5ydu

�
Ue

�
. 5fg fry

�
Ud> Ue

�
=

3) Covariances work linearly

fry
�
fUd> gUe

�
@ fg fry

�
Ud> Ue

�
To derive any of these or related rules, just go back to the de¿nitions. For example,

H +fUd, @
[
l

�lfU
d
l @ f

[
l

�lU
d
l @ fH +Ud, =

28.1.4 Normal distributions.

Normal distributions have an extra property. Linear combinations of normally distributed
random variables are again normally distributed. Precisely, if Ud and Ue are normally dis-
tributed, and

Us @ fUd . gUe

then,Us is also normally distributed with the mean and variance given above.
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28.1.5 Lognormal distributions

A variable U is lognormally distributed if u � oq+U, is normally distributed. This is a nice
model for returns since we can never see U ? 3 and a lognormal captures that fact, where
you can see U ? 3 if it is normally distributed. Lognormal returns are like log returns, useful
for handling multiperiod problems.

Since U @ hoqU @ hu by de¿nition, wouldn’t it be nice ifH+U, @ hH+u,B Of course, that
isn’t true becauseH^i+{,` 9@ i ^H+{,` . But something close to it is true. By working out the
integral de¿nition of mean and variance, you can show that

H+U, @ hH+u,.�
5+u,@5=

The variance is a little trickier.U5 @ h5u so this is also lognormally distributed. Then

�5+U, @ H+U5,�H+U,5 @ h5H+u,.5�
5+U, � h5H+u,.�

5+U, @ h5H+u,.�
5+U,

k
h�

5+U, � 4
l
=

As a linear combination of normals is normal, a product of lognormals (raised to powers)
is lognormal. For example,

U4U5 @ hu4.u5 >

sinceu4 andu5 are normal so isu4 . u5, and thereforeU4U5 is lognormal.

28.2 Statistics

28.2.1 Sample mean and variance

What if you don’t know the probabilities? Then you have toestimate them from asample.
Similarly, if you don’t know the mean, variance, regression coef¿cient, etc., you have to
estimate them as well. That’s whatstatistics is all about.

Theaverage or sample mean is

�U @
4

W

W[
w@4

Uw

whereiU3> U4> ===Uw> ===UWj is a sample of data on a stock return. Just to be confusing,
many people use� for sample as well as population mean. Sometimes people use hats,a� to
distinguish estimates or sample quantities from true population quantities.

Keep thesample mean and the true, orpopulation mean separate in your head. For exam-
ple, the true probabilities that a coin will land heads or tails is 1/2, so the mean of a bet on a
coin toss ($1 for heads, -$1 for tails) is 0. Asample of coin tosses might be {H,T,T,H,H}. In
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that sample, the frequency of heads is 3/5 and tails 2/5, so the sample mean of a coin toss bet
is 1/5.

Obviously, as the sample gets bigger and bigger, the sample mean will get closer and
closer to the true or population mean. That property of the sample mean (consistency) makes
it a good estimator. But the sample and population mean are not the same thing for any ¿nite
sample! Also, sample means approach population means only if you are repeatedly doing the
same thing, such as tossing the same coin. This may not be true for stocks. If there are days
when expected returns are high and days when they are low, then the average return will not
necessarily recover either expected return. The sample of the Peso/Dollar exchange rate was
pretty useless the day before the Peso plunged.

The sample variance is

v5 @ a�5 @
4

W � 4

W[
w@4

�
Uw � �U

�5
=

Sample values of the other moments are de¿ned similarly, as obvious analogs of their popu-
lation de¿nitions.

28.2.2 Variation of sample moments

The sample mean and sample variance vary from sample to sample. If I got {H,T,T,H,H},
the sample mean is 1/5, but if I happened to get {T,T,H,T,T}, the sample mean would be -4/5.
Thus the sample mean, standard deviation, and other statistics are alsorandom variables� they
vary from sample to sample. They are random variables that depend on the whole sample,
not just what happened one day, but they are random variables nonetheless. The population
mean and variance, by contrast are just numbers.

We can then ask, “how much does the sample mean (or other statistic) vary from sample
to sample?” This is an interesting question. If a mutual fund manager tells you “my mean
return for the last¿ve years was 20% and the S&P500 was 10%” you want to know if that
was just due to chance, or means that his true, population mean, which you are likely to earn
in thenext 5 years is also 10% more than the S&P500. In other words, was therealization of
the random variable called “my estimate of manager A’s mean return” near the mean of the
true or population mean of the random variable “manager A’s return?”

Figuring out the variation of the sample mean is a good use of our formulas for means
and variances of sums. The sample mean is

�U @
4

W

W[
w@4

Uw=
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Therefore,

H
�
�U
�
@

4

W

W[
w@4

H +Uw, @ H +U,

assuming all theU3wv are drawn from the same distribution (a crucially important assumption).
This veri¿es that the sample mean is unbiased. On average, across many samples, the sample
mean will reveal the true mean.

The variance of the sample mean is

�5
�
�U
�
@ �5

#
4

W

W[
w@4

Uw

$
@

4

W 5

W[
w@4

�5 +Uw, . +covariance terms)

If we assume that all the covariances are zero, we get the familiar formula

�5
�
�U
�
@

�5 +U,

W

or

�
�
�U
�
@

� +U,s
W

=

For stock return, fry +Uw> Uw.4, @ 3 is a pretty good assumption. It’s a great assumption for
coin tosses: seeing heads this time makes it no more likely that you’ll see heads next time.
For other variables, it isn’t such a good assumption, so you shouldn’t use this formula.

You don’t know�. Well, you canestimate the sampling variation of the sample mean
by using your estimate of�> namely the sample standard deviation= Using hats to denote
estimates,

a�
�
�U
�
@

a� +U,s
W

=

The classic use of this formula is to give a standard error or measure of uncertainty of the
sample mean, and to test whether the sample mean is equal to some value, usually zero.

The test is usually based on acon¿dence interval. Assuming normal distributions, the
con¿dence interval for the mean is the sample mean plus or minus 2 (well, 1.96) standard
errors. The meaning of this interval is that if the true mean was outside the interval, there
would be less than a 5% chance of seeing a sample mean as high (or low) as the one we
actually see.
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Now that we have computers, there is an easier method. We can just calculate the proba-
bility that the sample mean comes out at its actual value (or larger) given the null hypothesis,
i.e. calculate this area

This is called thep-value.

Usually, tests are run using the t-distribution. When you take account of sampling varia-
tion in a�, you can show that the ratio

s
W

�U�H +U,

a�

is not a normal distribution with mean zero and variance 1, but at distribution.

28.3 Regressions

We will run regressions, for example of a return on the market return,

Uw @ �. �Up>w . �w> w @ 4> 5===W

and sometimes multiple regressions of returns on the returns of several portfolios

Uw @ �. �Up>w . �Us>w . �w> w @ 4> 5===W=

The generic form is usually written

|w @ �. �4{4w . �5{5w . ===. �w> w @ 4> 5> ===W

Both textbooks and regression packages give standard formulas for estimates of the re-
gression coef¿cients�l and standard errors with which you can construct hypothesis tests.

Several important facts about regressions.
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1) The population value of a single regression coef¿cient is10

� @
fry +|> {,

ydu +{,
=

2) The regression recovers the true � (precisely, the estimate of � is unbiased) only if
the error term is uncorrelated with the right hand variables. For example, suppose you run a
regression

sales = �. � advertising expenses + �=

Discounts also help sales, so discounts are part of the error term. If advertising campaigns
happen at the same time as discounts, then the coef¿cient on advertising will pick up the
effects of discounts on sales.

3) In a multiple regression, �4 captures the effect on | of only movements in {4 that are
not correlated with movements in {5. If you run a regression of price of shoes on sales of
right shoes and left shoes, the coef¿cient on right shoes only captures what happens to price
when right shoe sales go up and left shoe sales don’t. I.e., it doesn’t mean much.

28.4 Partitioned matrix inverse formulas

����
�

D e
d3 �

����� @ +�� d3D�4e, mDm

�
D E
F G

��4
@

�
D�4 . D�4EH�4FD�4 �D�4EH�4

�H�4FD�4 H�4

�
H @ G �FD�4E

or, �
D E
F G

��4
@

�
H�4 �H�4EG�4

�G�4FH�4 G�4 .G�4FH�4EG�4

�
H @ D�EG�4F

�f If you forgot why, start with

+| ' kn q%| n "|

multiply both sides by %| 3 . E%|� and take expectations, which gives you

SJ� E%|c +|� ' q�@o E%|� �
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If they are symmetric,�
D E3

E G

��4
@

�
D�4 .D�4E3H�4ED�4 �D�4E3H�4

�H�4ED�4 H�4

�
H @ G�ED�4E3

or, �
D E3

E G

��4
@

�
H�4 �H�4E3G�4

�G�4EH�4 G�4 .G�4EH�4E3G�4

�
H @ D�E3G�4E
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