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Chapter 1. Preface

Asset pricing theory tries to understand and predict the prices or values of claims to uncer-
tain payments. Accounting for the time and risk of prospective payments makes this theory
interesting and challenging. A low price implies a high rate of return, so one can also think
of the theory as explaining why some assets pay higher average returns than others.

If there were no risk, asset pricing would be easy, and would simply consist of discounting
future cashflows using present value formulatincertainty, or corrections for risk make
asset pricing interesting and challenging. The large size of risk corrections in real world asset
markets make asset pricing theory challenging and relevant.

Asset pricing theory shares the positive vs. normative tension present in the rest of eco-
nomics. Does it describe the way the wodaoks work or the way the worlaghould work?
We observe the prices or returns of many assets. We can use the theory positively, to try to
understand why prices or returns are what they are. If the world does not obey a model’s pre-
dictions, we can decide that the model needs improvement. However, we can also decide that
theworld is wrong, that some assets are “mis-priced” and present trading opportunities for
the shrewd investor. This latter use of asset pricing theory accounts for much of its popular-
ity and practical application. Also, and perhaps most importantly, the prices of many assets
or claims to uncertain caglows arenot observed, such as potential public or private invest-
ment projects, nevinancial securities, buyout prospects, and complex derivatives. We can
apply the theory to establish what the prices of these claims should be ashealhswers
are important guides to public and private decisions.

Asset pricing theory all stems from one simple equation, derived ifirgtgpage of Chap-
ter 1 of this book: price equals expected discounted payoff. The rest is elaboration, special
cases, and a closet full of tricks that make the central equation useful for one or another appli-
cation. There are two polar approaches to this elaboration. | will call gisotute pricing
andrdative pricing.

In absolute pricing, we price each asset by reference to its exposure to fundamental
sources of macroeconomic risk. The consumption-based and general equilibrium models
described below are the purest examples of this approach. The absolute approach is most
common in academic settings, in which we use asset pricing theory positively to give an eco-
nomic explanation for why prices are what they are or in order to predict how prices might
change if policy or economic structure changedrdiative pricing, we ask a less ambitious
question. We ask what we can learn about an asset'’s galeethe prices of some other as-
sets. We do not ask where the price of the other set of assets came from, and we use as little
information about fundamental risk factors as possible. Black-Scholes option pricing is the
classic example of this approach. While limited in scope, this approach offers precision in
many applications.

Asset pricing problems are solved by judiciously choosing how much absolute and how
much relative pricing one will do, depending on the assets in question and the purpose of the
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caculation. Almost no problems are solved by the pure extremes. For example, the CAPM

and its successor factor models price assets “relative” to the market or factors, without an-
swering what determines the market or factor risk premia and betas. The latter are treated as
free parameters. On the other end of the spectrum, most preatizatial engineering ques-

tions involve assumptions beyond pure lack of arbitrage, about equilibrium “market prices of
risk”.

The central and dimished task of absolute asset pricing is to understand and measure the
sources of aggregate or macroeconomic risk that drive asset prices. Of course, this is also the
central question of macroeconomics, and this is a particularly exciting time for researchers
who want to answer these fundamental questions in macroeconomiésiance. A lot of
empirical work has documented tantalizing stylized facts and links between macroeconomics
andfinance. For example, expected returns vary across time and across assets in ways that
are linked to macroeconomic variables, or variables that also forecast macroeconomic events
a wide class of models suggests that a “recessionfinaficial distress” factor lies behind
many asset prices. Yet theory lags behing do not yet have a well-described model that
explains these interesting correlations.

This book advocates a discount factor / generalized method of moments view of asset
pricing theory and associated empirical procedures. | summarize asset pricing by two equa-
tions:

bt = E(mt+1$t+1)

my11 = f(data, parameters

wherep, = asset pricer;,, = asset payoffyn;,1 = stochastic discount factor.

The major advantage of the discount factor / moment condition approach are its simplicity
and universality. Where once there were three apparently different theories for stocks, bonds,
and options, now we see each as just special cases of the same theory. The common language
also allows us to use insights from edudid of application in othefields.

This approach also allows us to conveniently separate the step of specifying economic
assumptions of the model (second equation) from the step of deciding which kind of empiri-
cal representation to pursue or understand. For a given model — chofi¢g efwe will see
how thefirst equation can lead to predictions stated in terms of returns, price-dividend ra-
tios, expected return-beta representations, moment conditions, continuous vs. discrete time
implications and so forth. The ability to translate between such representations is also very
helpful in digesting the results of empirical work, which uses a number of apparently distinct
but fundamentally connected representations.

It also turns out to often be much simpler to think in terms of discount factors rather than
portfolios. For example, it is easier to insist that there exists a positive discount factor than
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CHAPTER 1 PREFACE

to check that every possible portfolio that dominates every other portfolio has alarger price,
and the long arguments over the APT stated in terms of portfolios are easy to digest when
stated in terms of discount factors.

For these reasons, the discount factor language is common in academic research and high-
tech practice. It is not yet common in textbooks, and that is the niche that this book tries to
fill.

| also diverge from the usual order of presentation. Most books are structured follow-
ing the history of thought: portfolio theory, mean-variance frontiers, spanning theorems,
CAPM, ICAPM, APT, andfinally consumption-based model. Contingent claims are an es-
oteric extension of option-pricing theory. | go the other way around: contingent claims and
the consumption-based model are the basic and simplest models ;afweiothers are spe-
cializations. Just because they were discovered in the opposite order is no reason to present
them that way.

| also try to unify the treatment of empirical methods. A wide variety of methods are pop-
ular, including time-series and cross-sectional regressions, and methods based on generalized
method of moments (GMM) and maximum likelyhood. However, in the end all of these ap-
parently different approaches do the same thing: they pick free parameters of the model to
make itfit best, which usually means to minimize pricing err@sd they evaluate the model
by a quadratic form in pricing errors.

As with the theory, | do not attempt an encyclopedic compilation of empirical procedures.
As with the theory, the literature on econometric methods contains lots of methods and special
cases (likelyhood ratio ways of doing common Wald teséses with and without riskfree
assets and when factors do and don’t span the mean variance frontier, etc.) that are seldom
used used in practice. | try to focus on the basic ideas and on methods that are actually used
in practice.

The accent in this book is on understanding statements of theory, and working with that
theory to applications, rather than rigorous or general proofs. Also, | skip very lightly over
many parts of asset pricing theory that have faded from current applications, although they
occupied large amounts of the attention in the past. Some examples are portfolio separa-
tion theorems, properties of various distributions, or asymptotic APT. Since my focus is on
the determinants of asset prices, | do not spend much time on portfolio theory either. While
that theory is still interesting and useful theory farding portfolios, it is no longer a corner-
stone of pricing. Rather than use portfolio theonfitad a demand curve for assets, which
intersected with a supply curve gives prices, we now go to prices directly. One cdimthen
optimal portfolios, but it is a side issue.

Again, my organizing principle is that everything can be traced back to specializations of
the basic pricing equatiopn = E(mz). Therefore, after reading tHirst chapter, one can
pretty much skip around and read topics in as much depth or order as one likes. Each major
subject always starts back at the same pricing equation.

The target audience for this book is economicsfamahce Ph.D. students, advanced MBA
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students or professionals with similar background. 1 hope the book will also be useful to
fellow researchers and finance professionals, by clarifying, relating and simplifying the set of
toolswe haveall learned in ahodgepodge manner. | presume some exposureto undergraduate
economics and statistics. A reader should have seen a utility function, a random variable, a
standard error, and a time series before, should have some basic calculus and should have
solved a maximum problem by setting derivatives to zero. The hurdles in asset pricing are
really conceptual rather than mathematical.
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Chapter 2. Consumption-based model
and overview

21 Basic pricing equation

We derive the basic consumption-based model,

Py = Ey {ﬁuu(,c(tc—:)l)mtﬂ} .

Our basic objective is tfigure out the value of any stream of uncertain ciss. We
start with an apparently simple case, which turns out to capture very general situations.

Let usfind the value at time of a payoff x;,,. For example, if one buys a stock today,
the payoff next period is the stock price plus dividend,, = pi+1 +di41. 141 IS arandom
variable: an investor does not know exactly how much he will get from his investment, but he
can assess the probability of various possible outcomes. Don't confupaythf€ =, with
the profit or return; x;1 1 is the value of the investment at time- 1, without subtracting or
dividing by the cost of the investment.

Wefind the value of this payoff by asking what it is worth to a typical investor. To do this,
we need a convenient mathematical formalism to capture what an investor wants. We model
investors by aitility function defined over current and future values of consumption,

Ulet, cr1) = ulee) + BE [ulcrtr)] -
We will often use a convenient power utility form,

1
1_70%_7 v#1; u(e) =Ilne y=1.

u(ey) =
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

This formalism captures investors’ impatience and their aversion to risk. Therefore, we
will be able to quantitatively correct for the risk and delay of cistvs. The utility function
captures the fundamental desire for meoasumption, rather than posit a desire for interme-
diate objectives such as means and variance of portfolio returns. Consumptias also
random the investor does not know his wealth tomorrow, and hence how much he will decide
to consume. The period utility function(-) is increasing, recting a desire for more con-
sumption, and concave,ftecting the declining marginal value of additional consumption.
The last bite is never as satisfying as first. More importantly, the curvature of the util-
ity function also generates aversion to risk and to intertemporal substitution: The consumer
prefers a consumption stream that is steady over time and across states of nature. Discounting
the future bys captures impatience, antlis called thesubjective discount factor.

Now, assume that the investor can freely buy or sell as much of the payafeis he
wishes, at a price;. How much will he buy or sell? Téind the answer, denote lythe
original consumption level (if the investor bought none of the asset), and dengtehiey
amount of the asset he chooses to buy. Then, his problem is,

I?gx u(er) + EyBulciyr) st

e = e —pi€
Ct+1 = €1+ Te1§
Substituting the constraints into the objective, and setting the derivative with respgct to

equal to zero, we obtain thést-order condition for an optimal consumption and portfolio
choice,

e () = By [Bu (cr11) e 41] 1)
or,
pe = Ey {ﬁu;f,c(t;)l)mtﬂ} . (2

The consumer buys more or less of the asset untiffitsisorder condition holds.

Equation (1) expresses the standard marginal condition for an optimtitn;) is the loss
in utility if the consumer buys another unit of the assBt [u’(ci+1)2:+1] IS the increase
in (discounted, expected) utility obtained from the payoff corresponding to an additional unit
of the asset at + 1. The consumer continues to buy or sell the asset until the marginal loss
equals the marginal gain.

Equation (2) ighe central asset-pricing formula. Given the payeff ; and given the in-
vestor's consumption choieg, ¢, 1, it tells you what market pricg; to expect. Its economic
content is simply théirst order conditions for optimal consumption and portfolio formation.
Most of the theory of asset pricing just consists of specializations and manipulations of this
formula.
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SECTION 2.2 MARGINAL RATE OF SUBSTITUTION/STOCHASTIC DISCOUNT FACTOR

Notice that we have stopped short of a complete solution to the model, i.e. an expression
with exogenousitems on the right hand side. We relate one endogenous variable, price, to two
other endogenous variables, consumption and payoffs. One can continue to solve this model
and derive the optimal consumption choice ¢;, ¢, in terms of the givens of the model. In
this case, those givens areinitial wealth, the income sequence e;, e;1 and a specification of
the full set of assets that the consumer may buy and sell. We will in fact study such fuller
solutions below. However, for many purposes one can stop short of specifying (possibly
wrongly) all this extra structure, and obtain very useful predictions about asset prices from
(2), even though consumption is an endogenous variable.

2.2 Marginal rate of substitution/stochastic discount factor

We break up the basic consumption-based pricing equation into
p = E(mx)

_ ' (ey1)
"= e

wherem,, is thestochastic discount factor.

A convenient way to break up the basic pricing equation (2) is fondehestochastic
discount factor m;

_ L (cy1)
mt+1 — 6 u/(Ct) (3)
Then, the basic pricing formula (2) can simply be expressed as
Pt = Ey(mep12e41). (4)

When it isn't necessary to be explicit about time subscripts, I'll suppress them and just
write p = E(mx). The price always comes stthe payoff at + 1, and the expectation is
conditional on time information.

The termstochastic discount factor refers to the wayn generalizes standard discount
factor ideas. If there is no uncertainty, we can express prices via the standard present value
formula

1
Dt = R Tit1 (5)

where R/ is the risk-free rate.1/R/ is thediscount factor. Since gross interest rates are
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

typically greater than one, the payaff,; sells “at a discount.” Riskier assets have lower
prices than equivalent risk-free assets, so they are often valued by using risk-adjusted discount
factors,

pé = ﬁEt(xi+1)'

Here, | have added thesuperscript to emphasize that each risky assatst be discounted
by an asset-spefi risk-adjusted discount factay R¢.

In this context, equation (4) is obviously a generalization, and it says something deep:
one can incorporate all risk-corrections byfidag asingle stochastic discount factor — the
same one for each asset — and putting it inside the expectatign.is stochastic or random
because it is not known with certainty at timeAs we will see, the correlation between the
random components of andz? generate asset-spécirisk corrections.

mq4+1 IS also often called themarginal rate of substitution after (3). In that equation,
my41 IS the rate at which the investor is willing to substitute consumption at tiré for
consumption at time. m;. 1is sometimes also called tipeicing kernel. If you know what a
kernel is and express the expectation as an integral, you can see where the name comes from.
It is sometimes called ehange of measure or a state-price densityfor reasons that we will
see below.

For the moment, introducing the discount factor m and breaking the basic pricing equa-
tion (2) into (3) and (4) is just a notational convenience. As we will see, however, it represents
a much deeper and more useful separation. For example, notige-that(mz) would still
be valid if we changed the utility function, but we would have a different function connecting
m to data. This turns out to be quite generally trpe= E(ma) is a convenient accounting
identity with almost no contentAll asset pricing models amount to alternative models con-
necting the stochastic discount factor to data. Therefore, we can conveniently break up our
vision of asset pricing into different expressiongof E(maz) and the effects of different
models connectingn to data.

2.3 Prices, payoffs and notation

Theprice p, gives rights to gayoff z,,;. In practice, this notation covers a variety of
cases, including the following:

18



SECTION 2.3 PRICES, PAYOFFS AND NOTATION

Pricept PayOff Tiq1
Stock Dt Di1 +dig1
Return 1 Ry
Price-dividend ratio| 2t (5—’;4& + 1) den
Excessreturng 0 R¢,y =R, — Rl
Managed portfolio 2 z2e Ryt
Moment condition| E(p;z;) Tgr12
One-period bond  p; 1
Risk free rate 1 R/
Option C max (St — K,0)

The pricep, and payoffz,; seem like a very restrictive kind of security. In fact, this
notation is quite general and allows us easily to accommodate many different asset pricing
questions. In particular, we can cover stocks, bonds and options and make clear that there is
one theory for all asset pricing.

For stocks, the one period payoff is of course the next price plus dividend,= p;11 +
di+1. We frequently divide the payoff; ., by the pricep, to obtain agrossreturn

_ Tt41
Ry =

Pt

A return is a payoff with price one. If you pay one dollar today, the return is how many
dollars (units of consumption) you get tomorrow. Thus, returns obey

1= E(mR)

which is by far the most important special case of the basic formetal’(ma). Confusing
payoffs and returns is a common mistake. You “lose money” if the payoff is less than the
price, but the payoff is still positive.

| use capital letters to denotgoss returns R, which have a numerical value like 1.05.
| use lowercase letters to denatet returnsr = R — 1 or log (continuously compounded)
returnsin(R), both of which have numerical values like 0.05. One may also qoestent
returns100 x r. Prices, payoffs, returns etc. may all be real—denominated in consumption
goods—or nominal—denominated in dollars.

Returns are often used in empirical work because they are stationary (in the statistical
sense, not constant) over time. However, thinking in terms of returns takes us away from
the central task ofinding asseprices. Dividing by dividends and creating a payaff,; =
(1 + pyy1/dis1) dis1/dy corresponding to a pricg /d, is a way to look at prices but still to
examine stationary variables.

Not everything can be reduced to a return, however. If you borrow a dollar at the interest
rate R and invest it in an asset with retuf®, you pay no money out-of-pocket today, and
get the payoffR — Rf. This is a payoff with azero price. Zero price does not imply zero
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

payoff, just an “even bet” that is not worth paying extra to take. It is common to study equity
strategies in which one short sells one stock or portfolio and invests the proceeds in another
stock or portfolio, generating an excess return. | denote any such difference between returns
as arexcessreturn, R¢. It is also called aero-cost portfolioor a selffinancing portfolio

In fact, much asset pricing focuses on excess returns. Our economic understanding of
interest rate variation turns out to have little to do with our understanding of risk premia, so
it is convenient to separate the two exercises by looking at interest rates and excess returns
separately.

We also want to think about the managed portfoligsin which one invests more or less
in an asset according to some signal. The “price” of such a strategy is the amount invested
at timet, sayz;, and the payoff is; R,,. For example a market timing strategy might put
a weight in stocks proportional to the price-dividend ratio, investing less when prices are
higher. We could represent such a strategy as a payoff usirga — b(p;/d;)

When we think about conditioning information below, we will think of objects kkas
instruments. Then we take an unconditional expectatiopgf = E;(m112:11)2:, yielding
E(piz) = E(my412e412). We can think of this operation as creating a “security” with
payoffx; 1241, and “price” E(p, z;) represented with unconditional expectations.

A one period bond is of course a claim to a unit payoff. Bonds, options, investment
projects are all examples in which it is often more useful to think of prices and payoffs rather
than returns.

To accommodate all these cases, we will simply use the notationgprécel payofir, ;.
These symbols can dendigl, or z, and R, r;41, Of 2, R, 1 respectively, according to the
case. Lots of other dmitions ofp andx are useful as well.

2.4 Intuition, implications, and classic issuesin finance

I use simple manipulations of the basic pricing equation to introduce classic issues in
finance: the economics of interest rates, risk adjustments, the mean-variance frontier, the
slope of the mean-variance frontier, a beta representation for expected returns, and time-
varying expected returns.

Risk-corrections are driven by covariance of payoffs with the stochastic discount factor.
Prices are driven down and returns up for assets that make consumption more volatile.

Afew simple rearrangements and manipulations of the basic pricing equatiafi(mz)
give a lot of intuition and introduce some classic issudénance, including determinants of
the interest rate, risk corrections, idiosyncratic vs. systematic risk, beta pricing models, and
mean variance frontiers.
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SECTION 2.4 INTUITION, IMPLICATIONS, AND CLASSIC ISSUES IN FINANCE

24.1 Risk freerate.

Therisk free rateis given by
R =1/E(m). (6)
Therisk free rate is known ahead of time, so p = F(ma) becomes 1 = Et(thRfH) =
Ey(mys1)RL, .
If arisk free security isnot traded, we can define R/ = 1/ E(m) asthe “shadow” risk-free

rate. (In some models it is called the “zero-beta” rate.) If one introduced a risk free security
with returnR/ = 1/E(m), consumers would be just indifferent to buying or selling it.

To think about the economics behind interest rates, consider the consumption-based dis-
count factor model with power utility’(c) = ¢, and assume that consumption growth is
lognormally distributed. Then, the riskfree rate equation becomes

2
rl =6 +yE,Alnciyq — %U‘% (Alncpyq) @)

where | have déned the log riskfree rate’ and subjective discount rafeby
7{ = In R{
o= e
andA denotes thérst difference operator,

Alne; =Ine; —Ineq.

To derive expression (7) for the riskfree rate, start with
3 (ct+1 ) _W] .
Ct

E () = Pe1+40%(9)

R/ =1/E,

Using the fact that normal means
We have
R{ — 1/ |:e§e'yEtA1n ct+1+:2&o?A1n ct+1:| )

and then take logarithms.

Looking at (7), interest rates are high when impatiefiég high. If everyone wants to
consume now, it takes a high interest rate to convince them to save.
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CHAPTER 2 CONSUMPTION-BASED MODEL AND OVERVIEW

Interest rates are high when consumptpowth is high. In times of high interest rates,
it pays investors to consume less now, invest more, and consume more in the future. Thus,
high interest rates lower thevel of consumption while raising its growth rate. The power
parametery is the inverse of thelasticity of intertemporal substitution. For high~, people
are less willing to rearrange consumption over time in response to interest rate incentives.
Such consumers are also less willing to rearrange consumption over states of witure
this utility function~ controls risk aversion as well as intertemporal substitution.

Finally, thes? term capturegrecautionary savings. When consumption is more volatile,
people with this utility function are more worried about the low consumption states than they
are pleased by the high consumption states. Therefore, people want to save more, driving
down interest rates.

24.2 Risk corrections.

Using the dénition of covarianceov(m, x) = E(max) — E(m)E(z), we can write equation
(2) as

p = E(m)E(x) + cov(m, x). (8)
Substituting the riskfree rate equation (6), we obtain

E(x)
= RF + cov(m, x) 9)

Thefirst term is the standard discounted present value formula. This is the asset’s price
in a risk-neutral world — if consumption is constant or if utility is linear. The second term is
arisk adjustment. An asset whose payoff covaries positively with the discount factor has its
price raised and vice-versa.

To understand the risk adjustment, substitute backs:fan terms of consumption, to
obtain

E(x) | cov[Bu'(cti1), Tet]
"F T w(c) (10)

Marginal utility «’(c) declines ag rises. Thus, an asset’s price is lowered if its payoff co-
varies positively with consumption. Conversely, an asset’s price is raised if it covaries nega-
tively with consumption.

Why? Investors do not like uncertainty about consumption. If you buy an asset whose
payoff covaries positively with consumption, one that pays off well when you are already
feeling wealthy and pays off badly when you are already feeling poor, that asset will make
your consumption stream more volatile. You will require a low price or a good average return
to induce you to buy such an asset. If you buy an asset whose payoff covaries negatively with
consumption, it helps to smooth consumption and so is more valuable than its expected payoff
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might indicate.

Insurance is an extreme example of the latter effect. Insurance pays off exactly when
wealth and consumption is low for other reasons-you get a check when your house burns
down. For this reason, you are happy to hold insurance, even though you expect to lose
money—even though the price of insurance is greater than its expected payoff discounted at
the risk free rate.

243 Risk correctionsto expected returns.

We use returns so often that it is worth restating the same intuition in terms of returns. Start
with the basic pricing equation for returns,

1= E(mR).

Apply the covariance decomposition,

1 = E(m)E(R) + cov(m, R) (11)
_ 1 cov(m, R)
)= By~ Em
B(R) = R — ool (Ctir), R )

Elu'(c41)]

All assets have an expected return equal to the risk-free rate, plus a risk adjustment. Assets
whose returns covary positively with consumption make consumption more volatile, and so
must promise higher expected returns to induce investors to hold them. Conversely, assets
that covary negatively with consumption, such as insurance, can offer expected rates of return
that are lower than the risk-free rate, or even negative (net) expected returns.

Much of finance focuses on expected returns. We think of expected returns increasing
or decreasing to clear marketse offer intuition that “riskier” securities must offer higher
expected returns to get investors to hold them, rather than saying “riskier” securities trade
for lower prices so that investors will hold them. Of course, a low price for a given payoff
corresponds to a high expected return, so this is no more than a different language for the
same phenomenon.

24.4  ldiosyncraticrisk doesnot affect prices.

You might think that an asset with a high payoff variance is “risky” and thus should have a
large risk correction. However, if the payoff is uncorrelated with the discount factdhe
asset receiva® risk-correction to its price, and pays an expected return equal to the risk-free
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rate! In equations, if
cov(m,z) =0

then
E(x)
RI
This prediction holds even if the payaffis highly volatile and investors are highly risk

averse. The reason is simple: if you buy a little bit of such an asset, it Hastrorder effect
on the variance of your consumption stream.

Another way of saying the same thing is that one gets no compensation or risk adjustment
for holding idiosyncratic risk. Only systematic risk generates a risk correction. To give
meaning to these words, we can decompose any payoffo a part correlated with the
discount factor and an idiosyncratic part uncorrelated with the discount factor by running a
regression,

x = proj(z|m) +e.
The price ofz is the same as the price of its projectionrenand the residual has zero price:

ple) = E(me)=0
p(z) = E(mz) = E[m (proj(z|m) + €)] = Elm proj(z|m)]

(I use projection to mean linear regression,

E(m2)

proj(zlm) = m.

You can verify thatE'(me) = 0 follows from this déinition.) The projection ofc on m is

of course that part af which is perfectly correlated with. Theidiosyncratic component
of any payoff is that part uncorrelated with. Thus only the systematigart of a payoff
accounts for its price.

245  Expected return-beta representation.

We can rewrite equation (14) as

B =)+ () ()

or
E(R") = R' + B, ;nAm
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E(R)

Mean-variance frontier

Rf

° <A—> Some asset returns

o(R)

Figure 1. Mean-variance frontier. The mean and standard deviation of all assets priced by
a discount factom must line in the wedge-shaped region

whereg,,,, is the regression coéient of the return?’ onm. This is thefirst instance of a
beta pricing model, which we will look at in more detail below. It says that expected returns
on assets = 1,2,...N should be proportional to their betas in a regression of returns on
the discount factor. Notice that the cieient \,,, is the same for all assetgvhile the 3, ,,,
varies from asset to asset. Thg is often interpreted as thice of G risk and thes as the
quantity of risk in each asset.

Obviously, there is nothing deep about saying that expected returns are proportional to
betas rather than to covariances. There is a long historical tradition and some minor conve-
nience in favor of betas. The betas of course refer to the projectiBroofm that we studied
above, so you see again how only the systematic component of risk matters.

2.4.6 M ean-variance frontier

Asset pricing theory has focused a lot on the means and variances of asset returns. Interest-
ingly, the set of means and variances of returns is limited. All assets priced by the discount
factorm must obey
. o(m) ,

E(RY) — Rf| < =——%0(RY). 13

|E(RY) |*E(m)0( ) (13)
Means and variances of asset returns therefore must lie in the wedge-shaped region illustrated
in Figure 1.
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To derive (13) write for a given asset retuRi
1 = E(mR') = E(m)E(R") + pm:RLU(Ri)U(m)
and hence

o(m)

E(R') =R - TS

a(RY). (14)

Correlation codicients can't be greater than one in magnitude, leading to (13).

The boundary of the mean-variance region in which assets can lie is calleceshe
variance frontier It answers a naturally interesting question, “how much mean return can
you get for a given level of variance?” It also plays a central role in asset pricing, which we’ll
see below.

All returns on the frontier are perfectly correlated with the discount factor: the frontier is
generated pr,n, gri| = 1. Returns on the upper part of the frontier are perfectly negatively
correlated with the discount factor and hence positively correlated with consumption. They
are “maximally risky” and thus get the highest expected returns. Returns on the lower part
of the frontier are perfectly positively correlated with the discount factor and hence perfectly
negatively with consumption. They thus provide the best insurance against consumption
fluctuations.

All frontier returns are also perfectly correlated with each other, since they are all perfectly
correlated with the discount factor. This implies that we gaan or synthesize any frontier
return from two such returns. For example if you pick any single frontier reftrthen all
frontier returnsR™* must be expressible as

R™ =R/ +a(R™—R))

for some numbet:.

Since each point on the mean-variance frontier is perfectly correlated with the discount
factor, we must be able to pick constant$, d, e such that

m = a+0bR™
R™ = d+em.

Thus,any mean-variance eficient return(except theriskfreerate) carries all pricing informa-

tion. Given amean-variance dicient return, we cafind a discount factor that prices all assets
and vice versa. Given a discount factor, we can construct a single-beta representdion, so
pected returns can be described in a single - beta representation using any mean-variance
efficient return(except the riskfree rate),

E(R") = R + B; ., [E(R™) — R'].
The essence of the 3 pricing model isthat, even though the means and standard deviations
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of returns fill out the space inside the mean-variance frontier, a graph of mean returns versus
betas should yield a straight line.

We can plot the decomposition in point 4 above of any return into a “priced part” and
an residual as shown in Figure 1. The priced part is perfectly correlated with the discount
factor, and hence perfectly correlated with any frontier asset. The residual part generates no
expected return, and is uncorrelated with the discount factor or any frontier asset. For the
latter reason, it is often referred to as thmsyncratic component of risk.

247  Sope of the mean-standard deviation frontier.

The slope of the mean-standard deviation frontier is naturally interesting. It answers “how
much more mean return can | get by shouldering a bit more variance?RH_denote the
return of a portfolio on the frontier. From equation (13), the slope of the frontier is

E(RP) — Rf|  o(m)
o(RP) N
Thus, the slope of the frontier, also known as fnise of risk or maximalSharpe ratio is
governed by the volatility of the discount factor.
For an economic interpretation, again consider the power utility functidn) = ¢=7,

'E(Ri) ~ RS ' _ olletrr/ed) ] (15)

o(RY) E [(cm /ct)—ﬂ '

The standard deviation is large if consumption is volatile oy i§ large. We can state this
approximation again using the lognormal assumption. If consumption growth is lognormal,

iy _ RS
'%' = Ve (Ale) —1 ~q0(Alne).
Reading the equatiothe slope of the mean-standard deviation frontier is higher if the econ-
omy is riskier — if consumption is more volatile — or if consumers are more risk avéotie.
situations naturally make consumers more reluctant to take on the extrarisk of holding risky
assets. We will come back to this slopein detail in the Hansen-Jagannathan bound and equity
premium discussion below.

248 Time-varying expected returns and random walks.

Since al the moments above can be conditional and can vary as conditioning information
varies, we can talk about variation of prices and returns over time as well as across assets.
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1 = Ey(myy1Rey1) implies

Rit1)
E(R _Rf_ covy(Myy1, Reqr 16
t(Re1) = Ry A (16)

Expected excess returns were once thought to be constant over time. This idea makes
intuitive sense and is still thought to hold quite well for short time horizons. A high return
(or other news) today shouldn't signal a high return tomorrow, or mechanical strategies could
make a lot of money.

Examining equation (16), however, we see that expected returns can be predictable—
expected returns can vary over time. However, such predictability has to be explained by
changing mean consumption growth, changing conditional covariance of return with con-
sumption growth, or changing risk aversion (the function relating consumption to the discount
factor). Matching the observed predictability of returns with these economic determinants is
an empirical challenge, which we take up below.

The constant expected return idea is often expressed as “prices follow a random walk.”
(A randomwalk is a proces®; = p;_1 + ;. Itis a special case of martingale which has
the propertyp; = E;(pt+1).) Going back to the basitrst order condition, or just multiply
the now familiar consumption-based pricing equation:ty:),

peu’(cr) = E[Bu (coy1) (Pt + deyr)].

Prices adjusted for dividend payments and scaled by udétfollow a martingale. Actual
prices do not follow a martingale when something interesting is happening #theerms.

249 Present value statement.

It is convenient to use only the two period valuation, thinking of a pricand a payoff

x411. But there are times when we want to relate price to the entire ftashstream. To

do this, either maximize the entire expected utilify  ; #u(ce ;) by purchasing a stream
{d:+;} at pricepy, or just chain together the two period formpla= E; [m11(piy1+dis1)]

(plus the “transversality conditionim;_, . Eym+;pi+; = 0, which we will discuss in a lot

of detail below), to express price as a stochastically discounted present value of the entire
dividend stream,

W/ (ces;)

[ee) / [ee)

. C .

Pt = By Z Jog ﬁdt+j =B Z mt,t+jdt+j- (17)
j=0 g j=0

Remembereverything derived in this section just comes from manipulation of the con-

sumer’sfirst order condition for purchase of an asset. We have just rewritten finstserder
conditions in a lot of interesting ways.
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Chapter 3. Discount factorsin
continuoustime

Continuous time anal ogies to the basic pricing equations.

Discrete Continuous

pe = Ey Z;io 5t%§Dt+j pe/ (c) = By 25 €7/ (coqs) Dy sds
mi41 = 6#2“1&/0(21)1 At = e_‘stu’(ct)

p = E(mx) 0= AD dt + E,[d(Ap)]

E(R) = Rf — Rfcov(m,R) | E, (%) + % dt =rldt — E, [%Qpﬂ}

It is often convenient to express asset pricing ideas in the language of continuous time
stochastic differential equations rather than discrete time stochastic difference equations as
| have done so far. The appendix contains a brief introduction to continuous time processes
that covers what you need to know for this book. Even if one wants to end up with adiscrete
time representation, manipulations are often easier in continuous time.

First, we need to think about how to model securities, in place of price p; and one-period
payoff z;1 1. Let a generic security have prige at any moment in time, and let it pay
dividends at the rat®,dt. (I will continue to denote functions of time ag rather tharp(¢)
to maintain continuity with the discrete-time treatment, and | will drop the time subscripts
where they are obvious, e.@p in place ofdp,. In an intervaldt, the security pays dividends
D,dt. | use capitalD for dividends to distinguish them from the differential operatdr

The instantaneous total return is

dpe | Di
Y43 Dt

dt.

Risky securities will in general have price processes that follow diffusions, for example

d
Pt _ j()dt + o(-)de.
Y43

(I will reservedz for increments to a standard Brownian motion, e,g.a —z ~ N (0, A). |
use the notatioft) to indicate that the drift and diffusions can be functions of state variables.)

We can think of a riskfree security as one that has a constant price equal to one and pays
the riskfree rate as a dividend,

p=1; D, =r], (18)
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or as a security that pays no dividend but whose price climbs deterministically at arate

e _ S, (19)
Dt

Next, we need to express the first order conditionsin continuoustime. The utility function
is
Ey / e_‘stu(ct)dt
t=0

Suppose the consumer can buy a security whose priceis p; and that pays a dividend stream
D,. Then, the first order condition for buying the security at ¢t and sellingitatt + A is

A

ptu/(ct) = Ef/ 675Su/(ct+S)Dt+Sds + Et [eiéAul(Ctﬁ_A)thrA]
s=0

Right away, this first order condition gives us the infinite period version of the basic
pricing equation,
ptu/(ct) = Et/ eiésu'(ct_,_S)Dt_,_Sds
s=0
This equation is an obvious continuous time anal ogue to

oo

_ tul(ctﬂ')
Py = Ey ;5 WDt+j

It turns out that dividing by «’(c;) is not a good idea in continuous time, since the ratio
W (cen) /v (c) isn't well behaved for small time intervals. Instead, we keep track of the
level of marginal utility. Therefore, dine the discount factor in continuous time as

Ay = e (¢).

Then we can write thérst order condition as

At
Pl = Et/ Mg sDigsds + Ey [Ary atpisad)
s=0

The analogue tp = E(mx) is
0= AD dt+ E; [d(Ap)]. (20)
Let’s derive this fundamental equation. “One period” must m&an continuous time. Thus,
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for At small,
ey = BNy DAt + Ey [Aiy AcPeyad] (21)
Introduce differences by
ey = Ay DAt + Ey [Aypy + (Msyaepeyne — Mepye)) (22)
canceling p; A, and using the notation Ax = x4 A — 24,
0= AN DAt + Ey [A(Aepy)]
Taking the obvious limit at At — 0,
0= A Dydt + Ey [d(Aepy)]

or, dropping time subscripts, (20)

Equation (20) looks different than p = E(ma) because thereis no price on the left hand
side; we are used to thinking of the one period pricing equation as determining price at ¢ given
other things, including possibly priceat ¢t + 1. But price at ¢ isreally here, or course, as you
can seefrom equation (21) or (22). Itisjust easier to expressthe differencein price over time.

The object d(Ap) also looks abit mysterious. Itisn't: it is just the change (increment) in
marginal utility weighted price. Since we will write down price processegdf@and discount
factor processes fafA, it is often convenient to break up this term using Ito’s lemma:

d(Ap) = pdA + Adp + dpdA.
(If keeping the second order terms is still mysterious, go back to discrete time in equation 22.

ANesaepeon — Mipr = pe(Aegn — Ar) + Ae(Peaar — pe) + (Mg ae — M) (Perae — pr).

Now you see where thépdA came from.) Using this expansion in the basic equation (20),
and dividing bypA to make it pretty, we obtain an equivalent, slightly less compact but
slightly more intuitive version,

D AN dp dAd
O==dt+E |—+L4 2281

23
P A p Ap 23)

(This formula only works when both andp can never be zero. That is often enough the case

that this formula is useful. If not, multiply through byandp and keep them in numerators.)
Applying the basic pricing equations (20) or (23) to a riskfree raténdd as (18) or (19),

we obtain

dA
’I"ifdt = *EtT
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This equation is the obvious continuous time equivalent to
1
f = =
Rf E, (mt+1)
If ariskfreerate is not traded, we can define a shadow riskfree rate or zero-beta rate by

Oétdt = *Et% .

With this interpretation, (23) can be rearranged as
E, (@> WDt B, [%%] . (24)
Pt Pt A: pe

This is the obvious continuous-time analogue to
E(R) = R" — R’cov(m, R).

The last term in 24 is the covariance of the return with the discount factor or marginal utility.

Ito’s lemma makes many transformations simple in continuous time. For example, the
transformation between consumption itself and the discount factor is easy in continuous time.
With A; = e~/ (c;) we have

1
dA; = —6e %%/ (¢y)dt + et (¢, )de, + §e*5tu’”(ct)dcf

e gy ale) dee | 1 (e) A
Ay u'(er) o 2 W(e) o
The quantity
B et (¢t)
u/(ct)

is known as theéocal curvature of the utility function. It is also called the locabefficient

of risk aversion. | prefer not to use this term: in a dynamic model the fioefnt of risk
aversion is really aversion to wealth bets, measured by the second partial derivative of the
value function. Only in certain very restrictive cases is the value function curvature the same
as the utility function curvature. This quantity is equal to the power in the power utility model
w'(c) =c .

Using this formula we can quicklfind the riskfree interest rate in terms of consumption

growth,
dA de 1 Eu" (cy) dc?
Jdt = B, (=) =6dt + 7B, [ — ) — s~ B, (= ).
"t t(At) bdt + By c 2 W) T\
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We see the same economics at work as with the discrete time representation: interest rates are

higher when consumers are more impatient (6).Interest rates are higher if expected consump-

tion growth is highei, (de;/c:), and interest rates are more sensitive to consumption growth

if utility curvature is highery. Reading the same terms backwards, consumption growth is
higher when interest rates are higher, since people save more now and spend it in the future,
and consumption is less sensitive to interest rates as the desire for a smooth consumption
stream, captured by, rises. In this role; plays the role of théntertemporal substitution
eladticity. Thefinal term is aprecautionary savings term. If consumption is more volatile,
consumers would like to “save for a rainy day”, driving interest rates down.

We can also express asset prices in terms of consumption risk rather than discount factor
risk. From the basic pricing equation

d D dey d
E, <ﬂ> + 2t dt —rfdt =~E, [ﬁﬁ} .
Y2 Y43 Ct Pt

Thus, assets whose returns covary more strongly with consumption get higher mean returns,
and the constant relating covariance to mean return is the utility curvatufecergf(coefi-
cient of risk aversiony.

31 Assumptions and applicability
In deriving the basic pricing equation (2),

= e

we havenot assumed complete markets or a representative investor. This equation applies
to each individual investor, for each asset to which he has access, independently of the pres-
ence or absence of other investors or other assets. Complete markets/representative agent
assumptions are used if one wants to use aggregate consumption@&ta)iror other spe-
cializations and simpiications of the model.

We havenot said anything about payoff or return distributions, multivariate normality,
the form of the utility function etc. This basic pricing equation should also holdarfgr
asset, stock, bond, option, real investment opportunity, etc. Such assumptions can be added
for some special cases, but they aren'’t here yet. In particular, it is often thought that mean-
variance analysis and beta pricing models require this kind of limiting assumptions, but that
is not the case here. A mean-variandecednt return carries all pricing information no matter
what the distribution of payoffs, utility function, etc.

This is not a “two-period model.” The fundamental pricing equation holds for any two
periods of a multi-period model. Investors can live forever. For example, we can start with
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the utility function

Ey Z ﬁtu(ct)~ (29)
t=0

The basic pricing equation is till the first order condition for buying an asset p, with payoff
x¢11. Inamultiperiod context it is more important to distinguish conditional from uncondi-
tional moments. Equation (17) results directly from finst order condition for paying; to
receive{d;, d;11...}.

I have written things down in terms of a time- and state-separable utility function as in
(25), and | have extensively used the convenient power utility example. Nothing important
lies in either choice. Just replaa ;) the partial derivative of a general utility function with
respect to consumption at timeWe will look at several examples below.

We donot assume that investors have no non-marketable human capital, or no outside
sources of income. THerst order conditions for purchase of an asset relative to consumption
hold no matter what else is in the budget constraint. By contrast, the portfolio approach to
asset pricing as in the CAPM and ICAPM relies heavily on the assumption that the investor
has no non-asset income, and we will study these special cases below.

We don't even really need the assumption (yet) that the market is “in equilibrium,” that
consumer has bought all of the asset that he wants to, or even that he can buy the asset at alll.
We can interpret the formula as giving us the value, or willingness to pay for, a small amount
of a payoffz,,; that the consumer does not yet have. Here's why: If the investor had a little
& more of the payoff;,, timet + 1, his utility «(c;) + GE;u(ci41) would increase by

BE,; [u(ci1 + Exip1) — ulcyr)] = BEy [0/ (cpp1)veg1€ + %“U(Ctﬂ) (@11 + ..

If ¢ is small, only thefirst term on the right matters. If the investor has to give up a small
amount of money, £ at timet, that loss lowers his utility by

1 2
u(c; — &) = u'(c)pe€ + auﬂ(ct) (Pef)”
Again, for small¢, only thefirst term matters. Therefore, in order to receive the small amount
&x441, the consumer is willing to pay the small amoupg where

vy = B {ﬁuu(,c(tc—:)l)act-i-l] .

If this private valuation is higher than the market vajyeand if the consumer can buy
some more of the asset, he will. As he buys more, his consumption will chingé be
higher in states where;,  is higher, driving down./(c;+1) in those states, until the value
to the investor has declined to equal the market value. Tdftes, an investor has reached
his optimal portfolio, themarket value should obey the basic pricing equation as well, using
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post-trade or equilibrium consumption. But the formula can also be applied to generate
the marginalprivate valuation, using pre-trade consumption, or to valymtential, not yet
traded security.

We have calculated the value of a “small” or marginal portfolio change for the investor.
For some investment projects, an investor cannot take a small position. Then the value of
a project not already takelEZg?ju(ctﬂ- + x44;) might be substantially different from
its marginal counterparfy Y 3’ u’(ci4;)x4;. Once taken of course;; + x.4; becomes
ct+5, SO the marginal valuation still applies to the ex-post consumption stream.

3.2 Consumption-based model in practice

The consumption-based model is, in principle, a complete answer to all asset pricing
questions, but works poorly in practice. This observation motivates other asset pricing mod-
els.

The model we have sketched so far can, in principle, give a compete answer to all the
questions of the theory of valuation. It can be applieghpsecurity—bonds, stocks, options,
futures, etc.—or to any uncertain ca8bw. All we need is a functional form for utility,
numerical values for the parameters, and a statistical model for the conditional distribution of
consumption.

To be spedic, consider the power utility function

u'(c) =c. (26)

3 Ct+1 - e

¢ t+1
Taking unconditional expectations and applying the covariance decomposition, expected ex-
cess returns should follow

Then, excess returns should obey

0=FE, 27)

-
Ct41
con(42) 7 ]

#lC)”

Given a value fory, and data on consumption and returns, one can easily estimate the mean
and covariance on the right hand side, and check whether actual expected returns are, in fact,
in accordance with the formula.

E(R;.,) = - (29)
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Similarly, the present value formulais
—ES g (), 29
Y43 tZﬂ c t+7- ( )

j=1

Given data on consumption and dividends or another stream of payoffs, we can estimate the
right hand side and check it against prices on the | ft.

Bonds and options do not require separate val uation theories. For example, an N-period
pure discount default-free bond is a claim to one dollar at tisreV. Its price should be

c 1
pt = B (51\[ <—t+N> ! 1)
Ct 1 P
wherell = price level ($/good). A European option is a claimtex (S, — K, 0), where
S+ = stock price at time + T, K = strike price. The option price should be

BT <Ct+T ) - 1
—_— max(Sirr — K, 0)

Ct

pt = E

again, we can use data on consumption, prices and payoffs to check these predictions.

Unfortunately, the above spdcation of the consumption-based model does not work
very well. To give aflavor of some of the problems, Figure 2 presents the mean return on
the ten size-ranked portfolios of NYSE stocks vs. the predictions (right hand side of 2) of
the consumption-based model. | picked the parameter make the picture look as good
as possible (The section on GMM estimation below goes into detail on how to do this.) As
you can see, the model isn't hopeless—there is some correlation between mean returns and
predictions. But the model does not do very well. The pricing error (actual expected return -
predicted expected return) for each portfolio is of the same order of magnitude as the spread
in expected returns across the portfolios.

3.3 Alternative asset pricing models. Overview

I motivate exploration of different utility functions, general equilibrium models, and linear
factor models such as the CAPM, APT and ICAPM as approaches to circumvent the empirical
difficulties of the consumption-based model.

The poor empirical performance of the consumption-based model motivates a search for
alternative asset pricing models — alternative functiens f(datg. All asset pricing models
amount to different functions fat. | give here a very bare sketch of some of the different
approaches.
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Figure 2. Mean excess returns of 10 CRSP size portfolios vs. predictions of the power
utility consumption-based model.

1) Different utility functions. Perhaps the problem with the consumption-based model is
simply the functional form we chose for utility. The natural response is to try different utility
functions. Which variables determine marginal utility is a far more important question than
the functional form. Perhaps the stock of durable goodsi@mces the marginal utility of
nondurable goodperhaps leisure or yesterday’s consumption affect today’s marginal utility.
These possibilities are all instancesnohseparabilities. One can also try to use micro data
on individual consumption of stockholders rather than aggregate consumption. Aggregation
of heterogenous consumers can make variables such as the cross-sectional variance of income
appear in aggregate marginal utility.

2) General equilibriummodels. Perhaps the problem is simply with the consumptiatia.
General equilibrium models deliver equilibrium decision rules linking consumption to other
variables, such as income, investment, etc. Substituting the decisioryetes(y:, i, . . . )
in the consumption-based model, we can link asset prices to other, hopefully better-measured
macroeconomic aggregates.

In addition, true general equilibrium models completely describe the economy, including
the stochastic process followed by all variables. They can answer questions suthigas
the covariance (beta) of an asset payoffith the discount factom the value that it is, rather
than take this covariance as a primitive. They can in principle answer structural questions,
such as how asset prices might be affected by different government policies. Neither kind of
question can be answered by just manipulating constinséorder conditions.

3) Factor pricing models. We don't have satisfactory general equilibrium models. An-
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CHAPTER 3 DISCOUNT FACTORS IN CONTINUOUS TIME

other sensible response to bad consumption dataiisto model marginal utility in terms of other
variables directly. Factor pricing models follow this approach. They just specify that the
discount factor is alinear function of a set of proxies,

Mit1 = a+bifig +bafii +.... (30)

where ¢ arefactorsand a, b; are parameters. (Thisisadifferent sense of the use of the word
“factor” than “discount factor.” | didn’t invent the confusing terminology.) Among others,
the Capital Asset Pricing Model (CAPM) is the model

My = a+bRYY,

where R" is the rate of return on a claim to total wealth, often proxied by a broad-based
portfolio such as the value-weighted NYSE portfolio. The Arbitrage Pricing Theory (APT)
uses returns on broad-based portfolios derived from a factor analysis of the return covariance
matrix. The Intertemporal Capital Asset Pricing Model (ICAPM) suggests macroeconomic
variables such as GNP andigtion and variables that forecast macroeconomic variables or
asset returns as factors. Term structure models such as the Cox-Ingersoll-Ross model specify
that the discount factor is a function of a few term structure variables, for example the short
rate of interest. Many factor pricing models are derived as general equilibrium models with
linear technologies and no labor incombus they also fall into the general idea of using
general equilibrium relations to substitute out for consumption.

4) Arbitrage or near-arbitrage pricing. The mere existence of a representation p =
E(mz) and the fact that marginal utility is positive m > 0 (these facts are discussed in
the next chapter) can be used to deduce prices of one payoff in terms of the prices of other
payoffs. The Black-Scholes option pricing model is the paradigm of this approach: Since the
option payoff can be replicated by a portfolio of stock and bond ratlyat prices the stock
and bond gives the same price for the option. Recently, there have been several suggestions
on how to use this idea in more general circumstances by using very weak further restrictions
onm.

We return to a more detailed derivation and discussion of these alternative models of the
discount factorn below. First, and with this brief overview in mind, we lookat E(mx)
and what the discount factet represents in a little more detail.
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Now we look more closely at the discount factor. Rather than derive a specific discount

factor as with the consumption-based discount factor above, | work backwards. A discount
factor is just some random variable that generates prices from payo#fsE(mx). What

does this expression mean? Can one always such a discount factor? Can we use the
above convenient representations without all the structure of the consumers, utility functions,
and so forth? Along the way | introduce the inner product representation which allows an
intuitive visual representation of most of the theorems, and the idea of contingent claims.

| start by deriving the fact that discount factors exist, are positive, and the pricing function
is linear from a complete markets or contingent claim framework. Then | show that these
properties can be built up, without investors, utility functions and the rest, even in incomplete
markets.

The chapter ends with two famous theorems. Tdwe of one price states that if two
portfolios have the same payoffs (in every state of nature), then they must have the same
price. A violation of this law would give rise to an immediate kind of arbitragdipras you
could sell the expensive version and buy the cheap version of the same portfoliirsthe
theorem is that this law of one price holds if and only if there is a discount factor that prices
all the payoffs byp = E(mz).

In finance, we reserve the temthsence of arbitrage for a stronger idea, that if payoff A
always at least as good as payoff B, and sometimes A is better, then the price of A must be
greater than the price of B. The second theorem is that there are no arbitrage opportunities
of this type if and only if there is @ositive discount factor that prices all the payoffs by
p = E(mz).

These theorems are seful as a jfusdition for using discount factors without all the struc-
ture we have imposed so far. More importantly, they show how many aspectgagbfa
gpace (such as absence of arbitrage) can be conveniently captured by restrictiongda the
count factor(such as it exists, or it is positive). Later, it will be much more convenient to
impose, check, and intersect restrictions on the discount factor rather than to do so for al
possible portfolios priced by that discount factor.

41 Contingent claims

| describe contingent claims. | interpret the stochastic discount factor m as contingent
claims prices divided by probabilities, and p = F(max) asabundling of contingent claims. |
aso interpret the discount factor m as atransformation to risk-neutral probabilities such that
p=E*(z)/R’.
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Suppose that one of S possible states of nature can occur tomorrow, i.e. specialize to a
finite-dimensional state space. Denote the individual states Bgr example, we might have
S =2 ands = rain ors = shine.

A contingent claim is a security that pays one dollar (or one unit of the consumption
good) in one state only tomorrow.pc(s) is the price today of the contingent claim. | write
pe to specify that it is the price of a contingent claim gglto denote in which state the
claim pays off.

In a complete market investors can buy any contingent claim. They don’t necessarily
have to be faced with explicit contingent clainbey just need enough other securities to
gpan or synthesize all contingent claims. For example, if the possible states of nature are
(rain, shine), securities that pay 2 dollars if it rains and one if it shines; o (2,1) and
a riskfree security whose payoff patternais = (1,1) are enough to span or synthesize
any portfolio achieved by contingent claims. More practically, we see below that European
options with every possible strike price span all claims contingent on the underlying asset’s
price.

If there are complete contingent claims, a discount factor exists, and it is equal to the
contingent claim price divided by probabilities.

Let z(s) denote an asset’s payoff in state of natardVe can think of the asset as a
bundle of contingent claims={1) contingent claims to state x(2) claims to state, etc.
The asset’s price must then equal the value of the contingent claims of which it is a bundle,

p() = 3 pe(s)a(s). (31)

| denote the price(z) to emphasize it is the price of the payaff Where the payoff in
question is clear, | suppress the). | like to think of equation (31) as happy-meal logic:

the price of a happy meal (in a frictionless market) should be the same as the price of one
hamburger, one small fries, one small drink and the toy.

It is easier to take expectations rather than sum over states. To this end, multiply and
divide the bundling equation (31) by probabilities,

ple) = So(e) () oo

S

wherer(s) is the probability that state occurs. Then dine m as the ratio of contingent
claim price to probability




SECTION 4.1 CONTINGENT CLAIMS

Now we can write the bundling equation as an expectation as

p= Zﬂ'(s)m(s)m(s) = E(mx).

Thus, in a complete market, the stochastic discount factor m inp = E(mx) exigts, and it
isjust aset of contingent claims prices, scaled by probabilities. Asaresult of thisinterpreta-
tion, the discount factor is sometimes callegtate-price density

The multiplication and division by probabilities seems very artificial in this finite-state
context. In general, we posit states of natuthat can take continuous (uncountablfirite)
values in a spac@. In this case, the sums become integrals, and we have tomeeneasure
to integrate ovef2. Thus, scaling contingent claims prices by some probability-like object is
unavoidable.

Risk neutral probabilities.

Another common transformation of = E(max) results in “risk-neutral” probabilities.
Define

*(s) = R'm(s)n(s) = R pe(s)
where
RI =1/ pe(s) = 1/E(m).
Ther*(s) are positive, less than or equal to ope(¢) < 1/R’, the price of a sure unit of

consumption), and sum to one, so they are a legitimate set of probabilities. Then we can
rewrite the asset pricing formula as

p(x) = ZpC(s)x(s) = % ZW*(S)JC(S) _ E;(fx)

| use the notatiorZ™ to remind us that the expectation usesrisk neutral probabilities 7*
instead of the real probabilities

Thus, we can think of asset pricing as if agents are all risk neutral, but with probabilities
7* in the place of the true probabilities The probabilitiesr* gives greater weight to states
with higher than average marginal utility. There is something very deep here: risk aversion
is equivalent to paying more attention to unpleasant states, relative to their actual probability
of occurrence. People who report high subjective probabilities of unpleasant events like plane
crashes may not have irrational expectations, they may simply be reporting the risk neutral
probabilities or the product: x 7. This product is after all the most important piece of
information for many decisions: pay a lot of attention to contingencies that are either highly
probable or that are improbable but have disastrous consequences.
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CHAPTER4 THE DISCOUNT FACTOR

The transformation from actual to risk-neutral probabilities is given by

m(s)

T (s) = E(m) 7(s).

We can also think of the discount facteras thederivative or change of measure from the
real probabilitiesr to the subjective probabilities*.

The risk-neutral probability representation of asset pricing is often used to simplify option
pricing formulas. | avoid it, however, because it is far too easy to brush over the difference
between risk-neutral and actual probabilitidserything really interesting in asset pricing
concerns how to make this transformation, or how to make risk-adjustments to expected
present value formulas.

4.2 I nvestorsagain

Investor'sfirst order conditions with contingent claims.
Marginal rate of substitution

It's worth looking at the investor'irst order conditions again in the contingent claim
context. The investor starts with a pile of initial wealth and a state-contingent income. He
purchases contingent claims to each possible state in the second period. His problem is then

u(c) + Z,@W(s)u[c(s)] st. c+ ch(s)c(s) =y+ ch(s)y(s).

max
{e,e(s)}
Introducing a Lagrange multiplier on the budget constraint, tifiest order conditions are

w'(c) =\

Br(s)u'[e(s)] = Ape(s).
Eliminating the Lagrange multipliex,

or

Coupled withp = E(mx), we obtain the consumption-based model again.
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The investor’s first order conditions say that marginal rates of substitution betatatss
tomorrow equals the relevant price ratio,

m(s1) _ wle(s1)]

"[e(s2)]

m(s1)/m(sz2) gives the rate at which the consumer can give up consumption in state 2 in re-
turn for consumption in state 1 through purchase and sales of contingent al&ie(s, )] /u’[c(s2)]
gives the rate at which the consumer is willing to make this substitution. At an optimum, the
two rates should be equal.

We learn that the discount factor is the marginal rate of substitution between datd
state contingent commodities. That's why it, likés), is a random variable. Also, scaling
contingent claims prices by probabilities gives marginal utility, and so is not scialtas it
may have seemed above.

Figure 3 gives the economics behind this approach to asset pricing.. We observe the con-
sumer’s choice of date or state-contingent consumption. Once we know his utility function,
we can calculate the contingent claim prices that must have led to the observed consumption
choice, from the derivatives of the utility function.

State 2
or date 2

(e, c)

Indifference curve

State 1, or date 1

Figure 3. Indifference curve and contingent claim prices

The relevant probabilities are the consumexlibjective probabilities over the various
states. Asset prices are set, after all, by consumer’s demands for assets, and those demands
are set by consumer’s subjective evaluations of the probabilities of various events. We of-
ten assumeational expectations, namely that subjective probabilities are equal to objective
frequencies. But this is an additional assumption that we may not always want to make.
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CHAPTER4 THE DISCOUNT FACTOR

43 Risk sharing

Risk sharing: In complete markets, consumption moves together. Only aggregate risk
matters for security markets.

The above derivation holds for any consumer. But the prices are the same for all con-
sumers. Thereforenarginal utility growth should be the same for all consumers

61‘ u’(c§+1) _ j“l(cgﬂ) (32)

w'(et) w'(c])

wherei andj refer to different consumers. If consumers have the same utility function, then
consumption itself should move in lockstep,

Cit1 N CZ-H

cg a

These results mean that in a complete contingent claims market, all consumers share all
risks. This risk sharing i®areto-optimal. Suppose a socia planner wished to maximize
everyone's utility given the available resources. For example, with two consufraard;, he
would maximize

maxzﬂitu(ci) T )‘Zﬁjtu(c;f) st cit Ci _
wherec® is the total amount available. Tliest order condition to this problem is
Bitul(ci) _ 7)\6']1‘“/(0%)

and hence the same risk sharing that we see in a complete market, equation (32).

This simple fact has profound implications. First, it shows you wly aggregate shocks
should matter for risk prices. Any idiosyncratic income risk will be insured away through
asset markets.

In addition, it highlights the function of security markets and much of the force behind
financial innovation. Security markets — state-contingent claims — are what brings individ-
ual consumptions closer together by allowing people to share risks. Many successful new
securities can be understood as devices to more widely share risks.

44 State diagram and price function
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SECTION 4.4  STATE DIAGRAM AND PRICE FUNCTION

| introduce the state space diagram and inner product representation for prices, p(x) =
E(mz) =m-x.

p(x) = E(ma) impliesp(z) isalinear function.

Think of the contingent claims price pc and asset payoffs = as vectorsin R, where each
element gives the price or payoff to the corresponding state,

pe=[ pe(1) pe(2) -+ pe(S) ],

v=[ 1) x2) - xz(9) ]/.

Figure 4 isagraph of these vectorsin R°. Next, | deduce the geometry of Figure 4.

State 2]
Payoff

Riskfree rate

Price=1 (returns)

State 1 contingent claim

State 1 Payoff

Price = 0 (excess returns)

Figure 4. Contingent claims prices (pc) and payoffs.

The contingent claims price vector pc points in to the positive orthant. We saw in the
last section that m(s) = u/[c(s)]/u/(¢). Now, margind utility should always be positive
(people dwayswant more), so the marginal rate of substitution and discount factor are always
nonnegative, m > 0 and pc > 0. Thisfact isimportant and related to the principle of no
arbitrage below.

The set of payoffs with any given pricelie on a (hyper)plane orthogonal to the contingent
claim price vector. We reasoned above that the price of the payoff « must be given by its
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contingent claim value (31),
p(x) =Y pe(s)a(s). (33)

Interpreting pc and = as vectors, this means that the price is given by the inner product of the
contingent claim price and the payoff. Recall that the inner product of two vectors x and pc
equalsthe product of the magnitude of the projection of = onto pc times the magnitude of pc.
Using adot to denote inner product,

p(x) =Y _pe(s)z(s) = pe- x = [pe|[proj(z|pc)|

where |z| meansthe length of the vector . Since al payoffs on aplane orthogonal to pc have
the same projection onto pc, they must have the same price.

Planes of constant price move out linearly, and the origin z = 0 must have a price of
zero. If payoff y = 2z, then its price is twice the price of z,

ply) =Y pe(s)y(s) =Y pe(s)2u(s) = 2 pe(x).

Similarly, a payoff of zero must have a price of zero.

We can think of p(x) asa pricing function, amap from the state space or payoff spacein
which z lies (R® in this case) to the real line. We have just deduced from the definition (33)
that p(z) isalinear function, i.e. that

plax + by) = ap(z) + bp(y).

The constant price lines in Figure 4 are of course exactly what one expects from a linear
function from R° to R. (One might draw the price on the z axis coming out of the page.
Then the price function would be a plane going through the origin and sloping up with iso-
price lines as given in Figure 4.)

Figure 4 also includes the payoffs to a contingent claim tofitlsé state. This payoff is
one in the relevant state and zero in other states and thus located on the axis. The plane of
price = 1 payoffs is the plane of asgeturns; the plane of price = 0 payoffs is the plane of
excess returns. A riskfree unit payoff (the payoff to a risk-free pure discount bond) would
lie on the(1,1) point in Figure 4 the riskfree return lies on the intersection of ## line
(same payoff in both states) and the price = 1 plane (the set of all returns).

Geometry with m in place of pc.

The geometric interpretation of Figure 4 goes through with the discount factorthe
place ofpc. We can déne an inner product between the random variablaady by

x -y = E(zy),
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and retain all the properties of an inner product. For this reason, random variables for which
E(zy) = 0 are often called “orthogonal.”

When the inner product is flaed by a second moment, the operation “projechto ="
is arggression. (If = does not include a constant, you don't add one.) To see this fact, the idea
of projection is to déne

y = proj(ylz) +¢

in such a way that the residuals orthogonal to the projection,

e-proj(ylz) = Ele x proj(ylz)] = 0

This property is achieved by the construction
proj(ylz) = (z - a:)_l(x “y) = E(a:Q)_lE(a:y) T

which is the formula for OLS regression. For this reason, econometrics books often graph
OLS regression as a projection of a pajin to a plane spanned bywith a residuak that
is at right angles to the plane We use the same geometry.

The geometric interpretation of Figure 4 also is valid if we generalize the setup to an
infinite dimensional state space. Instead of vectors, which are functionsRrono R,
random variables are (measurable) functions fforto R. Nonetheless, we can still think
of them as vectors. The equivalent &* is now aHilbert Space L?, which denotes spaces
generated by linear combinations of square integrabietions from (2 to the real line, or
the space of random variables wifimite second moments. We can stillfae an “inner
product” between two such elementsbyy = E(zy). In particular,p(z) = E(maz) can
still be interpreted asi is orthogonal to (hyper)planes of constant prideréving theorems
in this context is much harder, and you are referred to the references (Especially Hansen and
Richard (1987)) for such proofs.

4.5 Law of one price and existence of a discount factor

Definition of law of one price.
p = E(mz) implies law of one price.

The law of one price implies that a discount factor exists: There exists a unfgneX
such thap = E(z*z) for all x € X = space of all available payoffs.

Furthermore, for any valid discount facter,

x* = proj(m | X).

47



CHAPTER4 THE DISCOUNT FACTOR

So far we have derived the basic pricing relation p = E(max) from environments with
alot of structure: either the consumption-based model or complete markets. We deduced
that in any sensible model with consumers, the discount factor should be positive, and we
deduced that price is a linear function of payoff in a contingent claim market.

Does thinking about asset pricing in this way require all this structure? Suppose we ob-
serve a set of pricgsand payoffsc, and that markets — either the markets faced by investors
or the markets under study in a particular application —iacemplete, meaning they do not
span the entire set of contingencies. In what minimal set of circumstances does some discount
factor exists which represents the observed prices ByE (max)? This section and the fol-
lowing answer this important question. This treatment is a sfieglversion of Hansen and
Richard (1987), which contains rigorous proofs and some technical assumptions.

451 Thetheorem
Payoff space

The payoff space X is the set (or a subset) of all the payoffs that investors can purchase, or it
is a subset of the tradeable payoffs that is used in a particular study. For example, if there are
complete contingent claims 1§ states of nature, thel = R°. But the whole point is that
markets are (as in real liféjicomplete, so we will generally think ofX as a proper subset of
complete market&°.

The payoff space will include some set of primitive assets, but investors can also form
new payoffs by forming portfolios. | assume that investors can form any portfolio of traded
assets:

Al: (Portfolio formation)zy, xo € X = axy + bxzs € X for any reala, b.

Of course X = R° for complete markets safies the portfolio formation assumption. If
there is a single basic payaff then the payoff space must be at least the ray from the origin
throughz. If there are two basic payoffs iR?3, then the payoff spac& must include the
plane déined by these two payoffs and the origin. Figure 5 illustrates these possibilities.

The payoff space isot the space of returns. The return space is a subset of the payoff
spaceif a returnR is in the payoff space, then you can pay a price $2 to get a payfo
the payoff2 R with price2 is also in the payoff space. Alse,Ris in the payoff space.

Free portfolio formation is in fact an important and restrictive simplifying assumption. It
rules out short sales constraints, bid/ask spreads, leverage limitations and so on. The theory
can be modied to incorporate these frictions, and | treat this riodtion later.

If investors can form portfolios of a vector of basic payaff¢say, the returns on the
NYSE stocks), then the payoff space consists of all portfolios or linear combinations of these
original payoffsX = {¢’x}. We also can allow truly ifinite-dimensional payoff spaces. For
example, consumers might be able to tradelinear functions of a basis payoff, such as
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State 3 (into page)
State 2 State 2
d
4
, 7
ox, , 4
‘< °
X R X,
X L7
, 7
e
State 1 State 1
Single Payoff in R? Two Payoffsin R?

Figure 5. Payoff spaces X generated by one (Ieft) and two (right) basis payoffs.

cdl options on x with strike price K, which have payoff max [z(s) — K, 0] .

The law of one price.

A2: (Law of oneprice, linearity) p(az; + bxe) = ap(z1) + bp(z2)

It doesn't matter how one forms the payaff. The price of a burger, shake and fries must
be the same as the price of a happy meal. Keep in mind that we are describing a market that
has already reached equilibrium. The point is that if there are any violations of the law of one
price, traders will quickly eliminate them so they can't survive in equilibrium. Graphically,
if the iso-price curves were not planes, then one could buy two payoffs on the same iso-price
curve, form a portfolio, which is on the straight line connecting the two original payoffs, and
sell it for a higher price than the cost of the portfolio. Thus, law of one price basically says
that investors can't make fits by repackaging portfolios. It is a (weak) characterization of
preferences.

Al and A2 also mean that the 0 payoff must be available, and must have price O.

The Theorem

The existence of a discount factor implies the law of one price. As we have already seen,
p(x) = E(mx) implies linearity, and linearity implies the law of one price. This is obvious
to the point of triviality: ifz = y + z thenE(mz) = E[m(y + z)]. More directly, if the law

of one price were violated, investors would tak8riite positions and make fimite prdits.
Hence, the law of one price is a wegiplication of the utility-based framework.

Our basic theorem in this section reverses this logic. We show théathef one price
implies theexistence of a discount factor. Even if all we know about investors is that they
can see past packaging and will take surdifg@vailable from packaging, that is enough to
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guarantee the existence of a discount factor.

A1l and A2 imply that the price function on X looks like Figured: parallel hyperplanes
marching out from the origin. The only differenceisthat X may be a subspace of the original
state space, as shown in Figure 5. We are ready to prove that a discount factor exists.

Theorem: Given free portfolio formation A1, the law of one price A2, there exists a
unique payoff * € X suchthat p(z) = E(z*x) foral z € X.

x* isadiscount factor. | offer an algebraic and a geometric proof.

Proof 1. (Algebraic.) We can prove the theorem by construction when the payoff space X
is generated by portfolios of a IV basis payoffs (for example, NV stocks). Organize the basis
payoffsintoavector x = [ 21 22 .. @y ]' and similarly their prices p. The payoff
spaceisthen X = {c'x}. Wewant adiscount factor that isin the payoff space, asthetheorem
requires. Thus, it must be of the form z* = b’x. Find b so that =* pricesthe basis assets. We
want p =F(z*x) = E(xx'b). Thuswe need b = E(xx’)~'p. If E(xx’) is nonsingular,
thisb existsand isunique. A2impliesthat E(xx’) isnonsingular. Thus, z* = p’ E(xx’)~'x
isour discount factor. It isalinear combination of x soitisin X. It prices the basis assets
by construction. It pricesevery z € X : E[z*(x'c)] = E[p'E(xx') 'xx'c] = p’c. By
linearity, p(c’x) = c'p.

Proof 2: (Geometric.) We have established that the price is alinear function as shown in
Figure 6. (Figure 6 can be interpreted as the plane X of alarger dimensiona space asin the
right hand panel of Figure 5, laid flat on the page for clarity.) Now, to every plane we can
draw aline from the origin at right angles to the plane. Choose a vector x*on thisline. The
inner product between any payoff = on the price=1 plane z*isx - * = |proj(z|z*)| x |z*|
Thus, every payoff on the price = 1 plane has the same inner product with z*. All we have to
do ispick z* to have the right length, and we obtain p(z) = 1 = z* - « = E(z*x) for every
x ontheprice = 1 plane. Then, of course we have p(z) = z* - x = E(x*z) for payoffs x on
the other planes aswell. Thus, the linear pricing function implied by the Law of One Price
can be represented by inner products with z*. a.

You can see that the basic mathematics here is just that any linear function can be rep-
resented by an inner product. This theorem extendsfioite-dimensional spaces too. In
this case, thdRiesz representation theorem says that there is always a “line” orthogonal
to any “plane”, so one can always represent a linear fungtiar) by an inner product
p(z) = E(z*z). See Hansen and Richard (1987) for the details.

What the theorem does and does not say

The theorem says there is a unigtfein X. There may be many other discount factersiot

in X. In fact, unless markets are complete, there arneyamte number of random variables
that satisfyp = E(mz). If p = E(max) thenp = E [(m + ¢)z] for any e orthogonal tar,
E(ex) = 0.

Not only does this construction generate some additional discount factors, it generates
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Price = 1 (returns)

Price = 0 (excess returns)

Figure 6. Existence of adiscount factor «*.

all of them: Any discount factor m (any random variable that satisfiesp = E(mx)) can be
represented as m = z* +¢ with E(ex) = 0. Figure 7 gives an example of aone-dimensional

X in a two-dimensional state space, in which case there is a whole line of possible discount
factorsm. If markets are complete, there is nowhere to go orthogonal to the payoff &pace
sox* is the only possible discount factor.

Reversing the argument;" is the projection of any stochastic discount factor m on the
space X of payoffs. This is a very important facthe pricing implications of any model of m
for a set of payoffs X arethe same as those of the projection of m on X, or of themimicking
portfolios of m. Algebraically,

p = E(mz) = E[(proj(m|X) + ¢)z] = E [proj(m|X) 2]

Let me repeat and emphasize the logic. Above, we started with investors or a contingent
claim market, and derived a discount factor= E(mz) implies the linearity of the pricing
function and hence the law of one price, a pretty obvious statement in those contexts. Here we
work backwards. Markets aracomplete in that contingent claims to lots of states of nature
are not available. Wdo allow arbitrary portfolio formation, and that sort of “completeness”
is important to the result. If consumers cannot form a portfaliot+ by, they cannot force
the price of this portfolio to equal the price of its constituents.. We found that the law of one
price implies a linear pricing function, and a linear pricing function implies that there exists
at least one and usually many discount factors. The law of one price is not innotusas
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Payoff space X

m = X" + & space of discount factors

N

Figure 7. Many discount facotors m can price a given set of assetsin incomplete markets.
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assumption about preferences albeit a weak one. The point of the theorem is thgtsis is
enough information about preferences to deduce a discount factor.

4.6 No-Arbitrage and positive discount factors

The definition of arbitrage.

Thereisastrictly positive discount factor m such that p = E(maz) if and only if there are
no arbitrage opportunities.

Next, another implication of marginal utility that holds for a wide class of preferences,
that can be reversed to deduce properties of discount factors. Start with the following:

Definition (Absence of arbitrage). A payoff space X and pricing function p(z) leave no
arbitrage opportunitiesif every payoff x that is always non-negative,x > 0 (almost surely),
and sometimes strictly positive, > 0 with some positive probability, has positive price,
p(z) > 0.

No-arbitrage says that you can't get for free a portfolio thight pay off positively, but
will certainly never cost you anything. Thisfilgtion is different from the colloquial use of
the word “arbitrage.” Most people use “arbitrage” to mean a violation of the law of one price
— ariskless way of buying something cheap and selling it for a higher price. “Arbitrages” here
might pay off, but then again they might not. The word “arbitrage” is also widely abused.
“Risk arbitrage” is an oxymoron that means taking bets.

An equivalent statement is that if one payddiminates another — ifr > y — thenp(x) >
p(y) (Or, a bit more carefully but more long-windedly,aif > y almost surely and: > y
with positive probability, them(z) > p(y).)

No-arbitrage as a consequence of utility maximization

The absence of arbitrage opportunitiesis clearly a consequencef utility maximization. Re-
call,

wle(s)]
w(c)

It is a sensible characterization of a wide class of preferences that marginal utility is al-
ways positive. Few people are so satiated that they will throw away money. Thetbfore,
marginal rate of substitution is positive. Watch out: the marginal rate of substitution is a ran-
dom variable, so “positive” means “positive in every state of nature” or “in every possible
realization.”

> 0.

m(s) =46

53



CHAPTER4 THE DISCOUNT FACTOR

Now, since each contingent claim price is positive, a bundle of positive amounts of con-
tingent claims must also have a positive price, even in incomplete markets. A little more
formally,

Theorem: p = E(mx) andm(s) > 0 imply no-arbitrage.

Proof: p(xz) = >, m(s)m(s)x(s). If there is a payoff withz(s) > 0, andz(s) > 0 with
positive probability, then the right hand side is positive. O
Similarly, if m > 0thenx > y impliesp(z) = E(mx) > p(y) = E(my).

The theorem

Now we turn the observation around. As the LOOP property guaranteed the existence of a
discount factorn, no-arbitrage guarantees the existence of a positive

The basic idea is pretty simple. No-arbitrage means that the prices of any payoff in the
positive orthant (except zero, but including the axes) must be strictly positive. Thus the iso-
price lines must march up and to the right, and the discount faefqgrerpendicular to the
iso-price lines, must point up and to the right. Figure 8 gives an illustration of the case that is
ruled out: the payoff: is strictly positive, but has a negative price. As a result, the (unique,
since this market is complete) is negative in the y-axis state.

To prove the theorem a little more formally, start in complete markiéisre is only one
m, x*. Ifitisn’t positive in some state, then the contingent claim in that state has a positive
payoff and a negative price, which violates no arbitrage. More formally,

Theorem: In complete markets, no-arbitrage implies that there exists a unique0 such
thatp = E(mz).

Proof: No-arbitrage implies the law of one price, so there is a unigusuch that

p = E(z*z). Suppose that* < 0 for some states. Then, form a payefthat is

1 in those states, and zero elsewhere. This payoff is strictly positive, but its price,
Zm*(sko 7(s)z*(s) is negative, negating the assumption of no-arbitrage. O

Next, what if markets are incomplete? There are now maigythat price assets. Any
m of the formm = z* + ¢, with E(ex) = 0 will do. We want to show that at leashe of
these is positive. But that one may notae Since the othem’s are not in the payoff space
X, the construction given above may yield a payoff that is noX'irand hence to which we
can't assign a price. To handle this case, | adopt a different strategy of proof. My proximate
source is Dufe (1992), the original proof is due to Ross (1978). The proof is not particularly
intuitive.

Theorem: No arbitrage implies the existence ofan> 0s. t.p = E(mx).
Proof: Join(—p(x), ) together to form vectors iR+, Call M the set of al(—p(x), z)
pairs,

M = {(-p(z),z); z € X}

54
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\ p=+1

Figure 8. Counter-example for no-arbitrage. The paydff positive, but has negative
price. The discount factor is not strictly positive

M is still a linear spacein; € M, mg € M = amq + bmg € M. No-arbitrage means that
elements ofn can't have all positive elements. dfis positive,—p(z) must be negative.
Thus, M only intersects the positive ortha(ﬁti+1 at the point O.

M andRi+1 are thus convex sets that intersect at one point, 0. Bydbarating
hyperplane theorem, there is a linear function that separates the two convextess is
anF : RSt = R, such thatF'(—p,z) = 0 for (—p,z) € M, andF(—p,x) > 0 for
(=p,x) € Ri“ except the origin. By th&iesz representation theoremwe can represerft
as an inner product with some vectof by F(—p, z) = —p+m - x, or —p + E(mz) using
the second moment inner product. Finally, sidte-p, ) must be positive fof—p, ) > 0,
m must be positive. O

What the theorem says and does not say

The theorem says that a discount factor> 0 exists, but it doesiot say thatm > 0 is
unique. The left hand panel of Figure 9 illustrates. Amyon the line through:* orthogonal
to X also prices assets. Again= E[(m+¢)z] if E(sz) = 0. Any of these discount factors
in the positive orthant are positive, and thus satisfy the theorem. There are lots of them!

The theorem says that a positive exists, but it also doesot say thatevery discount
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factor m must be positive. The discount factorsin the left hand panel of Figure 9 outside the
positive orthant are perfectly vaid — they satisfyp = E(mx), and the prices they generate

on X are arbitrage free, but they are not positive in every state of nature. In particular, the
discount factor:* in the payoff space is still perfectly valid »f{z) = E(z*z) — but it need

not be positive, again as illustrated in the left hand panel of Figure 9.

A A

m>0

Figure 9. Existence of a discount factor and extensions. The left graph shows that the
postive discount factor is not unique, and that discount factors may also exist that are not
strictly positive. In particularg* need not be positive. The right hand graph shows that
each particular choice of. > 0induces ararbitrage free extension of the prices onX to all
contingent claims.

Another interpretation: This theorem shows that we edand the pricing function de-
fined onX to all possible payoffsR®, and not imply any arbitrage opportunities on that
larger space of payoffs. It says that there is a pricing fungtiar defined overall of R?,
that assigns the same (correct, or observed) prices and that displays no arbitrage on all
of RS. Graphically, it just says we can draw parallel planes to represent prices orfatl of
in such a way that the planes intersétin the right places and march up and to the right so
the positive orthant always has positive prices. In fact, there are many ways to do this. Any
positivem generates such a no-arbitrage extension, as illustrated in the right hand panel of
Figure 9. Asm > 0 exists but is not unique, so the extension it generates is not unique.

We can think of strictly positive discount factors as possible contingent claims prices.
We can think of the theorem as answering the question: is it possible that an observed and
incomplete set of prices and payoffs is generated by some complete markets, contingent claim
economy? The answer is, yes, if there is no arbitrage on the observed prices and payoffs. In
fact, since there are typically many positiveés consistent with af X, p(z)}, there exist
many contingent claims economies consistent with our observations.
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Finally, the absence of arbitrage is another very weak characterization of preferences. The
theorem tells usthat thisis enough to allow usto usethep = E(mzx) formalism withm > 0.

As usual, this theorem and proof do not require that the state space is R°. State spaces
generated by continuous random variables work just as well.

4.7 Existencein continuoustime

Just like =* in discrete time,

dA* D "
T = Tt — (ut + o rt) ¥, tdz.

prices assets by construction in continuous time.

The law of one price implies the existence of a discount factor process, and absence of
arbitrage a positive discount factor process in continuous time as well as discrete time.

At one leve, this statement requires no new mathematics. If we reinvest dividends for
simplicity, then a discount factor must satisfy

PelNe = BNy sDits.

Calling py4s = x4, thisis precisely the discretetime p = E(maz) that we have studied all
along. Thus, the law of one price and absence of arbitrage are equivalent to the existence of
aor apositive A, s; the same conditions at all horizons s are thus equivalent to the existence
of aor apositive discount factor process A, for al timet.

For calculationsiit is useful to find explicit formulas for a discount factors, the analogue
to the discrete time discount factor z* = p/ F(xx’)~!x. Suppose a set of securities pays
dividends

D.dt
and their pricesfollow

d
P _ i, dt + Sydz

Pt

where p and z are N x 1 vectors, u and X may vary, p(p,, t,other variables), 3(p,t,other
variables) is full rank, E (dzdz’) = I and the division on the left hand side is element-by
element.

We can form a discount factor that prices these assets from a linear combination of the
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shocks that drive the original assets,

dA*
A*

i
= —rfdt — (ut + % — r{) ¥ dz. (39

If thereis arisk free rate r{ (also potentialy time-varying), then that rate determineﬁin
the above equation. If there is no risk free rate, the above discount factor will price the risky
assets for any arbitrary (or convenient) choiceb.f As usual, this discount factor is not
unigue A* plus orthogonal noise will also act as a discount factor:

dA dA”

T o + dw; E(dw) = 0; E(dzdw) =0

We can easily check that (34) does in fact price the basis assets. Writing the basic pricing
equation (20) in continuous time,
D <dA* dp  dA*dp )

—dt+ E —
p+tA*+p+A*p

D D '
= th—r{dt—l—,utdt— <,ut+5—r{) ¥ 8dt = 0.

In the continuous time case it is easier to write the discount factor in terms abthe
variancematrix of the original securities, where we wrote it in terms of the second moment
matrix in discrete time. There is nothing essential in this difference. We could have written
the discrete-time x* in terms of the covariance matrix of a set of returns just as well: you can
check that

., 1 ER)-R/__
= F - TE 'R - E(R)]; ¥ =cov(RR/)
satifies1 = E(z*R) by construction, and this formula is obviously closely analogous to the
continuous time formula.
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Chapter 5. Mean-variance frontier and
beta representations

Much empirical work in asset pricing is couched in terms of expected return - beta repre-
sentations and mean-variance frontiers. In this chapter, | draw the connection between the
discount factor view and these more traditional views of asset pricing. In the process, | in-
troduce a number of useful tools and representations. Iffitsiechapter, 1 showed how
mean-variance and a beta representation follow fpom E(ma) and (in the mean-variance
case) complete markets. Here, | take a closer look at the representations and | draw the con-
nections in incomplete markets. | start byfideng the terminology of beta pricing models

and mean variance frontiers.

5.1  Expected return - Beta representations

An expected return-beta model is,
E(R) = a+ B qha+ Biphs + ...

aequals the risk free or zero beta rate.

When the factors are returng® = R then\, = E(R®) — «, and factor pricing is
equivalent to a restriction on intercepts in time-series regressions.

When the factors are not returns, we can reexpress the beta pricing model in terms of
factor mimicking portfolios that are returns.

Much empirical work infinance is cast in terms of beta representations for expected re-
turns. A beta model is a characterization of expected returns across assets of the form

E(R) =a+ B a+Biphe+...,i=1,2.N. (35)

a, A are constant for all assets afg, is the multiple regression cdgdient of returni on
factora. This qualfication is important: if the betas are arbitrary numbers or characteristics
of the securities there is no content to the equatigp), is interpreted as the amount of
exposure of assétto factora risks, and\, is interpreted as the price of such risk-exposure.
Read the beta pricing model to say: “for each unit of expogute risk factora, you must
provide investors with an expected return premikyi

If there is a risk free rate, its betas are all Zesp the intercept is equal to the risk free

1 The betas are zero because the risk free rate is known ahead of time. When we consider the effects of
conditioning information, i.e. that the interest rate could vary over time, we have to interpret the means and betas
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CHAPTER5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

rate,

Rf =«

If not, thena is the expected rate of return on a portfolio of risky assets with zero betas on
all factors.« is called the (expectedpro-beta ratein this circumstance.

Beta pricing models are constructed to explain the variation in average returns across
assets. | writei = 1,2, ... N to emphasizethisfact. For example, equation (35) saysthat if we
plot expected returns versus betas in a one-factor model, we should expect &l (R’), 3, ,)
pairs to line up on a straight line with slopg. A low price is equivalent to a high expected
return, so this is “asset pricing” by any other name. One way to test (35) is to aossa
sectional regression of average returns on betas,

E(R") =a+ B, a+Biphe+ ... +a; i =1,2,..N.

This regression is tricky because of the nonstandard notatior, e the right hand vari-
ables, the\ are the slope cofitients, and they; arepricing errors. The model predicts
a; = 0, and they should be statistically insi§nant in a test.

The “factors” are proxies for marginal utility growth. | discuss the stories used to select
factors at some length below. For the moment keep in mind the canonical examples of risk
factors,f = consumption growth or the return on the market portfolio of all assets.

We can write the multiple regressions thafide the betas as
Ri=a;i+Bioff +Bipfl+ ...+ t=12.T (36)

This is often called éme-series regressigro distinguish it from the cross-sectional regres-

sion of average returns on betas. Notice that we run ret@jren contemporaneous factors

f+- This regression is not about predicting returns from variables seen ahead of time. Its ob-
jective is to measure contemporaneous relafigak exposurewhether returns are typically

high in “good times” or “bad times” and thus whether the asset is useful to smooth risks.

Rather than estimate a zero-beta rate, one often examines a factor pricing model using
excess returns. Differencing (35) between any two retéftis= R* — R’ (R’ may but does
not have to be risk free), we obtain

E(Rei) = ﬁi,a,)\a, + 6i,b)‘b + ... ) i = ]" 27 N (37)

Here, 3,, represents the regression diagént of the excess returR®’ on the factors. This
subtraction is more than a convenience: it allows us to focus on the central task of under-
standing risk premia and risk corrections.

as conditional moments. Thus, if you are worried about time-varying risk free rates, betas, and so forth, either
assume all variables are i.i.d. (and thus the risk free rate is constant), or interpret all moments as conditional on time
tinformation. We incorporate conditioning information explicitly in the next chapter.
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Finally, we often express factor risk premian terms of portfolio returns. If the factors
already are excess returrf$, = R°¢, this is easy. Otherwis@nd an excess returR¢® with
beta of 1 on one factor and beta zero on the rest. In either case, the factor model (37) applied
to the excess returR<® implies A\, = E(R**) so we can write the factor model as

E(R®) = B; o E(R™) + B, B(R?) + ..., i =1,2,..N.

The beta pricing model (35)-(37) and the regressidind®n of the betas in (36) look
very similar. It seems like one can take expectations of the time-series regression (36) and
arrive at the beta model (35), in which case the latter would be vacuous since one can always
run a regression of anything on anything. Yet the beta model and regression are distinct
equations and capture very different ideas. The difference is subtle but crucial: the time-
series regressions (36) we will in general have a different intergdpt each returr, while
the intercepty is the same for all assets in the beta pricing equation (35). The beta pricing
eqguation is a restriction on expected returns, and thus imposes a restriction on intercepts in
the time-series regression. In the special case that the factors are themselves excess returns,
the restriction is particularly simple: the intercepts should all be zero.

52 M ean-variance frontiers

The mean-variance frontierof a given set of assets is the boundary of the set of means and
variances of thereturnson al portfolios of the given assets. One can find or define this bound-

ary by minimizing return variance for a given mean return. Many asset pricing propositions
and test statistics have interpretations in terms of the mean-variance frontier.

Figure 10 displays a typical mean-variance frontier. As displayed in Figure 10, it is com-
mon to distinguish the mean-variance frontier of all risky assets, graphed as the hyperbolic
region, and the mean-variance frontier of all assets, i.e. including a risk free rate if there is
one, which is the larger wedge-shaped region. Some authors reserve the terminology “mean-
variance frontier” for the upper portion, calling the whole thing th@imum variance fron-
tier. The risky asset frontier is a hyperbola, which means it lies between two asymptotes,
shown as dotted lines. The risk free rate is typically drawn below the intersection of the
asymptotes and the vertical axis, or the point of minimum variance on the risky frontier. If it
were above this point, investors with a mean-variance objective would try to short the risky
assets.

In Chapter 1, we derived a similar wedge-shaped region as the set of means and variances
of all assets that are priced by a given discount factor. This chapter is about incomplete
markets, so we think of a mean-variance frontier generated by a given set of assets, typically
less than complete.

When does the mean-variance frontier exist? l.e., when is the set of portfolio means and
variances less than the whdl&, o} space? We basically have to rule out a special case: two
returns are perfectly correlated but yield different means. In that case one could short one,
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long the other, and achievefinite expected returns with no risk. More formally, eliminate
purely redundant securities from consideration, then

Theorem: So long as the variance-covariance matrix of returns is non-singular, there is a
mean-variance frontier.

To prove this theorem, just follow the construction below. This theorem should sound
very familiar: Two perfectly correlated returns with different mean are a violation of the law
of one price. Thus, the law of one price implies that there is a mean variance frontier as well
as a discount factor.

E(R)

Mean-variance frontier

""""""""""" Y Risky asset frontier

Original assets
[ ]
Rf

Figure 10. Mean-variance frontier

5.2.1 Lagrangian approach to mean-variance frontier

The standard definition and the computation of the mean-variance frontier follows a brute
force approach.

Problem: Start with a vector of asset returits Denote byE the vector of mean returns,
E =E(R), and denote by the variance-covariance matrix = [E(R — E)(R — E)’].

A portfolio is defined by its weightsv on the initial securities. The portfolio returnvg'R.
where the weights sum to one,1 =1.The problem “choose a portfolio to minimize variance
for a given mean” is then

mingy; WEwWSLWE=p; w'l =1 (38)
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SECTION 5.2 MEAN-VARIANCE FRONTIERS

Solution: Let
A=EYX'E; B=EY'1;, C=1%"1,
Then, for a given mean portfolio return the minimum variance portfolio has variance

Cu?—-2Bu+ A

var (R?) = 10— B2

(39)

and is formed by portfolio weights

1E(Cp—B)+1(A-Bp)

W= (AC — B?)

Equation (39) shows that the variance is a quadratic function of the mean. The square
root of a parabola is a hyperbola, which is why we draw hyperbolic regions in mean-standard
deviation space.

The minimum-variance portfoliois interesting in its own right and appears as a special
case in many theorems and it appears in several test statistics. We can find it by minimizing
(39) over p, giving p™"v¥ = B/C'. The weights of the minimum variance portfolio are thus

w=x"11/(1's711).
We can get to any point on the mean-variance frontier by starting with two returns on
the frontier and forming portfolios. The frontier gpanned by any two frontier returns.
To see this fact, notice that is a linear function ofu. Thus, if you take the portfolios

corresponding to any two distinct mean returgsand i, the weights on a third portfolio
with meanus = Ay + (1 — Ay are given byws = Awy + (1 — A)wa.

Derivation: To derive the solution, introduce Lagrange multipliefs and 26 on the con-
straints. Thefirst order conditions to (38) are then

Sw—AE —-401=0

w=X"'(AE + 61). (40)
We find the Lagrange multipliers from the constraints,

E'w=EY!AE +61) =p

1'w=1%"1AE+61) =1
or

EX-'E Ex-'1][A]
UsTIE U1 || s |7

']
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A B Al p
B C s |1
Hence,
- Cu—B
- AC-B?
5= A—Bpu
- AC - B?

Plugging in to (40), we get the portfolio weights and variance.

522  Characterizing the mean-variance frontier

Every return can be expressed as R? = R* + w!R®* + n’.
The mean-variance frontier isR™? = R* + wR®*

Re*is defined asR* = proj(1|.R°). It represents mean excess retuicR¢) = E(R** R¢)
VR® € R®

The Lagrangian approach to the mean-variance frontier is straightforward but cumber-
some. Our further manipulations will be easier if we follow an alternative approach due to
Hansen and Richard (1987). Technically, Hansen and Richard’s approach is also valid in
infinite-dimensional payoff spaces, which we will not be able to avoid when we include con-
ditioning information. Also, it is the natural geometric way to think about the mean-variance
frontier given that we have started to think of payoffs, discount factors and other random
variables as vectors with a second moment norm.

Definitions of R*, R°*.
| start by déining two special returnsR* is the return corresponding to the payoff that

can act as the discount factdthe price ofz*, is, like any other pricep(z*) = E(x*z*).
Thus,

The ddinition of R* is

- x
R B D) (42)
The ddinition of R¢*is
“ =proj(1| R°) (42)
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R° = space of excess returas{z € X s.t. p(z) =0}

R* and R°* have many interesting properties, which | discuss below. Now we can state a
beautiful orthogonal decomposition.

Theorem: Every returnR‘ can be expressed as
R'=R* + w'R** +n'
wherew?® is a number, ana? is an excess return with the property
E(n') =0.
The three components are orthogonal,

E(R*R**) = E(R*n") = E(R®*n%) = 0.

This theorem quickly implies
Theorem: R™" is on the mean-variance frontier if and only if
R™ = R* 4+ wR**
for some real numbep.

As usualfirst I'll argue why the theorems are sensible, then I'll offer a fairly loose alge-
braic proof. Hansen and Richard (1987) give a much more careful proof.

Graphical construction

Figure 11 illustrates the decomposition. Start at the origin (0). Recall that*thector is
orthogonal to planes of constant pricaus theR* vector lies at right angles to the plane

of returns as shown. Go t8*. R°* is the excess return that is closest to the vettar is
orthogonal to planes of constamean return, shown inthéZ = 1, E = 2 lines, just as the
return R* is orthogonal to all excess returns. Proceed an amotint the direction ofR¢*,
getting as close t®' as possible. Now move, again in an orthogonal direction, by an amount
n' to get to the returr’. We have thus expresséti = R* + w’R®* + n' in a way that all
three components are orthogonal.

Returns withn = 0, R* + wR®*, are the mean-variance frontier. Here's why. Since
E(R?) = 02(R) + E(R)?, we can déne the mean-variance frontier by minimizing second
moment for a given mean. The length of each vector in Figure 11 is its second moment, so
we want the shortest vector that is on the return plane for a given mean. The shortest vectors
in the return plane with given mean or valuefoin the picture are on th&* + wR** line.

R* is an excess return iR¢ that representsieans on R¢ with an inner product in just
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R=space of returns (p=1)

R*+wRe* n

. : R=R*+WR®+n'

1 \ E:l\
\E=0 \ '

Re = space of excess returns (p=0)

v \

Figure 11. Orthogonal decomposition and mean-variance frontier.

the same way that* is a portfolio inX that represents prices gn.
E(R°) = E(R°*R®) VR® € R®
To see this fact algebraically,
E(R®) = E(1 x R®) = E[proj(1| R°) x R] = E(R**R®).

Here’s the idea intuitively. Expectation is the inner product with 1. Planes of constant ex-
pected value in Figure 11 are orthogonal to thector, just as planes of constant price are
orthogonal to the:* or R* vectors. | don't show these planes for claritydo show lines of
constant expected returnif, which are the intersection of planes of constant expected pay-
off with the R¢ plane. Therefore, just as we found @ahin X to represent prices iX by
projectingm onto X, we find R¢* in R¢ by projecting ofl onto R¢. Yes, a regression with

one on the left hand side. Planes perpendiculaRtoin R° (and inR) are payoffs with
constanimean, just as planes perpendicularidin X generate payoffs with the sarpece.

Algebraic argument

Now, on to an algebraic proof of the decomposition and characterization of mean variance
frontier.

Proof: Straight from their dénitions, (41) and (42) we know thd&® is an excess return
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(price zero), and thak* and R¢ are orthogonal,
E(z*R°)

E(R'R’) = — 7

=0.

We definen’ so that the decomposition adds upRbas claimed " is what is left over —
and we dénew" to make sure that’ is orthogonal to the other two components. Then we
prove thatF(n?) = 0 for the mean-variance frontier. Bee

n' =R —R*—w'R".
For anyw’, n'is an excess return so already orthogonakto
E(R*n') = 0.

To showE(n?) = 0 andn® orthogonal taR**, we exploit the fact that since’ is an excess
return,

E(n') = E(R°*n").

Therefore,R¢* is orthogonal ta:? if and only if we pickw? so thatE(n?) = 0. We don't
have to explicitly calculate’ for the proof.

Once we have constructed the decomposition, the frontier drops out. Bjnég= 0 and
the three components are orthogonal,

E(R") = E(R*) + w'E(R®")

UZ(Ri) —_ UZ(R* +’U)iRe*) _,'_O_Z(ni).

Thus, for each desired value of the mean return, there is a uniguReturns withn? =
minimize variance for each mean. ]

Decomposition in mean-variance space

Figure 12 illustrates the decomposition in mean-variance space rather than in state-space.

First, let's locateR*. R* is the minimum second moment return. One can see this fact
from the geometry of Figure 11R* is the return closest to the origin, and thus the return
with the smallest “length” which is second moment. As with OLS regression, minimizing
the length ofR* and creating aiR* orthogonal to all excess returns is the same thing. One
can also verify this property algebraically. Since any return can be expresged-aB* +

2 |tsvalue

_ BE(R) - E(R")
- E(Re*)

i

is not particularly enlightening.
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E(R) R* +WiR® i
ni R
a= ——>¢
E(R*2)/ E(R*)
R*
o(R)

Figure 12. Orthogonal decomposition of a reti@@hin mean-standard deviation space.

wR® + n, E(R?) = E(R*?) + w?E(R**?) + E(n?). n = 0 andw = 0 thus give the
minimum second moment return.

In mean-standard deviation space, lines of constant second moment are circles. Thus,
the minimum second-moment retuRt is on the smallest circle that intersects the set of all
assets, or the mean-variance frontier as in the right hand panel of Figure 14. NotiBé that
is on the lower, or “indicient” segment of the mean-variance frontier. Itis initially surprising
that this is the location of the most interesting return on the fronti&ris not the “market
portfolio” or “wealth portfolio.”

R°* moves one along the frontier. Addingdoes not change mean but does change
variance, so it is arndiosyncratic return that just moves an asset off the frontier as graphed.
I'll return to the vertical intercept: below.

A compilation of properties of R*, R** and =*
There are lots of interesting and useful properties of the special returns that generate the mean
variance frontier. | list a few here. Some | derived above, some | will derive and discuss below

in more detail, and some will be useful tricks later on. In every case, | urge you to draw a
little picture to go along with the algebraic discussion.
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1)

1

E(R*?) = )

(43)
To derive this fact, multiply both sides of (41) B, take expectations, and rememris
areturnsd = E(z*R*).

2) We can reverse the fieition and recovet* from R* via

= %. (a4)

To derive this formula, start with the fieition R* = x*/ E(x*?) and substitute from (43) for
E(2*?)3) R* can be used to represent prices just like This is not surprising, since they
both point in the same direction, orthogonal to planes of constant price. Algebraically,

E(R*?)=E(R*R)VR € R. (45)

E(R*?)p(x) = E(R*z) Vr € X.

This fact can also serve as an alternativérdeg property ofR*. To derive (45), usé =
E(z*R) and (44).

3) R* is the minimum second moment return.

4) R** represents means dif via an inner product in the same way thé&trepresents
prices onX via an inner productR<* is orthogonal to planes of constant meatRihasz* is
orthogonal to planes of constant price. Algebraically, in analogy(t) = FE(x*z) we have

E(R°) = E(R**R°) VR® € R°. (46)

This fact can serve as an alternativéidiag property ofRe*.
To see this fact, recall thdt°* is defined by

R = proj(1|R)
which is analogous to* = proj(m|X). Therefore,
E(R¢) = E(1 x R®) = E (proj(1|R®) x R°) = E(R**R®).
5) R** and R* are orthogonal,
E(R*R*") =0.
6) The mean variance frontier is given by
R™" = R* + wR*".
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7) SinceR* and R¢* are orthogonal, the last fact implies that
R* = minimum second moment return.

Graphically, R* is the return closest to the origin. | discuss this property at some length in
section 6 below.

The remaining properties are minduse them once or twice below and they make great
test questions, but are not that deep.

8) Applying fact (46) toRe* itself, R°* has the sam#first and second moment,
E(Re*) — E(Re*Q)
and therefore

var(R%) = E(R**?) — E(R**)? = E(R**) [l — E(R®")].

9) If there is a riskfree rate, theR®* can also be ded as the residual in the projection
of lonR* :

EH) by L g (47)

R :1—pr03(1\R):1—E(R*2) 7

See Figure 11! To verify this statement analytically, check fkfdt so ddined is an excess
return inX, andE(R**R®) = E(R¢); E(R*R**) = 0.

Riskfree return, zero beta return, and minimum variance returns

The riskfree rate is an obviously interesting point on the mean variance frontier, and it should
be no surprise that it will show up often in asset pricing formulas. Thus, it's interesting
to characterize it byinding the appropriatevin R* + wR®*. When no risk-free rate is
traded, three generalizations of the riskfree rate are interesting and can take its place in as-
set pricing formulas. These are thero-betarate, the minimum-variance returrand the
constant-mimicking portfolioeturn. We will also characterize these quantities by finding the
appropriate win R* 4+ wR**.

Risk free rate

If there is arisk free rate—if the payoff spaceX includes a unit payoff—the(R*?) =
E(R*R’) = E(R*)R’, and we can recover the value of the risk free rate fi@itself, or
x*,

;o E(R*?) 1

B =F®) " E@)

(48)

Since we have decomposed every frontier returR’as w R, it is interesting to express
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the risk free rate in this way as well. There are a number of equivalent representations,

R/ = R* + R'R* (49)

R — R4 %((Jg *2)) Rt (50)
RN =R+ = _ESE]?;*)RE* (51)
Rf =R+ %RE*. (52)

To derive (49) and (50), start from (47) and multiply through®¥. To establish (51)
and (52), we need to show that if there is a risk free rate, then

; _E(R?  E®) _  var(R)

B = 5wy “1T-E®") ~ BR)ER™)

(53)

Thefirst equality is given by (48). To derive the second equality, take expectations of (47),
take expectations of (49), or note thake*||2 + ||proj(1|R*)||> = 1, since the three quanti-
ties form a right triangle. To check the third equality, take expectations of (52),

E(R*Q) _ E(R*)2 B E(R*Z)
E(R) - B(RY)

RT = E(R") +

The equalities in (53) all depend on the presence of a riskfree rate. When there is no
riskfree rate, these three different expressions generate three different and interesting returns
on the frontier, and each takes the place of the riskfree return in some asset pricing formulas.

The remaining cases assume there is no riskfree rate — the unit payoff isXiot in

Zero-beta rate forR*

The riskfree rate R is of course uncorrelated with R*. Risky returns uncorrelated with R*
earn the same average return as the risk free rate if there is one, so they might take the place
of R/ when the latter does not exist. For any return R that is uncorrelated with R* we have
E(R*R*) = E(R*)E(R"), s0

E(R*?) 1

ARy 1 o r

The first equality introduces a popular notation « for this rate.
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The zero-beta rate is the inverse of the price tRatand z* assign to the unit payoff,
which is another natural generalization of the riskfree rate. It is called theletagate
because such thatv(R*, R*) = 0 implies that the regression beta®f on R* is zero, and
everything used to be written in terms of such regressiorficgaits rather than covariances
or second moments. More precisely, one might call it the zero betarrd®é&, since one can
calculate zero-beta rates for returns other tR&rand they are different. In particular, the
zero-beta rate on the “market portfolio” will generally be different from the zero beta rate on
R*

| drew «cin 12 as the intersection of the tangency and the vertical axis. This is a property
of any return on the mean variance frontier: The expected return on an asset uncorrelated with
the mean-variance fifient asset (aero-betaasset) lies at the point so constructed. To check
this geometry, use similar triangles: The length of R* in 12 is /E(R*2), and its vertical
extent is E(R*). Therefore, a/\/E(R*2) = \/E(R*2)/E(R*), or a = E(R*?)/E(R").

Since R* ison the lower portion of the mean-variance frontier, this zero beta ratds above
the minimum variance return.

Note that in generak # 1/E(m). Projectingmon X preserves asset pricing implica-
tions onX but not for payoffs not inX. Thus if a risk free rate is not traded! andm may
differ in their predictions for the riskfree rate as for other nontraded assets.

We want to see the zero beta return that is also on the mean variance froftier inR*
form. Expression (52) becomes the zero-beta return when there is no risk free rate,

o _ e, var(RY) o,
R =R' + — R,

(R*)E(Re)
To check, verify that it gives the correct mean,

exy  E(R*)?4wvar(R*)  E(R*)
P =""F®m) T E®)

E(R*) = E(R") + %

Minimum variance return.

The riskfree rate obviously is the minimum variance return when it exists. When there is no
risk free rate, expression (51) becomes the minimum variance return

; E(R*)
min.var. _ px . _ Z\fVY ) pex
R =R +1—E(R6*)R .
Taking expectations,
- E(R*) E(R*)
E min. var. :E * E ex ) .
(B = B ey P = T B

The minimum variance return retains the property (49) of the risk free rate above, that its
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weight onR** is the same as its mean
Rmin. var. _ R* + E(Rmin. var.)Re*
When there is no risk free rate, the zero-beta and minimum variance retum dre same.
We can derive this expression for the minimum variance return by brute force: choose

win R* + wR* to minimize variance.

min var(R* +w]%e*) _ E[(R* +wRe*)2] B E(R* +wRe*)2 —

= E(R*?) + w?E(R**) — E(R*)* - 2wE(R*)E(R**) — w*E(R**)*.
Thefirst order condition is

0 = wE(R™)[1 — E(R**)] — E(R*)E(R®)

__E(RY)
T1-B(RY)

Variance is the size or second moment of the residual in a projection (regression) on 1.
var(z) = E [(¢ — E(x))’] = E [(z — proj(z(1))?] = ||z — proj(=[1)|[”

Thus, the minimum variance return is the return closest to extensions of the unit vector.

Return on constant-mimicking portfolio.

The riskfree rate is of course the return on the unit payoff. When there is no riskfree rate,
expression (50),

E(R*Q)

R=R +aR" = R+ LS

Re*

is the return on the traded payoff that is closest to the (nontraded) unit payoff. Precisely, this
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return has the property
proj(11X)
plproj(11X)]’
which is a natural generalization of the risk free rate prop&fy= 1/p(1). Since we form

mimicking portfolios by projecting nontraded random variables on the space of payoffs, a
natural name for this construct is thenstant-mimicking portfolio return

R:

Note the subtle difference: the minimum variance return is the return closest to an exten-
sion of the unit vector. The constant-mimicking portfolio return is the return ompaieff
closest to 1. They are not the same object when there is no risk free rate.

5.3 Relation between p = E(mx), beta, and mean-variance frontiers

p = E(mz), [ representations and mean-variance frontiers look unrelated, but in fact they
all express the same thing. This section is devoted to linking these three asset pricing repre-
sentations. An overview of the ideas:

p = E(mz) = . Givenm such thap = E(mz), we can derive an expected returns
relationship.m, z*or R* all can serve as reference variables for betas: # b’f, then

3 | think this is a novel result, so here's the algebra.X is spanned byR*, R®* andn so we canfind
proj(1|X) = aR* + bR* + n by making sure the residual is orthogonal®6, R<* andn :

E(R*)

E(R*Q)

0= E[R*(1 —aR* —bR** —n)| = B(R*) —aB(R*?) = a=

0=E[R”(1 —aR* —bR® —n)] = E(R®) —bE(R®*) =0=>b=1

0=E[n(l1—aR* —bR* —n)| = En?) =0=n=20

Thus,
. E(R* * e*
proj(1l|X) = E((R*Q))R + R
Its price is
. _ B [proj(11X))) 1 B(R") ey | E(RY)
plpros110) = S = e | P = e
andfinally
R E(R*) * ex
proj(11X) _ mmHM AHT . BER?) ..
plrojQIX)] Y T pmn

E(R*Z)
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f, proj(f | X) can serve as multiple factors in a multiple beta model.
p = E(mz) = mean-variance frontieRR* is on the mean-variance frontier.

6 = p = E(mx). If we have an expected return/beta model, then- b’f linear in the
factors satifesp = E(mz).

Mean-variance frontiee- p = E(max). If a returnR™" is on the mean-variance frontier,
thenm = a 4+ bR™" linear in that return is a discount factdrsatifiesp = E(mz).

If a return is on the mean-variance frontier, then there is an expected return/beta model
with that return as reference variable.

Figure 13 summarizes the equivalence of the three asset pricing views.

LOOP O m exists

|
¢ ’ p = E(mx)

f=m, x*, R* / \

m= bf m = a + bRV

/ R*is on m.v.f.
E(R)=a+B’A \ /
<_\
\ f=RmW \

[

proj(flR) on m.v.f. R™ on m.v.f.

E(RR’) nonsingular O R™ exists

Figure 13. Relation between three views of asset pricing.

The following subsections discuss the mechanics of going from one representation to the
other in detail. The next chapter discusses the implications of the existence and equivalence
theorems.

531 Fromp = E(mz) toasinglebetarepresentations

Sngle 5 representation using m
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p = E(mz) implies E(R") = a+ 0; ,,Am

Start with
1 = E(mR') = E(m)E(R") + cov(m, R").

Thus,

E(R") =

Multiply and divide byvar(m), ddinea = 1/E(m) to get

E(R) = a+ <Cov(m, Ri)) (_ var(m)

var(m) E(m) > =t Bimdm.

As advertised] = E(mR) implies a single beta representation.

For example, we can equivalently state the consumption-based model as: mean asset
returns should be linear in the regression betas of asset retufng,@pic,)~". Furthermore,
the slope of this cross-sectional relationshjp is not a free parameter, though it is usually
treated as such in empirical evaluation of factor pricing modegsshould equal the ratio of
variance to mean dfc.1/c;) 7.

The factor risk premium\,,, for marginal utility growth is negative. Positive expected
returns are associated with positive correlation with consumption growth, and hence negative
correlation with marginal utility growth ande. Thus, we expeck,,, < 0.

Sngle 5 representation using «* and R*

1 = E(mRY) implies a beta model with* = proj(m|X) or R* = z*/E(x*?) as
factors, e.gE(R") = a + f3; p.[E(R*) — o

It is traditional and sometimes desirable to express a pricing model in terms of returns on
some portfolio rather than in terms of some real factor, such as consumption growth. Even
if we found the perfect measure of utility and consumption, the fact that asset return data
are measured much better and more frequently would lead us to use an equivalent return
formulation for many practical purposes.

We have already seen the idea of “factor mimicking portfolios” formed by projection. We
can use the same idea here: projeabn to X, and the result also serves as a pricing factor.
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Sngle beta representation with z*.

Recall thatp = E(maz) impliesp = E [proj(m | X) z|, orp = E(z*z). Then we know
1 = E(mR') = E(z*R") = E(z*)E(R") + cov(z*, R").
Solving for the expected return,

N cov(z*, RY) _ cov(z*, RY) var(x*)
E(R) = E(x*) E(z*) E(x*) var(z*)  E(z*) (54)

which we can write as the desired single-beta model,
E(R") = a+ B; 4 Aa+.
Notice that the zero-beta rat¢ E(z*) appears when there is no riskfree rate.

Sngle beta representation with R*.

Recall the dénition,

x*

B = 5w

SubstitutingR* for z*, equation (54) implies that we can in fact construct a refeifrirom
m that acts as the single factor in a beta model,

E(R?)  cov(R*, RY) E(R*2)+<COU(R*,Ri)> <_var(R*)>

BB =5y~ mw) B T\ ar®) E(R")

or, defining Greek letters in the obvious way,

E(R') = a+ Bri g Ar- (55)

Since the factoR* is also a return, its expected excess return over the zero beta rate gives
the factor risk premium gz«. Applying equation (55) ta* itself,

o var(R*)
E(R*) =« B (56)
So we can write the beta model in an even more traditional form
E(R") = a+ fBgi g [E(R") — a]. (57)

Recall thatR* is the minimum second moment frontier, on the lower portion of the mean-
variance frontier. This is why* has an unusual negative expected excess return or factor
risk premium\g« = —var(R*)/E(R*) < 0. Note thatw is the zero-beta rate aR* that |
defined and discussed above, and is shown in Figurel2.
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Soecial cases

The one thing that can go wrong in these constructions ishlat), E(z*), or E(R*) might

be zero, so you can't divide by then&(m) cannot be zero since, by absence of arbitrage,

m > 0. If there is a riskfree rate, thety Rf = E(m) = E(2*) = E(R*)/E(R*?), so the
presence of nite riskfree rate also eliminates the potential problem. However, if the payoff
spaceX under study does not include a riskfree rate, then some discount factors, including
xz* and R* may have mean zero — they may imply afirite price for the nontraded unit
payoff. We simply have to rule this out as a special case: amend the theorems to read “there
is an expected return - beta representaiiof(z*) # 0, E(R*) # 0". This is a technical
special case, of little importance for practice. One can eésiflyalternative discount factors

x* + £, with nonzero mean, and use them for a single beta representation. All alternative
discount factors agree on the expected returns of the traded assets, though they disagree on
«. Moral: Don't use mean zero discount factors for single beta representations.

p = E(mz) to mean - variance frontier

R* isthe minimum second moment return, and hence R* is on the mean-variance frontier.

R* is the minimum second moment return. SifceR?) = E(R)? + o?(R), the mini-
mum second moment return is of course on the mean-variance frontier.

532 Mean-variance frontierto 5 and m

R™ ison mean-variance frontiek> m = a + bR™?; E(R') — a = §; [E(R™) — o]
We rule out special cases.

We have seen that= E(max) implies a single-5 model witha mean-variance étient
reference return, namelg*. The converse is also true: for (almost) any return on the mean-
variance frontier, we can flee a discount factom that prices assets as a linear function
of the mean-variance fient return, and expected returns mechanically follow a single
representation using the mean-variandeieit return as reference.

Mean-variance frontier tom

Theorem:Thereisadiscount factor of theform m = a + bR™" if and only if R ison the
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mean-variance frontier, an@™?is not the constant-mimicking portfolio return.

Graphical argument.

Geometrically, this is a straightforward theorem. The space of discount facterplas
any random variables orthogonal to the spacaVe want to know when the space spanned
by the unit vectoil and a returrk includes one of these discount factors.

To think about this question, look at Figure 14. In this casés the whole space, in-
cluding a unit payoff or risk free rate. We want to know when the space spanned by a return
and the unit payoff includes the unique discount faatbr Pick a vectorR™* on the mean-
variance frontier as shown. Then stretchb&(*¥) and then subtract some of the 1 vector (

If we pick the righta andb, we can recover the discount factor.

If the original return vector were not on the mean-variance frontier,dhebhR™" would
point in some of the: direction orthogonal to the mean-variance frontier, for &g 0. If
b = 0, though, just stretching up and down th&ector will not get us tac*. Thus, we can
only get a discount factor of the form+ b R™v if R™" is on the frontier.

Soecial cases

If the mean-variance #€ient returnR™" that we start with happens to lie right on the
intersection of the stretched unit vector and the frontier, then stretching tterector and
adding some unit vector are the same thing, so we again can’t get batkoyostretching
and adding some unit vector. The stretched unit payoff is the riskfree rate, which is the same
as the constant-mimicking portfolio return when there is a riskfree rate.

Now think about the case that the unit payoff does not intersect the space of returns.
Figure 15 shows the geometry of this case. To use no more than three dimensions | had to
reduce the return and excess return spaces to lines. The payoff$padhe plane joining
the return and excess return sets as shown. The set of all discount factors is* + ¢,

E(ex) = 0, the line throughc* orthogonal to the payoff spac€ in the figure. | draw the
unit payoff (the dot marked “1” in Figure 15) closer to the viewer than the planand |
draw a vector through the unit payoff coming out of the page.

Take a payoff on the mean-variance frontigr!. (Since the return space only has two
dimensions, all returns are on the frontier.) For a giR&tt, the space + bR™" is the plane
spanned byR™" and1. This plane lies sideways in thigure. As thefigure shows, there is a
vectora + bR™" in this plane that lies on the line of discount factors.

Next, the special case. This construction would go awry if the plane spahaimgj the
return R™* were parallel to the plane containing the discount factor. Thus, the construction
would not work for the return markefl in the Figure. The special case return is an extension
of the projection of the unit vector o, which was the d&ning property of the constant-
mimicking portfolio returnk.

Algebraic proof

Now, an algebraic proof that captures the same ideas. For an arlitramythe discount
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Figure 14. There is a discount factor = a + bR™" if and only if R™" is on the
mean-variance frontier and not minimum variance.

factor model
m=a+bR=a+b(R"+wR" +n). (58)
I show that this model prices an arbitrary payoff if and only = 0 andR is not the constant-
mimicking portfolio return.
We can determine andb by forcingm to price any two assetsfihda andb to make the

model priceR* and R¢*.

1 = E(mR*)=aE(R")+bE(R*?)

0 = E(mR®)=aE(R)+bwE(R"?) = (a + bw) E(R*").
Solving fora andb,

wE(R*) — E(R*?)
1
- wE(R*) — E(R*?)
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N
Discount factors  Constant-mimicking return R

Figure 15. One can construct a discount facter = a + bR™ from any
mean-variance-étient return except the constant-mimicking retén
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Thus, if it is to priceR* and R°*, the discount factor must be

w— (R* +wR*™ +n)
wE(R*) — E(R*2)

Obviously, this construction can’t work if the denominator is zero, i.@. # E(R*?)/E(R*).
We saw above that the constant-mimicking portfolio retiire= R* + E(R*2)/E(R*)R**,
so that is the case we are ruling out.

Now, let’s see ifm prices an arbitrary payoff’. Any z* € X can also be decomposed as
xi — yzR* +wiRe* +TLZ

(See Figure 11 if this isn’t obvious.) The pricesfis y*, since bothR** andn’ are zero-price
(excess return) payoffs. Therefore, we wélfinz’) = y*. Does it?

E(mxi)—E((w_R —wR —n)(y"R* + W'R +n)>

wE(R*) — E(R*?)

Using the orthogonality of*, R®* n; E(n) = 0 and E(R®*?) = E(R®*) to simplify the
product,

%

R*) — y'E(R*?) — E(nn?) i E(nn

i wyiE( _
E(ma’) = wE(R") — E(R?) ~Y T WER) - E(R?)

To getp(z?) = y* = E(ma’), we needE(nn?) = 0. The only way to guarantee this
condition forevery payoff 2! € X is to insist that, = 0. ]

We can generalize the theorem somewhat. Nothing is special about retayrEayoff of
the formy R* +wR* oryz* +wR** can be used to price assetach payoffs have minimum
variance among all payoffs with given mean and price. Of course, we proved existence not
uniguenessin = a + bR™ + ¢, E(ex) = 0 also price assets as always.

Mean-variance frontier to3

Now, let's think about the tie between mean-variancécefncy and single beta representa-
tions. We already know mean variance frontiessdiscount factor and discount factes

single beta representation, so at a sfipe level we can string the two theorems together.
However it is more elegant to go directly, and the special cases are also a bit simpler this way.

Theorem: There is a single beta representation with a re®iftY as factor,
E(R") = agme + B; gme [E(R™) — o] ,
if and only if R™" is mean-variance #€ient and not the minimum variance return.

This famous theorem is given by Roll (1976) and Hansen and Richard (1987). We rule
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out minimum variance to rule out the special c&&8en) = 0. Graphically, the zero-beta rate
is formed from the tangency to the mean-variance frontier igure 12. If we started at the
minimume-variance return, that would lead to afinite zero-beta rate.

Proof The mean-variance frontier B™* = R* + wR®*. Any return isR’ = R* +
w'R®* + n. Thus,
E(R") = E(R") + w'E(R*)

Now,

cov(R',R™) = cov[(R* +wR®), (R* + w'R%)]
= wvar(R*) + ww'var(R%) — (w Jr w")E(R*)E(R®)
= wvar(R*) —wE(R")E(R®") + w' [w var(R®*) — E(R*)E(R*")]

Thus,cov(RY, R™") and E(R") are both linear functions af’. We can solveov(R!, R™)
for w?, plug into the expression'ch(Ri) and we’re done. To do this, of course, we must be
able to solverov( R*, R™?) for w*. This requires

E(R"E(R™)  ER)ER™) ER)
U Ry BB - E(RC)E 1 E(R)

which is the condition for the minimum variance return. [ |

5.3.3 Betapricing <linear discount factor models

Beta-pricing models are equivalent to linear models for the discount factor m.

m=a+b'f e BE(R) =a+ N,

We have shown that = E(mz) implies a single beta representation using z* or R*
as factors. Let's ask the converse question: suppose we have an expected return - beta model
(such as CAPM, APT, ICAPM, etc.), what discount factor model does this imply? | show
that an expected return - beta model is equivalent to a model for the discount factor that is
a linear function of the factors in the beta model. This is an important and central result. It
gives the connection between the discount factor formulation emphasized in this book and
the expected return/beta, factor model formulation common in empirical work.

One can write a linear factor model most compactlyas: b'f, letting one of the factors
be a constant. However, it will be more transparent to treat a constant factor separately and
explicitly, writing m = a + b’f.
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CHAPTER5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

Theorem. Given the model
m =a+b'f, 1 = E(mR), (59)
one carfind « and\ such that
E(RY) =a+ XB;, (60)

whereg,; are the multiple regression céefents of R? on f plus a constantConversely,
given a factor model of the form (60), one damd a, b such that (59) holds.

Proof: We just have to construct the relation betwéen\) and(a, b) and show that it
works. Without loss of generality, fold the mean of the factgiB(f) in the constant, so the
factors are mean zero. Start with=a + b'f, 1 = E(mR), and hence

1 coo(m,R) 1  E(Rf')b

BB =5~ Bm e a

3, is the vector of the appropriate regression fio&hts,
B,=E ()" E(tR),

so to get3 in the formula, continue with

E(R) = 1 E(Rf)E(M)'E(ff")b 1 B/E(ff’)b

a a a a

Now, deine oo and A to make it work,

11
A = —éE(ﬂ")b B ]

Using (61) we can just as easily go backwards from the expected return-beta representation
tom = a + b'f. [ |

Given either modehereisa model of the other form. They are natique. We can add to
m any random variable orthogonal to returns, and we can add risk factors witi3 zeyor
A, leaving pricing implications unchanged. We can also express the multiple beta model as
a single beta model witthh = a + b’f as the single factor, or use its corresponditig

Equation (61) has an interesting interpretationcaptures the pric& (mf) of the (de-
meaned) factors brought forward at the risk free rate. More Spalty, if we start with
underlying factord such that the demeaned factors fire f—E(f),

A=—ap [f—E(f')] =—q [p(f‘)@
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SECTION5.3 RELATION BETWEEN p = E(mx), BETA, AND MEAN-VARIANCE FRONTIERS

A represents the price of the of the factors less their risk-neutral valuation, ifectrerisk
premium. If the factors are not traded,is the model’s predicted price rather than a market
price. Low prices are high risk premia, resulting in the negative sign.

Note that the “factors” need not be returns (though they maythey need not be orthog-
onal, and they need not be serially uncorrelated or conditionally or unconditionally mean-
zero. Such properties may occur as part of the economic derivation of the factor model,
i.e. showing how factors proxy for marginal utility growth, but they are not required for the
existence of a factor pricing representation.

Factor-mimicking portfolios.

It is often convenient to represent a factor pricing model in terms of portfolio returns rather
than underlying factors that are not returns.

An old trick

One common trick in this regard is to find portfolios of assets whose means are equal
to the factor risk premia. Construct a zero-cost portfolio R°* that has beta 1 on factar,
B.. = 1andg,, = 0 on all the other factors. The time series regression for this portfolio is

R =a%+1x f4+0x f2+...+v% EWLfH =0. (62)
or, in a geometric language,
fit = proj(R**|space of factons

To construct such a portfolio, pick weights on basis assets to get the desired pattern of regres-
sion coeficients. The beta pricing model féi** now implies

E(R®) = \,.

Thus, even if a factor is not itself a return, we damd a portfolio, related to the factors,
whose mean is the factor risk premium.

It would be nice to completely represent the asset pricing implications of the factor pricing
model in terms of portfolios likek“, but these returns do not do the trick, because the betas
are still betas on the factor, not betas on the returns. We can interpret the Rétinom
(62) as the factor plus measurement error, so the betas of a generic RéamnRe® are
different from those of?’on 2. (Measurement error in right hand variables biases regression
coeficients.) Thus, while it is true that

E(R) = By, pa E(R) + 3, p E(R™) + .,
it is not true that
E(R*) = B, e B(R*) + B, oo B(R) + ...
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CHAPTER5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

A better idea

To find a set of returns that can fully stand in for the factors, we have to projefetctioes
on thepayoffs rather than vice versa, so that the error is orthogonal to payoffs. Recait'that
is the projection ofn on the space of payoffs and is therefore a payoff that can stand in for
m. We have also used the idea thapi= E(mx) thenp = E (proj(m|X)x) to generate
a payoff inX that captures all ofns pricing implications. We just apply the same idea to
the individual factors comprising:: project thefactors on the space of payoffs. Since the
discount factorn is linear in the pricing factorg, the projection is the same. | reserve the
termfactor mimicking portfolios for payoffs constructed in this way.

If, as is almost always the case, we only want to use excess returns, this projection partic-
ularly easy. Sinc&X = R° we project the factors on the set of excess returns, and the result
is itself an excess return

R = proj(f*|R°).
The factor-mimicking returiR¢® then satifies
f*=R*+¢% E("R°) =0VR° € R°.

FromE(§“R¢) =0, if m = a+b'f =a+Db’ (R® + £) prices assets, so with = a+b’R*°.

Thus we have found a set of excess returns that completely captures the pricing implications
of the original factors. From the above theorem relating discount factors to expected return -
beta representations, expected excess returns on all assets will obey

E(R®) = B; pea E(R*®) + B; geo E(R®) + ...

The 3; pe. are not equal to thg; ;. and E(R**) # \,, but the product explains expected
returns as well as the original factor model.

If we want to use returns, retaining the factor model’s predictions for the risk free rate, it
is a bit more complicated. It's easy tofthee a factor mimickingpayoff by z* = proj(m|X),
and this would work exactly as in the last paragraph. But this payoff is not a return, since it
need not have price 1. If we want factor-mimickingurns, we can proceed by analogy to
R*, which is created from™* by R* = z*/p(z*). Define

= proj(f*|X)
and then

R* =62

6 =1/p(z*),
O R satidies
f@*=06R*+&% E(¢"z) =0V € X.
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SECTION 5.4 TESTING FOR PRICED FACTORS. LAMBDAS OR B’ S?

Still linear functions of6 R* are linear functions oRk* som linear in the returng® has the
same pricing implications as linear inf. By the above theorem we once again can express
this as a beta pricing model,

E(R') = a+ B; pe B(R® — @) + B;  E(R® — a) + ...

Again, the individualg and A = E(R®* — «) terms are not the same as for the factors, but
the product is, so these factor-mimicking portfolios capture the full implications of the factor
model.

Why can't we project on the space of returns directly? Because that isn't a space: it does
not contain zero. To project on returns, you can't just take linear combinations, you have to
add the side constraint that the weights always sum to one.

54 Testing for priced factors: lambdasor b's?

b; askswhether factor j helpsto price assets given the other factors. b; gives the multiple
regression coefficient of m on f; given the other factors.

A; asks whether factor j is priced, or whether its factor-mimicking portfolio carries a
positive risk premiumJ; gives thesingle regression coéitient ofm on f;.

Therefore, when factors are correlated, one shouldbtest 0 to see whether to include
factorj given the other factors rather than tagt= 0.

Expected return-beta modelsfoeed withsingle regression betas give rise Xowvith mul-
tiple regression interpretation that one can use to test factor pricing.

One is often not sure exactly what factors are important in pricing a cross-section of
assets. There are two natural ways to ask whether we should include a given factor. We can
ask whether the risk premiurx; of a factor is zero, or we can ask whettbeiis zero, i.e. if
the pricing factor enters in the discount factor. (Breearenot the same as thé's. b are the
regression coétient ofm onf, 3 are the regression cdifients of R onf.)

Section 3.3 gave us the togls this section, | use those tools to compare the two ap-
proaches to testing factor pricing models.

b and are related. Recall from (61) that when the model is expresseda + b’f and
the factors de-meaned,

A= —aE(ff')b=—aFE [mf] = — ap(f)

Thus, when the factors are orthogonal, eagh= 0 if and only if the corresponding; = 0.
The distinction betweeh and A only matters when the factors are correlated. Factors are
often correlated however.
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A; captures whether factgi ispriced. b; captures whether factgt is marginally useful
in pricing assets, given the presence of other factor$,; H= 0, we can price assets just as
well without factor f; as with it.

A; is proportional to thesingle regression coétient ofmon f. \; = —a cov(m, f;).
A; = 0 asks the corresponding single regressionfoteht question—"is factoy correlated
with the true discount factor?”

b; is themultiple regression coéitient of m on f; given all the other factors. This just
follows fromm = b’f. (Regressions don’t have to have error terms!jnédtiple regression
coeficient 3, in y = x03 + ¢ is the way to answer “does; help to explain variation iy
given the presence of the otheis?” When you want to ask the question, “should | include
factorj given the other factors?” you want to ask thaltiple regression question. You want
to know if factorj hasmarginal explanatory power fom and hence for pricing assets. When
there is a difference — when the factors are correlated — you want tb;test \;.

Here is an example. Suppose the CAPM is true, which is the single factor model
m=a+bR™

where R™ is the “market return.” Consider any other retugri, positively correlated with
R™ (x for extra). If we try a factor model with the spurious facft, the answer is

m=a+bR™ +0 x R*,

the corresponding, is obviously zero, indicating that adding this factor does not help to
price assets.

However, since the correlation & with R and hencen is positive R* earns a positive
expected excess return, akg > 0. In the expected return - beta model

Am = E(R™) — ais unchanged by the addition of the spurious factor. However, since the
factorsR™, R* are correlated, the multiple regresstmtas of R’ on the factors change when
we add the extra factar. For examplef,,, may decline if3,, is positive, so the new model
explains the same expected retiit(’). Thus, the expected return - beta model will indicate

a risk premium fors,, exposure, and many assets will ha¥gexposure R* for example!)
even though factoR” is spurious.

So, as usual, the answer depends on the question. If you want to know whethet factor
ispriced, look at\ (or E(mf*%)). If you want to know whether factarhelps to price other
assets, look atb;. This is not an issue about sampling error or testing. All moments above are
population values.
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Chapter 6. Implicationsof existence and
eguivalence theorems

Existence of adiscount factor meansp = E(ma) isinnocuous, and all content flows from
the discount factor model.

The theorems apply to sample moments too; the dangers of fishing up ex-post or sample
mean-variance étient portfolios.

Sources of discipline in factdishing expeditions.

The joint hypothesis problem. Howfefiency tests are the same as tests of economic
discount factor models.

Factors vs. their mimicking portfolios.
Testing the number of factors.

The theorems on the existence of a discount factor, and the equivalence between the
E(mx), expected return - beta, and mean-variance views of asset pricing have important
implications for how we approach and evaluate empirical work.

p = E(maz) isinnocuous

Before Roll (1976), expected return — beta representations had been derived in the con-
text of special and explicit economic models, especially the CAPM. In empirical work, the
success of any expected return - beta model seemed like a vindication of the whole structure.
The fact that, for example, one might use the NYSE value-weighted index portfolio in place
of the return on total wealth predicted by the CAPM seemed like a minor issue of empirical
implementation.

When Rollfirst showed that mean-variancéeiency implies a single beta representation,
all that changed Some single beta representation always exists, since there is some mean-
variance dicient return. The asset pricing model only serves to predict that a particular
return (say, the “market return”) will be mean-variancgont. Thus, if one wants to “test
the CAPM" it becomes much more important to be choosy about the reference portfolio, to
guard against stumbling on something that happens to be mean-varifioiemeand hence
prices assets by construction. This insight led naturally to the use of broader wealth indices
(Stambaugh 198x) in the reference portfolio.

(A very interesting and deep fact is that these attempts have been dismal failures. Us-
ing statistical measures, stocks are well priced by ad-hoc stock portfolios, bonds by bonds,
foreign exchange by foreign exchange and so on. More recently, stocks sorted on size,
book/market, and past performance characteristics are priced by portfolios sorted on those
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characteristics. Covariances with the returns on each form of wealth have very little explana-

tory power for expected returns of other forms of wealth. The fundamental idea that assets
gain expected return premia by covariance with, and hence digatgin of, the widest pos-

sible portfolio seems to fail against the alternative that expected return premia are determined
by fairly narrow portfolios. This fact suggests that risks are not as well shared as in our
models.)

The good news in this existence theorem is that you can always start by writing an ex-
pected return-beta model, knowing that almost no structure has been imposed in so doing.
The bad news is that you haven't gotten very far by doing this. All the economic, statistical
and predictive content comes in picking the factors.

The more modern statement of the same theorem (Ross 1978, Harrison and Kreps 1979)
is that, from the law of one price, there existsne discount factom such thap = E(mx).
The content is all inn = f(datg notinp = E(mz). Again, an asset pricing framework
that initially seemed to require a lot of completely unbelievable structure—the representative
consumer consumption-based model in complete frictionless markets—turns out to require
(almost) no structure at all. Again, the good news is that you can always start by writing
p = E(mz), and need not suffer criticism about hidden contingent claim or representative
consumer assumptions in so doing. The bad news is that you haven't gotten very far by
writing p = E(mx) as all the economic, statistical and predictive content comes in picking
the discount factor modeh = f(data).

Ex-ante and ex-post.

| have been deliberately vague about the probabilities underlying expectations and other
moments in the theorems. The fact is, the theorems hold for any set of probabilities*. Thus,
the theorems work equally well ex-anteas ex-post E(mz), 5, E(R) and so forth can refer
to agent’s subjective probability distributions, objective population probabilities, or to the
moments realized in a given sample.

Thus, if the law of one price holds in a sample, one may form*ainom sample moments
that satiiesp(z) = E(z*z), exactly, in that sample, wherg(z) refers to observed prices
and E(z*z) refers to the sample average. Equivalently, if $aeple covariance matrix of
a set of returns is nonsingular, there existsaapost mean-variance dicient portfolio for
which sample average returns line up exactly with sample regression betas.

This observation, it seems to me, points to a great danger in the widespread exercise
of searching for and statistically evaluating ad-hoc asset pricing models. Such models are
guaranteed empirical success in a sample if one places little enough structure on what is
included in the discount factor function. The only reason the model doesn’tpeoidctly is
whatever restrictions the researcher has imposed on the number or identity factors included
in m, or the parameters of the function relating the factorsitdSince these restrictions are
the entire content of the model, they had better be interesting, carefully described and well
motivated!

4 Precisely, any set of probabilities that agree on agree on impossible (zero-probability) events.
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Obvioudly, thisistypically not the case or | wouldn't be making such a fuss about it. Most
empirical asset pricing research posits an ad-hoc pond of faéisines around a bit in that
set, and reports statistical measures that show “success,” in that the model is not statistically
rejected in pricing an ad-hoc set of portfolios. The set of discount factors is usually not large
enough to give the zero pricing errors we know are possible, yet the boundaries are not clearly
defined.

Discipline
What is wrong, you might ask, witfinding an ex-post étient portfolio orx* that prices
assets by construction? Perhaps the lesson we should learn from the existence theorems is to

forget about economics, the CAPM, marginal utility and all that, and simply price assets with
ex-post mean variancefifient portfolios that we know set pricing errors to zero!

The mistake is that a portfolio that is ex-posfi@ént in one sample, and hence prices
all assets in that sample, is unlikely to be mean-varianiéeiaft, ex-ante or ex-post, in the
next sample, and hence is likely to do a poor job of pricing assets in the future. Similarly,
the portfolioz* = p' E(xx’)~1x (using the sample second moment matrix) that is a discount
factor by construction in one sample is unlikely to be a discount factor in the next sample
the required portfolio weights’ E(xx’)~! change, often drastically, from sample to sample.

For example, suppose the CAPM is true, the market portfolio is ex-ante mean-variance ef-
ficient, and sets pricing errors to zero if you use true or subjective probabilities. Nonetheless,
the market portfolio is unlikely to bex-postmean-variance dicient in any given sample. In
any sample, there will be lucky winners and unlucky losers.eApost mean variance ef-
ficient portfolio will be a Monday-morning quarterbadkwill tell you to put large weights
on assets that happened to be lucky in a given sample, but are no more likely than indicated
by their betas to generate high returns in the future. “Oh, if | had only bought Microsoft in
1982..." is not a useful guide to forming a mean-variandeieiht portfolio today.

The only solution is to impose some kind of discipline in order to avoid dredging up
spuriously good in-sample pricing.

The situation is the same as in traditional regression analysis. Regressions are used to
forecast or to explain a variableby other variables in a regressiony = x'3 + ¢. By
blindly including right hand variables, one can produce models with arbitrarily good statis-
tical measures dit. But this kind of model is typically unstable out of sample or otherwise
useless for explanation or forecasting. One has to carefully and thoughtfully limit the search
for right hand variables to produce good models.

What makes for an interesting set of restrictions? Econometricians wrestlingy with
x'3 + ¢ have been thinking about this question for about 50 years, and the best answers
are 1) use economic theory to carefully specify the right hand side and 2) use a battery of
cross-sample and out-of-sample stability checks.

Alas, this advice is hard to follow. Economic theory is usually either silent on what
variables to put on the right hand side, or allows a huge range of variables. The same is true
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in finance. “What are the fundamental risk factors?” is still an unanswered question. At the
same time one can appeal to the APT and ICAPM to justify the inclusion of just about any
desirable factor (Fama 1991 calls these theoridishihg license.”) Thus, you will grow old
waiting for theorists to provide useful answers to this kind of question.

Following the purely statistical advice, the battery of cross-sample and out-of-sample tests
usually reveals the model is unstable, and needs to be changed. Once it is changed, there is
no more out-of-sample left to check it. Furthermore, even if one researcher is pure enough
to follow the methodology of classical statistics, and wait 50 years for another fresh sample
to be available before contemplating another model, his competitors and journal editors are
unlikely to be so patient. In practice, then, out of sample validation is not a strong guard
againstfishing.

Nonetheless, these are the only standards we have to guard dighinst In my opinion,
the best hope fofinding pricing factors that are robust out of samples and across different
markets, is to try to understand the fundamental macroeconomic sources of risk. By this |
mean, tying asset prices to macroeconomic events, in the way the ill-fated consumption based
model does vian;+1 = Bu'(ci+1)/u’(¢;). The dificulties of the consumption-based model
has made this approach lose favor in recent years. However, the alternative approach is also
running into trouble: every time a new anomaly or data set pops up, a new set of ad-hoc
factors gets created to explain them! Also models df@etiwith economic fundamentals
will always seem to do poorly in a given sample against ad-hoc variables (especially if one
fishes an ex-post mean-variancéaéént portfolio out of the latter!). But what other source
of discipline do we have?

In any case, one should always ask of a factor model, “what is the compelling economic
story that restricts the range of factors used?” and / or “sfatistical restraints are used
to keep from discovering ex-post mean variandécieit portfolios, or to ensure that the
results will be robust across samples?” The existence theorems tell us that the answers to
these questions are tloely content of the exercise. If the purpose of the model is not just
to predict asset prices but also #plain them, this puts an additional burden on careful
economic motivation of the risk factors.

There is a natural resistance to such discipline built in to our current statistical methodol-
ogy for evaluating models (and papers). When the last atiitsteed around and produced a
popular though totally ad-hoc factor pricing model that generates 1% average pricing errors,
it is awfully hard to persuade readers, referees, journal editors, and clients that your econom-
ically motivated factor pricing model is better despite 2% average pricing errors. Your model
may really be better and will therefore continue to do well out of sample whefisthed
model falls by the wayside dfnancial fashion, but it is hard to get past statistical measures
of in-samplefit. One hungers for a formal measurement of the number of hurdles imposed
on a factorfishing expedition, like the degrees of freedom correctioR4nAbsent a numer-
ical correction, we have to use judgment to scale back apparent statistical successes by the
amount of economic and statistidathing that produced them.

Irrationality and Joint Hypothesis
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Finance contains a long history of fighting about “rationality” vs. “irrationality” and
“efficiency” vs. “ineficiency” of asset markets. The results of many empirical asset pricing
papers are sold as evidence that markets areflonefit” or that investors are “irrational.” For
example, the crash of October 1987, and various puzzles such as théiemdlbok/market,
seasonal effects or long-term predictability (discussed below) have all been sold this way.

However, none of these puzzles documents an arbitrage oppotturiiterefore, we
know that there i “rational model™-a stochastic discount factan efficient portfolio to use
in a single-beta representation—that rationalizes them all. And we cdidently predict
this situation to continueeal arbitrage opportunities do not last long! Fama (1970) contains
a famous statement of the same point. Fama emphasized that any tefit@riey” is ajoint
test of eficiency and a “model of market equilibrium.” Translated, an asset pricing model, or
a model ofm.

But surely markets can be “irrational” or “infiafient” without requiringarbitrage op-
portunities? Yes, they can, if the discount factors that generate asset prices are disconnected
from marginal rates of substitution or transformation in the real economy. But now we are
right back to specifying and testing economic models of the discount factor! At best, an as-
set pricing puzzle might be so severe that we can show that the required discount factors
are completely “unreasonable” (by some standard) measures of marginal rates of substitution
and/or transformation, but we still have to ssynething about what a reasonable marginal
rate looks like.

In sum, the existence theorems mean that there are no quick proofs of “rationality” or
“irrationality.” The only game in town for the purpose efplaining asset prices is thinking
about economic models of the discount factor.

Mimicking portfolios

The theorem:* = proj(m|X) also has interesting implications for empirical work. The
pricing implications of any model can be equivalently represented by its factor-mimicking
portfolio. If there is any measurement error in a set of economic variables drivjnipe
factor-mimicking portfolios will price assets better.

Thus, it is probably not a good idea to evaluate economically interesting models with
statistical horse races against models that use portfolio returns as factors. Economically in-
teresting models, even if true and perfectly measured, will just equal the performance of their
own factor-mimicking portfolios, even in large samples. They will always lose in sample
against ad-hoc factor models thatd nearly ex-post étient portfolios.

This said, there is an important place for models that use returns as faéftes we
have found the underlying true macro factors, practitioners will be well advised to look at
the factor-mimicking portfolio on a day-by-day basis. Good data on the factor-mimicking
portfolios will be available on a minute-by-minute basis. For many purposes, one does not

5 The closed-end fund puzzle comes closest since it documents an apparent violation of the law of one price.
However, you can't costlessly short closed end funds, and we have ignored short sales constraints so far.

93



CHAPTER 6 IMPLICATIONS OF EXISTENCE AND EQUIVALENCE THEOREMS

have to understand the economic content of a model. But this fact does not tell us to cir-
cumvent the process of understanding the true macroeconomic factors by ghjly for
factor-mimicking portfolios. The experience of practitioners who use factor models seems
to bear out this advice. Large commercial factor models resulting from extensive statistical
analysis (otherwise known #&shing) perform poorly out of sample, as revealed by the fact
that the factors and loading8)(change all the time.

The number of factors.

Many assets pricing tests focus on thenber of factors required to price a cross-section
of assets. The equivalence theorems imply that this is a silly question. A linear factor model
m = b'f or its equivalent expected return / beta moHéR?) = o + B A are not unique
representations. In particular, given any multiple-factor or multiple-beta representation we
can easilyfind a single-beta representation. The single fagtoe= b’f will price assets
just as well as the original factofs as will z* = proj(b’f | X) or the corresponding
R*. All three options give rise to single-beta models with exactly the same pricing ability as
the multiple factor model. We can also eadilyd equivalent representations with different
numbers (greater than one) of factors. For example, write

b .
m=a+byfi+bafo+bsfs =a+bify+bo (fz + if?,) =a+bifi+bafo

to reduce a “three factor” model to a “two factor” model. In the ICAPM language, consump-
tion itself could serve as a single state variable, in place obthtate variables presumed to
drive it.

There is a reason to be interested in a multiple factor representation. Sometimes the
factors have an economic interpretation that is lost on taking a linear combination. But the
purenumber of pricing factors is not a meaningful question.

6.1 Discount factor svs. mean, variance and beta.

The essential difference is contingent claims as the commodity space rather than portfolio
return moments.

The point of the previous chapter was to show how the discount factor, mean-variance,
and expected return- beta models are all equivalent representations of asset pricing. It seems
a good moment to contrast them as wedl understand why the mean-variance and beta
language developefirst, and to think about why the discount factor language seems to be
taking over.

Asset pricing started by putting mean and variance of returns on the axes, rather than
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SECTION 6.1 DISCOUNT FACTORS VS. MEAN, VARIANCE AND BETA.

payoff in state 1 payoff in state 2, etc. aswe do now. The early asset pricing theorists posed

the question just right: they wanted to treat assets in the apples-and-oranges, indifference
curve and budget set framework of macroeconomics. The problem was, what labels to put
on the axis? Clearly, “IBM stock” and “GM stock” is not a good idéavestors do not
value securities per se, but value some aspects of the stream of randofiowaghat those
securities give rise to.

Mean and variance of portfolios returns is a natural djgation of two characteristics to
be traded off. Investors plausibly want more mean and less variance. Thus, the early theorists
put portfolio mean and variance on the axes. They gave investors “utility functiofisede
over this mean and variance the way standard utility functions dneedeover apples and
oranges. The mean-variance frontier is the “budget set”.

With this focus on portfolio mean and standard deviation, the next step was to realize
that each security’'s mean return measures its contribution to the portfolio mean, and that
regression betas on the overall portfolio give each security’s contribution to the portfolio
variance. Mean return vs. beta descriptions for each security (h&fceas born.

In a deep sense, the transition from mean-variance frontiers and beta models to discount
factors represents the realization that putting consumption in state 1 and consumption in
state 2 on the axes — specifying preferences and budget constraints over state-contingent
consumption — is a much more natural mapping of standard microeconomidsniatce
than putting mean, variance, etc. on the axes. If for no other reason, the contingent claim
budget constraints are linear, while the mean-variance frontier is not. Thus, | think, the focus
on means and variance, the mean-variance frontier and expected return/beta models is all
due to an accident of history, that the early asset pricing theorists happened to put mean and
variance on the axes rather than state contingent consumption. If Arrow or Debreu (195x),
who invented state-contingent claims, had taken on asset pricing, we might never have heard
of these constructs.

Well, here we are, why prefer one language over another? | prefer the discount factor lan-
guage for its simplicity, generality, mathematical convenience, and elegance. These virtues
are to some extent in the eye of the beholder, but to this beholder, it is inspiring to be able
to startevery asset pricing calculation with one equatipn= E(mz). p = E(max) covers
all assets, including bonds, options, and real investment opportunities, while the expected re-
turn/beta formulation is not useful or very cumbersome in the latter applications. Thus, it has
seemed that there are several different asset pricing theories: expected return/beta for stocks,
yield-curve models for bonds, arbitrage models for options. In fact all three are just cases
of p = E(mx).As a particular examplerbitrage, in the precise sense of positive payoffs
with negative prices, has not entered the equivalence discussion at all. |1 don't know of any
way to cleanly graft absence of arbitrage on to expected return/beta models. You have to tack
it on after the fact — “by the way, make sure that every portfolio with positive payoffs has a
positive price.” It is trivially easy to graft it on to a discount factor model: just add 0.

The choice of language %t about normality or return distributions. There is a lot of
confusion about where return distribution assumptions show tipamce. | have madeo
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CHAPTER 6 IMPLICATIONS OF EXISTENCE AND EQUIVALENCE THEOREMS

distributional assumptionsin any of the discussion so far. Second moments show up because
p = E(maz) involves a second moment. One does not need to assume normality to talk about
the mean-variance frontier, or for returns on the frontier to price other assets.
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Chapter 7. Conditioning infor mation

The asset pricing theory | have sketched so far really describes prices at time ¢ in terms of
conditional moments. The investor’s first order conditions are

pew (cr) = BE [u/ (coq1)Ti41]

where E; means expectatioconditional on the investor’s time information. Sensibly, the
price at timef should be higher if there is information at tim#hat the discounted payoff is
likely to be higher than usual at timte+- 1. The basic asset pricing equation should be

Pt = Et(mt+1$t+1)-

(Conditional expectation can also be written

pr=FE [mt+1xt+1|It]

when it is important to specify thaformation set 1,.).

If payoffs and discount factors were independent and identically distributed (i.i.d.) over
time, then conditional expectations would be the same as unconditional expectations and
we would not have to worry about the distinction between the two concepts. But stock
price/dividend ratios, bond and option prices all change over time, which nfiesttrehang-
ing conditional moments of something on the right hand side.

One approach is to specify and estimate explicit statistical models of conditional distribu-
tions of asset payoffs and discount factor variables (e.g. consumption growth). This approach
is sometimes used, and is useful in some applications, but it is usually cumbersome. As we
make the conditional mean, variance covariance and other parameters of the distribution of
(say) N returns depenfiexibly on M information variables, the number of required param-
eters can quickly exceed the number of observations.

More importantly, this explicit approach typically requires us to assume that investors use
the same model of conditioning information that we do. We obviously don’t even observe all
the conditioning information used by economic agents, and we can't include even a fraction
of observed conditioning information in our models. The basic feature and beauty of asset
prices (like all prices) is that they summarize an enormous amount of information that only
individuals see. The events that make the price of IBM stock change by a dollar, like the
events that make the price of tomatoes change by 10 cents, are inherently unobservable to
economists or would-be social planners (Hayek 194x). Whenever possible, our treatment of
conditioning information should allow agents to see more than we do.

If we don’t want to model conditional distributions explicitly, and if we want to avoid as-
suming that investors only see the variables that we include in an empirical investigation, we
eventually have to think about unconditional moments, or at least moments conditioned on
less information than agents see. Unconditional implications are also interesting in and of
themselves. For example, we may be interestdthiing out why the unconditional mean
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returns on some stock portfolios are higher than others, even if every agent fundamentally

seeks high conditional mean returns. Most statistical estimation essentially amountsto char-
acterizing unconditional means, as we will see in the chapter on GMM. Thus, rather than
model conditional distributions, this chapter focuses on what implications émconditional
moments we can derive from tlgenditional theory.

7.1 Scaled payoffs

bt = Et(mt+1$t+1) = E(Ptzt) = E(mt+1$t+12t)

One can incorporate conditioning information by addica) ed payoffs and doing everything
unconditionally. | interpret scaled returns as payoffsmamaged portfolios.

7.11  Conditioning down

The unconditional implications of any pricing model are pretty easy to state. From

bt = Et(mt+1$t+1)

we can take unconditional expectations to obtain
E(pt) = E(my112¢41). (63)

Thus, if we just interprepto stand forE(p;), everything we have done above applies
to unconditional moments. In the same way, we can also condition down from afjeats’
information sets to coarser sets that we observe,

P = E(mt+1Rt+1 | Q) = E(pt‘_[ - Q) = E(thRtH | IC Q)
= Pt = E(mt+1Rt+1 ‘ It C Qt) if Pt € It.

In making the above statements | usedltveof iterated expectations, which is important
enough to highlight it This law states that if you take an expected value using less informa-
tion of an expected value that is formed on more information, you get back the expected value
using less information. Your best forecast today of your best forecast tomorrow is the same

6 We need a small technical assumption that the unconditional moment or moment conditioned on a coarser

information set exists. For example, if X and Y are normal (0, 1), then & (% |Y) =0but & (%) isinfinite.
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as your best forecast today. In various useful guises,
E(Ey(x)) = E(x),

Ei 1(Ey(xi41)) = Er—1(ve41)

E[E|Q)|IcQ)=E][x|]]

7.1.2 Instrumentsand managed portfolios

We can do more than just condition down. Suppose we multiply the payoff and price by an
instrument z, observed at time ¢. Then,

2ipe = Ey(myp10e412t)

and, taking unconditional expectations,

E(ptzt) = E(my1244121). (64)

Thisis an additional implication of the conditional model, not captured by just conditioning
downasin (63). Thistrick originatesfrom the GMM method of estimating asset pricing mod-
els, discussed below. The wairgstruments for the z variables comes from thastrumental
variables estimation heritage of GMM.

To think about equation (64), group:+12 ). Call this product gayoff © = 4112,
with pricep = E(p;2;). Then 64 reads

p = E(mx)

once again. Rather than thinking about (64) as a instrumental variables estimate of a condi-
tional model, we can think of it as a price and a payoff, and apply all the asset pricing theory
directly.

This interpretation is not as ditiial as it sounds.z, R;,; are the payoffs tananaged
portfolios. An investor who observes can, rather than “buy and hold,” invest in an asset
according to the value aof.. For example, if a high value @f forecasts that asset returns are
likely to be high the next period, the investor might buy more of the asset wherhigh and
vice-versa. If the investor follows a linear rule, he putglollars into the asset each period
and receives, R+ dollars the next period. If he does thig,andz. R, really are prices
and payoffs.

This all sounds new and different, but practically every test uses managed portfolios.
For example, the size, beta, industry, book/market and so forth portfolios of stocks are all
managed portfolios, since their composition changes every year in response to conditioning
information — the size, beta, etc. of the individual stocks. This idea is also closely related

99



CHAPTER7 CONDITIONING INFORMATION

to the deep idea of dynamic spanning. Markets that are apparently very incomplete can in
reality provide many more state-contingencies through dynamic (conditioned on information)
trading strategies.

Equation (64) offers a very simple view of how to incorporate the extra information in
conditioning information/Add managed portfolio payoffs, and proceed with unconditional
moments as if conditioning information didn’t exist!

Linearity is not important. If the investor wanted to place, say, 2 + 322 dollars in the
asset, we could capture this desire with an instrument z, = 2 + 322. Nonlinear (measurable)
transformations of time—t random variables are again random variables.

We can thus incorporate conditioning information while till looking at unconditional
moments instead of conditional moments, without any of the statistical machinery of explicit
models with time-varying moments. The only subtleties are 1) The set of asset payoffs ex-
pands dramatically, since we can consider all managed portfolios as well as basic assets,
potentially multiplying every asset return by every information variable. 2) Expected prices
of managed portfolios show up fprinstead of jusp = 0 andp = 1 if we started with basic
asset returns and excess returns.

7.2 Sufficiency of adding scaled returns

Checking the expected price of all managed portfolios is, in principl@csgarit to check
all the implications of conditioning information.

E(Zt) = E(mt+1Rt+1zt) VZt € It = 1 = Et(mt+1Rt+1)

E(pt) = E(mt+1$t+1) A T4l € Kt.H =p = E; (mt+1$t+1)

We have shown that we can derigame extra implications from the presence of con-
ditioning information by adding scaled returns. But does this exhaust the implications of
conditioning information? Are we missing something important by relying on this trick?
The answer is, in principlao.

I rely on the following mathematical fact: The conditional expectation of a varighle
given an information sef;, E(y.+1 | I;) is equal to a regression forecastyef ; using every
variablez, € I;. Now, “every random variable” means every variable and every nonlinear
(measurable) transformation of every variable, so there are alot of variables in this regression!
(The wordprojection andproj(y:+1]2:) is used to distinguish the best forecasygf; using
only linear combinations ofy; from the conditional expectation.) Applying this fact to our
case, ley;11 = myy1Rir1 — 1. ThenE [(my1 Ryt — 1) 2] = 0 for everyz, € I, implies
1 = E(my41Rera | It). Thus, no implications are lost in principle by looking at scaled
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returns.

“All linear and nonlinear transformations of all variables observed attfraeunds like a
lot of instruments, and it is. But there is a practical limit to the number of instrumeiise
needs to scale by, since only variables that forecast returns (@r their higher moments)
add any information.

Since adding instruments is the same thing as including potential managed portfolios,
thoughtfully choosing a few instruments is thame thing as the thoughtful choice of a few
assets or portfolios that one makes in any test of an asset pricing model. Even when evaluating
completely unconditional asset pricing models, one always forms portfolios and omits many
possible assets from analysis. Few studies, in fact, go beyond checking whether a model
correctly prices 10-25 stock portfolios and a few bond portfolios. Implicitly, one feels that
the chosen payoffs do a pretty good job of spanning the set of available risk-loadings (mean
returns) and hence that adding additional assets will not affect the results. Nonetheless, since
data are easily available on all 2000 or so NYSE stocks, plus AMEX and NASDAQ stocks, to
say nothing of government and corporate bonds, returns of mutual funds, foreign exchange,
foreign equities, real investment opportunities, etc., the use of a few portfolios means that a
tremendous number of potential asset payoffs are left out in an ad-hoc manner.

In a similar manner, if one had a small set of instruments that capture all the predictability
of discounted returnsn;41 R:+1, then there would be no need to add more instruments.
Thus, we carefully but arbitrarily select a few instruments that we think do a good job of
characterizing the conditional distribution of returns. Exclusion of potential instruments is
exactly the same thing as exclusion of assets. It is no better founded, but the fact that it is a
common sin may lead one to worry less about it.

There is nothing special about unscaled returns, and no economic reason to place them
above scaled returns. A mutual fund might come into being that follows the managed port-
folio strategy and then itanscaled returns would be the same as an original scaled return.
Models that cannot price scaled returns are no more interesting than models that can only
price (say) stocks witffirst letter A through L. (There may be econometric reasons to trust
results for nonscaled returns a bit more, but we haven't gotten to statistical issues yet.)

Of course, the other way to incorporate conditioning information is by constructing ex-
plicit parametric models of conditional distributions. With this procedure one can in fact
checkall of a model’'s implications about conditional moments. However, the parametric
model may be incorrect, or may nofflect some variable used by investors. Including in-
struments may not be adiefent, but it is still consistent if the parametric model is incorrect.
The wrong parametric model of conditional distributions may lead to inconsistent estimates.
In addition, one avoids estimating nuisance parameters of the parametric distribution model.

7.3 Conditional and unconditional models
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A conditional factor model does not imply a fixed-weight or unconditional factor model:

My = b;ft+1, Pt = Et(mt+1$t+1) does notlmply thatb s.t. M1 = blft+1, E(pt) =
E(mt+1$t+1).

Ey(Ry41) = B, does not implyE (R41) = 8'A.

Conditional mean-variancefafiency does not imply unconditional mean-variandé ef
ciency.

The converse statements are true, if managed portfolios are included.

For explicit discount factor models—models whose parameters are constant over time—
the fact that one looks at a conditional vs. unconditional implications makes no difference to
the statement of the model.

pt = Ee(mug1@e41) = E(pe) = E(mig12e41)

and that’s it. Examples include the consumption-based model with power utilityy =
,8(0t+1/0t)_7, and the IOg Ut|||ty CAPMmt+1 == 1/RtVK1

However, linear factor models include parameters that may vary over time. In these cases
the transition from conditional to unconditional moments is much more subtle. We cannot
easily condition down the model at the same time as the prices and payoffs.

7.3.1  Conditional vs. unconditional factor modelsin discount factor language

As an example, consider the CAPM
m=a—bR"

where R" is the return on the market or wealth portfolio. We dard a andb from the
condition that this model correctly price any two returns, for exanfpfeitself and a risk-
free rate:

N w
1= Et(mt+1RtVKI) a= R{ + bEt(?t+1) -
1= E(me )R, ) b= ZLALO-F : (65)

Rlo}(R}Y,))

As you can sed) > 0 anda > 0: to make a payoff proportional to the minimum second-
moment return (on the inf€ient part of the mean-variance frontier) we need a portfolio long
the risk free rate and short the marl’.

More importantly for our current purposesand b vary over time, as E; (R}, ), 02 (R}Y 1),

and R{ vary over time. If it is to price assets conditionally, the CAPM must be a linear factor
model with time-varying weights, of the form

w
Mmey1 = ag + bth+1.
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This fact means that we can no longer transparently condition down. The statement that
1= E; [(ac + be Ry} 1) Req]
does not imply that we can find constants a and b so that
1=E[(a+bRY)Ri11] .
Just try it. Taking unconditional expectations,

1=FE [(a¢ + bR} ) Riz1] = E [asReqr + by RIY Riq1]

= E(at)E(Rt+1) + E(bt)E(RtvilRt+1) + CO’U(CLt, Rt+1) + CO’U(bt, RXVFIRt+1)
Thus, the unconditional model
1= E[(B(a) + B(b)R}Y1) Ret]

only holds if the covariance terms above happen to be zero. Since a; and b; are formed from
conditional moments of returns, the covariances will not, in general be zero. (To be alittle
more precise, | have shown that one choice of a and b, « = E(a;) and b = E(b;), will not
work. However, if thereisany a and b that work, they must bea = E(a;) andb = E(b;).
Thus, in fact, we have shown that thereis no a and b that work, unless the covariance terms
are zero.)

On the other hand, supposeit istrue that a; and b; are constant over time. Then
1=FE; [(a+ bR} ) Ris1]
doesimply
1=FE[(a+bR,)Ris1],

just like any other constant-parameter factor pricing model. Furthermore, the latter uncondi-
tional model implies the former conditional model, if the latter holds for all managed portfo-
lios.

7.3.2  Conditional vs. unconditional in an expected return / beta model

To put the same observation in beta-pricing language,
E(R') = R] + B\ (66)
doesnot imply that

E(RY) = a+ A (67)
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The reason is that 3, and 5 represent conditional and unconditional regression coefficients
respectively.

Again, if returns and factors are i.i.d., the unconditional model can go through. In that
case, cov(-) = covy(+), var(-) = var(-), o the unconditional regression betais the same as
the conditional regression beta, 3 = 3,. Then, we can take expectations of (66) to get (67),
with A = E(\;). If the betas do not vary over time, the A may still vary and A = E()\;).

To condition down, the covariance and variance must each be constant over time. It isnot
enough that their ratio, or conditional betas are constant. If cov; and var; change over time,
then the unconditional regression beta, 3 = cov/var is not equal to the average conditional
regression beta, E(3,) or E(cov,/var;). Some models specify that cov; and var, vary over
time, but cov; /var, isaconstant. This specification still does not imply that the unconditional
regression beta 8 = cov/var isequa to the constant cov; /var,. Similarly, it is not enough
that A be constant, since E(3,) # (. The betas must be regression coefficients, not just
numbers.

733 A precisestatement.

Let's formalize these observations somewhat. Kedenote the space of all portfolios of the
primitive assetsincluding managed portfolios in which the weights may depend on condi-
tioning information, i.e. scaled returns.

A conditional factor pricing model is a modelmn;; = a; + bjf;;; that satifiesp, =
Et+1(mt+1xt+1) for all Tiy1 € X.

An unconditional factor pricing model is modelm;1 = a + b'f;, satifiesE(p;) =
E(myy1244q) for all 2,4, € X. It might be more appropriately callediaed-weight factor
pricing model.

Given these definitions, and the fact that the unconditional moment conditions are equiv-
alent to the conditional moments since all managed portfolios akeitis almost trivial that
the unconditional model is just a special case of the conditional model, one that happens to
havefixed weights. Thusa conditional factor model does not imply an unconditional fac-
tor model(because the weights may vary) but an unconditional factor model does imply a
conditional factor model

It's important to remember that the unconditional model must price must price the man-
aged portfolios too. For example, we might simply check that the static (constarf@APM
captures the unconditional mean returns of a set of assets. If this model does not also price
those assetscaled by instruments, then it is not a conditional model, or, as | argued above,
really a model at all.

Of course, everything applies for the relation between a conditional factor pricing model
using afine information set (like investors’ information sets) and conditional factor pricing
models using coarser information sets (like ours). If you think a set of factors prices assets
with respect to investors’ information, that does not mean the same set of factors prices assets
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with respect to our, coarser, information sets.
7.34  Mean-variance frontiers

Define the conditional mean-variance frontieras the set of returnsthat minimize var,(R¢+1)
given E(R;4+1) (including the “inefficient” lower segment as usual). free theuncondi-
tional mean-variance frontieas the set of returns including managed portfolio returrihat
minimize var(Ry;41) given E(R:4+1). Thesetwo frontiers are related by:

If a return is on the unconditional mean-variance frontier, it is on the conditional
mean-variance frontier.

However,

If a return is on the conditional mean-variance frontier, it need not be on the unconditional
mean-variance frontier.

These statements are exactly the opposite of what you first expect from the language. The
law of iterated expectations E(E,(x)) = E(x) leads you to expect that “conditional” should
imply “unconditional.” But we are studying the conditional vs. unconditional mean-variance
frontier, not raw conditional and unconditional expectations, and it turns out that exactly the
opposite words apply.

Again, keep in mind that the unconditional mean variance fromtieludes returns on
managed portfolios. This @eition is eminently reasonable. If you're trying to minimize
variance for given mean, why tie your handsfitced weight portfolios? Equivalently, why
not allow yourself to include in your portfolio the returns of mutual funds whose advisers
promise the ability to adjust portfolios based on conditioning information?

You could form a mean-variance frontierfofed-weight portfolios of a basis set of assets,
and this is what many people often mean by “unconditional mean-variance frontier.” The re-
turn on the true unconditional mean-variance frontier will, in general, include some managed
portfolio returns, and so will lie outside thigean-variance frontier ofixed-weight portfolios
Conversely, a return on the fixed-weight portfolio MVF is, in generalhot on the uncondi-
tional or conditional mean-variance frontier. All we know is thatfilked-weight frontier lies
inside the other two. It may touch, but it need not. This is not to safixkd-weight uncon-
ditional frontier is uninteresting. For example, returns on this frontier will pfikced-weight
portfolios of the basis assets. The point is that this frontier has no connection to the other two
frontiers. In particular, a conditionally mean-variancéasént return (conditional CAPM)
need not unconditionally price tHixed weight portfolios.

| offer several ways to see this important statement.
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Using the connection to factor models

We have seen that the conditional CAPM my 1 = a; — bthVYH does not imply an uncon-
ditional CAPMm; 11 = a — bRKl. We have seen that the existence of such a conditional
factor model is equivalent to the statement that the refi}th lies on the conditional mean-
variance frontier, and the existence of an unconditional factor mege] = a — bR}, is
equivalent to the statement th&at" is on the unconditional mean-variance frontier. Then,
from the “trivial” fact that an unconditional factor model is a special case of a conditional
one, we know thak" on the unconditional frontier implieR" on the conditional frontier

but not vice-versa.

Using the orthogonal decomposition

We can see the relation between conditional and unconditional mean-variance frontiers using
the orthogonal decomposition characterization of mean-variaficeaty given above. This
beautiful proof is the main point of Hansen and Richard (1987).

By the law of iterated expectations; and R* generate expected prices aRtf generates
unconditional means as well as conditional means:

E[p=E(z"z)] = E(p) = E(z"x)
E [Ey(R**) = E,(R*R)] = E(R**) = E(R*R)

E[E/(R™R%) = Ey(R°)] = E(R*"R®) = E(R°)

This fact is subtle and important. For example, starting with= p} E; (x; 41X} 1) ™ 'X¢41,

you might think we need a different*, R*, R°* to represent expected prices and uncon-
ditional means, using unconditional probabilities tdimke inner products. The three lines
above show that this is not the case. The same:dldR*, R°* represent conditional as well
as unconditional prices and means.

Recall that a return is mean-variancéaént if and only if it is of the form
R™ = R* + wR"".

Thus,R™" is conditionally mean-variancefedient if w is any number in the timeinforma-
tion set.

conditional frontier:R}"\", = R}, | +w; R},
and R™" is unconditionally mean-variancefieient if w is any constant.
unconditional frontierR{"{", = Ry, | + wR{},.

Constants are in theinformation settime ¢ random variables are not necessarily constant.
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Thus unconditiona efficiency (including managed portfolios) implies conditional efficiency
but not vice versa. As with the factor models, once you see the decomposition, it isatrivial
argument about whether aweight is constant or time-varying.

Brute force and examples.

If you're still puzzled, an additional argument by brute force may be helpful.

If a return is on the unconditional MVF it must be on the conditional MVF at each date.
If not, you could improve the unconditional mean-variance trade-off by moving to the con-
ditional MVF at each date. Minimizing unconditional variance given mean is the same as
minimizing unconditional second moment given mean,

min E(R?) s.t. E(R) = u
Writing the unconditional moment in terms of conditional moments, the problem is
min E [E,(R?)] s.t. E[E(R)] = p

Now, suppose you could lowdr, (R?) at one date without affectingE;(R) at that date.
This change would lower the objective, without changing the constraint. Thus, you should
have done it: you should have picked returns onctirelitional mean variance frontiers.

It almost seems that reversing the argument we can show that conditifoiinefy im-
plies unconditional dfciency, but it doesn’t. Just because you have minimizgdz?) for
given value ofE,(R) at each date does not imply that you have minimizedZ(R?) for a
given value ofE(R). In showing that unconditional #€iency implies conditional &tiency
we heldfixed E;(R) at each date at, and showed it is a good idea to minimizg(R). In
trying to go backwards, the problem is that a given valug&6R) does not specify what
E:(R) should be at each date. We can increBsgR) in one conditioning information set
and decrease it in another, leaving the return on the conditional MVF.

Figure 16 presents an example. Return B is conditionally mean-varidiaierdf It also
has zero unconditional variance, so it is the unconditionally mean-variaficieetf return at
the expected return shown. Return A is on the conditional mean-variance frontiers, and has
the same unconditional expected return as B. But retunas’some unconditional variance,
and so is inside the unconditional mean-variance frontier.

As a second example,the riskfree rate is only on the unconditional mean-variance frontier
if it is a constant. Remember the expression (49) for the risk free rate,

R/ = R* + RTR**.

The unconditional mean-variance frontiefds + wR** with w a constant. Thus, the riskfree
rate is only unconditionally mean-variancé&ént if it is a constant.
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E(R) Info. set 1
Ve

Info. set 2

o(R)

Figure 16. Return A is on the conditional mean-variance frontiers but not on the uncondi-
tional mean variance frontier.
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7.35 Implications: Hansen-Richard Critique.

Many models, such as the CAPM, imply a conditional linear factor model m; 1 = a; +

b f;+1. These theorems show that such a model does not imply an unconditional model.
Equivalently, if the model predicts that the market portfolio is conditionally mean-variance
efficient, this doesiot imply that the market is unconditionally mean-variandécefnt. We

often test the CAPM by seeing if it explains the average returns of some portfolios or (equiv-
alently) if the market is on the unconditional mean-variance frontier. The CAPM may quite
well be true (conditionally) and fail these testsany assets may do better in termsin¢on-
ditional mean vs. unconditionalvariance.

The situation is even worse than these comments seem, and are not repaired by simple
inclusion of some conditioning information. Models such as the CAPM imply a conditional
linear factor model with respect to investors’information sets. However, the best we can hope
to do isto test implications conditioned down on variables that we can observe and include
in atest. Thus, aconditional linear factor model is not testable!

I like to call this observation the “Hansen-Richard critique” by analogy to the “Roll Cri-
tique.” Roll pointed out, among other things, that the wealth portfolio might not be observ-
able, making tests of the CAPM impossible. Hansen and Richard point out that the condi-
tioning information of agents might not be observable, and that one cannot omit it in testing a
conditional model. Thus, even if the wealth portfollas observable, the fact that we cannot
observe agentshformation sets dooms tests of the CAPM.

74 Scaled factors: a partial solution

You can expand the set of factors to test conditional factor pricing models

faCtorS: ft+1 X Zt

The problem is that the parameters of the factor pricing model = a; + b; i1 may
vary over time. A partial solution is toodedl the dependence of parametegsandb, on
variables in the timet information setlet a; = a(z;), by = b(z;) wherez, is a vector of
variables observed at timgincluding a constant). In particular, why not fiyear models

Ay = a’zt, bt = b/Zt

Linearity is not restrictivez? is just another instrument. The only criticism one can make
is that some instrument;; is important for capturing the variation i, andb;, and was
omitted. For instruments on which we have data, we can meet this objection by irying
and seeing whether it does, in fact, enter gigantly. However, for instruments that are
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CHAPTER7 CONDITIONING INFORMATION

observed by agents but not by us, this criticism remains valid.

Linear discount factor models lead to a nice interpretation as scaled factors, in the same
way that linearly managed portfolios are scaled returns. With asingle factor and instrument,
write

my = a(2e) + b(zt) fiqr (68)
=ag + a1z + (bo + b12¢) fr1

=ag + a12¢ + bo fri1 + b1 (2 fr1) - (69)

Thus, in place of the one-factor model with time-varying cof€ients (68), we have a four-
factor model (constant, , fi11, z:fi+1) with fixed coeficients, 69.

Since the coditients are nowixed, wecan use the scaled-factor model with uncondi-
tional moments.

pe = Ei [(ao + a1z + bo fre1 + b1 (2e fi41)) @iga] =

E(pt) = E(ao + a1z + bo fe41 + b1(2e feg1)) @eqa]

For example, in standard derivations of CAPM, the market (wealth portfolio) return is
conditionally mean-variance étient investors want to hold portfolios on thenditional
mean-variance frontierconditionally expected returns follow eonditional single-beta rep-
resentation, or the discount factaerfollows aconditional linear factor model

w
Miy1 = ap — bth+1

as we saw above.

But none of these statements mean that we can use the G&BdAditionally. Rather
than throw up our hands, we can add some scaled factors. Thus, if, say, the dividend/price ra-
tio and term premium do a pretty good job of summarizing variation in conditional moments,
the conditional CAPM implies anunconditional, five-factor (plus constant) modeT he fac-
tors are a constant, the market return, the dividend/price ratio, the term premium, and the
market returnimes the dividend-price ratio and the term premium.

The unconditional pricing implications of suchfi@e-factor model could, of course, be
summarized by a single3 representation. (See the caustic comments in the section on im-
plications and equivalence.) The reference portfolio would not be the market portfolio, of
course, but a mimicking portfolio of thfive factors. However, the single mimicking port-
folio would not be easily interpretable in terms of a single factor conditional model and two
instruments. In this case, it might be more interesting to look at a multipler multiple-
factor representation.
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SECTION 7.5 SUMMARY

If we have many factors f and many instruments z, we should in principle multiply every
factor by every instrument,

m=byfi +bafiz1 +b3fiza + ... + byy1fo +bnyafozy +byyzfoza + ..

This operation can be compactly summarized with the Kronecker product notation, a « b,
which means “multiply every element in vectos by every element in vectdr, or

My = b/(ft+1 & 2t).

7.5 Summary

When youfirst think about it, conditioning information sounds scary — how do we account for
time-varying expected returns, betas, factor risk premia, variances, covariances, etc. How-
ever, the methods outlined in this chapter allow a very simple and beautiful solution to the
problems raised by conditioning information. To express the conditional implications of a
given model, all you have to do is include some scaled or managed portfolio returns, and then
pretend you never heard about conditioning information.

Some factor models are conditional models, and haveficigfts that are functions of
investors’ information sets. In general, there is no way to test such models, but if you are
willing to assume that the relevant conditioning information is well summarized by a few
variables, then you can just add new factors, equal to the old factors scaled by the conditioning
variables, and again forget that you ever heard about conditioning information.

You may want to remember conditioning information as a diagnostic and in economic
interpretation of the results. It may be interesting to take estimates of a many factor model,
my = ag + a1z¢ + bo fr+1 + b1z fi1, and see what they say about the implied conditional
model,m; = (ag + a12z:) + (bo + b12) fr+1. You may want to make plots of conditional
bs, betas, factor risk premia, expected returns,etc. But you don’t have to worry about it in
estimation and testing.
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Chapter 8. Factor pricing models

In the second chapter, | noted that the consumption-based model, while a complete answer to
most asset pricing questions in principle, does not (yet) work well in practice. This observa-
tion motivates efforts to tie the discount facterto other data. Linear factor pricing models
are the most popular models of this sorfiimance. They dominate discrete time empirical
work.

Factor pricing models replace the consumption-based expression for marginal utility
growth with a linear model of the form

mes1 = a+ b'fiy

a andb are free parameters. As we have seen above, thisfagadicin is equivalent to a
multiple-beta model

E(Ri1) = a+ G2

where are multiple regression cdefients of returng? on the factorsf. Here,« and \ are
the free parameters.

The big question is, what should one use for facfprs? Factor pricing models look for
variables that are good proxies for aggregate marginal utility growth, i.e., variables for which

/
gilot) o g, (70)

()
is a sensible and economically interpretable approximation.

The factors that result from this search are and should be intuitively sensible. In any
sensible economic model, as well as in the data, consumption is related to returns on broad-
based portfolios, to interest rates, to growth in GNP, investment, or other macroeconomic
variables, and to returns on production processes. All of these variables measure “wealth”
or the state of the economy. Consumption is and should be high in “good times” and low in
“bad times.”

Furthermore, consumption and marginal utility responchéws:. if a change in some
variable today signals high income in the future, then consumptionmassby permanent
income logic. This fact opens the doorftwecasting variables: any variable that forecasts
asset returns (“changes in the investment opportunity set”) or macroeconomic variables is a
candidate factor. Variables such as the term premium, dividend/price ratio, stock returns, etc.
can be defended as pricing factors on this logic. Though they themselves are not measures of
aggregate good or bad times, tHegecast such times.

Should factors be independent over time? The answer is, sort of. If there is a constant
real interest rate, then marginal utility growth should be unpredictable. (“Consumption is a
random walk” in the quadratic utility permanent income model.) To see this, just look at the
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first order condition with a constant interest rate,

W (cy) = BRI Ey [/ (ci41))]

or in amore time-series notation,

’LL/(Ct+1) - 1 . o
W(cr) BRI +etr1; Ei(er1) = 0.

The real risk free rate is not constant, but it does not vary a lot, especially compared to
asset returns. Measured consumption growth is not exactly unpredictable but it is the least
predictable macroeconomic time series, especially if one accounts properly for temporal ag-
gregation (consumption data are quarterly averages). Thus, factors that proxy for marginal
utility growth, though they don’t have to be totally unpredictable, should not be highly pre-
dictable. If one chooses highly predictable factors, the model will counterfactually predict
large interest rate variation.

In practice, this consideration means that one should choose the right units: Use GNP
growth rather than level, portfolimeturns rather than prices or price/dividend ratios, etc.
However, unless one wants to impose an exactly constant risk free rate, one does not have to
filter or prewhiten factors to make them exactly unpredictable.

This view of factors as intuitively motivated proxies for marginal utility growth idisuf
cient to carry the reader through current empirical tests of factor models. The extra constraints
of a formal exposition of theory in this part have not yet constrained the fésting expe-
dition.

The precise derivations all proceed in the way | have motivated factor models: One writes
down a general equilibrium model, in particular a sfieation of the production technology
by which real investment today results in real output tomorrow. This general equilibrium
produces relations that express the determinants of consumption from exogenous variables,
and relations linking consumption and other endogenous varjaddemtions of the form
¢t = g(f;). One then uses this kind of equation to substitute out for consumption in the basic
first order conditions. (You don’t have to know more than this about general equilibrium
to follow the derivations in this chapter. | discuss the economics and philosophy of general
equilibrium models in some depth later, in Chapter 15.)

The formal derivations accomplish two things: they determine one particstlef factors
that can proxy for marginal utility growth, and they prove that the relation shoulthesr.
Some assumptions can often be substituted for others in the quest for these two features of a
factor pricing model.

This is a point worth rememberingtl factor models are derived as specializations of the
consumption-based modelMany authors of factor model papers disparage the consumption-
based model, forgetting that their factor modethe consumption-based model plus extra
assumptions that allow one to proxy for marginal utility growth from some other variables.
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CHAPTER 8 FACTOR PRICING MODELS

Above, | argued that clear economic foundation was important for factor models, since it
isthe only guard against fishing. Alas, we discover herethat the current state of factor pricing
models is not a particularly good guard against fishing. One can call for better theories or
derivations, more carefully aimed at limiting the list of potential factors and describing the
fundamental macroeconomic sources of risk, and thus providing more discipline for empirical
work. The best minds in finance have been working on this problem for 40 years though, so
aready solution is not immediately in sight. On the other hand, we will see that even current
theory can provide much more discipline than is commonly imposed in empirical work. For
example, the derivations of the CAPM and ICAPM do leave predictions for the risk free rate
and for factor risk premia that are often ignored. The ICAPM gives tighter restrictions on
state variables than are commonly checked: “State variables” do have to forecast something!
We also see how special and unrealistic are the general equilibrium setups necessary to derive
popular spedications such as CAPM and ICAPM. This observation motivates a more serious
look at real general equilibrium models below.

8.1 Capital Asset Pricing Model (CAPM)

The CAPM is the modet: = a + bR™; R™ = wealth portfolio return. | derive it from
the consumption based model by 1) Two period quadratic yt@)tfwo periods, exponential
utility and normal returns3) Infinite horizon, quadratic utility and i.i.d. returr) Log utility
and normal distributions.

The CAPM is thdirst, most famous and (so far) most widely used model in asset pricing,
as the related consumption-based model is in macroeconomics. It ties the discount:factor
to the return on the “wealth portfolio.” The function is linear,

w
M1 = a + bRt+1‘

a andb are free parameters. One cfind theoretical values for the parameterandb by
requiring the discount factor to price any two assets, such as the wealth portfolio return
and risk-free ratel = E(mRY) and1l = E(m)R’. (As an example, we did this in equation
(65) above.) In empirical applications, we can also picndb to “best” price larger cross-
sections of assets. We do not have good data on, or even a good empitiusibdefor, the
return on total wealth. It is conventional to pro®/" by the return on a broad-based stock
portfolio such as the value- or equally-weighted NYSE, S&P500, etc.

The CAPM is of course most frequently stated in equivalent expected return / beta lan-
guage,

E(R') = a+ f; gw [E(R") — o].
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SECTION 8.1 CAPITAL ASSET PRICING MODEL (CAPM)

This section briefly describes some classic derivations of the CAPM. Again, we need
to find assumptions that defend which factors proxy for marginal utility (R" here), and
assumptions to defend the linearity between m and the factor.

| present several derivations of the same model. Many of these derivations use classic
modeling assumptions which areimportant in their own sake. Thisisalso an interesting place
in which to see that various sets of assumptions can often be used to get to the same place.
The CAPM is often criticized for one or another assumption. By seeing severa derivaitons,
we can see how one assumption can be traded for another. For example, the CAPM does not
in fact require normd distributions, if oneiswilling to swallow quadratic utility instead.

811 Two-period quadratic utility

Two period investors with no labor income and quadratic utility imply the CAPM.

Investors have quadratic preferences and only live two periods,

Ulea, o) = — e~ e 38E[(eers — 7). (71)

Their marginal rate of substitution is thus

The quadratic utility assumption means margina utility is linear in consumption. Thus, the
first target of the derivation, linearity.

Investors are born with wealth W, in the first period and earn no labor income. They
can invest in lots of assets with prices p} and payoffs =}, or, to keep the notation simple,
returns R; ;. They choose how much to consume at the two dates, c¢; and ¢4, and the
portfolio weights «; for their investment portfolio. Thus, the budget constraint is

Ct+1 — Wt+1 (72)
Wit = Rl (Wi — )

N N
RW:ZO&Z‘Ri; Zazzl
i=1 i=1

RWY isthe rate of return on total wealth.
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CHAPTER 8 FACTOR PRICING MODELS

The two-period assumption means that investors consume everything in the second pe-
riod, by constraint (72). This fact allows us to substitute wealth and the return on wealth for
consumption, achieving the second goal of the derivation, haming the factor that proxies for
consumption or marginal utility:

ﬁR”Kl(Wt —¢)—c* _ —Bc* N BW, — Ct)RtVE/H

cy —Cc* cy —Cc* cy — c*

mey1 =

w
Mi41 = Qg + bth+1.

8.1.2  Exponential utility, normal distributions

Eu(c) = e~¢ and a normally distributed set of returns also produces the CAPM.

Exponential utility and normal distributions is another set of assumptions that deliver
the CAPM in a one period model. This is a particularly convenient analytical form. Since
it gives rise to linear demand curves, it is very widely used in models that complicate the
trading structure, by introducing incomplete markets or asymmetric information.

Let utility be
Eu(c) = e~

ais known as theoefficient of absoluterisk aversion. If consumption is normally distributed,
we have

Eu(c) = e Che (O]

Suppose this investor has initial wealii which can be split between a riskfree asset
paying R/ and a set of risky assets paying retitnLety denote the amount of this wealth
W (amount, not fraction) invested in each security. Then, the budget constraint is

¢c = yRI+y'R
w = nyry'l

Plugging thdfirst constraint into the utility function we obtain
Eu(c) = efa[yfRf+y'E(R)]+%y’Ey. (73)
As with quadratic utility, the two-period model is what allows us to set consumption to wealth
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SECTION 8.1 CAPITAL ASSET PRICING MODEL (CAPM)

and then substitute the return on the wesalth portfolio for consumption growth in the discount
factor.

Maximizing (73) with respect to y, y/, we obtain the first order condition descrbing the
optimal amount to be invested in the risky asset,
E(R) - R/
«

y=x""

Sensibly, the consumer invests more in risky assets if their expected return is higher, less if
hisrisk aversion coefficient is higher, and lessif the assets areriskier. Notice that total wealth
does not appear in this expression. With this setup, the amount invested in risky assets is
independent of the level of wedalth. Thisiswhy we say that this investor has an aversion to
absolute rather than relative (to wealth) risk aversion. Note al so that these “demands” for the
risky assets are linear in expected returns, which is a very convenient property.

Inverting thefirst order conditions, we obtain
E(R) — R = aXy = a cov(R, R™). (74)

The consumer's total risky portfolio ig' R. Hence,Xy gives the covariance of each return
with 3’ R, and also with the investor’s overall portfolig Rf + /R. If all investors are
identical, then the market portfolio is the same as the individual’s portfolioisalso gives
the correlation of each return with™ = y/ R' + 4/ R. (If investors differ in risk aversion,
the same thing goes through but with an aggregate risk aversiofcieref)

Thus, we have the CAPM. This version is especially interesting because it ties the market
price of risk to the risk aversion cdefient. Applying (74) to the market return itself, we
have

E(R™) — R
0-2 (R’ln) -

8.1.3  Quadratic value function, dynamic programming.

We can let consumers live forever in the quadratic utility CAPM so long as we assume
that the environment is independent over time. Thervéhee function is quadratic, taking
the place of the quadratic second-period utility function. This case is dirst@troduction
to dynamic programming.

The two-period structure given above is unpalatable, since (most) investors do in fact live
longer than two periods. It is natural to try to make the same basic ideas work with less
restrictive and more palatable assumptions.
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We can derivethe CAPM in amulti-period context by replacing the second-period quadratic
utility function with a quadratiozalue function. However, the quadratic value function re-
quires the additional assumption that returns are i.i.d. (no “shifts in the investment oppor-
tunity set”). This famous observation is due to Fama (1970). It is also a nice introduction
to dynamic programming, which is a powerful way to handle multiperiod problems by ex-
pressing them as two period problems. Finally, | think this derivation makes the CAPM
more realistic, transparent and intuitively compelling. Buying stocks amounts to taking bets
overwealth; really the fundamental assumption driving the CAPM is that marginal utility of
wealth is linear in wealth and does not depend on other state variables.

Let’s start in a simple ad-hoc manner by just writing down a “utility functionfimied
over this period’s consumption and next periogéslth,

U= U(Ct) + ,BEtV(Wt+1).

This is a reasonable objective for an investor, and does not require us to make the very ar-
tificial assumption that he will die tomorrow. If an investor with this “utility function” can
buy an asset at pricg, with payoff z,, 1, his first order condition (buy a little more, then

x contributes to wealth next period) is

peu' (ce) = BE [V (Wig1)weq1] -

Thus, the discount factor uses next period’s marginal value of wealth in place of the more
familiar marginal utility of consumption

_ AV (Wiga)

mt+1 - /8 ul(Ct+1)

Now, suppose the value function were quadratic,
V(Wiir) = *g(WtH - W)

Then, we would have

_ Wigr W= R (We —c) —W*
mi+1 = 677 ’LL/(Ct+1) - 677 u/(ct+1)
_ [ BnWw* ] . |:/877(Wt - Ct)] RW
u'(coy1) w'(coy1) e

or, once again,
w
mip1 = ag + 0 Ry,

the CAPM!

Let’s be clear about the assumptions and what they dbheyal ue function only depends
on wealth. If other variables entered the value function, th#ri/OW would depend on
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those other variables, and so would m. This assumption bought us the first objective of any
derivation: the identity of the factors. The ICAPM, below, alows other variablesin the value
function, and obtains more factors. (Actually, other variables could enter so long as they

don't affect themarginal value of wealth. The weather is an example: You like me might be
happier on sunny days, but you do not value additional wealth more on sunny than on rainy
days. Hence, covariance with weather does not affect how you value stocks.)

2) The value function is quadratic. We wanted thenarginal value functionV’ (W) be
linear, to buy us the second objective, showingg linear in the factor. Quadratic utility and
value functions deliver a globally linear marginal value funcfigiiiv’). By the usual Taylor
series logic, linearity of’ (W) is probably not a bad assumption for small perturbations, and
not a good one for large perturbations.

Why is the value function quadratic?

You might think we are done. But economists are unhappy about a utility function that
haswealth in it. Few of us are like Disney’s Uncle Scrooge, who got pure enjoyment out
of a daily swim in the coins in his vault. Wealth is valuable because it gives us access to
more consumption. Utility functions should always be written aagmsumption. One of the
few real rules in economics that keep our theories from being vacuous is that ad-hoc “utility
functions” over other objects like wealth (or means and variances of portfolio returns, or
“status” or “political power”) should be defended as arising from a more fundamental desire
for consumption.

More practically, being careful about the derivation makes clear that thefsigigr
plausible assumption that the value function is only a function of wealth derives from the
much less plausible, in fact certainly false, assumption that interest rates are constant, the
distribution of returns is i.i.d., and that the investor has no risky labor income. So, let us see
what it takes to defend the quadratatue function in terms of somatility function.

Suppose investors last forever, and have the standard sort of utility function
1 =
U= _EEt Zoﬁ U(Ct+j).
i=

Again, investors start with wealti/, which earns a random retu®"” and they have no
other source of income. In addition, suppose that interest rates are constant, and stock returns
are i.i.d. over time.

Define thevalue function as themaximized value of the utility function in this environ-
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ment. Thus, define V(W) as’

o0

V(Wt) = max{ct,ct+1 ,ct+2...at,at+1,...}Et Zﬂju(ct+j) (75)
=0
st. Wt+1 = RK/FI(Wt — Ct); RtW = a,’th; 041 =1

(I used vector notation to simplify the statement of the portfolio problem; R = [R'The

value function is the total level of utility the investor can achieve, given how much wealth

he has and any other variables constraining him. This is where the assumptions of no labor
income, a constant interest rate, and i.i.d. returns come in. Without these assumptions, the

value function as defined above might depend on these other characteristics of the investor’'s
environment. For example, if there were some variable, say, “DP” that indicated returns
would be high or low for a while, then the consumer would be happier, and have a high value,
when DP is high, for a given level of wealth. Thus, we would have to Wfitg’;, DF;)

Value functions allow you to express an infinite period problem as a two period problem.
Break up the maximization into tHest period and all the remaining periods, as follows

V(Wy) = mazge, o,y § ulce) + BE; max Eiq Zﬁju(ct+1+j) s. t. ..
{Ct+‘l;Ct+2--;at+‘1;at+2----} =0
or
V(W) = MaTic, o, {u(ey) + BELV (Wip1)} st ... (76)

Thus, we have defended tlegistence of a value function. Writing down a two period
“utility function” over this period’s consumption and next periotsalth is not as crazy as
it might seem.

The value function is also an attractive view of how people actually make decisions. You
don't think “If I buy a new car today | won't be able to buy a restaurant dinner 20 years
from now” — trading off goods directly as expressed by the utility function. You think “|
can’t afford a new car’ meaning that the decline in the value of wealth is not worth the
increase in the marginal utility of consumption. Thus, the maximization in (76) describes
your psychological approach to utility maximization.

The remaining question is, can the value function be quadratic? What utility function
assumption leads to a quadratic value function? Here is the fun Aaquadratic utility
function leads to a quadratic value function in this environment. This is not a law of natute
it is not true that for any.(c), V(W) has the same functional form. But it is true here and
a few other special cases. The “in this environment” clause is not innocuous. The value

7 Thereis aso atransversality condition or alower limit on wealth in the budget constraints. This keeps the
consumer from consuming a bit more and rolling over more and more debt, and it means we can write the budget
constraint in present value form.
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function — the achieved level of expected utility — is a result of the utility functod the
constraints.

How could we show this fact? One way would be to try to calculate the value function by
brute force from its denition, equation (75). This approach is not fun, and it does not exploit
the beauty of dynamic programming, which is the reduction of finita period problem to
a two period problem.

Instead solve (76) as a functional equatidduess that the value functio’’ (W;4) is
quadratic, with some unknown parameters. Then usedhegsive definition of V(W) in
(76), and solve awo period problemfind the optimal consumption choice, plug it into (76)
and calculate the value functidi(17;). If the guess was right, you obtain a quadratic func-
tion for V/(17,), and determine any free parameters.

Let’s do it. Specify
1
u(e) = —3 (cp — ).
Guess
_ g *\2
V(W) = —§(Wt+1 - W)

with v andW* parameters to be determined later. Then the problem (76) is (I don’t write the
portfolio choicea part for simplicity, it doesn’t change anything)

1
V(Wt) = I?ai( |:§(Ct - C*)z — B%E(Wt—kl - W*)2 s. t. Wt—‘,—l = Rtvf/*_l(Wt - Ct).

(Eis now E since | assumed i.i.d.) Substituting the constraint into the objective,

V(W,) = max [—%(ct — )2 - 5%}: [RY (W, — ) —W*)?|. 77)

{e
Thefirst order condition with respect tg, usingé to denote the optimal value, is
& — ¢ =ByE {[RY (W — &) — W¥] R, }
Solving foré,,

& =+ ByE{[RAW, — &R — W R4}
& [+ BYE(RY3)] = ¢* + BYE(RY2)W, — ByW*E(R}Y,)

¢ — BYE(RY)W* + ByE(RI2)W,
1+ ByE(R}?)

(78)

Ct =
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Thisisalinear function of W;. Writing (77) in terms of the optimal value of ¢, we get

V(W) = f%(at - 6%]2 [RY., (W, — &) — W] (79)

This is a quadratic function of W, and ¢. A quadratic function of a linear function is a
quadratic function, so the value function is a quadratic function of W,. If you want to
spend a pleasant few hours doing algebra, plug (78) into (79), check that the result really
is quadratic in W, and determine the coefficients v, W* in terms of fundamenta parameters
B,¢*, E(RV), E(R"?) (or 02(R")). The expressions for v, W* do not give much insight,
so | don't do the algebra here.

814  Logutility

Log utility rather than quadratic utility also implies a CAPM. Log utility implies that
consumption is proportional to wealth, allowing us to substitute the wealth return for con-
sumption data.

The point of the CAPM is to avoid the use of consumption data, and so to use wealth
or the rate of return on wealth instead. Log utility is another special case that allows this
substitution. Log utility is much more plausible than quadratic utility.

Suppose that the investor has log utility
u(c) = In(c).

Define the wealth portfolio as a claim to all future consumption. Theth log utility, the
price of the wealth portfolio is proportional to consumption itself.

\%% E - /Bj u/(ct‘i‘j) E > /Bj Ct /8
p’ = A —C s = A —C’ O C’
t f;:l: u’(ct) t+j t ;:1 Clt t+j 1-3 t

The return on the wealth portfolio is proportional to consumption growth,

RY, — pivy + C _ 1_% +1eyy _ 1 _ 1 u(c) .
1 p}g}V % Ct B e /BU/(Ct+1)

Thus, the log utility discount factor equals timeerse of the wealth portfolio return,

1

— (80)
R,

mi41 =

Equation (80) could be used by itself: it attains the goal of replacing consumption data
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by some other variable. (Brown and Gibbons 1982 test a CAPM in thisform.) Note that log
utility is the only assumption so far. We do not assume constant interest rates, i.i.d. returns
or the absence of labor income.

8.15 Linearizing any mode: Taylor approximationsand normal distributions.

Any nonlinear model m = f(z) can beturnedinto alinear model m = a-+bz by assuming
normal returns.

It istraditional in the CAPM literature to try to derive a linear relation between m and
the wealth portfolio return. We could always do this by a Taylor approximation,

~ w
Mi41 = Qg + bth+1.

We can make this approximation exact in a special case, that the factors and all asset returns
are normally distributed. First, | quote without proof the central mathematical trick as a
lemma

Lemmal (Stein’s lemma) If f, R are bivariate normal, ¢(f) is differentiable and E' |
' (f) |< oo, then

cov [g(f), R] = E[g'(f)] cov(f, R). (81)
Now we can use the lemmato state the theorem.

Theorem 2 If m = g(f), if f and a set of the payoffs priced by m are normally distributed
returns, and if |E[¢’'(f)]| < oo, then thereis a linear model m = a + bf that prices the
normally distributed returns.

Proof: First, the definition of covariance means that the pricing equation can be rewritten as
arestriction between mean returns and the covariance of returns with m:

1= E(mR) < 1= E(m)E(R) + cov(m, R). (82)
Now, given m = g(f), f and R jointly normal, apply Stein’s lemma (81) and (82),
1= Elg(f)]E(R) + Elg'(f)]cov(f, R)

1= Elg(/)IE(R) + cov(Elg'(f)], R)

Exploiting the<= part of (82), we obtain a model linear ji
m = Elg(f)] + Elg"(NIlf — E(f)]-
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Using this trick, and recalling that we have not assumed i.i.d. so al these moments are
conditional, the log utility CAPM implies the linear model

1 1 \?
men =5 () - 5| (7)
t+1

R,
if RK’H and all asset returns to be priced are normally distributed. From here it is a short
step to an expected return-beta representation using the wealth portfolio return as the factor.

(R, — E/(RY)] (83)

In the same way, we can trade the quadratic utility function for normal distributions in the
dynamic programming derivation of the CAPM. Starting from

- V(Wi1) V/[ Vil(Wt _Ct)]
t+1 =0 (o) B ()

we can derive an expression that linkdinearly to R}Y ; by assuming normality.

Using the same trick, the consumption-based model can be written in linear fashion, i.e.
expected returns can be expressed as a linear function of betas on consumption growth rather
than betas on consumption growth raised to a power. However, for large risk aversion co-
efficients (more than about 10 in postwar consumption data) or other transformations, the
inaccuracies due to the normal or lognormal approximation can be venfisaniin dis-
crete data.

The normal distribution assumption seems rather restrictive, and it is. However, the most
popular class of continuous-time models specify instantaneously normal distributions even
for things like options that have very non-normal discrete distributions. Therefore, one can
think of the Stein’s lemma tricks as a way to get to continuous time approximations without
doing it in continuous time. The ICAPM, discussed next is an example.

8.2 I ntertemporal Capital Asset Pricing Model (ICAPM)

Any “state variable'z, can be a factor. The ICAPM is a linear factor model with wealth
and state variables that forecast changes in the distribution of future returns or income.

The ICAPM generates linear discount factor models
mer1 =a+b'fi

In which the factors are “state variables” for the investor's consumption-portfolio decision.
The “state variables” are the variables that determine how well the investor can do in
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his maximization. State variables include current wealth, and also variables that describe

the conditional distribution of income and asset returns the agent will face in the future or
“shifts in the investment opportunity set.” Therefore, optimal consumption decisions are a
functions of the state variables, = g(z;). We can use this fact once again to substitute out
consumption, and write

u' [g(Z141)]

e =B )]

Alternatively, thevalue function depends on the state variables
V(Wt+1, Zt+1)7

SO we can write

VW(Wt-H, Zt+1)

mt+1 - /8 VW(Wt,Zt)

(The marginal value of a dollar must be the same in any use, so | made the denominator pretty
by writing v’ (c;) = Viy (W4, z,). This fact is known as thenvelope condition.)

This completes thérst step, naming the proxies. To obtain a linear relation, we can take
a Taylor approximation, assume normality and use Stein’s lemma, or, most conveniently,
move to continuous time (which is really just a more convenient way of making the normal
approximation.) We saw above that we can write the basic pricing equation in continuous
time as

A p

B® g - —E<
p

i)
(for simplicity of the formulas, I'm folding any dividends into the price process). The dis-
count factor is marginal utility, which is the same as the marginal value of wealth,

d_At - du’(ct) - dVW(Wt,Zt)
At o ’U/(Ct) B VW

Our objective is to express the model in terms of factorather than marginal utility or
value, and Ito’s lemma makes this easy

dVw _ WVww dW n Vi

1
= d —(second derivative terms
Vir T A Tl )

(We don’t have to grind out the second derivative terms if we are going tortadke =
E, (dA/A) ,though this approach removes a potentially interesting and testable implication
of the model). The elasticity of marginal value with respect to wealth is often called the
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coefficient of relative risk aversion,

Subgtituting, we obtain the ICAPM, which relates expected returns to the covariance of re-
turns with wealth, and also with the other state variables,

E@ —rfdt =rra E (M@> + VWZE (d2@> :
P W p Vw p

From here, it is fairly straightforward to express the ICAPM in terms of betas rather than
covariances, or as a linear discount factor model. Most empirical work occurs in discrete
time; we often simply approximate the continuous time result as

E(R) — R = rra cov(R, AW) + \.cov(R, Az).

One often substitutes covariance with the wealth portfolio for covariance with wealth, and
one uses factor-mimicking portfolios for the other factérsas well. The factor-mimicking
portfolios are interesting for portfolio advice as well, as they give the purest way of hedging
against or prfiting from state variable risk exposure.

8.3 Commentson the CAPM and |ICAPM

Conditional vs. unconditional models.

Do they price options?

Why bother linearizing?

The wealth portfolio.

EX post returns.

The implicit consumption-based model.

What are the ICAPM state variables?

CAPM and ICAPM as general equilibrium models

Isthe CAPM conditional or unconditional ?

Is the CAPM a conditional or an unconditional factor model? l.e., are the parameters
andb in m = a — bR" constants, or do they change at each time period, as conditioning in-
formation changes? We saw above that a conditional CAPM does not imply an unconditional
CAPM, so additional steps must be taken to say anything about observed average returns.
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Thetwo period quadratic utility based derivation resultsin aconditional CAPM, since the
parameters a and b can (must) change over timeif the conditional moments of returns change
over time. Equivalently, this two-period consumer chooses a portfolio on toaditional
mean variance frontier, which is not on theconditional frontier. The same is true of the
multiperiod CAPM. Of course, if returns are not i.i.d. over time, the multi-period derivation
is invalid anyway.

The log utility CAPM expressed with the inverse market return is a beautiful model, since
it holds both conditionally and unconditionally. There are no free parameters that can change
with conditioning information:

1 1
1= Et (—Rt+1> < 1=F (—Rt+1> .
R, R,

In fact there are no free parameters at all! Furthermore, the model makes no distributional
assumptions, so it can apply to any asset, and the model requires nficgtieci of the
investment opportunity set, or (macro language) no $pation of technology.

Linearizing the log utility CAPM comes at enormous price. The expectations in the lin-
earized log utility CAPM (83) areonditional. Thus, the apparent simfitation of linearity
destroys the nice unconditional feature of the log utility CAPM. In addition, the linearization
requires normal returns and so vastly lowers the applicability of the model.

Should the CAPM price options?

As | have derived them, the quadratic utility CAPM and the nonlinear log utility CAPM
should apply tall payoffs: stocks, bonds, options, contingent claims, etc. However, if we as-
sume normal return distributions to obtain a linear CAPM from log utility, we can no longer
hope to price options, since option returns are non-normally distributed (that's the point of
options!) Even the normal distribution for regular returns is a questionable assumption. You
may hear the statement “the CAPM is not designed to price derivative securitiestate-
ment refers to the log utility plus normal-distribution derivation of the linear CAPM.

Why bother linearizing a model? Why take the log utility model= 1/R" which
should priceany asset, and turn itintgy, 1 = a; +bthVK1 that loses the clean conditioning-
down property and cannot price non-normally distributed payoffs? These tricks were de-
veloped before the = FE(max) expression of asset pricing models, when (linear) expected
return-beta models were the only thing around. You need a linear modeltofget an ex-
pected return - beta model. More importantly, the tricks were developed when it was hard to
estimate nonlinear models. It's clear how to estimatieaad a)\ by regressions, but estimat-
ing nonlinear models used to be a big headache. Now, GMM has made it easy to estimate
nonlinear models. Thus, in my opinion, linearization is mostly intellectual baggage.

The desire for linear representations and this normality trick is one of the central reasons
why many asset pricing models are written in continuous time. In most continuous time
models, everything is locally normal. Unfortunately for empiricists, this approach adds time-
aggregation and another layer of unobservable conditioning information into the predictions
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of the model. For this reason, most empirical work is still based on discrete-time models.
However, the local normal distributions in continuous time, even for option returns, is a good
reminder that normal approximations probably aren’t that bad, so long as the time interval is
kept short.

What about the wealth portfolio?

The log utility derivation makes clear just how expansive is the concept of the wealth
portfolio. To own a (share of) theonsumption stream, you have to own not only all stocks,
but all bonds, real estate, privately held capital, publicly held capital (roads, parks, etc.), and
human capital — a nice word for “people”. Clearly, the CAPM is a poor defense of common
proxies such as the value-weighted NYSE portfolio. And keep in mind that given ex-post
mean-variance &tient portfolios of any subset of assets (like stocks) out there, taking the
theory seriously is our only guard agaifishing.

Ex-post returns.

Thelog utility model also allows usfor thefirst timeto look at what movesreturns ex-post
aswell as ex-ante. (Below, we will look at this issue in more depth). Recall that, in the log
utility model, we have

1 C

W t+1

= — . 84
+1 ﬁ Ct ( )

Thus, the wealth portfolio return is high, ex-post, when consumption is high. This holds at
every frequency: If stocks go up between 12:00 and 1:00, it must be because (on average) we
all decided to have a big lunch. This seems silly. Aggregate consumption and asset returns are
likely to be de-linked at high frequencies, thaw high (quarterly?) and by what mechanism

are important questions to be answered.

Implicit consumption-based models

Many users of alternative models clearly are motivated by a belief that the consumption-
based model doesn’'t work, no matter how well measured consumption might be. This view is
not totally unreasonahl@s above, perhaps transactions costs de-link consumption and asset
returns at high frequencies, and some diagnostic evidence suggests that the consumption
behavior necessary to save the consumption model is too wild to be believed. However, the
derivations make clear that the CAPM and ICAPM arealt#rnatives to the consumption-
based model, they aspecial cases of that model In each case,1 = fu/(cit1) /v (cr)
still operates. We just added assumptions that allowed us to substitutdavor of other
variables. One cannot adopt the CAPM on the belief that the consumption based model is
wrong. If you think the consumption-based model is wrong, the economidijetion for
the alternative factor models evaporates.

The only plausible excuse for factor models is a belief that consumpttmare un-
satisfactory. However, while asset return data are well measured, it is not obvious that the
S&P500 or other portfolio returns are téitimeasures of the return to total wealth. “Macro
factors” used by Chen, Roll and Ross (1986) and others are distant proxies for the quanti-
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ties they want to measure, and macro factors based on other NIPA aggregates (investment,
output, etc.) suffer from the same measurement problems as aggregate consumption.

In large part, the “better performance” of the CAPM and ICAPM comes from throwing
away content. Agaim, 1 = éu’(ci11)/u/(c) is there in any CAPM or ICAPM. The CAPM
and ICAPM make predictions concerning consumption data that are wildly implausible, not
only of admittedly poorly measured consumption data but any imaginable perfectly measured
consumption data as well. For example, equation (84) says that the standard deviation of the
wealth portfolio return equals the standard deviation of consumption growth. The latter is
about 1% per year. All the miserable failures of the log-utility consumption-based model
apply equally to the log utility CAPM. Finally, many “free parameters” of the models are not
free parameters at all.

In sum, the poor performance of the consumption-based model is an important nut to
chew on, not just a blind alley or failed attempt that we can safely disregard and go on about
our business.

I dentity of state variables

The ICAPM does not tell us thielentity of the state variables;, and many authors use
the ICAPM as an obligatory citation to theory on the way to using factors composed of ad-
hoc portfolios, leading Fama (1991) to characterize the ICAPM aéshifig license.” It
really isn’t: one could do a lot to insist that the factor-mimicking portfolios actually are the
projections of some idetftable state variables on to the space of returns, and one could do
a lot to make sure the candidate state variables really are plausible state variables for an
explicitly stated optimization problem. For example, one could check that they actually do
forecast something. THeshing license comes as much from habits of applying the theory as
from the theory itself.

General equilibrium models

The CAPM and other models are reatigneral equilibrium models. Looking at the
derivation through general-equilibrium glasses, we have Spédai set of linear technologies
with returnsR? that do not depend on the amount invested. Some derivations make further
assumptions, such as an initial capital stock, and no labor or labor income.

8.4 Arbitrage Pricing Theory (APT)

The APT: If a set of asset returns are generated by a linear factor model

N
Ri = E(RZ) + ZBZJ‘]EJ + Ei

J=1
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E(¢') = E('f;) = 0.

Then (with additional assumptions) there is a discount factor m linear in the factors m =
a + b'f that prices the returns.

The APT starts from a statistical characterization. There is a big common component
to stock returns: when the market goes up, most individual stocks also go up. Beyond the
market, groups of stocks such as computer stocks, utilities, etc. move together. Finally, each
stock’s return has some completely idiosyncratic movement. This is a characterization of
realized returns,outcomes or payoffs. The point of the APT is to start with this statistical
characterization obutcomes, and derive something aboexpected returns orprices.

The intuition behind the APT is that the completely idiosyncratic movements in asset
returns should not carry any risk prices, since investors can diversify them away by holding
portfolios. Therefore, risk prices or expected returns on a security should be related to the
security’s covariance with the common components or “factors” only.

The job of this section is then 1) to describe a mathematical model of the tendency for
stocks to move together, and thus tdide the “factors” and residual idiosyncratic compo-
nents, and 2) to think carefully about what it takes for the idiosyncratic components to have
zero (or small) risk prices, so that only the common components matter to asset pricing.

There are two lines of attack for the second item. 1) If there were no residual, then we
could price securities from the factors bybitrage (really, by the law of one price, but the
current distinction between law of one price and arbitrage came after the APT was named.)
Perhaps we can extend this logic and show that if the residualsrale they must have
small risk prices. 2) If investors all hold well-divefigid portfolios, then only variations in
the factors drive consumption and hence marginal utility.

Much of the original appeal and marketing of the APT came fronfitiseline of attack,
the attempt to derive pricing implicationgithout the economic structure required of the
CAPM, ICAPM, or any other model derived as a specialization of the consumption-based
model. In this section, | wilfirst try to see how far we can in fact get with purely law of
one price arguments. | will conclude that the answer is, “not very far,” and that the most
satisfactory argument for the APT is in fact just another specialization of the consumption-
based model.

84.1 Factor structurein covariance matrices

| define and examine the factor decomposition
' =o; +Bf+e' E() =0, E(fe') =0
The factor decomposition is equivalent to a restriction on the payoff covariance matrix.
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The APT models the tendency of asset payoffs (returns) to move together via a statistical
factor decomposition

M
=i+ Bifite =i+ Bif +¢. (85)

Jj=1

The f’s are thefactors, the 5 are thebetas or factor loadings and thes areresiduals. The
terminology is unfortunate. A discoufactor m, pricingfactorsf in m = b’f and thisfactor
decomposition (or factor structure) for returns are totally unrelated uses of the word “factor.”
Don't blame me, | didn’t invent the terminology! The APT is conventionally written with
x! = returns, but it ends up being much less confusing to use prices and payoffs.

It is a convenient and conventional sinfigation to fold the factor means into the con-
stant, and write the factor decomposition with zero-mean fagtarsf — E(f).

M
2 =E@)+Y Bifi+e. (86)

Jj=1

Remember thaF(x*) is still just a statistical characterization, not yet the prediction of a
model.

We can construct the factor decomposition as a regression equatidime Biee,;; as
regression coéitients, and then theg are uncorrelated with the factors by construction,

The content — the assumption that keeps (86) from describing any arbitrary set of returns —
is an assumption that the areuncorrelated with each other.

E(s'e?) = 0.

(More general versions of the model allow some limited correlation across the residuals but
the basic story is the same.)

The factor structure is thus a restriction on the covariance matrix of payoffs. For example,
if there is only one factor, then

o2 ifi=j

COU(l'i,x'j) = E[(61f+ 51)(ﬁ]f+ Ej)] = 6iﬁj02(f) + { 065 if 7 7&]

Thus, with N = number of securities, th& (N — 1)/2 elements of a variance-covariance
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matrix are described by N betas, and NV + 1 variances. A vector version of the samethingis

o2 0 0
cov(x,x') = BB () + | O o3 O
0 O

With more (orthogonalized) factors, one obtains
cov(x,x') = 3,810%(f1) + BoBs0*(f2) + ... + (diagona matrix)

In all these cases, we describe the covariance matrix a singular matrix 33’ (or asum of afew
such singular matrices) plus adiagonal matrix.

If we know the factors we want to use ahead of time, say the market (value-weighted
portfolio) and industry portfolios, we can estimate a factor structure by running regressions.
Often, however, we don't know the identities of the factor portfolios ahead of time. In this
case we have to use one of several statistical techniques under the broad heé#atitay of
analysis (that's where the word “factor” came from in this context) to estimate the factor
model. One can estimate a factor structure quickly by simply taking an eigenvalue decom-
position of the covariance matrix, and then setting small eigenvalues to zero. More formal
estimates can come from maximum likelihood.

8.4.2  Exact factor pricing

With no error term,

implies

and thus

m = b'f; p(a') = E(ma’)

E(R") = R + B\

using only the law of one price.

Suppose that there are no idiosyncratic teemsrThis is called arexact factor mode.
Now look again at the factor decomposition,

' = E(2)1 + Bif.

132



SECTION 8.4 ARBITRAGE PRICING THEORY (APT)

Thisinitially statistical decomposition expresses the payoff in question as a portfolio of the
factors and a constant (risk-free payoff). Thus, the price can only depend on the prices of the
factorsf,

p(z") = E(z")p(1) + Bip(f). (87)

Thelaw of one price assumption lets you take prices of right and left sides.

If the factors are returns, their prices are 1. If the factors are not returns, their prices are
free parameters which can be picked to make the migtdas well as possible. Since there
are fewer factors than payoffs, this procedure is not vacuous. (Recall that the prices of the
factors are related to thein expected return beta representationss determined by the
expected return of a return factor, and is a free parameter for non-return factor models.)

We are really done, but the APT is usually stated as “theradiscaunt factor linear inf
that prices return&’,” or “there is an expected return-beta representation fvith factors.”
Therefore, we should take a minute to show that the rather obvious relationship (87) between
prices is equivalent to discount factor and expected return statements.

Assuming only the law of one price, we know there is a discount faattimear in factors
that price the factors. We usually calkit, but call it f* here to remind us that it prices the
factorsf. As with z*, f* = p(f) E(ff')~f satifiesp(f) = E(f*f). If it prices the factors,
it must price any portfolio of the factareencef* = b’f prices all payoffs:? that follow the
factor structure.

We could now go fromn linear in the factors to an expected return-beta model using the
above theorems that connect the two representations. But there is a more direct and very slick
connection. Start with (87), specialized to retusis= R! and of courseo(R?) = 1. Use
p(1) = 1/R’ and solve for expected return as

E(R') = R + B8} |~R'p(E)| = R + B
The last equality dinesA. Expected returns are linear in the betas, and the congterase

related to the prices of the factors. In fact, this is the sanfi@itien of A that we arrived at
above connecting: = b’f to expected return-beta models.

843  Approximate APTsusing thelaw of oneprice.

Attempts to extend the exact factor model to an approximate factor pricing model when
errors are “small,” or markets are “large,” still only using law of one price.

Forfixedm, the APT gets better and better &or the number of assets increases.
However, for anyfixed R? or size of market, the APT can be arbitrarily bad.
These observations say that we must go beyond the law of one price to derive factor
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pricing models.

Actual returns do not display an exact factor structure. There is some idiosyncratic or
residual risk; we cannot exactly replicate the return of a given stock with a portfolio of a
few large factor portfolios. However, the idiosyncratic risks are often “small.” For example,
factor model regressions of the form (85) often have very fighespecially when portfolios
rather than individual securities are on the left hand side. And the residual risks are still
idiosyncratic: Even if they are a large price of an individual security’s variance, they should be
a small contributor to the variance of well diveted portfolios. Thus, there is reason to hope
that the APT holds approximately. Surely, if the residuals are “small” and/or “idiosyncratic,”
the price of an asset can't be “too different” from the price predicted from its factor content?

To think about these issues, start again from a factor structure, but this time put in a
residual,

2t = B(z")1 + B;f + ¢t
Again take prices of both sides,
p(a’) = E(@)p(1) + Bip(f) + E(me’)

Now, what can we say about the price of the resigial) = E(me?)?

Figure 17 illustrates the situation. Portfolios of the factors span a payoff space, the line
connectingf* andg; f in thefigure. The payoff we want to price! is not in that space, since
the residuat’ is not zero. A discount factgf* prices the factors, and the space of all discount
factors that price the factors is the lineorthogonal tof*. The residual is orthogonal to the
factor space, since it is a regression residual, anf“to particular, E(f*¢*) = 0. This
means thaff* assigns zero price to the residual. But the other discount factors enlihe
arenot orthogonal tae?, so generate non-zero price for the residtialAs we sweep along
the line of discount factors: that price thef, in fact, we generate every price froro to
oo for the residual. Thus, the law of one price does not nail down the price of the residual
and hence the price or expected return-of

Limiting arguments

We would like to show that the price af has to be “close to” the price @.f. One notion

of “close to” is that in some appropriate limit the priceadfconverges to the price @.f.
“Limit” means, of course, that you can get arbitrarily good accuracy by going far enough in
the direction of the limit (for every > 0 there is &....). Thus, establishing a limit result is

a way to argue for an approximation.

Here is one theorem that seems to imply that the APT should be a good approximation
for portfolios that have higi®2on the factors. | state the argument for the case that there is a
constant factor, so the constant is in thepace and(¢*) = 0. The same ideas work in the
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----Allm
' f
By o
x ~ =mm:g?(m) <A
f*

Figure 17. Approximate arbitrage pricing.
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less usual case that thereis no constant factor, using second moments in place of variance.

Theorem 3  Fix adiscount factor m that pricesthe factors. Then, asvar(s?) — 0, p(z?) —

p(Bif).

Graphical argument: E(s%) = 0 so var(e?) = E(¢%2) = ||¢?||. Thus, as the size of the
e? vector in Figure 17 gets smaller, z? gets closer and closer to 3,f. For any fixed m, the
induced pricing function (lines perpendicular to the chosen m) is continuous. Thus, as x*
gets closer and closer to B3.f, its price gets closer and closer to 3f.

Regression inter pretation. Remember, the factor model is defined as aregression, so
var(z') = var(Bif) + var(e)
Thus, the variance of the residual is related to the regression R?.

var(g?) -2
var(z?)

The theorem says that as R? — 1, the price of the residual goes to zero.

We were hoping for some connection between the fact that the risks areidiosyncratic and
factor pricing. Even if the idiosyncratic risks are a large part of the payoff at hand, they
are asmall part of awell-diversified portfolio. The next theorem shows that portfolios with
high R? don’t have to happen by chanoeell-diverstied portfolios will always have this
characteristic.

Theorem 4 Asthe number of primitive assets increases, the R? of well-diversfied portfo-
lios increases to 1.

Proof: Start with an equally weighted portfolio
N

1 A
=1

Going back to the factor decomposition (85) for each individual asset 2%, the factor decom-
position ofx? is

1% . 1zN: 1% 1% 4 ,
= — a1+,3;f+61):— a; + = Bif + = e =a? + 3, f+P.
N: N’i:l N’i:l N’i:l g

The last equality dénes notation”, 3, €P. But

|
var(e?) = var (NZ )
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So long asthe variance of ¢ are bounded, and given the factor assumption E(c’s?) = 0,

] P\ —
A}gnoo var(eP) = 0.
Obvioudly, the same idea goes through so long as the portfolio spreads some weight on all
the new assets, i.e. so long asit is“well-diversified.” ]

These two theorems can be interpreted to say that the APT holds approximately (in the
usual limiting sense) for portfolios that either naturally have higfy or well-diversfied
portfolios in large enough markets. We have only used the law of one price.

Law of one price arguments fail

Now, let me pour some cold water on these resulféetl m and then let other things take
limits. Theflip side is that for any nonzero residuél no matter how small, we can pick a
discount factorn that prices the factors and assigmy price toz*!

Theorem 5 For any nonzero residual <° there is a discount factor that prices the factors f
(consistent with the law of one price) and that assigns any desired pricein (—oo, co) to the
return R°.

Solong ag|¢?|| > 0, as we sweep the choicemfalong the dashed line, the inner product
of m with ¢ and hence:! varies from—ooto co.

Thus, for a given siz&? < 1, or a giverfinite market, the law of one price says absolutely
nothing about the prices of payoffs that do not exactly follow the factor structure. The law of
one price says that two ways of constructing the same portfolio must give the same price. If
the residual is not exactly zero, there is no way of replicating the paydfom the factors
and no way to infer anything about the pricexdffrom the price of the factors.

| think the contrast between this theorem and those of the last subsection accounts for
most of the argument over the APT. If ydix m and take limits of NV or ¢, the APT gets
arbitrarily good. But if youfix IV or ¢, as one does in any application, the APT can get
arbitrarily bad as you search over possible

The lesson | learn is that the effortégtend prices from an original set of securitiei
this case) to new payoffs that are not exactly spanned by the original set of securities, using
only the law of one price, is fundamentally doomed. To extend a pricing function, you need
to add some restrictions beyond the law of one price.

Beyond the law of one price: arbitrage and Sharpe ratios.

So far, we have used only the law of one price restriction that there is.aRerhaps we
can do better by imposing the no-arbitrage restriction thahust be positive. Graphically,
we are now restricted to the solid line in Figure 17. Since that line only extendsimite
amount, restricting us to strictly positive’s gives rise tofinite upper and lowearbitrage
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bounds on the price of ¢* and hence z?. (The word arbitrage bounds comes from option
pricing, and we will seetheseideas again in that context. If thisideaworked, it would restore
the APT to “arbitrage pricing” rather than “law of one-pricing”.)

Alas, in applications of the APT (as often in option pricing), the arbitrage bounds are
too wide to be of much use. The positive discount factor restriction is equivalent to saying
“if portfolio A gives a higher payoff than portfolio B ievery state of nature, then the price
of A must be higher than the price of B.” Since stock returns and factors are continuously
distributed, not two-state distributions as | have graphedidmre 17, there typically are no
strictly dominating portfolios, so adding > 0 does not help.

I think it is possible to continue in this line and derive an approximate APT that is useful
in finite markets with?? < 1. The issue is, can we rule out the wild discount factors—way
out on the edges of the discount factor line—that one must invoke to justify a pri¢éfaf”
from the price of3'f. We have found that the law of one price and no-arbitrage do not rule out
such wild prices. But surely we can rule out such prices without taking the opposite extreme
of completely specifying the discount factor model, i.e. start with the consumption-based
model?

One obvious possibility is to restrict tivariance and hence the siz¢|{:|| = E(m?) =
o?(m) + E(m)? = o%(m) + 1/R/?) of the discount factor. Figure 17 includes a plot of
the discount factors with limited variance, size, or length in the geometry ofithae. The
restricted range of discount factors produces a restricted range of prices fare obtain
upper and lower pricbounds for the price ofz? in terms of the factor prices, and the bounds
shrink to3p(f) as the allowed variance of the discount factor shrinks. Precisely, then, we
solve the problem

I{niI}l (or r{nai<) p(z") = E(ma?) s.t. E(mf) =p(f), m >0, o%(m) < A

Limiting the variance of the discount factor is of course the same as limiting the maximum
Sharpe ratio (mean / standard deviation of excess return) available from portfolios of the
factors andr?. Recall that

<

o(Re)

Thus, Saa-Requejo and | (1996) dub this idea “good-deal” pricing, as an extension of “arbi-
trage pricing.” Limitingo(m) rules out “good deals” as well as pure arbitrage opportunities.
Though a bound on Sharpe ratios or discount factor volatility is not a totally preference-free
concept, it clearly imposes a great deal less structure than the CAPM or ICAPM which are
essentially full general equilibrium models. Ross (1976) included this suggestion in his orig-
inal APT paper, though it seems to have disappeared from the literature since then in the
failed effort to derive an APT from the law of one price alone. Ross pointed out that devi-
ations from factor pricing could provide very high Sharpe ratio opportunities, which seem
implausible though not violations of the law of one price.
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If we impose a good-deal bound, we obtain well-behaved limits, that do not depend on
the order of “for all” and “there exists.” For giveR?, all discount factors satisfying the
good-deal bound produce price bounds, and the price bounds shrink &3 tterinks or
as the good-deal bound shrinks. | describe good-deal pricing in more detail below in an
option-pricing context.

8.5 APT vs. ICAPM

A factor structure in the covariance of returns or highin regressions of returns on
factors are stfitient (APT) but not necessary (ICAPM) for factor pricing.

Differing inspiration for factors.
The disappearance of absolute pricing.

The APT and ICAPM stories are often confused. Factor structure can employ factor
pricing (APT), but factor pricing does not require a factor structure. In the ICAPM there is
no presumption that factofsin a pricing modeln = b’f describe the covariance matrix
of returns. The factors don't have to be orthogonal or i.i.d. either. Higim time-series
regressions of the returns on the factors may imply factor pricing (APT), but again are not
necessary. The regressions of returns on factors can have as Rtvaaone wishes in the
ICAPM.

The biggest difference between APT and ICAPM for empirical work is in the inspiration
for factors. The APT suggests that one start with a statistical analysis of the covariance matrix
of returns andind portfolios that characterize common movement. The ICAPM suggests that
one start by thinking about good proxies for marginal utility growth, or state variables that
describe the conditional distribution of future asset returns and non-asset income.

The difference between the derivations of factor pricing models, and in particular an ap-
proximate law-of-one-price basis vs. a proxy for marginal utility basis seems not to have had
much impact on practice. In practice, we just test models- b’f and rarely worry about
derivations. The best evidence for this view is the introductions of famous papers. Chen,
Roll and Ross (1986) describe one of the earliest popular multifactor models, using indus-
trial production and ifiation as some of the main factors. They do not even present a factor
decomposition of test asset returns, or the time-series regressions. A reader might well cate-
gorize the paper as much closer to an ICAPM. Fama and French (199x) describe the currently
most popular multifactor model, and their introduction describes it as an ICAPM in which
the factors are state variables. But the factors are sorted on size and book/market just like the
test assets, the time-serig$ are all abové)0%, and much of the explanation involves “com-
mon movement” in test assets captured by the factors. A a reader might well categorize the
model as much closer to an APT.
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In the first chapter, | made a distinction between relative pricing and absolute pricing. In
the former, we price one security given the prices of others, whilein the latter, we price each
security by reference to fundamental sources of risk. The factor pricing stories areinteresting
in that they start with a nice absolute pricing model, the consumption-based model, and
throw out enough information to end up with relative models. The CAPM pritéegven
the market, but throws out the consumption-based model’s description of where the market
return came from.
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PART I1
Estimating and evaluating asset
pricing models

Our first task in bringing an asset pricing model to data is to estimate the free parameters.
Examples of such parametersare 5 andy inm = ((ct41/c) 7, or b inm = b’f. Thenwe
want to evaluate the model. Isit agood model or not? I's another model better?

Statistical analysis helpsin model evaluation by providing a distribution theory for num-

bers we create from the data. A distribution theory answers the question, if we generate
artificial data over and over again from a statistical model, generating a number from the
data each time, what is the resulting probability distribution of that number? In particular,
we are interested in a distribution theory for the estimated parameters, and for the pricing er-
rors, which helps us to judge whether pricing errors are just bad luck or if they indicate a
failure of the model. We also will want to generate distributions for statistics that compare
one model to another, or provide other interesting evidence, to judge how much sample luck
affects those calculations.

All of the statistical methods | discuss in this part achieve exactly these ends. They give
methods for estimating free parametergey provide a distribution theory for those parame-
ters, and they provide statistics for model evaluation, in particular a quadratic form of pricing
errors in the forma’vV—1a.

| start by focusing on the GMM approach. Then | consider traditional regression tests
and their maximum likelihood formalization. | emphasize the fundamental similarities be-
tween these three methods, as | emphasized the similarity bejweet'(mz), expected
return-beta models, and mean-variance frontiers. A concluding essay highlights the differ-
ences between the methods and argues that the GMM approach will be most useful for most
empirical work in the future.

| use the wordevaluation rather thartest deliberately. Statistical hypothesis testing is
one very small part of the process by which we evaluate afider@asset pricing models,
or discard them in favor of new ones. Statistical tools exist only to answer the sampling
distribution questions in this process. Maﬁyjmodels are kept that give economically small but
statistically signficant pricing errors, and many more models are quickly forgotten that have
statistically insignicant but economically large pricing errors, or just do not tell as clean a
story.



Chapter 9. GMM estimation and testing
of asset pricing models

The basic idea in the GMM approach is very straightforward. The asset pricing model pre-
dicts

E(p;) = E [m(data_,, parametersa, ;1] . (88)

The most natural way to check this prediction is to examine sample averages, i.e. to calculate

T T

1 1

T E Dt andT E [m(data, parametersz, 1] . (89)
t=1 t=1

GMM estimates the parameters by making these sample averages as close to each other as
possible. It works out a distribution theory for those estimates. This distribution theory is

a generalization of the simplest exercise in statistics: the distribution of the sample mean.
Then, it suggests that veealuate the model by looking at how close the sample averages are

to each other, or equivalently by looking at the pricing errors. It gives a statistitaif the
hypothesis that the underlying population means are in fact zero.

9.1 GMM in explicit discount factor models.

It's easiest to start our discussion of GMM in the context of an explicit discount factor model,
such as the consumption-based model. | treat the special structure of linear factor models
later. | start with the basic classic recipe as given by Hansen and Singleton (1982) and then
explore the intuition behind it and useful variants.

911 Recipe
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SECTION 9.1 GMM IN EXPLICIT DISCOUNT FACTOR MODELS.

Definitions
up1(b) = mypai(b)rep —pe
gr(b) = Er[u(b)]
S = Z E [u;(b) w,—j(b)’]
j=—0o0
GMM estimate
by = argminy, gr(b)’'S gr(b).
Standard errors
N l ra—17y—1. _ 9gr(b)
var(bg) = T(DS D)™ D= 5h

Test of the model (“overidentifying restrictions”)

TJy = Tmin [gr(b)'S™'gr(b)] ~ x*(#moments- #parameters

Discount factor models involve some unknown parameters as well as data, so | write
my+1(b) to remind ourselves of the dependence on parameters. For examplg, if=
B(cep1/c)™7, thenb = [8 4]’ | write b to denote estimates when it is important to distin-
guish estimated from other values.

Again, any asset pricing model implies
E(pt) = E [m11(b)xe44] . (90)
It's easiest to write this equation in the for(-) = 0
Elmii1(b)xes1 — pe =0. (91)

| use boldface fox andp because these objects are typically vectors typically check
whether a model fom can price a number of assets simultaneously. Equations (91) are often
called themoment conditions.

It's convenient to dfne theerrorsu,(b) as the object whose mean should be zero,
U1 (b) = M1 (b)$t+1 — Pt

Given values for the parametess we could construct a time series ap and look at its
mean.

Definegr(b) as the sample mean of the errors, when the parameter vectobisn a

143



CHAPTER9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

sampleof sizeT"

gr(b) =7 Zut = Er [w(b)] .

The last equality introduces the handy notation E- for sample means,

s 530

(It might make more sense to denote these quantities £ and ¢ to denote estimates, as | do
elsewhere. However, Hansen's T' subscript notation is so widespread that doing so would
cause more confusion than it solves.)

Thefirst stage estimate of b minimizes a quadratic form of the sample mean of the errors,
Ebl = argmin{i)} gT(B)/WgT(B)
for some arbitrary matri¥y” (usually, W = I). This estimate is consistent, asymptotically

normal, and you can and often should stop here, as | explain below.
Usingb,, form an estimaté of

S—ZEut Yu—j(b)].

jzfoo
(Below I discuss various interpretations of and ways to construct this estimate.) Form a
second stage estimateb, using the matrixS' in the quadratic form,
by = argminy, gr(b)'S"'gr(b).

b, is a consistent, asymptotically normal, and asymptoticafigieht estimate of the param-
eter vectob. “Efficient” means that it has the smallest variance-covariance matrix among all
estimators that set different linear combinationggfb) to zero.

The variance-covariance matrix bf is

. 1
var(bg) = T(D’S*D)*1

where
_ 9gr(b)
b= ob
or, more explicitly,
ou b 0
D= Er (—tgé( )> T Er <E)b (M1 (D) Xp 41 Pt)]) -
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This variance-covariance matrix can be used to test whether a parameter or group of
parameters are equal to zero, via

b;
var (f))“

~ N(0,1)

and

. AR B
b; [var(b)jj} b, ~ x?(#includedd’s)
whereb; =subvector var(b),; =submatrix

Finally, thetest of overidentifying restrictions is a test of the overalit of the model. It
states thaf” times the minimized value of the second-stage objective is distribgtedth
degrees of freedom equal to the number of moments less the number of estimated parameters.

TJr = Tmin [gr(b)'S 'gr(b)] ~ x*(#moments- #parameters
See Hansen (1982) or Ogaki (1993) for many important statistical assumptions. The

most important is that:, p, andx must bestationary random variables. so that time-series
averages converge to population means.

9.2 Interpreting GMM

Notation.

Stationarity and choice of units.
Forecast errors and instruments.
gr(b)is a pricing error.

GMM picks parameters to minimize pricing errors and evaluates the model by the size of
pricing errors.

The optimal weighting matrix tells you to pay attention to the assets with best-measured
pricing errors.

Notation; instruments and returns

Most of the effort involved with GMM is simply mapping a given problem into the very
general notation. The equation

E[my1(b)Xep1 —pe] =0
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can capture alot. Here, | trandate it for the most common case.
We often test asset pricing models using returns, in which case the moment conditions are

E[mi1(b)Ryr — 1] =0.
It is common to add instruments as well. Mechanically, you can multiply both sides of
1 = B¢ [my41(b)Rey1]
by any variable z; observed at time ¢ before taking unconditional expectations, resulting in
E(2) = E [my11(b)Rey1 2]
or

0=F {[mt+1(b)Rt+1 - 1} Zt} . (92)

If payoffs are generated by a vector of two returns R = [R® R®)’ and one instrument z,
equation (92) might look like

me+1 (b) R?+1 1 0
E my41(b) R§+1 1 — 0
me+1 (b) R?+1zt Zt 0
me41 (b) R§+12t Zt 0

Using the Kronecker product & meaning “multiply every element by every other element”
we can denote the same relation compactly by

E{[mi11(b) Rep1 — 1] 0z} =0, (93)
or, emphasizing the managed-portfolio interpretationard E(ma) notation,

E[mi1(b)(Rip1 ®2¢) — (1 ®z)] =0.
Sationarity

Sationarity is the most important statistical requirement for consistency and the GMM dis-
tribution theory. (“Stationary” of often misused to mean constant, or i.i.d.. The statistical
definition of stationarity is that the joint distribution of;, z;_; depends only ori and not

ont.) Sample averages must converge to population means as the sample size grows, and
stationarity implies this result.

This step usually amounts to a choice of sensible units. For example, though we could
express the pricing of a stock as

pe = By [myi1(digr + prg)]
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it would not be wise to do so. For stocks, p and d rise over time and so are typicaly not
stationary; their unconditional means are not defined. It is better to divide by p, and express
the model as

) diy1 + peia

1= Et {mH
Pt

} = Ey (my41R41)

The stock return is plausibly stationary.

Dividing by dividendsis an alternative and | think underutilized way to achieve stationar-
ity:

Dt Dit1 \ dit1
4, t [mt+1< + dt+1) d; }

Now we map(l + Zi—ij) d;—*fl into 2,11 and 4t into p,. This formulation allows us to focus
on prices rather than one-period returns.

Bonds are a claim to a dollar, so bond prices do not grow over time. Hence, it might be
all right to examine

P} = E(my1 1)

with no transformations.

Stationarity is not always a black and white question in practice. As variables become
“less stationary”, as they experience longer and longer swings in a sample, the asymptotic
distribution can becomes a less reliable guide finiie-sample distribution. For example,
the level of interest rates is surely a stationary variable in a fundamental sense: it was 6%
in ancient Babylon, about 6% in 14th century Italy, and about 6% again today. Yet it takes
very long swings away from this unconditional mean, moving slowly up or down for even
20 years at a time. The asymptotic distribution theory of some estimators will be particularly
bad approximation to the correfthite sample distribution theory in such a case.

Itis also important to choogest assetsin a way that is stationary. For example, individual
stocks change character over time, increasing or decreasing size, exposure to risk factors,
leverage, and even nature of the business. For this reason, it is common to sort stocks into
portfolios based on characteristics such as betas, size, book/market ratios, industry and so
forth. The statistical characteristics of §ha tfolio returns may be much more stationary than
the characteristics of individual securities, whitbat in and out of the various portfolios.

Forecast errors and instruments

The asset pricing model says that, although expeetedns can vary across time and assets,
expectedliscounted returns should always be the same, 1. The eryof = my 1 Rirq — 1

is the ex-post discounted return., ; = my1 Ry1 — 1 represents #orecast error. Like any
forecast errory, 1 should be conditionally and unconditionally mean zero.
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In an econometric context, z is an instrument because it is uncorrelated with the error
u;y1. E(zpuq) is the numerator of a regression coefficient of w41 on z; thus adding
instruments basically checks that the error or ex-post discounted return is unforecastable by
linear regressions.

If an asset’s return is higher than predicted whgis unusually high, but not on average,
scaling byz, will pick up this feature of the data. Then, the moment condition checks that the
discount rate is unusually low at such times, or that the conditional covariance of the discount
rate and asset return movesfieiéntly to justify the high conditionally expected return.

As | explained in Chapters 2 and 7, adding instruments can also be interpreted as including
the returns of managed portfolios, strategies that put more or less money into assets as linear
functions of the information variable

So far | have been careful to say ttafp) = E(maz) is an implication of the model. As
chapter 7 emphasizes, adding instruments is in principle able to capkwkthe model's
predictions.

Pricing errors

The moment conditions are
g(b) = E[miy1(b)zir1 — pi] = E [myi1(b)xet1] — Epe] .

Thus, each moment is the difference between acf@t)) and predicted ' (maz)) price, or
pricing error.

In the language of expected returns, recall that F(mR) can be translated to a pre-
dicted expected return,

1 cov(m, R)
~ E(m) E(m)

Therefore, we can write the pricing error as

gb) = Mmml—ﬂm<ﬂmEéw+w§2ﬁ>

1 .
E(actual mean return - predicted mean return.

i

—~~

Z
\

Similarly, if we express the model in expected return-beta language,
E(RY) = a; + BiA
then the GMM objective is proportional to the Jensen’s alpha measure of mis-pricing,

1
g(b) = ﬁai'
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Thus, GMM picks parameters to make pricing errors as small as possible, and tests the
model by the size of its pricing errors.

First-stage estimates

If we could, we'd pick b to make every element @fr(b) = 0 — to have the model price

assets perfectly in sample. However, there are usually more moment conditions (returns times
instruments) than there are parameters. There should be, because theories with as many free
parameters as facts (moments) are pretty vacuous. Thus, we dhdosmakegr(b) as

small as possible. The easiest way to make a vector sugh(ag “small” is to minimize a
quadratic form,

n{ﬂ;? gr(b) Wegr(b). (94)

W is aweighting matrix that tells us how much attention to pay to each moment, or how
to trade off doing well in pricing one asset or linear combination of assets vs. doing well in
pricing anther. For examplél)/ = I says to treat all assets symmetrically. In this case, the
objective is the sum of squared pricing errors.

The sample pricing erragr(b) may be anonlinear function ofb. Thus, you may have to
use a numerical search fiond the value ob that minimizes the objective in (94). However,
since the objective is locally quadratic, the search is usually straightforward.

Second-stage estimates

What weighting matrix should you use? You might start with W = 1, i.e,, “try to price
all assets equally well”. This is an example of espnomically interesting metric. You
might start with different elements on the diagonabifif you think some assets are more
interesting or informative than others. In particulafirat-stagell’ that is not the identity
matrix can be used to offset differences in units between the moments.

However, some asset returns may have much more variance than other assets. For those
assetsgr = Er(m R, — 1) will be a much less accurate measuremerf 6f: R — 1), since
it will vary more from sample to sample. Hence, one might think of paying less attention
to pricing errors from assets with high return variance. One could implement this idea by
using alW matrix composed of inverse variancesif (m;R; — 1) on the diagonal. More
generally, since asset returns are correlated, one might think of using the covariance matrix of
Er(m¢R;—1). This weighting matrix pays most attention to linear combinations of moments
about which the data set at hand has the most information. Hencediagstical metric for
judging how “small” the momentgy are. This idea is exactly the same as heteroskedasticity
and cross-correlation corrections that lead you from OLS to GLS in linear regressions.

The covariance matrix of; = Er(u.1) is the variance of a sample mean. Exploiting
the fact thatF'(u;) = 0, and thatu, is stationary s&(ujus) = E(uiust1) depends only on
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the distance between the two «’s and not on time itself, we have

= % [TE(utuQ) + (T - 1) (E(up; ) + E(uuyy,))) + ]

AsT — oo, (T —34)/T — 1,s0

1 & 1
Uar(gT) — T Z E(utu,’ffj) = TS
J=—00
The last equality denoteS, known for other reasons as tkpectral density matrix at fre-
guency zerof u,. (Precisely, S so defined is the variance-covariance matrix of thgr for
fixedb. The actual variance-covariance matrixggf must take into account the fact that we
choseb to minimizegy. | give that formula below. The point here is heuristic.)

This fact suggests that a good weighting matrix might be the inverSeloffact, Hansen
(1982) shows formally that the choice

Wr=8"1 S= Z E(ugu;_ ;)

j=—c0

is the statisticallyptimal weighing matrix, in the sense that it produces estimates with lowest
asymptotic variance.

You may be more used to the formuidu)/+/T for the standard deviation of a sam-
ple mean. This formula is a special case that holds when:here i.i.d. In that case
Ei(uu;_j) =0, j # 0, so the previous equation reduces to

e 1 ~  var(u)
var T;ut_H :TE(uu): T

This is probably théirst statistical formula you ever saw — the variance of the sample mean.
In GMM, it is the last statistical formula you'll ever see as well. GMM amounts to just gen-
eralizing the simple ideas behind the distribution of the sample mean to parameter estimation
and general statistical contexts.

As you can see, the variance formulas used in Ghitiot include the usual assumptions
that variables are i.i.d., homoskedastic, etc. You can put such assumptions in if you want to —
we'll see how below, and adding such assumptions stieplithe formulas and can improve
the small-sample performance when the assumptions arggdstibut you don’haveto add
these assumptions. That's why the formulas look a little different.
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Testing

Once you've estimated the parameters that make a mofelbest”, the natural question

is, how well does ifit? It's natural to look at the pricing errors and see if they are “big”. A
natural measure of “big” is, are the pricing errors statistically big? That’s exactly the question
answered by thdr test. Recall,

TJr=T [gT(B)’S*gT(B) ~ x?(#moments- #parameters

Jr looks like the minimized pricing errors divided by their variance-covariance matrix. The
distribution theory just says that sample means converge to a normal, so sample means
squared divided by variance converges to the square of a normgl, ®hus, theJ;- test tells

you whether the pricing errors are “big” relative to their sampling variation under the null that
the model is true. (Ib werefixed, S would in fact be the asymptotic variance-covariance ma-

trix of the g;-, and the result would bg? with # moments degrees of freedom. The reduction

in degrees of freedom corrects for the fact that we chose the parameters tgmsikeall.

More details below.)

Thefirst and second stage estimates should remind you of procedures with standard lin-
ear regression models: if the errors are not i.i.d., then you run an OLS regression, which is
consistent, but not &€ient. You can then use the OLS estimate to obtain a series of residuals,
estimate a variance-covariance matrix of residuals, and then do GLS, which is also consistent
and more dicient, meaning that the sampling variation in the estimated parameters is lower.

9.3 Estimating the spectral density matrix

Hints on estimating the spectral density or long run covariance matrix. 1) Remove means
2) How many covariance terms to include 3) Bartlett/Newey West and other covariance
weighting schemes 4) If you useas a weighting matrix, don't let the number of moments
get large relative to sample size, or impose parametric restrictions 5) Iteration and simultane-
ousb, S estimation.

The optimal weighting matrixS depends ormpopulation moments, and depends on the
parameter®. Work back through the ditions,

S= Y B ;)= Y E[(mi(b)xi1 —p)uj ]

j=—o j=—00

How do we construct this matrix? Following the usual philosophy, we estimate population
moments by their sample counterparts. Thus, uséitsiestageb estimates and the data to
construct sample versions of thefition of S. This produces a consistent estimate of the
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true spectral density matrix, which is al the asymptotic distribution theory requires.

In asymptotic theory, you can use consistent first stage b estimates formed by any non-
trivial weighting matrix. In practice, of course, you should use a sensible weighting matrix
like W = I so that thefirst stage estimates are not ridiculously freéént. There are several
additional considerations to be aware of in estimating spectral density matrices

1) Removing means. Under the nullE(u,) = 0, so it shouldn’t matter whether one estimates
the covariance matrix by removing means, using

= - W) G= Y

or whether one estimates the second moment matrix by not removing means. However,
Hansen and Singleton (1982) advocate removing the means in sample, and this is generally
a good idea. Undeslternatives in which E(u) is zero, removing means should give more
reliable performance.

=l

In addition, the major obstacle to second-stage estimation is that estiatedrices
(and even simple variance-covariance matrices) are nearly singular. Second moment matrices
E(uu’) = cov(u,u’) + E(u)E(u’) are even worse.

2) Correlations under the null or alternative? Under some null hypotheseg; (u;+1) =

0, so E(usuw,—j) = 0 for j # 0. For example, this is true in the canonical ca8e=
E;(myy1Riy1 — 1) = Ei(ugy1). The discounted return should be unforecastable, using
past discounted returns as well as any other variable. Thus, one could exploit the null to only
includeoneterm, and estimate

1 X
o — /
S = T ;:1 uuy.

Again, however, the null might not be correct, and the errors might be correlated. If so, you
might make a big mistake by leaving them out. If the null is correct, the extra terms will
converge to zero and you will only have lost a few degrees of freedom needlessly estimating
them. With this in mind, one might want to include at least a few extra autocorrelations, even
when the null says they don't belong.

Monte Carlo evidence (Hodrick 199x, Campbell 1994) suggests that imposing the null
hypothesis to simplify the spectral density matrix helps to gesitteof test statistics right
— the probability of rejection given the null is true. Using more general spectral density
matrices that can accommodate alternatives can help withaher of test statistics — the
probability of rejection given that the alternative is true.

This trade-off requires some thought. Foeasurement rather than puréesting, using
a spectral density matrix that can accommodate alternatives may make for more robust test
statistics. For example, if you are running regressions to see if a variable such as dividend-
price ratio forecasts returns, and calculatingsSamatrix to develop standard errors for the
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SECTION 9.3 ESTIMATING THE SPECTRAL DENSITY MATRIX

OLS regression coefficients, it may make sense to use more lags than required. While the
null hypothesis that nothing forecasts returns is interesting and implies the number of lags,
the spirit really is more measurement than testing.

If you are testing an asset pricing model that predicts « should not be autocorrelated, and
thereisalot of correlation — if this issue makes a big difference — then this is an indication
that something is wrong with the mogd#at includingu as one of your instrumentswould
result in a rejection.

3) Downweight higher order correlations. Why not include all available autocorrelations?

The problem with this approach is that the last autocorrelafi¢m;u; 71) is estimated

from one data point. Hence it will be a pretty unreliable estimate. For this reason, the
estimator using all possible autocorrelationgnmonsistent. (Consistency means that as the
sample grows, the probability distribution of the estimator converges to the true value.) To get
a consistent estimate, you have to promise to let the number of included correlations increase
more slowly than sample size. Even ifilaite sample, higher autocorrelations are more and
more badly measured, so you want to think about leaving them out.

Furthermore, evel§ estimates that use few autocorrelations are not always positive def-
inite in sample. This is embarrassing when one tries to invert the estimated spectral density
matrix, as called for in the formulas. Therefore, it is a good idea to construct consistent es-
timates that are automatically positivefishite in every sample. One such estimate is the
Bartlett estimate, used in this application by Newey and West (1987). Itis

R I
S=> - TZ(utut_k). (96)
j=—k t=1

As you can see, only autocorrelations upktb (k < T') order are included, and higher
order autocorrelations are downweighted. A variety of other weighting schemes have been
advocated with the same effect. See Andrews (19xx).

The Newey-West estimator is basically the variance of kth sums,
k
Var Zut_j kE(u}) + (K —1)[E(ua,_;) + E(w_qu})] + - - -
j=1

k— 1]
k

B + Bgu))] = kY
J—

E(u,_y).

This logic also gives some intuition for thematrix. Recall that we’re looking for the
varianceacross samples of the sample meanar(% ZtT:1 u;). We only have one sample
mean to look at, so we estimate the variance of the sample mean by looking at the variance

in a single sample of shorter sumsyar (% Z;?:l uj). The S matrix is sometimes called the
long-run covariancematrix for this reason.
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CHAPTER9 GMM ESTIMATION AND TESTING OF ASSET PRICING MODELS

In fact, one could estimate .S directly as a variance of kth sums and obtain almost the
same estimator, that would also be positive definite in any sample,

k 1 T
v = w V=5t v
t ; t—j T _ & Z t

t=k+1
11
& — —\/
S = TR Z (vi —¥) (v, — )"
t=k+1

This estimator has been used when measurement of .S is directly interesting (Cochrane 1998,
Lo and MacKinlay 1988).

What value of &, or how wide awindow if of another shape, should you use? Here again,
you have to use some judgment. Too short values of k, and you don't correct for correlation
that might be there in the errors. Too long a valué:poand the performance of the estimate
and test deteriorates. ¥ = T'/2for example, you are really using only two data points to
estimate the variance of the mean. The optimum value then depends on how much persistence
or low-frequency movement there is in a particular application, vs. accuracy of the estimate.

There is an extensive statistical literature about optimal window width, or sizeAdfs,
this literature mostly characterizes thate at which & should increase with sample size.
You must promise to increageas sample size increases, but not as quididyy .. &k =
oo, limr_,o k/T = 0,in order to obtain consistent estimates. In practice, promises about
what you'd do with more data are pretty meaningless. (And usually broken once more data
arrives.)

4) Consider parametric structures for autocorrelation, cross-correlation, and heteroskedas-
ticity.

Monte Carlo evidence seems to suggest that if there is a lot of autocorrelation (or het-
eroskedasticity) in the data, “nonparametric” corrections such as (96) don't perform very
well. The asymptotic distribution theory that ignores sampling variation in covariance ma-
trix estimates is a poor approximation to tfieite-sample distribution, so one should use a
Monte-Carlo or other method to get at tfieite-sample distribution of such a test statistic.

One alternative is to impose a parametric structure on the correlation pattern. For exam-
ple, if you model a scalar as an AR(1) with parametet then you can estimate two numbers
p ando? rather than a whole list of autocorrelations, and calculate

2 2
S = Z E(utut—j) =0y Z Iolj‘ :O-urp
J=—00 J=—00
If this structure is correct, imposing it can result in much mofizieht test statistics since
one has to estimate many fewer do@énts. Similar parametric structures could be used to
model the cross-sectional correlation of large number of moments, or the heteroskedasticity

structure. Of course, there is the danger that the parametric structure is wrong.
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Alternatively one could transform the data in such a way that there is less correlation to
correct for in the first place.

5) Sze problems.

If you try to estimate a covariance matrix that is larger than the number of data points
(say 2000 NY SE stocks and 800 monthly observations), the estimate of S, like any other
covariance matrix, issingular by construction. Thisfact leads to obvious numerical problems
when you try to invert S! More generdly, when the number of momentsis much more than
around 1/10 the number of datapoints, .S estimates tend to become unstable and near-singular.
Used as a weighting matrix, such &matrix tells you to pay lots of attention to strange and
probably spurious linear combinations of the moments. For this reason, most second-stage
GMM estimations are limited to a few assets and a few instruments.

A good, but as yet untried alternative might be to impose a factor structure or other well-
behaved structure on the covariance matrix. The universal practice of grouping assets into
portfolios before analysis implies an assumption that the $rleas a factor structure. It
might be better to estimate ghimposing a factor structure on all the primitive assets.

Another response to the flifulty of estimatingsS is to stop affirst stage estimates, and
only useS for standard errors. One might also use a highly structured estimaieasf
weighting matrix, while using a less constrained estimate for the standard errors.

This problem is of course not unique to GMM. Any estimation technique requires us to
calculate a covariance matrix. Many traditional estimates simply assume that errors are cross-
sectionally independent. This leads to understatements of the standard errors far worse than
the small sample performance of any GMM estimate.

6) Alternatives to the two-stage procedure.

Hansen and Singleton (1982) describe the above two-step procedure, and it has become
popular for that reason. Two alternative procedures may perform better in practice, i.e. may
result in asymptotically equivalent estimates with better small-sample properties.

a) Iterate. The second stage estimaig will not imply the same spectral density as the
first stage. It might seem appropriate that the estimakeasfd of the spectral density should
be consistent, i.e. thnd afixed point ofb = min ) [g7(b)'S(b) gz (b)]. One way to
search for such fixed point is to iteratefind b, from

by = I?bi?gT(b)lsil(bl)gT(b) (97)

Wherelgl is afirst stage estimate, helfixed in the minimization oveb,. Then useb, to
find S(by), find

~

b = I%E?[QT(b)/S(bz)_ gr(b)],

and so on. There is nfixed point theorem that such iterations will converge, but they often
do, especially with a little massaging. (I once usgldb; + b,_1)/2] in the beginning part
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of an iteration to keep it from oscillating between two values of b). Ferson and Foerster
(199x) find that iteration gives better small sample performance than two-stage GMM in
Monte Carlo experiments.

b) Pick b and S simultaneoudly. It is not true thatS must be heldixed as one searches
for b. Instead, one can use a néifb) for each value ob. Explicitly, one can estimate by

min g1 (b)'S™' (b)gr (b)] (98)

The estimates produced by this simultaneous search will not be numerically the same in
afinite sample as the two-step or iterated estimates fif$teorder conditions to (97) are

(252) 5 2 n)an() =0 ©9)

while thefirst order conditions in (98) add a term involving the derivative$§ @) with re-

spect tob. However, the latter terms vanish asymptotically, so the asymptotic distribution
theory is not affected. Hansen, Heaton and Luttmer (19xx) conduct some Monte Carlo ex-
periments andind that this estimate may have small-sample advantages. On the other hand,
one might worry that the one-step minimization wilid regions of the parameter space that
blow up the spectral density matrb(b) rather than lower the pricing errogs.

Often, one choice will be much more convenient than another. For linear models, one
canfind the minimizing value ob from thefirst order conditions (99) analytically. This
fact eliminates the need to search so even an iterated estimate is much faster. For nonlinear
models, each step involves a numerical search @vés)’ Sgr(b). Rather than perform this
search many times, it may be much quicker to minimize once @véb)'S(b)gr(b). On
the other hand, the latter is not a locally quadratic form, so the search may run into greater
numerical dificulties.
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uses of GMM

GMM procedures can be used to implement a host of estimation and testing exercises. Just
about anything you might want to estimate can be written as a specia case of GMM. To do
S0, you just have to remember (or look up) afew very general formulas, and then map them
into your case. | start with the general formulas and then give afew examples of interesting
but hard-looking questions that can be mapped into the formulas.

10.1 General GMM formulas

The general GMM estimatergr (b) =
Distribution ofb : Tcov(b) = (ad)~'aSd’ (ad)
Distribution of g7(b) : va[ @ﬂ (I —d(ad)~a) S (I — d(ad)~a)’
The “optimal” estimate uses= d’S~!
Witha = d'S~", Teov(b) = (d'S~'d)~", Tcov [gT( )} S—d(d'S~'d)~'d’, and ay?
test thay(b) = 0 simplifies to the famoug; test,Tg(b)' S~ gT(B) — x2(#moments-#parameters).

Express a model as
E[f(x,b)] =0

Everything is a vector:f can represent a vector &f sample momentsg; can be)M data
seriesp can beN parameters.

Definition of the GMM estimate. We estimate parameter$o set some linear combination
of sample means of to zero,

b SetaTgT(lA)) =0

where

This ddines the GMM estimate.
Any statistical procedure divides into “how to produce the number” and “what is the
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distribution theory of that number”. The point then is then distribution theory for the estimate
b and for the minimized moment conditiops (b).

Sandard errors of the estimate. Hansen (1982), Theorem 3.1 tells us that the asymptotic
distribution of the GMM estimate is

VT(b—b) — N[0, (ad) 'aSa’(ad)~ "] (100)
where

_ _[of _ 9gr(b)
d=F [%(‘Tit, b):l = b

(i.e.,d is defined as the population moment in tfiest equality, which we estimate in sample
by the second equality),

a = plimarp

S = Z E[f(z4,b), f(x1—;b)'].

j=—o00

Don't forget they/T" In practical terms, this means to use

var(b) = %(ad)_laSa’(ad)_ll (101)

as the covariance matrix for standard errors and tests.
The “optimal” choice of weighting matrix is
a=dSs 1t (102)

This choice,d’ S~ g7 (b) = 0 is thefirst order condition tanin s, g7(b)'S~'gr(b). With
this weighting matrix, the standard error formula reduces to

VT(b—b) — N[0, (&S 1d)1]. (103)

This is Hansen's Theorem 3.2.
Distribution of the moments. Hansen's Lemma 4.1 gives the sampling distribution of the

gr(d) :

VTgr(b) — N [0, (I —d(ad)'a) S (I — d(ad)*la)’} . (104)
As we have seerfy would be the asymptotic variance-covariance matrix of sample means, if
we did not estimate any parameters, which sets some linear combinationggftiheero.

The I — d(ad)~'a terms account for the fact that in each sample some linear combinations
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SECTION 10.2 STANDARD ERRORS OF ANYTHING BY DELTA METHOD

of gy are set to zero. Thus, this variance-covariance matrix is singular. With the optimal
weighting matrix (102), we get the simfigd formula

cov(b) =S —d(d'S 'd)"'d

Jr and x’tests. A sum of squared standard normals is distributéd Therefore, it is
natural to use the distribution theory fgr to see if all thegr are “too big”. Equation 104
suggests that we form the statistic

Tyr(b) [(I —d(ad)'a) § (I — d(ad)*la)’} () (105)

and that it should have g? distribution. It does, but with a hitch: The variance-covariance
matrix is singular, so you have to pseudo-invert it. For example, you can perform an eigen-
value decompositiod . = QAQ’ and then invert only the non-zero eigenvalues. Also, the
x? distribution has degrees of freedom given by the number non-zero linear combinations of
gr, the number of moments less number of estimated parameters.

If we use the optimal set of moments (102), then Hansen’s Lemma 4.2 tells us that
Tgr(b)' S~ gr(b) — x*(#£moments— #parameters). (106)

While one can obtain an equivalent statistic by plugging the optimal matrix (102) into the
formula (104) or (105), this result is nice since we get to use the already-calculated and
non-singularS—1.

To derive (106) from (104), Hansen factafs = CC’ and thenfinds the asymptotic
covariance matrix o€ —!gr(b) using (104). The result is

var [\/TC*lgT(B) =IO ld(d' S td)ytd oV,

This is an idempotent matrix of ragkmoments#parameters, so (106) follows.

10.2  Standard errorsof anything by delta method

Often, we can write the estimate we want as a function of sample means,

b= [E(x)] = p(1).
In this case, the formula (100) reduces to
1 [dp] & d
var(by) = T [d—z} Z cov(xs, xy ;) [ﬁ} : (107)

j=—o0

The formula is very intuitive. The variance of the sample mean is the covariance term inside.
The derivatives just linearize the functigmear the trué.
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103 Using GMM for regressions

By mapping OLS regressions in to the GMM framework, we derive formulas for OLS
standard errors that correct for autocorrelation and conditional heteroskedasticity of the er-
rors. The general formula is

R 1 i
W(ﬁ):TE(xtx;)—l > E(uxix_ju_j) | E(xix;)™"

p—

and it simplfies in special cases.

Mapping any statistical procedure into GMM makes it easy to develop an asymptotic
distribution that corrects for, or is insensitive to, statistical problems such as non-normality,
serial correlation and conditional heteroskedasticity. To illustrate, as well as to develop the
very useful formulas, | map OLS regressions into GMM.

Correcting OLS standard errors for econometric problenmstishe same thing as GLS.
When errors do not obey the OLS assumptions, OLS is consistent, and often more robust
than GLS, but its standard errors need to be corrected.

OLS picks parameters to minimize the variance of the residual:
I?ﬂi? Er [(ye — B'x1)?] -

We find 3 from thefirst order condition, which states that the residual is orthogonal to the
right hand variable:

91(B) = Br [x:(y — x,B)| =0 (108)
This condition is exactly iderfied-the number of moments equals the number of parameters.

Thus, we set the sample moments exactly to zero and there is no weighting matrix)(
We can solve for the estimate analytically,

B = [Br(xx))| " Er(xye)-
This is the familiar OLS formula. The rest of the ingredients to equation (100) are

d = E(x4x})

f(Xt, ,3) = Xt(yt - Xgﬂ) = XUy

160



SECTION 10.3 USING GMM FOR REGRESSIONS

where u, isthe regression residual. Then, equation (100) gives

W(B):%E(th;)—l > E(uxix, juj) | E(xix;)™ (109)

p—

Thisisour general formulafor OLS standard errors. Let’s look at some special cases:
Serially uncorrelated, homoskedastic errors:

These are the usual OLS assumptions. It's good to see the usual standard errors emerge.
Formally, the assumptions are

E(Ut ‘ Xty Xg—1 .. Ut—1, ut_g...) =0 (110)

E(u? | X¢, X1 ..u, ug_q...) = constant= o2, (111)
Thefirst assumption means that only the- 0 term enters the sum
Z E(uxX;_jui—j) = E(ujx,x}).
j=—o0
The second assumption means that
E(uixix;) = B(uf) E(xex;) = 04 E(xx3).

Hence equation (109) reduces to our old friend,

T —1
N 1 _
var(B) = L2 By = o (zxtx;) 2 %)
t=1

The last notation is typical of econometrics texts, in Wl’DCh:[ X; X2 ... Xp ]’ rep-
resents the data matrix.

2) Heteroskedastic errors.

If we delete the conditional homoskedasticity assumption (111), we can’t pull doé
of the expectation, so the standard errors are

~

1
var(B) = 2 B(xx)) Blutxox) Bxxd) .

These are known as “Heteroskedasticity corrected standard errors” or “White standard errors”
after White (19xx).

3) Hansen-Hodrick errors
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Hansen and Hodrick (1982) consider regressions in which the forecasting interval is
longer than the sampling interval, i.e.

Yook = 0% +epn t=1,2,..T.

Famaand French (1988) also use regressions of overlapping long horizon returns on variables
such as dividend/price ratio and term premium. Such regressions are an important part of the
evidence for predictability in asset returns.

Under the null that returns are unforecastable, we will still see correlation in thee; dueto
overlapping data. Formally, unforecastable returns y implies

E(EtEt,j) =0for |j| >k

but not for |j| < k. Therefore, we can only rule out termsin S lower than k. Since we might
aswell correct for potential heteroskedasticity while were at it, the standard errors are

k

1 L < -
var(by) = TE(XtXQ) ! E(ugxix;_jue_j) | E(xexp)™"
j=—k

If the sum in the middle is not positive firite, you could add a weighting to the sum, possibly
increasing the number of lags so that the lags heae not unusually underweighted. Again,
estimating extra lags that should be zero under the null only loses a little bit of power.

104  Problems

Use the delta method to derive the sampling variance of an autocorrelatificieoef
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Chapter 11. GMM variations

Lots of calculations beyond formal parameter estimation and overall moddl testing are use-

ful in the process of evaluating a model and comparing it to others models. But one also
wants to understand sampling variation in such calculations, and mapping the questions into
the GMM framework allows us to do this easily. In addition, alternative estimation and eval-
uation procedures may be more intuitive or robust to model mispaton than the two (or

multi) stage procedure described above. As we did with OLS regressions, one can map a
wide variety of alternative methods into the general GMM framework to derive a distribution
theory.

In this chapter | discuss four such variations on the GMM method. 1) | show how to
compare two models, to see if one model drives out another in pricing a set of assets. 2)
| show how to use the GMM approach to mean-variance frontier questions 3) | argue that
it is often wise and interesting to upeespecified weighting matrices rather than th&!
weighting matrix, and | show how to do this. 4) | show how to use the distribution theory
for the g beyond just forming the/r test in order to evaluate the importance of individual
pricing errors.

All of these calculations are nothing more than creative applications of the general GMM
formulas for variance covariance matrix of the estimated faoents, equation (101) and
variance covariance matrix of the momems equation (104).

11.1 Hor se Races

How to test whether one set of factors drives out another.bbest 0 in m = b f; +bifs,
and an equivalent chi-squared difference test.

An interesting exercise for linear factor models is to test whether one set of factors drives
out another. For example, Chen Roll and Ross (1986) test whethefitiee¢imacroeconomic
factors” price assets so well that one can ignore even the market return. Given the large
number of ad-hoc factors that have been proposed, a statistical procedure for testing which
factors survive in the presence of the others is desirable. As | showed above, when the factors
are correlated, it is most interesting to test this proposition by testing whethenthe= v’ f
are zero rather than testing factor risk premia, sincetiedl us when a factor helps to price
assets and the tell us whether a factor is priced.

Start by estimating a general model
m = bif; + bify. (112)
We want to know, given factors, do we need thé, to price assets —i.e. Is;, = 0? There
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are two waysto do this.

First and most obviously, we have an asymptotic covariance matrix for [b; bs], so we can
form at test (if by isscalar) or x? test for by = 0 by forming the statistic

bhvar(by) by ~ Xi&bz
where #bs, isthe number of elementsin the by vector. ThisisaWald test..

Second, estimate arestricted systemm = b/ f;. Sincethere arefewer free parametersand
the same number of moments than in (112), we expect the criterion Jr to rise. If we use the
same weighting matrix, (usually the one estimated from the unrestricted model (112)) then
the Jr cannot in fact decline. But if by really is zero, it shouldn't rise “much”. How much?

T Jr(restricted — TJr(unrestricted ~ x?(#of restrictions

This is a “y? difference” test, due to Newey and West (19xx) . It works very much like a
likelihood ratio test.

11.1.1  Mean-variance frontier and performance evaluation

A GMM, p = E(max) approach to testing whether a return expands the mean-variance
frontier. Just test whethen = a + bR prices all returns. If there is no risk free rate, use two
values ofa.

It is common to summarize asset data by mean-variance frontiers. For example, a large
literature has examined the desirability of international difieion in a mean-variance
context. Stock returns from many countries are not perfectly correlated, so it looks like one
can reduce portfolio variance a great deal for the same mean return by holding an internation-
ally diverstied portfolio. But is this real, or just sampling error? Even if the value-weighted
portfolio were ex-ante mean-variancéiefnt, an ex-post mean-variance frontier constructed
from historical returns on the roughly 2000 NYSE stocks would leave the value-weighted
portfolio well inside the ex-post frontier. So is “I should have bought Japanese stocks in
1960” (and sold them in 1990!) a signal that broad-based international diwatisin a good
idea now, or is it simply 20/20 hindsight regret like “I should have bought Microsoft in 19827?"
Similarly, we often want to know “can a portfolio manager exploit superior information to
form a portfolio that is better than one can form by a passive mean-variance construction, or
is a better performance in sample just due to luck?”

DeSantis (1992) and Chen and Knez (1992,1993) showed how to examine such questions
inap = E(mx), GMM framework, by applying the above horse race. We exploit the con-
nection between mean-variancé@éncy and linear discount factor models, and the GMM
distribution theory. LeR? be a vector of domestic asset returns &ida vector of foreign
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Frontiers intersect

E(R)

L/E(m)

o(R)

Figure 18. Mean variance frontiers might intersect rather than coincide.

asset returns. If adiscount factor m = a + b;R? prices both R? and R/, then R% is on the
mean variance frontier generated by R and R/. We know m = a + b, R* + b} R/ prices
both sets of returns by construction, (thisis =*). Thus, we can use aWald teston by = 0, or
ax? difference test.

To test a portfolio manager’s skill, let m = a + bR™ + b, RP whereRP is the return on
a portfolio managed by a portfolio manager. We want to know whether the portfolio man-
ager can exploit superior knowledge, skill, or information to get outside the mean-variance
frontier. Thus, we test fd, = 0 in a system that includes (at lea&y andR? as moments.

There is a slight subtlety in this test. There are two ways in which a rett¥hmight
be on the mean-variance frontier of a larger collection of securities: the frontiers could just
intersect at R™*, as shown in Figure 18, or the frontiers couatiincide globally.

For intersection, m = a + b ;R¢ will price both R? and R/ only for one value ofs,
or equivalentlyE(m) or choice of the intercept, as shown. If the frontiers coincide, then
m = a+ b/, R? prices botiR* andR/ for any value ofa. Equivalently, thel portfolio is on
the(d, f) frontier forany intercept, where this is true for onbne value of the intercept in the
case of intersection. Thus, to test for coincident frontiers, one must test whether + b/,
R prices botiR? andR for two prespedied values of: simultaneously.
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11.2  Prespecified weighting matrices

Prespecified rather than “optimal” weighting matrices can emphasize economically inter-
esting results, they can avoid the trap of blowing up standard errors rather than improving
pricing errors, they can lead to estimates that are more robust to small model nfisapeci
tions, as OLS is often preferable to GLS in a regression context, and they allow you to force
GMM to use one set of moments for estimation and another for testing. The GMM formulas
for this case are

var(b) = %(D'WD)*1D’WSWD(D'WD)*1

var(gr) = %(I — D(D'WD) 'D'W)S(I - WD(D'WD) D).

So far, we have assumed that at some stage a mawiil be used as the weighting
matrix, so thefinal minimization will have the fornmin, g-(b)S g7 (b). As we have seen,
this objective maximizes thetatistical information in the sample about a model. However,
there are several reasons why one may want to use a priésgeeeighting matrix instead,
or as a diagnostic accompanying more formal statistical tests.

Keep in mind that “using a prespéeid weighting matrix” and the identity matrix in
particular, isnot the same thing as ignoring cross-correlation in the distribution theory. The
S matrix will still show up in all the standard errors and test statistics.

11.21  How to use prespecified weighting matrices

The general theory is expressed in terms of the linear combination of the moments that is set
to zeroay g (b) = 0. With weighting matrixi/, thefirst order conditions tein g,y g7-(b)Wgr(b)
are

(097 (b)/0b') Wgr(b) = D'Wgr(b) =0,

so we map into the general case with- D’W. Plugging this value into (101), we obtain the
variance-covariance matrix of the estimated fiogfts from a prespefoeéd W estimate,
1

var(b) = T

(D'WD) " *D'WSWD(D'WD)™*. (113)
Check that withi/ = S—1, this formula reduces tb/T (D’S—'D)~!.
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Plugging « = D'W into equation (104), we find the variance-covariance matrix of the
momentsyr

1
var(gr) = f(I —~ D(D'WD) 'D'W)S(I - WD(D'WD) D) (114)
One might think that the sampling error @f is just.S; however this thought ignores the fact
that degrees of freedom are lost in estimation, so a linear combination of rgwa@®. The
singular (rank #moments - #parameters) variance covariance matrices given above correct for
this fact.

Equation (114) can be the basis pf tests for the overidentifying restrictions. If we
interpret()~! to be a generalized inverse, then

grvar(gr)"tgr ~ X2 (#moments — #parameters).

This procedure would work for the “optimal” weighting mati$k ! as well Hansen (1982)
shows thay/-S g yields (numerically) the same result. One way to compute a generalized
inverse is to start with an eigenvalue decompositice QAQ’; then the generalized inverse
isS~! = QATQ’, whereAt uses the inverse of the nonzero eigenvalues but leaves the zero
eigenvalues alone.

1122  Motivationsfor prespecified weighting matrices

Level playing field. The S matrix changes as the model and as its parameters change. (See the
definition). As a result, comparing models by théit values is dangerous, since models may
“improve” because they simply blow up the estimates pfather than make any progress on
lowering the pricing errorgy. By using a weighting matrix that does not vary from model

to model, or across parameter values for a given model, one imposes a level filelgiagd

avoids this problem when th&- test is used as a model comparison statistic.

(No one would formally use a comparison &f tests across models to compare them.
The minute you think carefully about it, you realize that you must use the same weighting
matrix as well as the same moments, andythelifference test does both. But it has proved
nearly irresistible for authors to claim success for a new model over previous ones by noting
improvedJ statistics in introductions and conclusions, despite different weighting matrices,
different moments, and sometimes much larger pricing errors..)

Robustness, as with OLS vs. GLS When errors are autocorrelated or heteroskedastic,
every econometrics textbook shows you how to “improve” on OLS by making appropriate
GLS corrections. If you correctly model the error covariance matrix and if the regression
is perfectly spedied, this procedure can improvdiefency, i.e. give estimates with lower
asymptotic standard errors. However, GLS is much less robust. If you model the error
covariance matrix incorrectly, the estimates can be much worse than OLS. Also, the GLS
transformations can zero in on slightly misspiexd areas of the model producing garbage.
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GLS is “best,” but OLS is “pretty darn good” and is usually much more robust than
GLS. Furthermore, one often has enough data that wringing every last ounce of statistical
precision (low standard errors) from the data is less important than producing estimates that
do not depend on questionable statistical assumptions, and that transparently focus on the
interesting features of the data. Thus, it is often a good practice to useefibrétes, but
correct thestandard errors of the OLS estimates for these features of the error covariance
matrices, for example using the formulas we developed above.

For example, the GLS transformation for highly serially correlated errors essentially turns
aregression in levels into a regressioffirst differences. But relationships that are quite ro-
bust in levels often disappear finst differences, especially of high frequency data, because
of small measurement errors. Lucas (198x) followed a generation of money demand esti-
matesM,; = a + bY; + &; that had been run in quasrst differences following GLS advice,
and that had found small and unstable income elasticities, since day-to-day variation in mea-
sured money demand has little to do with day-to-day variation in income. Lucas ran the
regression by OLS in levels, only correcting standard errors for serial correlation and found
the pattern evident in any graph that the level of money and income track very well over years
and decades. .

GMM works the same way. First-stage or otherwfis@d weighting matrix estimates
may give up something in (asymptoticfiefency if the statistical and economic models are
precisely right, but may be much more robust to statistical and economic problems. You still
want to use theS' matrix in computing standard errors, though, as you want to correct OLS
standard errors, and the following formulas show you how to do this.

Even if in the end one wants to producefieient” estimates and tests, it is a good idea to
calculate standard errors and mofifetiests for thdirst-stage estimates. Ideally, the parameter
estimates should not change by much, and the second stage standard errors should be tighter.
If the “efficient” parameter estimates do change a great deal, it is a good idea to diagnose
why this is so — which moments thefiefent parameter estimates are paying attention to —
and then decide whether the difference in results is truly duditmefcy gain or not.

Near-singular S.The spectral density matrix is often near-singular, since asset returns
are highly correlated with each other, and since we often include many assets relative to the
number of data points. As a result, second stage GMM (and, as we will see below, maximum
likelihood or any other dicient technique) tries to minimize differences and differences of
differences of asset returns in order to extract statistically orthogonal components. One may
feel that this feature leads GMM to place a lot of weight on poorly estimated, economically
uninteresting, or otherwise non-robust aspects of the data. In particular, portfolios of the form
100R; — 99R2 assume that investors can in fact purchase such heavily leveraged portfolios.
Short-sale costs often rule out such portfolios or gigantly alter their returns, so one may
not want to emphasize pricing them correctly in the estimation and evaluation.
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For example, suppose that S is given by

1 1 -

-1 _ p

S [ - 1 ] ’

We can factor S—! into a “square root” by the Choleski decomposition. This produces a
triangular matrixC' such thatC’C' = S—!. You can check that the matrix

c (115)

works. Then, the GMM criterion
min g7.5~ g7
is equivalent to

min(g-C")(Cyr).

Cgr gives the linear combination of moments thdteént GMM is trying to minimize.
Looking at (115), ap — 1, the (2,2) element stays at 1, but the (1,1) and (1,2) elements get
very large and of opposite signs. For example, i 0.95, then

3.20 —-3.04
o= ).

In this example, GMM pays a little attention to the second moment, but pthmsstimes
as much weight on thdifference between thdirst and second moments. Larger matrices
produce even more extreme weights.

Economically interesting moments. As explained above, and as we see in the example
of the last section, the optimal weighting matrix makes GMM pay close attention to appar-
ently well-measuredinear combinations of moments in both estimation and evaluation. One
may want to force the estimation and evaluation to pay attention to economicallyinteresting
moments instead. The initial portfolios are usually formed on an economically interesting
characteristic such as size, beta, book/market or industry. One typically wants in the end to
see how well the model prices these initial portfolios, not how well the model prices poten-
tially strange portfolios of those portfolios. If a model fails, one may want to characterize
that failure as “the model doesn'’t price sm@alims” not “the model doesn't price a portfolio
of 900x smallfirms —600x largefirms —299 x mediumfirms.”
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11.2.3  Some prespecified weighting matrices

Two examples of economically interesting weighting matrices are the second-moment matrix
of returns, advocated by Hansen and Jagannathan (1992) and the simple identity matrix,
which is used implicitly in much empirical asset pricing.

Second moment matrix. Hansen and Jagannathan (1992) advocate the use of the second
moment matrix of payoffd¥ = E(xx’')~! in place of S. They motivate this weighting
matrix as an interesting distance measure between a model,feayy, and the space of
truem’s. Precisely, the minimum distance (second moment) between a candidate discount
factory and the space of true discount factors is the same as the minimum value of the GMM
criterion withW = E(xx’)~! as weighting matrix.

AN

AN
X% N

Figure 19. Distance betweerand nearest: = distance betweeproj(y| X ) andz*.

To see why this is true, refer figure 19. The distance betweg@and the nearest valich
is the same as the distance betweenj(y | X) andx*. As usual, consider the case ttat
is generated from a vector of payoffawvith pricep. From the OLS formula,

proj(y | X) = E(yx') E(xx)"'x
x* is the portfolio ofx that pricesx by construction,
¥ = p' B(xx')"'x
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Then, the distance between y and the nearest valid m is.

lproj(ylX) —z*| = [[Byx)Exx)""x - p'E(xx')"x||
= |(Bx') —p) E(xx')" x|
= [E(yx) — p]'E(xx)'[E(yx) - p
9rE(xx)"gr

You might want to choose parameters of the moded to minimize this“economic” measure
of modelfit, or this economically motivated linear combination of pricing errors, rather than
the statistical measure 6f S~!. You might also use the minimized value of this criterion to
compare two models. In that way, you are sure the better model is better because it improves
on the pricing errors rather than just blowing up the weighting matrix.

Identity matrix. Using the identity matrix weights the initial choice of assets equally in
estimation and evaluation. This choice has a particular advantage with large systems in which
S'is nearly singular, as it avoids most of the problems associated with inverting a near-singular
S matrix. It also ensures that the GMM estimation pays equal attention to the initial choice of
portfolios, which were usually selected with some care. Many empirical asset pricing studies
use OLS cross-sectional regressions, which are the same thifgststage GMM estimate
with an identity weighting matrix.

Comparing the second moment and identity matrices.

The second moment matrix gives an objective that is invariant to the initial choice of
assets. If we form a portfolidx of the initial payoffsx, with nonsingularA. (don’t throw
away information) then

[E(yAx) — Ap| E(Axx'A")"'[E(yAx) — Ap| = [E(yx) — p| E(xx') "' [E(yx) — p].

The optimal weighting matrix6 shares this property. It is not true of the identity matrix: the
results will depend on the initial choice of portfolios.

Kandel and Stambaugh (19xx) have suggested that the results of several important asset
pricing model tests are highly sensitive to the choice of portfole that authors inadver-
tently selected a set of portfolios on which the CAPM does unusually badly in a particular
sample. Insisting that weighting matrices have this invariance to portfolio selection might be
a good discipline against this kind fishing.

On the other hand, if you want to focus on the model's predictions for economically
interesting portfolios, then it wouldn’t make much sense for the weighting matrix to undo the
specfication of economically interesting portfolios! For example, many studies want to focus
on the ability of a model to describe expected returns that seem to depend on a characteristic
such as size, book/market, industry, momentum, etc.

The second moment matrix is often even more nearly singular than the spectral density
matrix, sinceE(xx’) = cov(x) + E(x)E(x)’. Therefore, it often emphasizes portfolios
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with even more extreme short and long positions, and is no help on overcoming the near
singularity of the S matrix. If the number of moments (test assets times instruments) is much
above 1/20 -

11.24  Estimating on one group of moments, testing on another.

You may also want to force the system to use one set of momergstiimation and another

for testing. The real business cycle literature in macroeconomics does this extensively, typ-
ically using ‘first moments” for estimation (“calibration”) and “second moments” (st
moments of squares) for evaluation. A statistically minded macroeconomist might like to
know whether the departures of model from data “second moments” are large compared to
sampling variation, and would like to include sampling uncertainty about the parameter es-
timates in this evaluation. You might similarly want to choose parameters using one set of
asset returns (stockdomestic assetsize portfolios first 9 size deciles) and then see how

the model does “out of sample” on another set of assets (béorgdgn assetsbook/market
portfolios, smallfirm portfolio). However, you want the distribution theory for evaluation on
the second set of moments to incorporate sampling uncertainty about the parameters in their
estimation on théirst set of moments.

You can do all this very simply by using an appropriate presjigtiweighting matrix.
Construct a weighting matrild” which is zero in the columns and rows corresponding to the
test moments. Then, those moments will not be used in estimation. (You could stastfaith
some eficiency, but the identity weighting matrix is more consistent with the philosophy of
the exercise. ) Consider thisfixed-weighting matrix estimate, and then use formula (114)
to construct a? test of the moments you want to test.

11.3  Testing moments

How to test one or a group of pricing errors, such as sfiradlreturns. 1) Use the formula
for var(gr) 2) A chi-squared difference test. How to estimate with one group of moments
and test on another.

You may want to see how well a model does on particular moments or particular pricing
errors. For example, the celebrated “snfath effect” states that an unconditional CAPM
(m = a+bR", no scaled factors) does badly in pricing the returns on a portfolio that always
holds the smallest 1/10th or 1/20th fiafms in the NYSE. You might want to see whether a
new model prices the small returns well.

It is a nice diagnostic for any asset pricing model to plot predicted excess returns vs.
actual excess returns in the data. Such plots generalize traditional plots of average return vs.

172



SECTION 11.4 APPLYING GMM TO LINEAR FACTOR MODELS

estimated beta for the CAPM and allow a visual sense of how well the model explains the
cross sectional variation of average returns. Of course, one would like standard errors for
such plots, a method of computing vertical error bars or the uncertainty about the difference
between predicted moment and actual moment.

We have already seen that individual elements of g, measure the pricing errors or ex-
pected return errors. Thus, all we need is the sampling errgy 6 measure the accuracy
of a pricing error and to test whether an individual moment is “too far off” or not.

One possibility is to use the sampling distributionggf, (114) to construct #-test (for
a singlegr, such as smafirms) ory? test (for groups ofy, such as smafirms  instru-
ments). As usual this is thaald test.

Alternatively, you can construct g2 difference or likelihood ratio-like test. Start with
a general model that includes all the moments, and form an estimate of the spectral den-
sity matrix.S. Now set to zero the moments you want to test, and demgi€b) the vec-
tor of moments, including the zerds for “smaller”). Consider choosiny; to minimize
gs7(b)' S~1g.7(b) using the same weighting matri The criterion will belower than the
original criteriongy(b)’'S~ gy (b), since there are the same number of parameters and fewer
moments. But, if the moments we want to test truly are zero, the criterion shouldhiatbe
much lower. Thus, form g/ difference test

Tgr(6) S~ gr(b) — Tgur(bs)S ™ gsr(bs) ~ X2 (#eliminated momenis

Of course, don't fall into the obvious trap of picking the largest of 10 pricing errors and
noting it's more than two standard deviations from zero. The distribution détigest of 10
pricing errors is much wider than the distribution of a single one. To use this distribution,
you have to pick which pricing error you’re going to tésfore you look at the data.

114  Applying GMM to linear factor models

Whenm, 1 = a + b’f;; 1 and the test assets are excess returns, the GMM estimate is

~

b = —(C'WC) 'C'WE;R®)
c Er(Ref')

This is a GLScross-sectionalregression of average returns on the covariance of returns with
factors. The overidentifying restrictions test is a quadratic form in the pricing errors,

&'V=la ~ % (#assets — #factors)
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Linear factor models are discount factor models of the form
myy1 = a+b'fiiq,

wheref,, ; isavector of time series such as portfolio returns (CAPM, APT), or “macro fac-

tors” (ICAPM, CRR), and can include factors scaled by instruments to accommodate condi-
tioning information. The linearity simgdlies the formulas, and the GMM procedure becomes
similar to traditional two pass regression procedures.

Linear factor models are most often applied to excess returns. If we only use excess
returnsa is not identfied (0 = E(mR¢) < 0 = E(2mR*)), so we can normalize to =1
andE(f) = 0. Then, the GMM estimate df is

b=—(C'WC) 'C'"WEr(R?) (116)
where
C = Er(Ref)
is a matrix of covariances of returns with the factors.

To see this, proceed through the recipe as given above. The vector of sample moments or
pricing errors is

gr(b) = Er(mR*) = Er (R°f'b+1)b = Er (R°) + Cb
The GMM minimization is
min g7 (b)' Wgr(b).

Thefirst order condition is

dgr(b) !
( o) Wor(b)=0.
Note
dgr(b) e
D= 2~ Er(RF) = C,

Writing out thefirst order condition,
C'W [Cb+Er (R°)] =0.

and hence (116).

This GMM estimate has a natural interpretation. As we have seen many times before,
E(mR°) = 0implies that expected returns should be linear in the covariance of returns with
factors. Thus, the model predicts

E(R°) = —Cb. (117)
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To estimate b one might naively have started by tacking on an error term representing sample
variation,

Er(R°) =Cb+u
and then estimated by OL S. Thefirst-stage estimate is, from (116) exactly this OLS estimate,
b, = —(C'C)"'C'Er(R®).

This is across-sectionalregression. The “data points” in the regression are sample average
returns(y) and covariances of returns with factgrg across test assets. We are picking the
parameteb to make the modéit explain the cross-section of asset prices as well as possible.

The errorsu in this cross-sectional regression are correlated across equations. Thus, we
at least have to correfirst-stage standard errors for this correlation, and we might think
about a GLS cross-sectional regression to improfieiefcy. SinceS is proportional to the
covariance matrix ofi, The second-stage GMM estimate

by = —(C'S™'C)~'C'ST Er(Rf)
is exactly aGLS cross-sectional regression of sample mean returns on sample covariances.

Thefirst-stage or OLS cross-sectional regression standard errors are, from (1L3)and
D, exactly what we expect for an OLS regression with correlated errors,

1

var(by) = T(C’C)”C’SC(C’C)”.

while the second stage or GLS cross-sectional regression standard errors specialize to

1

var(by) = T(c’s—lc)—l.

Finally, the overidentifying restrictions test is a quadratic form in the pricing errors or
Jensen’s alphas,
gr(b) = E;(R°) + Cb = average return - predicted average retern
From (114), this test based on thist stage estimates is

&var(gr)tén  ~ X% (#assets- #factorg

& = gr(by) =Ep(R°)+Chy
1
var(gr) = T(I —creytonsa - cere)yTtan,
while the test based on the second stage estimates is most conveniently expressed as
TahS tan ~ X% (#assets- #factory (118)
&y = gr(bs) = Er(R°) + Ch,
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General Case

To evaluate alinear factor model using levels rather than just excess returns, and perhaps
using instruments as well, we go through the same mechanics with p and x, and without
renormdizingto a = 1, E(f) = 0. Thisis aslightly more refined way to implement any
test, since it recognizes that setting the sample E(f) = 0 in applying the above formulas
introduces another estimate, whose sampling error should be accounted for in the distribution
theory. Treating the constant a x 1 as a constant factor, the model is

mi41 = blft-i—l-
The GMM estimateis
b = [Er(f)WEr(xt')] " Er(tx')W Er(p). (119)

Thisisdtill a(potentially GLS) cross-sectional regression of average priées(p) on second
momentdr (xf’) of payoffs with factors. The model

p = E(mx) = E(xf')b

says that prices should be proportional to second moments, so again this is a natural regres-
sion to run.
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Again, our basic objective in a statistical analysis is a method of producing estimates of

free parameters, a distribution theory for those parameters, and model evaluation statistics

such as &V~ é. Inthis chapter, | cover the classic regression tests of linear factor models,
expressed in expected return-beta form. As you will see, they are closely related to the

p = E(mz),GMM tests of linear factor models we investigated in the last chapter. In the
next chapter, | cover the formalization of these regression tests via maximum likelihood, and
we will see they can also be formalized as an instance of GMM.

121  Time-series regressions

When the factor is also areturn, we can eval uate the model
E(R®) = B,E(f)
by running OLS time series regressions
RS =+ B,f; +¢eis t=1,2,.T

for each asset, as suggested by Black, Jensen and Scholes. The OLS distribution formulas
(with corrected standard errors) provide standard errors of o and 5. With errorsthat arei.i.d.
over time, the asymptotic joint distribution of the intercepts gives

e (EY] e

The Gibbons-Ross-Shanken test is a multivaridiged-f counterpart,

T

T-N-K

N -1 A
N (1 + ET(f)/Q_lET(f)) &y 'a NFN,T—N—K

| show how to construct the same test statistics with heteroskedastic and autocorrelated errors,
as suggested by MacKinlay and Richardson, via GMM.

| start with the simplest case. We have a factor pricing model with a single factor which is
an excess return (for example, the CAPM, withi” = R™ — R/), and the test assets are all
excess returns. We express the model in expected return - beta form. The betdsatk de
by regression coétients

Ry = o; + Bife + <} (120)
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and the model states that expected returns are linear in the betas:

E(R®) = B,E(f). (121)

Since the factor is also an excess return, the model applies to the factor as W]ff)se
1x A\

Comparing the model (121) and the expectation of the time series regression (120) we see
that the model has one and only one implication for the datahe regression intercepts o
should be zero. The regression intercepts are equal to the pricing errors. This prediction is
only true when the factors are themselves excess returns. With factors that are not priced by
the model, the factor risk premiutnis not equal to the expected value of the factor, so the
regression intercepts do not have to be zero. There is a restriction relating means of factors
and intercepts, but it is more complicated and does not lead to such an easy regression based
test.

Given this fact, Black Jensen and Scholes (19xx) suggested a natural strategy for estima-
tion and evaluation: Run time-series regressions (120) for each test asset. If you assume that
the errors are uncorrelated over time and homoskedastic, you can use standard OLS formu-
las for a distribution theory of the parameters, and in particular you can use t-tests to check
whether the pricing errors are in fact zero. The standard approach to OLS standard errors
can also give us a test whettadr the pricing errors argintly equal to zero. Dividing thé
regression coétients by their variance-covariance matrix leads i@ @est,

-1

2
1+ <EUT(§;’;)> 1 &S7ra % (122)

T

where Er(f) denotes sample mea#?(f) denotes sample varianc, is a vector of the
estimated intercepts,

d:[al (342 . N ]/

3 is the residual covariance matrix, i.e. the sample estimaf&{efc]) = &, where
e=[e e - ]

As usual when testing hypotheses about regressiofficieets, this test is valid asymp-
totically. The asymptotic distribution theory assumes #htf) (i.e. X’'X) and¥ have
converged to their probability limitsherefore it is asymptotically valid even though the fac-
tor is stochastic antl is estimated, but it ignores those sources of variatiorfinige sample.

It does not require that the errors are normal, relying on the central limit theorem goithat
normal, but it does assume that the errors are homoskedastic (constant not autocorre-
lated. | derive (122) below.

Also as usual in a regression context, we can derifvrige-samplef” distribution for the
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hypothesis that a set of parameters are jointly zerdjfed values of the right hand variable
ftv'

2 —1
* [H <EUT(§CJ;)) ] &S e ~Fyron_a (123)

This is the Gibbons Ross and Shanken (198x) or GRS test statistict Gisribution rec-
ognizes sampling variation i, which is not included in (122). This distribution requires
that the errors are normal as well as i.i.d. and homoskedastic. With normal errorg, éne
normal and® is an independent Wishart (the multivariate version gf so the ratio is¥.
This distribution is exact in finite samplehowever it assumexed values of the right hand
variable f. Thus, it only answers the sampling question “what if we redrawetbbocks,
with the same time series ¢f?” not, “what if we redraw the entire data set?”

Tests (122) and (123) have a very intuitive form. The basic part of the test is a quadratic
form in the pricing errors@’S~'é. If there were ng3f in the model, then thé would
simply be the sample mean of the regression eggrdAssuming i.i.d.e;, the variance of
their sample mean is jug/7T>. Thus, if we knewX thenT& >~ 'é& would be a sum of
squared sample means divided by their variance-covariance matrix, which would have an
asymptoticx?3, distribution, or afinite sampley%, distribution if thee, are normal. But we
have to estimat&, which is why thefinite-sample distribution i rather thany?. We also
estimate the?, and the second term in (122) and (123) accounts for that fact.

Recall that a single beta representation exists if and only if the reference return is on the
mean-variance frontier. Thus, the test can also be interpreted as a test whistearante
mean-variance &tient, after accounting for sampling error. Everfifs on the true or ex-
ante mean-variance frontier, other returns will outperform it in sample due to luck, so the
return f will usually be inside the ex-post mean-variance frontier. Still, it should not be too
far inside that frontier, and Gibbons Ross and Shanken show that the test statistic can be
expressed in terms of how far inside the ex-post frontier the retisn

rov o () - (58)
Yoo ()

2
%’j is the Sharpe ratio of thex-posttangency portfolio (maximum ex-post Sharpe ratio)
formed from the test assets plus the fagtor

If there are many factors that are excess returns, the same ideas work, with some cost of
algebraic complexity. The regression equation is

R® = a; + Bl + €l
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The asset pricing model
E(R®) = BE(f)

again predicts that the intercepts should be zero. We can estinaatd 3 with OLS time-
series regressions. Assuming normal i.i.d. errors, the quadratic&¥m'& has the distri-
bution,

T—N-K N -1 .
— (1 +ET(f)’Q—1ET(f)) &S7'& ~Fyr Nk (124)
where
N = Number of assets
K = Number of factors
T
A 1
& = = ; [f, — Er(f)] [f. — Er(f))

The main difference is that the Sharpe ratio of the single factor is replaced by the natural
generalizatiorEr(f) Q' Er(f).

12.1.1  Derivation of (122).

You can easily derive (122) by following the standard OLS approach to the covariance ma-
trix of estimated parameters. However, it is simpler and more elegant to derive (122) as an
instance of GMM, and this approach allows us to generate straightforwardly the required
corrections for autocorrelated and heteroskedastic disturbances. (MacKinlay and Richardson
(1991) advocate GMM approaches to regression tests in this way.) The mechanics are only
slightly different than what we did to generate distributions for OLS regressioficeefs

in section xx, since we keep track &f OLS regressions simultaneously.

Write the equations for alV assets together in vector form,
R? :a+,6ft+€t.
We use the usual OLS moments to estimate thefiooefts,

o= o | = ([ )

~

These moments exactly identify the parameters, sa thatrix inagr(b) = 0 is the identity
matrix. Solving, the GMM estimates are of course the OLS estimates,

& = Er(R{)—BEr(f)
Er (R — Er (R})) fi]  covr(R{, fi)

B = B =BGV A - varrl)
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Thed matrix in the general GMM formula is

dgr(b) In INEr(f) | _ | 1 E(f)
d o INEr(ft) InEr(f}) ] B [ E(fo) E(f?) } win

wherely isanN x N identity matrix. TheS matrix is

- . Eleie;_j)  Elewe;_jfij)
S= > E[f(x,b), frib)]= Y [E(ftstegjj) E(ftgtsgijftij) ]

If we assume thaf ande are independent,

R I TR (7S N S
o= Z [E(ft) E(ftftj)]WE(etEt—j)' (125)

j=—o00

If we assume that the errors and factors are not correlated over time,

_ | Elewer)  Eleeifi)
5= [ E(ftEtétZQ) E(ete;_tj)ft? ] (126)

And if we assume thaf ande are both independent and uncorrelated over time,

[ Ed) ],
5=\ 5y B |7 (27

Now we can plug into the general variance-covariance matrix formula (101),
var(b) = %(ad)_laSa’(ad)_l’.
Using the case (127), we obt8in
a_1(r 1 B()],g) 1L ( L [ E(f}) ~E(f) } . >
W( B > T ([ E(f;) E(f?) } QQE) “ T \war(f) | —E(f) 1 ®

We're interested in the top left corner. Usifif f2) = E(f)? + var(f),

@)=L (14 245)5

This is the traditional formula, but there is now no real reason to assume that the errors are
i.i.d. By simply calculating a sample version of (125), (126), (127), we can easily construct
standard errors and test statistics that do not require these assumptions.

8 Youneed (A® B)~! = A~1 @ B! if you keep the smplifying @ notation.
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12.2  Cross-sectional regressions

We can fit
E(R”) =BA+«a;

by running a cross-sectionalregression of average returns on the betas. This technique can
be used whether the factor is areturn or not.

I discuss OL S and GL S cross-sectional regressionsfihd formulas for the standard errors
of A\, and ay? test whether the are jointly zero. OLS formulas for the for the standard errors
of A anda ignore the fact thaf is also random. | derive Shanken’s correction for this fact as
an instance of GMM, and show how to implement the same approach for autocorrelated and
heteroskedastic errors. | show how the results are almost identical to the @My + b’f
formulation of linear factor models derived in section 4.

Start again with the & factor model, written as
E(R) =B/X;i=1,2,..N

The central economic idea is that the model should explain why average returns vary across
assetsexpected returns of an asset should be high if that asset has high betas or risk exposure
to factors that carry high risk premia.

Figure 20 graphs the case of a single factor such as the CAPM. Each dot represents one
asseti. The model says that average returns should be proportional to betas, so plot the
sample average returns against the betas. Even if the model is true, this plot will not work out
perfectly in each sample, so there will be some spread as shown.

Given these ideas, a natural idea is to runass-sectional regressioto fit aline through
the scatterplot of Figure 20. First find estimates of the betas from atime series regression,

R¢' =a; + Bif, +¢i, t=1,2,..T foreachs,

and then estimate the factor risk premia A from a regression across assets of average returns
on the betas,

Er(RY) = BiX +a;, i =1,2....N. (128)

As in the figure, 3 are the right hand variables, A are the regression coefficients, and the
cross-sectional regression residualsare the pricing errors. One can run the cross-sectional
regression with or without a constant. The theory says that the constant or zero-beta excess
return should be zero. One can impose this restriction or estimate with a constant and then
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E(RE)

° .\ I
. ™ Assetsi
Slope/

A

Figure 20. Cross-sectional regression
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see if it comes out sfitiently small. Importantly, one can run the cross-sectional regression
when the factor is not a return.

12.2.1  OLScross-sectional regression

It will simplify notation to consider a single factor; the case of multiple factors looks the
same with vectors in place of scalars. Denote vectors from 1 to N with boldface, i.e.
e =[e e - N].B=[B By - By ], andsmilaly for R and a.
For simplicity take the case of no intercept. With this notation OL S cross-sectional estimates
are

>

- (88) ' BEr(R) (129)
& = Ep(R°)—\G.

Next, we need a distribution theory for the estimated parameters. The most natural thing to
do is to apply the standard OLS distribution formulas. | start with the traditional assumption
that the errors are i.i.d. over time, and independent of the factors. DEheteE (e.c}).

Since then; are just time series averages of #jeshocks, the errors in the cross-sectional
regression have correlation matix(ac’) = £%. Thus the conventional OLS formulas
for the covariance matrix of OLS estimates and residual with correlated errors give

2(3) = (@) 'ave(Es) " (130)
~(1-8@p) B2 (1-p@Es) ') a3

cov(&)

To rederive these formulas, substitute the regression (20) into the formulas for parameter
estimates (129) and take expectations. See (137) below before you use them..

We could test whether all pricing errors are zero with the statistic
& cov() T a ~\ . (132)
The distribution isy%,_, not x% because the covariance matrix is singular. The singularity
and the extra terms in (131) result from the fact that Xhepeficient was estimated along

the way, and means that we have to use a generalized inverse. (If thekefactors, we
obviously end up with%_ )

12.2.2  GLScross-sectional regression

Since the residuals in the cross-sectional regression (20) are correlated with each other, stan-
dard textbook advice is to run a GLS cross-sectional regression rather than OLS, using
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E(aa’) = £X as the error covariance matrix:
A= (B%78)  BTIEr(RY) (133)
& = Er(R°) -8

The standard regression formulas give the variance of these estimates as

o2 (A) — %(5’2715)‘1 (134)
cov(&) = %(2—3(5'2715)‘13’) (135)

The comments of section 2 warning that OLS is sometimes much more robust than GLS
apply equally in this case. The GLS regression should improfveiazicy, i.e. give more
precise estimates. Howeveél,may be hard to estimate and to invert, especially if the cross-
sectionNV is large. One may well choose the robustness of OLS over the asymptotic statistical
advantages of GLS.

A GLS regression can be understood as a transformation of the space of returns, to focus
attention on the statistically most informative portfolios. Finding (say, by Choleski decom-
position) a matrixC' such thatCC’ = X!, the GLS regression is the same as an OLS
regression ofE-(R°) on CB, i.e. of testing the model on the portfoliédR°. The sta-
tistically most informative portfolios are those with the lowest residual variahtkerefore
GLS pays most attention to nearly riskfree portfolios formed by extreme long and short po-
sitions. The statistical theory assumes that the covariance matrix has converged to its true
value. However, in most samples, the ex-post mean-variance frontier still seems to indicate
lots of luck, and this is especially true if the cross section is large, anything more than 1/10 of
the time series. If this is true, the GLS regression is paying lots of attention to nearly riskless
portfolios that only seem so due to luck in a sfiecsample.

Again, we could test the hypothesis that all thare equal to zero with (132). (Though
the appearance of the statistic is the same, the covariance matrix is smébetjng the
greater power of the GLS test.) As with thie test, (106) we can develop an equivalent test
that does not require a generalized inverse

T&'S 'a ~xA . (136)

To derive (136), | proceed exactly as in the derivation of fhetest (106). Déne, say by
Choleski decomposition, a matrix such thalC’C’ = X. Now, find the covariance matrix of

VTCta:
coo(VTCla) = C7H (CC' =B (B'CCT1B) ' @) € =1 -5 (5'9)”

1

o/
where
§=0C"18.
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In sum, & is asymptotically normal s¢/7C—' & is asymptotically normakov(v/TC~'&)
is an idempotent matrix with rank’ — 1; thereforel'&’C~VC~'a = T&'S 1ais x5 ;.

12.2.3  Correction for thefact that 3 are estimated, and GMM formulas that
don’'t need i.i.d. errors.

In applying standard OL S formulas to a cross-sectional regression, we assume that the right
hand variable@ arefixed. Theg in the cross-sectional regression are fixed, of course,
but are estimated in the time series regression. This turns out to matter, even asymptotically.

In this section, | derive the correct asymptotic standard errors. With the simplifying as-
sumption that the erroesare i.i.d. and independent of the factors, the result is

20os) = BB 8B8@EB) " (1+x27A) 15| )
*(\grs) = % [(,5/271,5)_1 (1 + )\'2]71)\> + Ef}

whereXl; is the variance-covariance matrix of the factors. This correction is due to Shanken
(1992). Comparing these standard errors to (130) and (134), we see that there is a multi-

plicative correction(l +A'2 N IA) and an additive correctioR ¢ that do not vanish, even
asymptotically.
The asymptotic variance-covariance matrix of the pricing errors is

con(@ors) = = (Iv—B(EB) ' B) (Ix - BEB)F) (1+ X2 AJL39)
cov(Gers) = % (z ~B(@x18)”" ,6’) (1 + ,\’2;1,\) (139)

Comparing these results to (131) and (135) we see the same multiplicative correction applies.

We can form the asymptotig? test of the pricing errors by dividing pricing errors by
their variance-covariance matri&pov(d)’ld. Following (136), we can simplify this result
for the GLS pricing errors resulting in

T (1 + Xz;l)\) &S s ~ Ya_k. (140)

Are the corrections important relative to the simple OLS formulas given above? In the
CAPM \ = E(R°™) soA?/o2(R°™) =~ (0.08/0.16)* = 0.25 in annual data so the multi-
plicative term is too large to ignore. However, the mean and variance both scale with horizon
so for a monthly intervah? /o?(R*™) ~ 0.25/12 ~ 0.02 which is quite small and ignoring
the multiplicative term makes little difference.

The additive term can be very important. Consider a one factor model, suppose all the
B3 are 1.0, all the residuals are uncorrelated®ss diagonal, suppose all assets have the
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same residual covarianeé(¢), and ignore the multiplicative term. Now we can write either
covariance matrix in (137) as

P =3 | 570 + )]

Even with N = 1, most factor models have fairly high?, soo?(c) < o2(f). Typical
CAPM values of R? = 1 — o?(e)/o? (f) for large portfolios are 0.6-0,and multifactor
models such as the Fama French 3 factor model R3vaften over 0.9. Typical numbers of
assetsV = 10 to 50 make thefirst term vanish compared to the second term.

This example suggests that not only is includiiglikely to be an important correction,
it may even be the dominant consideration in the sampling error of tieterestingly, and
despite the fact that these corrections are easy to make and have been known for almost 20
years, they are very infrequently used.

Comparing (140) to the GRS tests for a time-series regression, (122), (123), (124) we see
the same statistic. The only difference is that by estimalirfigpm the cross-section rather
than imposing\ = E(f), the cross-sectional regression loses degrees of freedom equal to the
number of factors. A purely statistical approach will seize on this difference and advocate the
GRS test when it can be applied, though we will see later that the cross-sectional regression
may be more robust to misspécations.

Comparing both the standard errors)ofind the covariance matrix of the pricing errors
to the GMM results fop = E(mx), m = a + bf representation of a linear factor model in
section 4, you see that the formulas are almost exactly identicap Fn&(mz) formulation
of the model for excess returns was equivalerf{®°) = —Cb whereC is thecovariance
between returns and factohus covariance¢’ enter in place of betag. The S matrix
enters in place of, but that is because the above formulas have assumed i.i.d.; evhas
we drop this assumption below we will get formulas that look even more similar. Thus, the
GMM, p = E(mz) approach reduces almost exactly to this traditional approach for linear
factor models, excess returns, and i.i.d. errors. The only real difference is whether you want
to express the covariance between returns and factors in regressifnieoefinits or just
covariances. | have argued above that covariances and héscrore interesting thag,
A, sinceb measures whether a factor is useful in pricing assets whiteeasures whether a
factor is priced.

Derivation and formulas that don't require i.i.d. errors.

The easy and elegant way to account for the effects of “generated regressors” such as
the 3 in the cross-sectional regression is to map the whole thing into GMM. Then, we treat
the moments that generate the regresgbed the same time as the moments that generate
the cross-sectional regression damént \, and the covariance matri¥ between the two
sets of moments captures the effects of generating the regressors on the standard error of the
cross-sectional regression cfieients. Comparing this straightforward derivation with the
difficulty of Shanken’s (1992) paper that originally derived the correctiong fand noting
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that Shanken did not go on fond the formulas (138) that allow a test of the pricing errors is
a nice argument for the simplicity and power of the GMM framework.

To keep the algebra manageable, | treat the case of a single factor. The moments are

ER{ —a—Bf) 0
gr(b)=| E[R{—a-Bfi)f] | =| 0 (141)
E(R® - B)) 0

The top two moment conditions exactly identdyand 3 as the time-series OLS estimates.
(Note a not «. The time-series intercept is not necessarily equal to the pricing error in a
cross-sectional regression.) The bottom moment condition is the asset pricing model. Itis in
general overiderfied in a sample, since there is only one extra paranfateand N extra
moment conditions. If we use a weighting vec#ron this condition, we obtain the OLS
cross-sectional estimate &f If we use a weighting vecto8’ > ~!, we obtain the GLS cross-
sectional estimate of. To accommodate both cases, use a weighting vectoand then
substitute eithety’ = 3’ or+’ = #’~~! at the end to get OLS and GLS results.

The correct standard errors farcome straight from the general GMM standard error
formula (101). Thei are not parameters, but are the IA5tmoments. Their covariance
matrix is thus given by the GMM formula (104) for the sample variation ofgthe All we
have to do is map the problem into the GMM notation. The parameter vector is

b=[a g \]

Thea matrix chooses which moment conditions are set to zero in estimation,

. Ion O
At
Thed matrix is the sensitivity of the moment conditions to the parameters,
—In —INE(f) O
0
d=2 = | ~INE(f) ~INE(f%) 0
0 Ay -0

The S matrix is the long-run covariance matrix of the moments.

/

o0 R¢ —a— 3f; R, ; —a—fBfi;
S= > E|| Ri—a-Bf)f || Ri;—a—Bfi)fi;
j=—o0 R{ — BA R¢_; — BA

To evaluate this expression, substitafe= R — a — Bf;. Also, writeRf — B\ = a +
B(ft - )‘) + &t.

The expression simgiies with the assumption of i.i.d. errors independent of the factors.
The assumption that the errors are i.i.d. over time means we can ignore the lead and lag terms.
Thus, the top left corner iB(e,e;) = . The assumption that the errors are independent from
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the factorsf; simplifies the terms in whick; and f; are multiplied:E(e; (¢} f;)) = E(f)X
for example. The result is

S E(f)S )
S=| E(f)x E(f)® E(f)X
bY E(f)x BB*(f)+3

Multiplying a, d, S together as spefded by the GMM formula for the covariance matrix of
parameters (101) we obtain the covariance matrix of all the parameters, and its (3,3) element
gives the variance of. Multiplying the terms together as sp#ed by (104), we obtain the
sampling distribution of theéx, (138). The formulas (137) reported above are derived the
same way with a vector of factofs rather than a scalathe second moment condition in
(141) then read® [(R¢ — a — 3f,) ® f;].

Once again, there is really no need to make the assumption that the errors are i.i.d. and
especially that they are conditionally homoskedastic — that the ficad errorg are inde-
pendent. It is quite easy to estimate &umatrix that does not impose these conditions and
calculate standard errors. They will not have the pretty analytic form given above, but they
will more closely report the true sampling uncertainty of the estimate.

12.3 Fama-MacBeth Procedure

| introduce the Fama-MacBeth procedure for running cross sectional regression and show
that it is numerically equivalent to pooled time-series, cross-section OLS with standard errors
corrected for cross-sectional correlation, and also to a single cross-sectional regression on
time-series averages with standard errors corrected for cross-sectional correlation.

Fama and MacBeth (1972) suggest an alternative procedure for running cross-sectional
regressions, and for producing standard errors and test statistics. This is a historically im-
portant procedure, and is still widely used (especially by Fama and coauthors), so it is im-
portant to understand it and relate it to other procedures. First, instead of estimating a single
cross-sectional regression with the sample averages, they suggest we run a cross-sectional
regressiorat each time period, i.e.

RS = B\ + oy i =1,2,...N for eacht.

(I write the case of a single factor for simplicity, but it's easy to extend the model to multi-
ple factors.) Fama and MacBeth usee year rolling regression betas at this stage, but one
can also use betas from the full-sample time-series regression. Then, they suggest that we
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estimate\ anda; as the average of the cross sectional regression estimates,

R 1 T R 1 T
)\:TZAt; @i:T;&it.

t=1

Most importantly, they suggest that we use the standard deviations of the cross-sectional
regression estimates to generate the sampling errors for these estimates,

23 Ls(s 32, o Lo~ oo
U()‘)ZEZ(&*A) ;U(ai):ﬁZ(ait*ai) .
t=1 t=1

It's 1/T? because we'réinding standard errors of sample mear, T’

This is an intuitively appealing procedure once you stop to think about it. Sampling error
is, after all, abut how a statistic would vary from one sample to the next if we repeated the
observations. We can’t do that with only one sample, but why not cut the sample in half, and
deduce how a statistic would vary from one full sample to the next from how it varies from
thefirst half of the sample to the next half? Proceeding, why not cut the sample in fourths,
eights and so on? The Fama-MacBeth procedure carries this idea to is logical conclusion,
using the variation in the statistic at each point in time to deduce its sampling variation.

We are used to deducing the sampling variance of the sample mean of aisdnies
looking at the variation ofz; through time in the sample, using?(z) = o%(z)/T =
% o (e — g‘c)z. The Fama-MacBeth technique just applies this idea to the slope and pric-
ing error estimates. This procedure assumes that the time series is not autocorrelated, but one
could easily extend the idea to estimate the sampling variation of a sample mean using a long
run variance matrix, i.e. estimate .

o2(3) = %Z % é (A=2) (A= 4)

and similarly fora. Asset return data are usually not highly correlated, but this could have
a big effect on the application of the Fama-MacBeth technique to corplnatece data or
other regressions in which the cross-sectional estimates are highly correlated over time.

It is natural to use this sampling theory to test whether all the pricing errors are jointly
zero as we have before. Denote daythe vector of pricing errors across assefsimate the
covariance matrix of the sample pricing errors by

1 T
& = 7> &
t=1
A 1 9 n  avia A
cov(&) = EZ(atfa)(atfa)

t=1
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and then use the test

&' cov(@) @ ~ X%

1231 FamaMacBeth in depth

The GRS procedure and the formulas given above for a single cross-sectional regression are
familiar from any course in regression. The Fama MacBeth procedure seems novel, and it
is a useful and simple technique that can be widely used in economics and cofjpanate

as well as asset pricing. Is it truly different? Is there something different about asset pricing
data that requires a fundamentally new technique not taught in standard regression courses?
To answer these questions it is worth looking in a little more detail at what it accomplishes
and why.

Consider a regression
Yie = Bxy +epi=1,2,..N; t=1,2,..T.

The data in this regression has a cross-sectional element as well as a time-series element.
In corporatefinance, for example, one might be interested in the relationship between in-
vestment andinancial variables, and the data set has nfanys (V) as well as time series
observations for eadfirm (7°). This expression is the same form as our asset pricing model,
with z;; standing for the3, andj standing for\.

The textbook thing to do in this context is to simply stack ttend ¢ observations to-
gether and estimai@ by OLS. | will call this thepooled time-series cross-section estimate.
However, the error terms are not likely to be uncorrelated with each other. In particular, the
error terms are likely to be cross-sectionally correlated at a given time. If one return is un-
usually high, another is also likely to be highone firm invests an unusually great amount
this year, another is also likely to do so. When errors are not uncorrelated, OLS is still con-
sistent, but the OLS distribution theory is wrong, and typically suggests standard errors that
are much too small. In the extreme case thatiherrors are perfectly correlated at each
time period, it is as if there is only one observation for each time period, so one really has
T rather thanVT observations. Therefore, a real pooled time-series cross-section estimate
must include corrected standard errors. People often ignore this fact and report OLS standard
errors.

Another thing we could do ifirst take time series averages and then ryoure cross-
sectionalregression of

Er(yi) = B Er (xi) +wii=1,2,..N

This would lose any information due to variation of the x;; over time, but at least it might
be easier to figure out a variance-covariance matrix for,; and correct the standard errors for
residual correlation. (You could also average cross-sectionally and than run a single time-
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series regression. We'll get to that option later.)

In either case, the standard error corrections are just applications of the standard formula:
for an OLS regression

Y =XB+u; E(ud) =Q
the standard errors of the OLS estimate
Bors = (X'X)'X'Y
are
?(Bors) = (X'X)~! X'QX (X'X)~".

Finally, we could run the Fama-MacBeth procedure: run a cross-sectional regression at
each point in timgaverage the cross-sectior}l estimates to get an estimg#eand use the
time-series standard deviation/@f to estimate the standard error/@f

It turns out that the Fama MacBeth procedure is just another way of calculating the stan-
dard errors, corrected for cross-sectional correlation.

Proposition 6 Ifthex;, variablesdo not vary over time, and if the errorsare cross-sectionally
correlated but not correlated over time, then the Fama-MacBeth estimate, the pure cross-
sectional OLS estimate and the pooled time-series cross-sectional OLS estimates are identi-
cal. Also, the Fama-MacBeth standard errors are identical to the cross-sectional regression
or stacked OLS standard errors, corrected for residual correlation. None of these relations
hold if thex vary through time.

Since they areidentical procedures, whether one cal cul ates estimates and standard errors
in one way or the other is a matter of taste.

| emphasize one procedurethat isincorrect: pooled time seriesand cross section OL Swith
no correction of the standard errors. The errors are so highly cross-sectionally correlated in
mostfinance applications that the standard errors so computed are often off by a factor of 10.

The assumption that the errors are not correlated over time is probably not so bad for
asset pricing applications, since returns are close to independent. However, when pooled
time-series cross-section regressions are used in corfforatee applications, errors are
likely to be as severely correlated over time as acfosss, if not more so. The “other
factors” ) that cause, say, companto invest more at timéthan predicted by a set of right
hand variables is surely correlated with the other factors that cause copnmeinyest more.

But such factors are especially likely to cause companyinvest more tomorrow as well. In
this case, any standard errors must also correct for serial correlation in the grec®vVIM
based formulas in section 3 can do this easily.

The Fama-MacBeth standard errors also do not correct for the fact &t generated
regressors. If one is going to use them, it is a good idea to at least calculate the Shanken
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correction factors outlined above. Again, the GMM setup used above to derive the Shanken
corrections makes this easy.

Proof: We just have to write out the three approaches and compare them. Having assumed
that thexr variables do not vary over time, the regression is

Yie = X8+ €t
We can stack up the cross-sections 1...N and write the regression as
yi =x0+ e

x is now a matrix with thex; as rows. The error assumptions megz.e;) = X.
Pooled OLS To run pooled OLS, we stack the time series and cross sections by writing

Y1 X €1
Y2 X €9
Y= . | X=] . |;€e=
yr X ET
and then
Y =XB+¢€
with
by
E(ee) =Q =
by

The estimate and its standard error is then

Bors = (X'X) XY

cov(Bors) = (X'X) XX (X'X) '

Writing this out from the dinitions of the stacked matrices, wiXf X =T'xx,

1 T
Bors = (X/X)_lxl— Yt
T
t=1
covBoss) = = (X% (KT ()7
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We can estimate this sampling variance with
(142)

1z
S _ A Al
¥ = T ;:1 €€y,

& = Yt—XﬁoLs

Pure cross-section: The pure cross-sectional estimator does one cross-sectional regres-
sion of the time-series averages. So, take those averages,
Er(yi) =xB+ Er (1)

whereEr = % Zthl andx = Ep(x ) sincex is constant. Having assumed i.i.d. errors over

time, the error covariance matrix is
, 1
E(Er (e¢) Er(ey)) = TE.

The cross sectional estimate and corrected standard errors are then
> -1
Bxs = (X'x) X'Er(yi)
*(Bxs) = Fxex ! (x'x)

1
Thus, the cross-sectional and pooled OLS estimates and standard errors are exactly the same,

= (x'%)

in each sample.
Fama-MacBeth: The Fama—MacBeth estimator is formed bfyrst running the cross-
sectional regression at each moment in time,
B, = (x’x)_1 x'y,.
Then the estimate is the average of the cross-sectional regression estimates,
> > -1
Brm = Er (/375) = (x'x)" X'Er(yi).

Thus, the Fama-MacBeth estimator is also the same as the OLS estimator, in each sample
The Fama-MacBeth standard error is based on the time-series standard deviatioB of the

Usingcovr to denote sample covariance,
2 1 1oL 11
<6t> =7 (x'x) " x'covr (y¢) x (x'x)

N 1
cov (,BFM) = eovr

with
Yy =XBppy + &
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we have
covy (yi) = Ep(8,8)) = by
andfinally
e Lo -1 ¢ 11
cov (BFM> =7 (x'x) " x'¥x(x'x) .

Thus, the FM estimator of the standard error is also nhumerically equivalent to the OLS cor-
rected standard error.

Varying x If the z;; vary through time, none of the three procedures are equal anymore,
since the cross-sectional regressions ignore time-series variation:r th&s an extreme
example, suppose a scalgf varies over time but not cross-sectionally,

ypr =a+x0+ey; i=1,2,..N;t=1,2,..T.

The grand OLS regression is

B D u Tl D it% > Yit
DY >

wherez = x — Er(z) denotes the demeaned variables. The estimate is driven by the covari-
ance over time of:; with the cross-sectional average of thg which is sensible because
all of the information in the sample lies in time variation. However, you can't even run a
cross-sectional estimate, since the right hand variable is constant acAssa practical ex-
ample, you might be interested in a CAPM sffieeition in which the betas vary over time
(8,) but not across test assets. This sample still contains information about the CAPM: the
time-variation in betas should be matched by time variation in expected returns. But any
method based on cross-sectional regressions will completely miss it. ]
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Chapter 13. Maximum likelihood

Maximum likelihood is, like GMM, a general organizing principle that is a good place to
start when thinking about how to choose parameters and evaluate a model. It comes with a
useful asymptotic distribution theory, which, like GMM, is a good place to start when you
are unsure about how to treat various problems such as the fact that betas must be estimated
in across-sectional regression.

As we will see, maximum likelihood is a special case of GMM. It prescribes which mo-
ments are statistically most informative. Given those moments ML and GMM are the same.
Thus, ML can be used to defend why one picks a certain set of moments, or for advice on
which moments to pick if one is unsure. In this sense, maximum likelihoodipgssthe re-
gression tests above, as it jiists standard regressions. On the other hand, ML does not
easily allow you to use other moments, if you suspect that ML's choices are not robust to
misspedications of the economic or statistical model.

13.1 Maximum likelihood

The maximum likelihood principle says to pick the parameters that make the observed
data most likely. Maximum likelyhood estimates are asymptoticafigieht. The informa-
tion matrix gives the asymptotic standard errors of ML estimates.

The maximum likelihood principle says to pick that set of parameters that makes the
observed data most likely. This is not “the set of parameters that are most likely given the
data” — in classical (as opposed to Bayesian) statistics, parameters are numbers not random
variables.

To implement this idea, yofirst have tafigure out what the probability of seeing a data
set{z.,} is, given the free parameteff a model. This probability distribution is called the
likelihood function f({x} ; #). Then, the maximum likelihood principle says to pick

9:argn{1%><f({xt};9)~

For reasons that will soon be obvious, it's much easier to work with the log of this probability
distribution

L({we};0) =In f({ae};0),

Maximizing the log likelihood is the same things as maximizing the likelihood.

Finding the likelihood function isn’'t always easy. In a time-series context, the best way
to do it is often tofirstfind the logconditional likeihood function, the chance of seeing 1
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SECTION 13.1 MAXIMUM LIKELIHOOD

given x4, z; 1, ... and given values for the parameters, f(x¢|x:—1, ¢ 2, ...z0; 0). Sincejoint
probability is the product of conditional probabilities, the log likelihood function is just the
sum of the conditional log likelihood functions,

T
L{z:};0) = Zln flae|xi—1, xe—2...20; ). (143)

t=1

More concretely, we usually assume normal errors, so the likelihood function is
T 1 &
_ 2 : /y—1
E— —§1H(27T|ED — Etil Etz &y (144)

where e, denotes avector of shocks;, e, = x; — E(x¢|xy—1, 21 2...20; 0). Then, just invert
whatever model you have that produces data x; from errors e; to express the likelihood
function in terms of data x;, and maximize.

(There is a small issue about how to start off a model such as (143). Ideadly, the first
observation should be the unconditional density, i.e.

L{x};0) =1In f(x1;0) + 1In f(x2]21;0) + In f(zs]|22, 21;6)...

However, the whole point is that it is usually hard to evaluate the unconditional density or
the first terms. Therefore, if as usual the conditional density can be expressed in terms of
a finite number £ of lags of x;, one often maximizes the conditional likelihood function
(conditional on the first k& observations), treating the first & observations as fixed rather than
random variables.

L{x};0) =In f(zpq1|ar, 2p—1...21;0) + In f(zpqa|zr, 2p—1.. 22;0) + ...

Alternatively, one can treat the pre-sample value$zg, x_1,...x ;1 } as additional parame-
ters over which to maximize the likelihood function.)

Maximum likelihood estimators come with a useful asymptotic (i.e. approximate) distri-
bution theory. First, the distribution of the estimates is

-1
O~N (9, [%} ) (145)

If the likelyhood £ has a sharp peak 8f then we know a lot about the parameters, while

if the peak isflat, other parameters are just as plausible. The maximum likelihood estimator
is asymptotically efficient meaning that no other estimator can produce a smaller covariance
matrix.
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CHAPTER 13 MAXIMUM LIKELIHOOD

The second derivative in (145) is known as the information matrix,

1 8°C 0?In f(xpq1|ze, T4 1, ... 705 0)
_ = _ ) ) ) ) 146
T 0006’ T Z 0606 (146)

(More precisely, the information matrix is defined as the expected value of the second partidl,

which is estimated with the sample value.) The information matrix can also be estimated as
aproduct of first derivatives. The expression

Z Oln f(xpqq|xe, ®p—1,...20;6) Oln f(xpqq1|xe, ®p—1,...20; 0) !
. )

00 00

converges to the same value as (146). (Hamilton 1994 p.429 gives a proof.)

If we estimate a model restricting the parameters, then the maximum value of the like-
lihood function will necessarily be lower. However, if the restriction is true, it shouldn’t be
that much lower. This intuition is captured in thkelihood ratio test

2(£unreﬁricted - Er&ﬁfided)wxﬁumber of restrictions (147)

The form and idea of this test is much like thgdifference test for GMM objectives that we
met in section xx.

13.2 When factorsarereturns, ML prescribesatime-series
regression.

| add to the economic model E (R¢) = BE(f) astatistical assumption that theregression
errors are independent over time and independent of the factors. ML then prescribes atime-
series regression with no constant. To prescribe a time series regression with a constant, we
drop the model prediction = 0. | show how the information matrix gives the same result
as the OLS standard errors.

Given a linear factor model whose factors are also returns, as with the CAPM, ML pre-
scribes a time-series regression test. To keep notation simple, | again treat a singlé.factor
The economic model is

E(R®) = BE(f) (148)

ReisanN x 1 vector of test assets, artlis an N x 1 vector of regression co@fients of
these assets on the factor (the market reRffi in the case of the CAPM).

To apply maximum likelihood, we need to add an explicit statistical model that fully
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describes the joint distribution of the date. | assume that the market return and regression
errors are i.i.d. normal, i.e.

R = a+Bfite (149)
ft = E(f)+w

Ry

Equation (149) has no content other than normality. The zero correlation betyweede;
identifies3 as a regression cdefient. You can in fact be even more principled and just write
Re, R*™ as a general bivariate normal, and a problem asks you to try this approach.

The economic model (148) implies restrictions on this statistical model. Taking expecta-
tions of (149), the CAPM implies that the interceptshould all be zero. Again, this is also
the only restriction that the CAPM places on the statistical model (149).

The most principled way to apply maximum likelihood is to impose the null hypothesis
throughout. Thus, we write the likelihood function imposimg= 0. As above, to construct
the likelihood function, we reduce the statistical model to independent error terms, and then
add their log probability densities to get the likelihood function.

- const)f—z (Rg - 81 5 (R - ) — >0 LB

0-2
t:l u
The estimates follow from thrst order conditions,

or T T -1 7
3 = Elz ~Bf) fi=0 = B= (fo) ZRgft

t=1 t=1 t=1

or 1 & — . 1 &
B U—%Z OéE(f)—A—Tth

(0L£/0% anddL/do? also produce ML estimates of the covariance matrices, which turn out
to be the standard averages of residuals.)

The ML estimate of3 is the OLS regressionithout a constant. The null hypothesis says
to leave out the constant, and the ML estimator uses that fact to avoid estimating a constant.
Since the factor risk premium is equal to the market return, it's not too surprising that the
estimate is the same as that of the average market return.

The asymptotic standard errors follow from either estimate of the information matrix, for
example

L -
oBog th =0
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CHAPTER 13 MAXIMUM LIKELIHOOD

Thus,

—_
—_
—_
—_

cov(B) =

TEP) - TEGE TR0 (150)

Thisisthe standard OLS formula.

We can aso apply maximum likelihood to estimate an unconstrained model, containing
intercepts, and then use Wald tests (estimate/standard error) to test the restriction that the
intercepts are zero. We also need the unconstrained model to run the likelihood ratio test of
the constrained model vs. the unconstrained model. The unconstrainted likelihood function
is

T

£=(const) — 5 3O (RS —a— BL) S (R — o~ Bfi) + .

t=1

(I ignore the term in the factor, since it will again just tell us to use the sample mean to
estimate the factor risk premium.)

The estimates are now

T
oL & . B 5 covr (R, fy)
55 = T L Ri-a-B =0 h= T

Unsurprisingly, the maximum likelihood estimates of o and 3 are the OL S estimates, with a
constant.
Theinverse of theinformation matrix gives the asymptotic distribution of these estimates.

Since they are just OLS estimates, we're going to get the OLS standard errors, but it's worth
seeing it come out of ML.

—1
0’L
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SECTION 13.3 WHEN FACTORS ARE NOT EXCESS RETURNS, ML PRESCRIBES A CROSS-SECTIONAL REGRESSION

The covariance matrices 6f and/3 are thus

N E(f)\?
cov(&) = T +<W> by
cov(B) = %0%(]“)2 (151)

These are just the usual OLS standard errors, which we derived above as a special case of
GMM standard errors for the OLS time-series regressions when errors are uncorrelated over
time and independent of the factors, or by specializifgX’ X)—!.

You cannot just inver®? £ /0adc’ to find the covariance ak. That would give just as
the covariance matrix ak, which would be wrong. You have to invert the entire information
matrix to get the standard error of any parameter. Otherwise, you are ignoring the effect that
estimating3 has on the distribution ak. In fact, what | presented is really wrong, since we
also must estimatE. However, it turns out that is independent oft and3, so the top left
two elements of the true information matrix is the same as | have written here.

The variance of3 in (151) is larger than it is in (150) was when we impose the null
of no constant. ML uses all the information it can to produdécieint estimates — esti-
mates with the smallest possible covariance matrix. The ratio of the two formulas is equal
to 1 + E(f)?/o%(f), which we studied above in section xx. In annual data for the CAPM,
o(Re™) = 16%, E(R®™) = 8%, means that unrestricted estimate (151) has a variance
25% larger than the restricted estimate (150), so the gairficiegfcy can be important. In
monthly data, however the gain is smaller since variance and mean both scale with the hori-
zon. This is also a warning: ML can prescribe silly procedures (running a regression without
a constant) in order to get any small improvement ficefncy.

We can use these covariance matrices to construct a Wald (estimate/standard error) test
the restriction of the model that the alphas are all zero,

e 2 -1
T (1 + <%> ) &Y e~ (152)

Again, we already derived thig? test in (122), and itinite sampleF counterpart, the
GRS test (123). The other test of the restrictions is the likelihood ratio test (147). Quite
generally, likelihood ratio tests are asymptotically equivalent to Wald tests, and so gives the
same result. Showing it in this case is not worth the algebra.

13.3 When factorsarenot excessreturns, ML prescribesa
cross-sectional regression

If the factors are not returns, we didn’t have a choice between time-series and cross-sectional
regression, since the intercepts are not zero. As you might suspect, ML prescribes a cross-
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sectional regression in this case.
The factor model, expressed in expected return betaform, is
E(R") =a; + 08X i=1,2,.N (153)
The betas are defined from time-series regressions
Ry = a; + B + ¢} (154)

The intercepts:; in the time-series regressions need not be zero, since the model does not
apply to the factors. They are not unrestricted, however. Taking expectations of the time-
series regression (154) and comparing it to (153) (as we did to derive the restsiction

for the time-series regression), the restrictios= 0 implies

a; = B; (X — E(f)) (155)
Plugging into (154), we can say that the time series regressions must be of the restricted form
R = Bix+ B; [fi — E(f)] + <. (156)

In this form, you can see tha@; A determines the mean return. Since there are fewer factors
than returns, this is a restriction on the regression (156).

Stack assets = 1,2, ...N to a vector and introduce the auxiliary statistical model that
the errors and factors are i.i.d. normal and uncorrelated with each other. Then, the restricted
model is

RS = BA+BIf,— E(f,)] +e; e ~N(0,5)
ft = E(f) +Ut, Uz NN(O, V)

E¢ X 0
HERIGRY

whereB denotes av x K matrix of regression cof€ients of theV assets on th& factors.
The likelihood function is

1< 1<
_ —1 —1
L = (const.)— 3 ;:1 ey e — 5 ;:1 u, VvV,
Er = Rg—B [)\—‘rft—E(f)], Uy :ft—E(f)

Maximizing the likelihood function,

oL -0—§TjB’z*1 R{-B[A+f, — E(f §TV*1f E(f
9E(f) T 4 (REPATR = BO) T 2 v =)
or -
5 @ 0-B ;z— (R —BA+f, — E(f)
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SECTION 13.4 TIME SERIES VS. CROSS-SECTION

The solution to this pair of equations is

T

— ]_

E(f) = Tth (157)
t=1
. 1 &
A = (B'zle)‘lB’z*ITZR; (158)

t=1

The maximum likelihood estimate of the factor risk premium is a GLS cross-sectional
regression of average returns on betas.

As with the CAPM, the maximum likelihood estimates of the regression coefficients B
are dightly altered from the unrestricted OL S values:

oL

3B S ST R-BA+f - E(f))) A+ — E(f) =0 (159)

B = ) R{[fi+A—E() (Z [f, + X — E(f)] [f; + X — E(f)]’)

t=1

Thisistrue, even though the B are defined in the theory as popul ation regression coefficients.
Therestricted ML usesthe restrictionsto improve on OL S estimatesin asample. (The matrix
notation hidesalot herel If you want to rederivetheseformulas, it's helpful to start with scalar
parameters, e.d;;, and to think of ita®$)L /00 = ZtT:l (0L)0e) Oe;/08.) Therefore, to

really implement ML, you have to solve (158) and (159) simultaneousijf@, along with

3 whose ML estimate is the usual second moment matrix of the residuals. This can usually
be done iteratively: Start with OLB, run an OLS cross-sectional regressionXoform 3,

and iterate.

134 Timeseriesvs. cross-section

| track down why ML prescribes a time-series regression when factors are returns and
a cross-sectional regression when factors are not returns. | argue that the cross-sectional
regression may be more robust to model misgpEtion. | show that the time-series / cross-
sectional regression issue is the same as the OLS / GLS cross-sectional regression issue, and
similar to the issue whether one runs time-series regressions with no intercept, both cases in
which one may trade g€iency for robustness.

Theissue
When factors are not returns, ML prescribed a cross-sectional regression When the fac-
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E(RE)
Cross-sectiond
regression o
Time-series
. regression
Market return
l’/
)<Ri skfreerate ﬁ|

Figure 21. Time-series vs. cross-sectional regression estimates.

tors are returns, ML prescribes a time-series regression. Figure 21 illustrates the difference
between the two approaches. The time-series regression estimates the factor risk premium
from the average of the factors alone, ignoring any information in the other assets. For ex-
ample in the CAPMA = Er(R*™). Thus, a time-series regression draws the expected
return-beta line across assets by makinf pprecisely on two points, the market return and

the riskfree rate, and the market and riskfree rate have zero estimated pricing error in every
sample. The cross-sectional regression draws the expected return-beta line by minimizing
the squared pricing error across all assets. It allows some pricing error for the market return
and (if the intercept is free) the riskfree rate, if by doing so the pricing errors on other assets
can be reduced.

Of course, if the model is correct, the two approaches should converge as the sample gets
larger. However, the difference between cross-sectional and time-series approaches can often
be large and economically important in samples and models typical of current empirical work.
The figure shows a stylized version of CAPM estimates on the size portfolios. High beta
assets (the smafirm portfolios) have higher average returns than predicted by the CAPM.
However, the estimated pricing error for these assets is much smaller if one allows a cross-
sectional regression to determine the market price of risk. Classical tests of the CAPM based
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on beta-sorted portfolios often turn out the other way: the cross-sectional regression market
line is flatter than the time-series regression, with an intercept that is higher than the sample
riskfree rate. As another example, Fama and French (19xx) report important correlations
between betas and pricing errors in a time-series test of a three-factor model on industry
portfolios. This correlation cannot happen with an OLS cross-sectional estimate, as the cross-
sectional estimate sets the correlation between right hand variables (betas) and error terms
(pricing errors) to zero by construction. Thus, such a correlation is an indication that a cross-
sectional regression would give quite different results.

(The difference is not always large of course, and there is one special case in which time-
series and cross-section agree by construction. If one is testing CAPM and the market return
is an equally weighted portfolio of the test assets, then an OLS cross-sectional regression
with an estimated intercept passes through the market return, since the average pricing error
is set to zero by the cross-sectional regression. In this case, though, time series regression
imposes a zero intercept and cross-sectional regression can leave the intercept free.)

When there is a choice —when one is testing a linear factor model in which the factors are
also portfolio returns — should one use a time-series or a cross-sectional regression? Since the
final evaluation of any model depends on the size of pricing errors, it would seem to makes
sense to estimate the model by choosing free parameters to make the pricing errors as small
as possible. That is exactly what the cross-sectional regression accomplishes. However, the
time-series regression is the maximum likelihood estimator, and thus asymptotifialgnef
This seems like a strong argument for the pure time-series approach.

Why ML does what it does

To resolve this issue, we have to understand why ML prescribes such different procedures
when factors are and aren’t returns. Why does ML ignore all the information in the test asset
average returns, and estimate the factor premium from the average factor return only? The
answer lies in the structure that we told ML to assume when looking at the data. First, when
we write R® = a + Bf; + & ande independent off, we tell ML that a sample of returns
already includes the same sample of the factor, plus extra noise. Thus, the sample of test
asset returns cannot possibly tell ML anything more than the sample of the factor alone about
the mean of the factor. Second, we tell ML that the factor risk premium equals the mean of
the factor, so it may not consider the possibility that the two are different in trying to match
the data. When the factor is not also a return, ML still ignores anything but the factor data in
estimating the mean of the factor, but now it is allowed to change a different paraméter to
the returns, which it does by cross-sectional regression.

The time-series vs. cross-section issue is essentially the same as the OLS vs. GLS issue.
ML prescribes a GLS cross-sectional regression,

A= (8%718)  BSEr(R).

The assets are weighted by inverse ofrisedual covariance matrix, not the return covari-
ance matrixIf we include as a test asset a portfolio that is nearly equal to the factor but with
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avery small variance, then the elements of X in that row and column will be very small and
¥~ will overwhelmingly weight that asset in determining the risk premium. If the limit that

we actually include the factor as atest asset, (5’2—16)_1 B'E~" becomes a vector of zeros
with aunit element in the position of the factor and we returnto A = Ex(f).

Model misspecification

As | argued in section 2 and in section 2, it may well be a good idea to use OLS cross-
sectional regressions first-stage GMM rather than the mordiefent GLS, because the OLS
regression can be more robust to small misdjgEations of the economic or statistical model,
and OLS may be better behaved in small samples in whichis hard to estimate.

Similarly, time-series regressions are almost universally run with a constant, though ML
prescribes a regression with no constant. The reason must be that researchers feel that omit-
ting some of the information in the null hypothesis, the estimation and test is more robust,
though some éfciency is lost if the null economic and statistical models are exactly correct.
Since ML prescribes a cross-sectional regression if we drop the restrictior£( f), run-
ning a cross-sectional regression may also be a way to gain robustness at the expense of one
degree of freedom.

Here is an example of a common small missfieation that jusfies a cross-sectional
rather than a time-series approach. Suppose that the test portfolios do follow a single factor
model precisely, with an excess retyiras the single factor. However, we have an imprecise
proxy for the true factor,

fl=fi+ b (160)

Most obviously, the market return is an imperfect proxy for the wealth portfolio that the
CAPM speciies as the single factor. Multifactor models also use return factors that are
imperfect proxies for underlying state variables. For example Fama and French (1993) use
portfolios of stocks sorted by book/market value as a return factor, with the explicit idea that
it is a proxy for a more rigorously-derivable state variable.

The true model is
R® =Bf + e (161)

There is no intercept sincgis a return. For the statistical part of the model, | again assume
thate, and f; are jointly normal i.i.d. and independent of each other.

If we had data onf;, the ML estimate of this model would be, like the CAPM, a pure
time series regression. We have to work out what a model using the [ffoag reference
portfolio looks like. This is an example, and to keep it simple | assumejthHatmean zero,
and uncorrelated witli; ande,.

E(6)=0; E(6f) = E(é¢) = 0.
(This is a poor assumption for the CAPM. Since the market portfolio is a linear combination
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of the test assets, the errori¥* is the sum of the errorsand thus unlikely to be uncorrelated
with them. This is a more plausible assumption for non-market factors in multifactor models.
Similar examples withE(fe) # 0 generate the same sorts of missfieation, but also
introduce pricing errors in the test assets.)

Now, if we use the proxyf? rather thanf as the factor, théest assets still follow the
factor model exactly, but the factor portfolio does not, and the risk premium is no longer
equal to the mean of the factor portfolio:

ER?) = B\ (162)

E(ff) = M-
and 3, is the regression co@tient of R* on the proxyf”. Therefore, if you spell out the
misspedication, the ML estimate of the factor model is now a cross-sectional regression, not

a time-series regression! A similar missggtion occurs when we suspect that the riskfree
rate is “too low” and again leads to cross-sectional estimates.

The algebra behind (162) is straightforward,
cov(R?, fP) = cov(R®, f+6) = cov(R®, f)
cov(Re, f) cov(R®, fP) o2(fP)

BUE) = —oa(py A= "oy o) M=
(J'2 (J'2
E(ff) = E(f)=X= APW(JQ) =X-—A <02((;;) =X — 0y
where | have introduced the notation
o2 (8
o= (1 5)
A
% = (a2<f>> g
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Chapter 14. ML, GMM and Regression

Asyou probably have already noticed, GMM, regression and ML approaches to asset pricing
models dl look very similar. In each case one estimates a set of parameters, such as the
a,binm; = a—bf,, they,5§inm; = &(c;/c;1) " orthe 3, in R® = a + B, f; + ci.
Then, we calculate pricing errors and evaluate the modd by a quadratic form in the pricing
errors. Here | draw some additional connections and highlight the distinctions between the
three approaches. | start with two facts that help to anchor the discussion: 1) ML is a special
case of GMM, 2) one can approach either p = E(mx) or expected return/beta expressions of
asset pricing models with either ML or GMM approaches to estimation. .

141 ML isGMM on thescores

We can regard ML as a special case of GMM. ML uses the information in the auxiliary sta-
tistical model to derive statistically most informative moment conditions, moment conditions
that fully exhaust the model’s implications. To see this fact, start wittiteeorder condi-
tions for maximizing a likelihood function

T

OL({z:};6) Oln f(wy|lzy 174 9...50)
00 N Z 00

=0. (163)

t=1

Thisisa GMM estimate. It is the sample counterpart to a population moment condition

B Oln f(we|we_120-2..50)\

The termdn f(x¢|xs_124_o...;68)/00 is known as the “score”. It is a random variable,
formed as a combination of current and past datax; ;...). Thus, maximum likelihood is
a special case of GMM, a special choice of which moments to examine (163).

(164)

For example, suppose thafollows an AR(1) with known variance,
Ty = PTi—1 + &t

Then,

2

2
In f(2¢|2e 1,24 2...; p) = cONSt.— % = const— = pria)”
g

202
and the score is

Oln f(x¢|vi_12¢_2..5p) (x4 — pri—1) Ti_1

op o2
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The first order condition for maximizing likelihood, (163), is

T

Z — pxi_1) 241 = 0.

This expression as a moment condition, and you'll recognize it as the OLS estimator of
which we have already regarded as a case of GMM.

The example shows another property of scofiég scores should be unforecastable. In
the example,

Ty — PTy—1) Ty— 4Ty
E,_, (xe—p t2 1) Tt 1] :Et_l[t ;1}:0. (165)
o o

Intuitively, if we used a combination of the variablesE(g(z¢, x;—1,...)) = 0 that was
predictable, we could form another moment that described the predictability gitéable

and use that moment to get more information about the parameters. To prove this property
more generally, start with the fact th#tx|x; 1,2 2,...;6) is a conditional density and
therefore must integrate to one,

1 = /f $t|$t 1y Lt—2y oee) )dl’t

0 — /8f($t$t1,$t27~--a9)dxt

00
Oln f(xy|xs_1,24_2,...;0
0 = f|zio1, 2o )f(xt|xt_1,xt_2,...;G)dxt
00
B Oln f(xe|xy—1,x4-9,...;0)
0 = E“[ a0

Furthermore, as you might expetite GMM distribution theory formulas give the same
result asthe ML distribution, i.e., the information matrix is the asymptotic variance-covariance
matrix. To show this fact, apply the GMM distribution theory (100) to (163). The derivative
matrix is

dgr (0 Pnf (xe|xi—1T1—2...;0)
d= =7
89’ -T Z 90006’

This is the second derivative expression of the information matrix.STheatrix is

Oln f(x¢|xs_124—9...;0) Oln f(ag|wi_129..; 9)/
00 00

E =7

The lead and lag terms i are all zero since we showed above that scores should be un-
forecastable. This is the outer producftid&ion of the information matrix. There is no
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matrix, since the moments themselves are set to zero. The GMM asymptotic distribution of
0 istherefore

VT —6) — N0, dt8d V] =NT0, Y.

We recover the inverse information matrix, as specified by the ML asymptotic distribution
theory.

14.2 ML approach to a consumption-based model

There is nothing that forces us to pair GMM with p = E(mz) type models or ML with
regression tests. We have aready used the GMM principle to construct tests of expected

return - beta models. We can also use the iinciple to construct estimates and tests of

p = E(mx) type models, and many authors do so. For example, we could start with the
same statistical assumption tligtand f; are jointly normally distributed and i.i.d. over time.

1 = E(mR); m = a + bf, and, if the factors are returng, = E(mf), imply restrictions
across the mean and covariance matrix®fand f;. We can then write the likelyhood
function, and maximize it téind estimates of, b.

To investigate a less trivial example, here is how we might handle an explicit consumption-
based model, taken from Hansen and Singleton (198x). Start with the simplest model with
power utility. Using a set of return®, the model predicts

-
Et (ﬁ <Cé,—:1) Rt+1> = 1

To apply maximum likelihood, we need auxiliary statistical assumptions, just as we added
to the regression model of the CAPM the assumption that the errors were i.i.d. normal. A
natural starting place is to model log consumption growth and log returns as jointly normal
and i.i.d. .Then the pricing equation becomes

E; (e_‘se_'yAct+1 erf“) =1

and, taking logs,

6 —~vEAc+ Er + %VQUQAC + %02(1“) —ycov(Ae,r) =0 (166)

I use small letters for logs of capital letters= In R, ¢ = In C, etc., and in the last equality

| suppress subscripts since returns are i.i.d. It will simplify matters to focus on return
differences (not really excess returns since we took ldfs)s choose one asset+! and
denoter¢ = r—r*1, Then we can difference (166) to give

Er® + %02(1“8) — yeov(Ac,r®) =0
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In sum, we have assumed joint normal log returns and consumption growth,

Acit1 EAc _ oA cov(Ac, 1)
{ re ]NN([ Exr® } V= [ COU(AAC, re) by (167)

and in this context, the economic model restricts this statistical description by linking some
of the free parameters,

Er® = vyeov(Ac,r®) — %diagﬁ (168)

The standard ML method then is to estimate the restricted model, calculate Wald statistics for
the parameters, and test the restriction by comparing the likelihood of the restricted model
to that of an unrestricted model, one that freely estimates the mean and covariance matrix in
(167)

We can substitute the restriction in the likelyhood function to eliminate the parameter
E(r°) and to write the restricted likelihood function as

T 1 &
_ ry—1
L = 75111(277|V|)—2;€tv €
_ Ac; — EAc
fto = r¢ — yeov (Ac,r®) + idiagh

The arguments of the likelihood function a8€{ Ac;, r§} ; v, EAc, cov (Ac, r¢) , X)), includ-
ing both statistical and economic parameters.

When we maximize the likelihood function you fairly easily see thdtc = %EtT:lAct
is the maximum likelihood estimate. Taking the derivative with respegt to

oL _ [0 cov(Ac,x®) V! iet =0
Oy t=1
and hence
1 o 1
cov(Ac,r® )0t T ; <r§ — yeov (Ae,r®) + EdiagZ) =0. (169)

(to derive this last equation you have to use the partitioned matrix inverse formifzaod
then recognize that using the sample meanHdxc means thdirst row is automatically
satidied.)

As we saw above, ML is equivalent to GMM with a sg&cichoice of moments. In
this case, the moments prescribed by ML are just a ipditiear combination of the pricing
errors. The leading terms in (169) are a weighting matrix in GMM languaggAc r¢’)> 1
isal x N matrix that tells you which linear combination of pricing error moments to set to
zero in order to estimate. In fact, if you had followed GMM, you might have started with
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the terms following % in the last equation and treated those as your moment conditions for
estimating . (169) is precisealy the “optimal” second-stage GMM estimate in this case.

We can solve equation (169) for the estimate gdnd it is

T
4 = (cov(Ac,r)E ™ cov (Ac, re))i1 cov(Ac,r?)xt (% ;r,‘f + %diagE)

Once again, this estimate is a cross-sectional GLS regression of average returns, with a log-
normal variance correction term, on covariances.

True ML is not quite so simple. Thev (Ac,r®) andX are also parameters that must be
estimated. Since they enter the model restrictions, (168), their ML estimates will not be the
usual unconstrained estimates. (Similarly, the ML estimate of a time series regression is not
the usual estimate, since we force the constant to zero.)

143 ML vs. GMM

| have emphasized the many similarities between ML GMM and regressions. In the classic
environments we have examined, all methods basically pick parameters to minimize the pric-
ing errors, and test the model’s overtilby whether the minimized pricing errors are larger
than sampling variation would suggest.

However, there are differences, and it is time to stop and think about which technique to
use. Furthermore, though ML, GMM and regression are quite similar in the classic case of a
factor model, excess return, and i.i.d. normal returns and factors, they can suggest quite dif-
ferent procedures in other situations including more sophisticated consumption-based mod-
els, explicit term structure models, or option pricing models that require thoughtful treatment
of changing volatility and non-normality.

As we have seen, ML is a special case of GMM: it gives a particular choice of moments
that are statistically optimal in a well-fleed sense. GMM can be used to derive an asymp-
totic distribution theory for ML as well as lots of other estimation procedures. Thus, the issue
is really about when it is important to use ML estimates or whether it is a good idea to use
other moments. As with OLS vs. GLS, sub-optimal estimation methods (OLS) can be more
robust to model misspetations. On the other hand, if the statistical model is tractable,
right, and if one is unsure about which moments are informative, ML can be an important
guide.

1431  Specification errors

ML is often ignored

As we have seen, ML plus the assumption of normal i.i.d. disturbances leads to easily
interpretable time-series or cross-sectional regressions. However, asset retunotsnare
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mally distributed or i.i.d.. They have fatter tailsthan anormal, they are heteroskedastic (times

of high and times of low volatility), they are autocorrelated, and predictable from avariety of
variables. If one were to take the ML philosophy seriously, one should model these features

of returns. The result would be a different likelihood function, and its scores would prescribe
different moment conditions than the familiar and intuitive time-series or cross-sectional re-
gressions.

Interestingly, most empirical workers practically never do this. (The exceptions tend to be
papers whose primary point is illustration of econometric technique rather than substantive
issues.) ML seems to biine when it suggests easily interpretable regressiomen it
suggests something else, people use the regressions anyway. For example, as we have seen,
a ML estimation of the CAPM prescribes that one estinigeising time-series regressions
without a constant, exploiting that prediction of the theory. ¥stare almost universally
estimated with a constant. Despite ML's simetion of a GLS cross-sectional regression,
most empirical work uses OLS cross-sectional regressions. And of course, the above “ML”
estimates and test statistics continue to be used, despite the technical feasibility of addressing
non-normal and non-i.i.d. returns.

This fact tells us something interesting about the nature of empirical work: researchers
don't really believe that their null hypotheses, statistical and economic, are exactly cor-
rect. They want to produce estimates and tests thataimest to reasonable model mis-
specficiations. They also want to produce estimates and tests that are easily interpretable,
that capture intuitively clear stylized facts in the data. Such estimates are persuasive in large
part because the reader can see that they are robust.

ML does not necessarily produce robust or easily interpretable estimates. It wasn't de-
signed to. The point and advertisement of ML is that it providgsient estimatesit uses
every scrap of information in the statistical and economic model in the questifteety.
It does the “right” eficient thing if model is true. It does not necessarily do the “reasonable”
thing for “approximate” models.

Examples

For example, we have seen that ML sffies a time-series regression when the factor
is a return, but a cross-sectional regression when the factor is not a return. The time-series
regression gains one degree of freedom, but we have also seen that an even slight proxy error
in the factor leads to the more intuitive cross-sectional regression. We have also discussed
reasons why researchers use OLS cross-sectional regressions rather than fioigat™ef
GLS. GLS requires modeling and inverting Ahx NN covariance matrix, and then focuses
attention on portfolios with strong positive and negative weights that seem to have lowest
variance in a sample. But such portfolios may be quite sensitive to small transactions costs,
and the sampling error in large covariance matrices may ruin the asymptotic advantages of
GLS in afinite sample. Similarly, if one asked a researcher why he included a constant in
estimating a beta while applying the CAPM, he might well respond that he doesn’t believe
the theory that much.
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In estimating time-series models such as the AR(1) example above, maximum likelyhood
minimizes one-step ahead forecast error variahce?. But any time-series model is only
an approximation, and the researcher’s objective may not be one-step ahead forecasting. For
example, one may be interested in the long-run behavior of a slow-moving series such as
the short rate of interest. The approximate model that generates the smallest one-step ahead
forecast error variance may be quite different from the model that best matches long-run
autocorrelations, so ML will pick the wrong model and make very bad predictions for long-
run responses. (Cochrane 1986 contains a more detailed analysis of this point.)

Models of the term structure of interest rates and real business cycle models in macroe-
conomics give even more stark examples. These modeldamestically singular. They
generate predictions for many time series from a few shocks, so the models predict that there
are combinations of the time series that leave no error term. Even though the models have rich
and interesting implications, ML will seize on this economically uninteresting singularity to
reject any model of this form.

The simplest example of the situation is the linear-quadratic permanent income model
paired with an AR(1) spefication for income. The model is

Y = pYi—1te

1 . 1
a—c-1 = (B — Et—l) 1-8 j;oﬂjyt-i-j - mgt

This model generates all sorts of important and economically interesting predictions for the
joint process of consumption and income. Consumption should be roughly a random walk,
and should respond only to permanent income changesstment should be more volatile
than income and income more volatile than consumption. Since there is only one shock
and two series, however, the model taken literally predicts a deterministic relation between
consumption and income.

r3
1—0p

ML will notice that this is thestatistically most informative prediction of the model. In any
real data set there i® configuration of the parameters, p that make this restriction hold,
data point for data point. The probability of observing a datg &gty } is exactly zero, and
the log likelyhood function is-oo for any set of parameters. ML says to throw the model
out.

Ct — Ct—1 = (yt - Pyt—l) .

The popular &fne yield models of the term structure of interest rates act the same way.
They specify that all yields at any moment in time are deterministic functions of a few state
variables. Such models capture much of the important qualitative behavior of the term struc-
ture, including rising, falling and humped shapes, the time-evolution of those shapes (i.e. that
a rising yield curve forecasts changes in future yields and bond holding period returns), and
they are very useful for derivative pricing. But it is never the case in actual yield data that
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yields of all maturities are exact functions of three yields. Actual data on IV yields aways
require N shocks, even if thelast N — 3 have very small variances. Again, a ML approach
reports a —oo log likelyhood function for any set of parameters.

Addressing model mis-specfication.

The ML philosophy offers an answer to the model mis-specfication question: specify
theright model, and then do ML. If regression errors are correlated, model and estimate the
covariance matrix and do GLS. If one is worried about proxy errors in the pricing factor, short
sales costs or other transactions costs in the test assets, time-aggregation or mismeasurement
of consumption data, or small but nonzero violations of the model iicggiions such as
time-varying betas and factor risk premedditional pricing factors and so on, write them
down, and then do ML.

For example, researchers have added “measurement errors” to real business cycle models
and afine yield models in order to break the predictions of stochastic singularity. The trouble
is, of course, that the assumed structure of the measurement errors now drives what moments
ML pays attention to. Also, modeling and estimating stochastic structure of measurement
errors takes us further away from the economically interesting parts of the model.

More generally, as we have seen, authors tend not to follow this advice, for the simple
reason that it is infeasible. Economics in generalfamahcial economics in particular neces-
sarily studies quantitative parables rather than completelyfspeonodels. It would be nice
if we could write down completely spei@d models, if we could quantitatively describe all
the possible economic and statistical model and §pation errors, but we can't.

The GMM framework, used judiciously, offers an alternative way to address model mis-
specfication. Where ML only gives us a choice of OLS, whose standard errors are wrong,
or GLS, GMM allows us to keep an OLS estimate, but correct the standard errors (at least
asymptotically) for any statistical problems. More generally, GMM allows one to specify an
economically interesting set of moments, or a set of moments that one feels will be robust
to misspedications of the economic or statistical modeithout having to spell out exactly
what is the source of model mis-spication that makes those moments “optimal”. It allows
one to accept the lower “B€iency” of the estimates if the null really is exactly true, in return
for such robustness.

At the same time, it allows one ftexibly incorporate statistical model misspézations
in the distribution theory. For example, knowing that returns are not i.i.d. normal, one may
want to use the time series regression technique to estimate betas anyway. This estimate is not
inconsistent, but thetandard errors that ML formulas pump out under this assumption are.
GMM gives aflexible way to derive at least and asymptotic set of corrections for statistical
model misspedications of the time-series regression éa#nt. Similarly, a pooled time-
series cross-sectional OLS regression is not inconsistent, but standard errors that ignore cross-
correlation of error terms are far too small.

The “calibration” of real business cycle models is really nothing more than GMM, using
economically sensible moments such as average output growth, consumption/output ratios
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etc. to avoid the stochastic singularity. Calibration exercises usually do not compute standard

errors, nor do they report any distribution theory associated with the “evaluation” stage when

one compares the model’s predicted second moments with those in the data. (I guess reporting
no distribution theory is better than reportingnaiong distribution theory, but not much!)
Following Christiano and Eichenbaum (19xx) however, it's easy enough to calculate such
a distribution theory by listing thérst and second moments together.JA test probably
doesn’t make much sense in this case, since we know the model can be rejected at any level
of significance by choosing different moments.

“Used judiciously” is an important qudication. Many GMM estimations and tests suffer
from lack of thought in the choice of moments, test assets and instruments. For example,
early GMM papers tended to pick assets and especially instruments pretty much at random.
Authors often included many lags of returns and consumption growth as instruments to test a
consumption-based model. However, the 7th lag of returns really doesn'’t predict much about
future returns given lags 1-12, and ffiest-order serial correlation in seasonally adjusted, ex-
post revised consumption growth may be economically uninteresting. Therefore, more recent
tests tend to emphasize a few well-chosen assets and instruments that capture important and
economically interesting features of the data.

1432  Other argumentsfor ML vs. GMM

Finite sample distributions

Many authors say they prefer regression tests and the GRS statistic in particular because
it has afinite sample distribution theory, and they distrust filmite-sample performance of
the GMM asymptotic distribution theory.

This is not useful argument. First, thérite sample” theory is, as usual in regression,
only trueconditional on the factor return. If you want to include sampling variation in the
factor return in the conceptual sampling experiment, then even regression tests can only pro-
vide asymptotic answers. Second, firéte sample distribution only holds if returns really
are normal and i.i.d., and if the factor is perfectly measured. Since these assumptions do not
hold, it is not obvious that &inite-sample distribution that ignores all these effects will be a
better approximation than an asymptotic distribution that corrects for them.

It is true that the GMM asymptotic distribution theory can be a poor approximation to a
finite-sample distribution theory, especially when one asks “non-parametric” corrections for
autocorrelation or heteroskedasticity to provide large corrections and when the number of
moments is large compared to the sample size. Howevénite“sample” distribution theory
that ignores the effects for which GMM is correcting is not obviously better.

As detailed in section xx, an underused idea (at least in my opinion) is to describe the
cross-correlation, autocorrelation, heteroskedasticity, etc. by parametric models as one would
in ML when calculating the GMM distribution theory. For example, rather than calculate
S E(ugus—j;) from its sample counterpart, model = pu;_1 + &, estimatep, and

j=—00
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then caculate o2 (u) S22 p/ = nQ(u)}—fg. This approach may give better small sample
performance than the “nonparametric” corrections.

Once you have picked the estimation method — how you will generate a number from
the data or which moments you will use finding itsfinite sample distribution, given an
auxiliary statistical model, is simple. Just run a Monte Carlo or bootstrap. Thus, picking an
estimation method because it delivers analytic formulas favite sample distribution (under
false assumptions) should be a thing of the past. Analytic formulanite sample distri-
butions are useful for comparing estimation methods and arguing about statistical properties
of estimators, but they are not necessary for the empiricists’ main task.

Auxiliary model

ML requires an auxiliary, parametric, statistical model. In studying the classic ML for-
malization of regression tests, we had to stop to assume that returns and factors are jointly
i.i.d. normal. In the ML estimate of a consumption-based model, we had to worry equally
about estimating statistical parameté¥s Ac) of the consumption-return distribution along
with the economic parameters ih this case) that we really care about. As the auxiliary sta-
tistical model becomes more and more complex and hence realistic, more and more effort is
devoted to estimating the auxiliary statistical model. ML has no way of knowing that some
parameters (risk aversion 3 and\) are more “important” than others.

A very nice feature of GMM is that it does not require such an auxiliary statistical model.
For example, in studying GMM we went straight frgm= E(mz) to moment conditions,
estimates, and distribution theory. This is most important as a saving of the researcher’s and
the reader’s time effort and attention.

All of ML's complexity buys us one thing: a parametric expression for the optimal linear
moments to set to zero. If one judges that the regsilaratrix calculation does a good enough
job of squeezing statistical information out of the sample, perhaps already trading too much
efficiency for robustness, ML is not very attractive.

However, the absence of statistical modeling in GMM does rest on the asymptotic nor-
mality of sample means, together with “nonparametric” corrections for correlation and het-
eroskedasticity. The nonparametric corrections don’t work that well in small samples, so one
may want to model correlation and heteroskedasticity expliamiydoing so one will again
have to worry about the spéiciation and estimation of an auxiliary statistical model.

The case for ML

There are cases in which ML, or a statistically motivated choice of moments, has impor-
tant advantages. For example, Jacquier, Polson and Rossi (1994) study the estimation of a
time-series model with stochastic volatility. This is a model of the form

dSt/St = /Jdt + V;glet
dvy py (Vo)dt + o(Vy)dZay,

and S is observed but is not. The obvious and easily interpretable moments include the
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autocorrelation of squared returns, or the autocorrelation of the absolute value of returns.
However, they find in asimulation study that the resulting estimates are far |ess efficient than
those resulting from the scores.

In advocating GMM so far, | have implicitly assumed that the economic model is approx-
imate, the true economic model is unknown and the statistical model is approximate, and that
the eficiency gain from ML is small. This is often true, but, as in this example, not always.
ML’s suggestion of moments can be valuable when the model is right (exactly right in any
simulation study) so there is no tension between the moments in which one is interested and
the scores on which ML focuses, when economically important moments are not obvious,
and when the diciency gain can be large.

Evenin the canonical OLS vs. GLS case, a wildly heteroskedastic error covariance matrix
can mean that OLS spends all its tifiting unimportant data points. A judicious application
of GMM (OLS) in this case would require at least some transformation of units so that OLS
is not wildly inefticient.

Conditioning information

Another advantage of the GMM approach with pricing error moments comes when we
take seriously time-variation in mean returns and their standard deviation, and the fact that
agents have a lot more information than we do. As we saw above, the GMM-pricing er-
ror method accommodates both features ea&ly(mx|I)) = E(mx). To model time-
variation in returns in a ML context, you have to write out a parametric model of the time-
varying return distributionthe scores will now be related to forecast errors rather than the
returns themselves. Scores in such models are typically not easily interpretable as pricing er-
rors, as the scores for simple i.i.d. models were. ML really doesn't allow us to think easily
about agents who might have more information than we do.

General comments on statistical arguments

The history of statistical work that has been persuasive — that has changed people’s under-
standing of the facts in the data and which economic models understand those facts — looks a
lot different than the statistical theory preached in econometrics textbooks.

The CAPM was taught and believed in and used for years despite formal statistical re-
jections such as the GRS test. It only fell by the wayside when other, coherent views of the
world were offered in the multifactor models. And the multifactor models are also rejected!

It seems that “it takes a model to beat a model.” Even when evaluating dispeadel, most

of the interesting tests come from examining sfiecilternatives rather than overall pricing

error tests. The original CAPM tests focused on whether the intercept in a cross-sectional re-
gression was higher or lower than the risk free rate, and whether individual variance entered
into cross-sectional regressions. The CAPM fell when it was found that characteristics such
as size and book/market do enter cross-sectional regressions, not when generic pricing error
tests rejected.

In the history offinance and economics — actually in the history of science generally —
no important issue has been decided by purely statistical considerations when methods of
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varying power disagree. Issues are decided when the profession collectively decides that the
data sing a clear song, no matter what the t-statistics say.

Influential empirical work tells a story, not a t-statistic. The mosicient procedure
does not seem to convince people if they cannot transparently see what stylized facts in
the data drive the result. A test of a model that focuses on its ability to account for the
cross section of average returns of interesting portfolios via their covariances with a state
variable will in the end be much more persuasive than one that (say) focuses on the model’'s
ability to explain thdifth moment of the second portfolio, even if Minds the latter moment
much more statistically informative. The papers that convinced the profession that returns are
predictable at long horizons, or that factors past the market return are important in accounting
for the cross-section of average returns, used no techniques past regression, but they made
crystal clear what stylized and robust fact in the data drives the results. On the other hand,
I can think of no case in which substantial changes in the way people thought about an
issue resulted from the application of clever statistical models that wrung the last ounce of
efficiency out of a dataset, changing t statistics from 1.5 to 2.5.

Given the non-experimental nature of our data, the inevitbleng biases of many re-
searchers examining the same data, and the unavoidable fact that our theories are really quan-
titative parables more than literal descriptions of the way the data are generated, the way the
profession has decided things makes a good deal of sense. Statistical inference — classical
or Bayesian — provides a poor description of the decision process we face in evaluating as-
set pricing models or any economic theory for that matter. Our objective is not to “accept”
or “reject” a theory invented out of the blue, but always thne it, to take a theory gener-
ated with some knowledge of the dafisad out what aspects of the data it captures and what
aspects it does not capture, and think about how it might be improved. To that end, lots of
calculations are more revealing than test statistics.

Furthermore, the pretense of statistical purity is an illusion. Classical statistics requires
that nobody ever looked at the data before specifying the model. Yet more regressions have
been run than there are data points in the CRSP database. Bayesian econometrics can in
principle incorporate the information of previous researchers, yet it never applied in this
way — each study starts anew with a “uninformative” prior. Statistical theory draws a sharp
distinction between thenodel — which we know is right utility is exactly power and the
parameters which we estimate. But this distinction isn’t truge are just as uncertain about
functional forms as we are about parameters.

We spend a lot of time on statistical theory, but we must realize that it is really a subsidiary
question. Thdirst question is, what is your economic model or explanation? Second, how
did you produce your numbers from the data at hand, and was that a reasonable way to go
about it? Third, are the model predictions robust to the inevitable dicgtions? (Does the
result hinge on power utility vs. another functional form? What happens if you add a little
measurement error, or if agents have an information advantage, etc.) Finally, someone in the
back of the room might raise his hand and ask, “if the data were generated by (say) a draw
of i.i.d. normal random variables over and over again, how often would you come up with
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a number this big or bigger?’ That’s an interesting and important robustness check on what
you did, but not necessarily tHfest such check, and not the central question in your and
the profession’s evaluation of whether your analysis of the data and models should change
their minds. Similarly, statistical testing answers a very small and perhaps not very important
question. It answers the question, “if your model were exactly true, and given an auxiliary
statistical model, how often would you see a result this big (a parameter estimate, or a sum
of squared pricing errors) due only to sampling variation?”

As we have seen, a lot of the arguments for GMM vs. maximum likelihood are statistical.
The asymptotic distribution theory for GMM estimators and test statistics does not require
one to use an explicit parametric model of distributions, and can therefore be robust to non-
normality, conditional heteroskedasticity, serial correlation, and other statistical problems in
the data. On the other hand, if the auxiliary statistical models are right, maximum likelyhood
is more “eficient,” and the “nonparametric” corrections often used in GMM applications
may have poor small sample properties. However, if auxiliary statistical models are wrong,
maximum likelyhood can provide very misleading estimates.

But in the end gtatistical properties may be a poor way to choose statistical methods.
| prefer GMM in most cases because it is a tool that allows me to evaluate the model in
the simplest, most natural and most transparent way— just use sample averages in place of
the population moments that are most economically important to the quantitative parable of
the theory. Each step of the way has a clear intuition, and it is easy to trace results back
to stylized facts of the data that generate them. There is no need to separate theorists from
empirical workers with that approach. Even more important, the procedures one follows in
constructing GMM estimates and tests are very easy. (Proving that GMM works in very
general setups is hard, which is where it gets its unfortunate high-tech reputation.)

Both ML and GMM are best thought of tools that a thoughtful researcher can use in learn-
ing what the data says about a given asset pricing model, rather than as stone tablets giving
precise directions that lead to truth if followed literally. If followed literally and thought-
lessly, both ML and GMM can lead to horrendous results.

144 Problems

When we express the CAPM in excess return form, can the test assets be differences
between risky asset®; — R;? Can the market excess return also use a risky asset, or
must it be relative to a risk free rate?

(A: The test assets can be risky return differences, but the market excess return

must be relative to a risk free rate proxy (which may be an estimated parameter).
E(Rl) - Rf = Bi,vn (E(RWL) - Rf) ImpIIeSE(RZ - RJ) = 6i7j,7nE(Rm - Rf) but
not=B;_jm—j (E(R™ = R7))

Can you run the GRS test on a model that uses industrial production growth as a factor?
Show that if CAPM holds for a set of test assets it holds for market, IF the market is
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spanned by the test assets. Isthistrue for any return-based factor model? (A: no).

Try to formulate a ML estimator based on an unrestricted regression when factors are
not returns, equation (120). i.e. add pricing ert@ygo the regression as we did for the
unrestricted regression in the case that factors are returns. What is your estiiBate of

a, E(f)? (TreatV andX as known to make the problem easier.)

Answer: Adding pricing errors to (156), we obtain

R = a; + BIX+ B [f, — E(f)] + L.
Stacking assets= 1,2, ...N to a vector
R =a+BA+B|[fi — E(f:)] +&

whereB denotes @V x K matrix of regression cof€ients of theV assets on th&

factors.

If we fit this model, maximum likelyhood will give asset-by asset OLS estimates of the
intercepta = o + B(A — E(f,)) and slope coéitientsB. It will not give separate
estimates otx andA. The most that the regression can hope to estimate is one intercept
if one chooses a higher value dfwe can obtain the same error term with a lower value
of a. The likelyhood surface ifiat over such choices @f and\. One could do an

ad-hoc second stage, minimizing (say) the sum of squarexdchoose\ givenB, E(f,)
anda. This intuitively appealing procedure is exactly a cross-sectional regression. But it
would be ad-hoc, not ML.

Instead of writing a regression, build up the ML for the CAPM a little more formally.
Write the statistical model as just the assumption that individual returns and the market
return are jointly normal,

(B ] iy ™)

m

The model’s restriction is
E(R?) = ycov(R™, R®).

Estimatey and show that this is the same time-series estimator as we derived by
presupposing a regression.

Fama and French (19xx) report that pricing errors are correlated with betas in a test of a
factor pricing model on industry portfolios. How is this possible?

A:Yes with time-series regressions. No with a cross-sectional OLS regression.
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Hamilton (1994) p.142-148 are a nice summary of maximum likelyhood facts. The appendix
in Campbell Lo MacKinlay (199x) is also a nice maximum likelyhood reference, and their
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Chapter 5 and 6 treat regression based tests and maximum likelyhood in more depth than |
do here.

E. Jacquier N. Polson and Peter Rossi, “Bayesian Analysis of Stochastic Volatility Mod-
els,” Journal of Business and Economic Statistics (1994), 12 , 371-418.
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Chapter 15. General Equilibrium

So far, we have not said where thejoint statistical properties of the payoff ;.1 and marginal
utility m,,; or consumption ¢;4; come from. We have also not said anything about the
fundamental exogenous shocks that drive the economy. The basic pricing equation p =
E(mz) tells us only what the price should be, given the joint distribution of consumption
(marginal utility, discount factor) and the asset payoff.

Similarly, there is nothing that stops us from writing the basic pricing equation as

u’(ct) =E; [ﬁul(ctﬂ)xtﬂ/pt] .

Now, we can think of this equation as determining today’s consumption given asset prices

and payoffs, rather than determining todagsset price in terms of consumption and pay-

offs. Thinking about the basifirst order condition in this way, with asset prices as given
and consumption as the quantity to be determined, is exactly the basis of the permanent in-
come model of consumption. Which is the chicken and which is the egg? Which variable is
exogenous and which is endogenous?

The answer for now is, neither. THiest order conditions characterize any equilibrium
you happen to knowt'(mz), you can use them to determipgif you happen to know, you
can use them to determine consumption and savings decisions.

An obvious next step, then is to complete the solution of our model ecanimnfiyd ¢
andp in terms of truly exogenous forces. The results will of course depend on what the rest
of the economy looks like, in particular what theoduction technology is and what the set
of markets is.

Figure 22 shows one possibility for a general equilibrium. Suppose that the production
technologies are linear: the real, physical rate of return (the rate of intertentpamsior-
mation) is not affected by how much is invested. Now consumption must adjust to these
technologically given rates of return. If the rates of return on the intertempora technolo-
gies were to change, the consumption process would have to change. This is, implicitly, how
the permanent income model works. More explicitly, this is how nfamnce theories such
as the CAPM and (more explicitly) the Cox, Ingersoll and Ross (1986) model of the term
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structure work.

Ciaa

C

Figure 22. Consumption adjusts when the rate of return is determined by alinear technol -
ogy.

Figure 23 shows another extreme possibility for the production technology. Thisis an “en-
dowment economy.” Nondurable consumption appears (or is produced) every period. There
is nothing anyone can do to save, store, invest or otherwise transform consumption goods
this period to consumption goods next period. Hence, asset prices must adjust until people
are just happy consuming the endowment process. In this case consumption is exogenous
and asset prices adjust. Lucas (1978) and Mehra and Prescott (1985) are two very famous
applications of this sort of “endowment economy.”

Which of these possibilities is correct? Well, neither of course. The real economy and all
serious general equilibrium models look something figeire 24: one can save or transform
consumption from one date to the next, but at a decreasing rate. As investment increases,
rates of return decline

Does this observation invalidate any modeling we do with the linear technology (CAPM,
CIR) model, or endowment economy model? No. Start at the equilibridigure 24. Sup-
pose we model this economy as a linear technology, but we happen to choose for the rate
of return on the linear technologies exactly the same stochastic process that emerges from
the general equilibrium. The resulting joint consumption, asset return process is exactly the
same as in the original general equilibrium! Similarly, suppose we model this economy as
an endowment economy, but we happen to choose for the endowment process exactly the
stochastic process for consumption that emerges from the equilibrium with a concave tech-
nology. Again, the joint consumption-asset return process is exactly the same.
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CHAPTER 15 GENERAL EQUILIBRIUM

Ciaa

Figure 23. Asset prices adjust to consumption in an endowment economy.

Ciaa

Figure 24. General equilibrium. The solid lines represent the indifference curve and pro-
duction possibility set. The dashed straight line represents the equilibrium rate of return.
The dashed box represents an endowment economy that predicts the same consumption-asset
return process.
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Therefore, there is nothing empirically wrong in adopting one of the following strate-
gies: 1) Form a statistical model of bond and stock returns, solve the optimal consumption-
portfolio decision. 2) Form a statistical model of the consumption process, calculate asset
prices and returns from the basic pricing equafior FE(mx). If the statistical models are
right, and if they coincide with the equilibrium consumption or return process generated by
the true economy, with concave technology, each approach will give correct predictions for
the joint consumption-asset return process.

As we will see, mosfinance models, developed from the 1950s through the early 1970s,
take the return process as given, implicitly assuming linear technologies. The endowment
economy approach, introduced by Lucas (1978), is a breakthrough because it turns out to be
much easier. It is much easier to evaluate- E(mz) for fixed m than it is to solve joint
consumption-portfolio problems for given asset returns. To solve a consumption-portfolio
problem we have to model the investor’s entire environment: we have to spddtg assets
to which he has access, what his labor income process looks like (or wage rate process, and
include a labor supply decision). Once we model the consumption stream directly, we can
look at each asset in isolation, and the actual computation is almost trivial.

Most uses ofp = E(ma) do not require us to take any stand on exogeneity or endo-
geneity, or general equilibrium. This is a condition that must hold for any asset, for any
production technology. Having a taste of the extra assumptions required for a general equi-
librium model, you can now appreciate why people stop short of full solutions when they can
address an application using only thest order conditions, using knowledge B{mz) to
make a prediction abopt

It is enormously tempting to slide into an interpretation thdtnz) determines p. We
routinely think of betas and factor risk prices — component&¢f.z) — asdetermining
expected returns. For example, we routinely say things like “the expected return of a stock
increasedecause the firm took on riskier projects, thereby increasinggts But the whole
consumption process, discount factor, and factor risk premia change when the production
technology changes. Similarly, we are on thin ice if we say anything about the effects of
policy interventions, new markets and so on. The equilibrium consumption or asset return
process one has modeled statistically may change in response to such changes in structure.

1501  Normal-exponential example.

The normal-exponential model is a nice place in which to see how the general equilibrium
aspects of our models work out. If you recall, by assuming normally distributed reRurns
with meanE(R) and covariance matriX, a riskfree ratek/, a stock of initial wealtiV” that

must be divided among asséts = y/ + y/1, and exponential utilityPu(c) = exp(—ac),

we derivedfrst order conditions

E(R) — R = aXy = a cov(R, R™). (170)
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There are two ways to complete this model and describe the general equilibrium. Thisis
the same thing as thinking about the supply of assets. First, we can think of the returns as
corresponding to linear technologies. Then the returns are invariant to the amounts invested
y. How can this model then “determine” expected returns, if they are immutable features of
the technology? It doesn't. If an expected reté@if??) is really high, then investors will buy
more of it, raisingy’. As they keep doing this, the share ®Bf in the market return keeps
rising, andcov(R?, R™) keeps rising, until the two sides are equated. Thus, if we pair these
preferneces with a linear technology, the amounts invegtat endogenous, and it is the
market return rather than the individual expected returns or covariances which adjust.

Second, let us complete this model wittixeed supply of assets, or a Leontief technol-
ogy. Each asset corresponds to a paydffwhich is normally distributed anfixed. Larger
amounts invested in each asset do not raise the payoff at all. Now, the prices of each:payoff
or equivalently the returng = z*/p’ are the quantities that adjust to achieve equilibrium.
The total quantity invested in each technology is equal to the price of payoff = p’.
Substituting, and multiplying through by prices, (170) is equivalent to

E(x) —pR! = a%,1
whereY,, is the covariance matrix of the payoftsor,

1

= 7 (B(z) —a¥a1). (171)

p

Again, we have a beautiful equation. Thiest term is of course the risk neutral present value
formula. The second term is a risk correction. Prices are lower if risk aversion is higher, and
if a security has a higher covariance with wealth’t. This equation is also linear, which is

a reason that this model is very popular for theoretical work.

(170) and (171) are of course the same thiegch holds under the other’s general equi-
librium assumptions. All | have done in each case is solve for the variable that is endogenous,
y or p in each case.

15.1 General Equilibrium Recipe

1) find quantity dynamics 2) price assets from consumption-based model

15.2 Endowment economies

1521 Mehra-Prescott style
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SECTION 15.3 PRODUCTION ECONOMIES

15.2.2  Arbitrary law of motion for consumption

15.2.3  Show how b’s etc. are all determined in the model

15.2.4  Beware stochastic singularities

dividend example

15.3  Production economies

15.3.1  Log Cobb-Douglas model

15.3.2  Linear - quadratic model

15.3.3  Any model

154  Justification for the procedure

15.4.1 Welfare theorems

15.4.2  Aggregation to representative consumer

15.4.3  Asset pricing in distorted economies

155 Risk sharing and security design.

Complete risk sharing.
CAT story
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156  Incomplete markets economies.

Risk sharing in an incompl ete market
Heaton/L ucas, Constantinides/Duffie.. saving up to avoid constraints,

15.7 Outlook

(move to appropriate sections)
GE fundamental question seems farther off than ever.
rationality has hardest time at every turn. Perhapsilliquid, sloping demand curves.
Testing: individual securities rather than portfolios. covariance matrix restrictions
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Chapter 16. Continuoustime and
derivative pricing

Continuous time models have a fearsome reputation. Unfortunately the language of much
continuous time finance is often so different that much of the profession has separated into
discrete-time and continuous-time camps that communicate very little. This is as unnecessary
as itis unfortunate. In this chapter, I'll show how all the ideas of the previous chapters extend
naturally to continuous time.

The choice of discrete vs. continuous time is merely one of modeling convenience. The
richness of the theory of continuous time processes often allows you to obtain analytical
results that would be unavailable in discrete time. On the other hand, in the complexity of
most practical situations, one ends up resorting to numerical simulation of a discretized model
anyway. In those cases, it might be clearer to start with a discrete model. But | emphasize
this is all a choice of language. One should become familiar enough with discrete as well as
continuous time representations of the same ideas to pick the one that is most convenient for
a particular application.

16.1  Diffusion models

dz is ddined byzt+At — 2y ~ N(O, At)
Diffusion modelsdz = p(-)dt + o(-)dz

Diffusion models are the standard way to represent random variables in continuous time.

16.1.1 Brownian motion and diffusion

The simplest example isBrownian motion which is the natural generalization of a random
walk in discrete time. For a random walk

2t — Zt—1 = &t

the variance scales with timear(z;42 — z;) = 2var(z4+1 — z). Thus, déine a Brownian
motion as a process for which

Zt+ At T Rt ™ N(O, At)

We have added the normal distribution to the usuéiniteon of a random walk. Brownian
motions have the interesting property that the sample patidtted as a function of) are
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CHAPTER 16 CONTINUOUS TIME AND DERIVATIVE PRICING

continuous but nowhere differentiable.

In discrete time, uncorrelated random variables are the basic building blocks of time se-
ries. We can use the increments to Brownian motions the same way in continuous time.
Construct a series

Tepae — v = p()AL + 0 () (24t — 2t)
or, usingdto denote arbitrarily small increments,
dr = p()dt +o(-)dz

w ande can be functions of time directly, or of state variables. For example, we might have
w(-) = p(zx,t). In discrete time, we are used to analogg tihat are only linear functions of
past values, but in continuous time we can tractably handle nonlinear fungtiando as

well.

It's important to be clear about the notatiodxz meansz;+a: — z:. We often bandy
aboutdz thinking about the derivative of a function, but since a Brownian motion is not a
differentiable function of timejz = %th makes no sense. So k&t mean the increment
if z is a differentiable function of timedx = dxz(t)/dt dt will be meaningful, but not
otherwise. (We'll soon see how to modify this equation so it does make sense.)

A natural step is to take differential equation like this one and simulate (integrate) it
forward through time to obtain thénite-time random variable,, A.. Sticklers for precision
in continuous time prefer to always think of random variables this way rather than through
the differential notation. Putting some arguments ingaando for concreteness, you can
think of evaluating the integral

T T T
T — To = / dxy :/ w(ze, t,.)dt Jr/ oz, t,..)dz.
0 0 0

Initially, it's a little disconcerting to seéz; anddt as separate arguments, but we have to
do this. z is not differentiable, so you can't writéz = (dz/dt)dt. But you can add up the
increments taiz to find out wherez ends up just as you can add up the incrementg to
find out where ends up, and you can multiply each increménby some amount (z,, ¢, ..)

before you add it up. The notatigfaT o(xy,t,..)dz just tells you to add up increments.

If you have functional forms for ando and are good at integrating, you can see this pro-
cedure will give us théistribution of = at some future date, or at least some characterizations
of that distribution such as conditional mean, variance etc.

16.1.2  Alittletoolkit of processes.
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SECTION 16.1 DIFFUSION MODELS

dxr = pdt 4+ odz.

dry = —¢(x — p) dt + o dz
drxy = —¢(x — p) dt + o/x dz
% = pdt + odz.

Like the AR(1) and MA(2), there are some standard useful workhorse examples of diffu-
sion models.

Randomwalk with drift. The simplest example is to lgtando be constants. Then
dxr = pdt 4+ odz.
It's easy tofigure out discrete time implications for this process,
Tpps = Tp + 15 + 0(2e45 — 2t)
or
Tpgs = Ty + ps + epps; eras N(0,08)

arandom walk with drift.

AR(1). The simplest discrete time process is an ARk is its obvious continuous time
counterpart. In discrete time,

v =(1—p)p+pre 1 +e
can be written
vy — w1 = (p—1)(T4—1 — 1) + &4

In continuous time, write
dey = —p(x — p) dt+ o dz

The drift —¢(z — 1) pullsz back to its steady state valpe

Square root process. Like its discrete time counterpart, the continuous time AR(1) ranges
over the whole real numbers. It would be nice to have a process that was always positive, so
it could capture a price or an interest rate. A natural extension of the continuous time AR(1)
is a workhorse of such applications,

dvy = —p(x — p) dt + o/x dz.

Now, asz approaches zero, the volatility declines. sA& 0, the volatility is entirely turned
off, so x drifts up to ;. We will show more formally below that this behavior keeps> 0
always the conditional and unconditional distributions of such a process stop at zero.
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CHAPTER 16 CONTINUOUS TIME AND DERIVATIVE PRICING

Thisisanice example becauseit is decidedly nonlinear. We could write its discrete time
analogue, but standard time series tools would fail us. We could not, for example, give a
pretty equation for the distribution of z, ; for finite s. We can do this in continuous time.

Price processes A modification of the random walk with drift isthe most common model
for prices. We want the return or proportional increase in price to be uncorrelated over time.
The most natural way to do this isto specify

dp = pudt + podz
or more simply

d
& _ udt + odz.
p

We most easily capture dynamics — variation in expected returns or conditional variance of
returns — by making thg ande in this representation vary over time or in response to state
variables.

16.2 Ito'slemma

Do second order Taylor expansions, keep dz, dt,and dz? = dt terms.
dy = f'(x)dx + 5 f" (z)da?
dy = (f'(@)p, + 3" (x)02) dt + f'(x)o,dz

You often have a diffusion representation for one variable, say
dz = p,()dt + o,(-)dz.
Then you define a new variable in terms of the old one,
y = f().

Naturally, you want a diffusion representation for y. 1to’s lemma tells you how to get it. It
says,

Use asecond order Taylor expansion, and think d¢ as+/dt; thus asAt — 0 keep terms
dz, dt, anddz? = dt, but termsitdz and beyond go to zero.

Let's go step by step. Start with the second order expansion

df (z) 1d*f(x) , 4
dy =L g0 4 2 d
V=g T
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Now
da? = [p,dt + 0,dz)? = p2dt* + 02d2? + 2,0, dtdz.
Butdt? = 0, dz? = dt anddtdz = 0. Thus,
da? = o2dt
Substituting fordz andda?,

df (x)

_ (df(x) 1d?f(x)
o < dx '%’Jrﬁ dx?

18 f(x)

d
Y 2 da2

o2dt

Ui) dt + Mawdz
dx

Thus,lto’'s lemma

iy = (L2100 + 550020 ) e+ Lo (g

The surprise here is the second term in the drift. Intuitively, this term captures a “Jensen’s
inequality” effect. Ifa is a mean zero random variable ane- a2 = f(a), then the mean of
bis higher than the mean af The more variance af, and the more concave the function,
the higher the mean of

The only thing you have to understand is, whyli€ = dt? Once you knowiz? = dt
it's clear we have to keep thex anddz? terms in an expansion, and we need second order
expansions to do so. Think of whede came from.dz = z;4 A+ — 2z iS @ normal random
variable with variancé\t. That means itstandard deviation is v/At. Thus, clearlydz? is
of order dt, anddz of order, or “typical size™/dt. In fact, dz? really equalsit; in the limit
dz? becomes deterministic.

16.21 Examples

1) Log. A classic example and a common fallacy. Suppose a price follows
d,

@ _ udt + odz

p

What is the diffusion followed by the log price,

y =In(p)?
Applying Ito’s lemma,

1
dy = —dp — ——2dp2 = (,u — 502) dt + odz.
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Not
dy = pdt + odz.

Itisnot truethat dy = d(In(p)) = dp/p. You have to include the second order terms.
2) xy. Usually, we write

d(zy) = zdy + ydx

But this expression comes from the usual first order expansions. When x and y are diffusions,
we have to keep second order terms. Thus,

d(zy) = xdy + ydx + dydx

16.3 Densities

One of the nice things about continuous time processesisthat we can analytically characterize
the distributions of nonlinear processes.

16.31 Forward and backward equations

16.3.2  Stationary density

The dationary density of a stationary process is the unconditional density, or the limit of
the conditional density as time increases. The stationary density f(x) of adiffusion dx =
w(z)dt + o(x)dz, if it exists, satisfies

1d
wa)fz) =5 [0®(x) f ()]

or

d [ —2[7 a4 _

= @) f(a)) =0
Hence,

K 2_]"Tdv;A2%
f(x) - ° 0'2(.%) :



SECTION 16.4 TRICKS

More simply, let
2 [* dvts
)=
then1 = [ f(x) implies
__s(@)
@)= [ s(x)dx

164  Tricks

If = follows a diffusion, there are no attracting boundaries, and the process is stationary, then
the drift diffusion and stationary density are realted by

() = & J}'((j; o2(a) + L 2(a)

(Ait-sahalia 1986 uses this fact to esimate the diffusion function from the drift and stationary
density.

165 Tricks

If = follows a diffusion, there are no attracting boundaries, and the process is stationary, then
the drift diffusion and stationary density are realted by

) = 5 | o) + (o)

(Ait-sahalia 1986 uses this fact to esimate the diffusion function from the drift and stationary
density.

16.6  Black Scholeswith discount factors

Write a process for stock and bond, then Aseto price the option. The Black-Scholes
formula results.

As an immediate application we can derive the Black-Scholes formula. This case shows
some of the interest and engineering complexity of continuous time models. Though at each
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instant the analysis is trivial law of one price, chaining it together over time is not trivial
either mathematically or in the result we get. | also want to show how thinking of the world
in terms of adiscount factor is (at least) as easy as other approaches.

The standard approach to the Black-Scholes formula rests on explicitly constructing port-
folios: at each date we construct a portfolio of stock and bond that replicates the instantaneous
payoff of the optionwe reason that the price of the option must equal the price of the repli-
cating portfolio. Instead, I'll follow the discount factor approach: at each date construct a
discount factor that prices the stock and bond, and use that discount factor to price the option.

A stock follows
s
S
There is also a money market security that pays the real interestitate

= pugdt + ogdz.

We use the theorem of the last section: to price the stock and interest rate, the discount
factor must be of the form
dA -
T = —rdt - s =7 4~ qws B(dwdz) 0.

Os

(you might want to check that this set of discount factors does in fact price the stock and
interest rate.) Now we price the call option with this discount factor, and show that the Black-
Scholes equation results. Importantly, the choice of discount factor via choitie lsfsno

effect on the resulting option pricézvery discount factor that prices the stock and interest
rate gives the same value for the option price. The option is therefore priced using the law of
one price alone.

16.6.1 Method 1: Price using discount factor

Let us use the discount factor to price the option directly:

C’t—Et{%maX(ST—X,O)} —/%max(ST—X,O) df (Ar, St)
¢ ¢

whereAr and St are solutions to

d
?S = pgdt + osdz

d—A = rdt - 257", quw.
A gs
| start by settinglw to zero, and then | show that additig does not change the option price.

We canfind analytical expressions for the solutions to these differential equations, (Arnold,
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P. 138):
% = pdt + odz

has solution
2

InX; =In Xy + <u %) t+ o (z — 20)

i.e, In X isconditionaly normal with mean In Xy + (M — "72) t and variance o%t.

Thus,
0.2
IHST—IHSt+(/lSf)(Tt)ﬁ*Us(Zth)
L (ps =1\ Hs =T
InAr =InAy — [r+ 5 ([ —=— (T—t)— (zr — 2t)
or, with
=LA N(0,1),
T—t
we have

2
InS7 =1InS; + (,us U—;) (T —t)+0osVT —tx

2
InAp =InA; — (7’4—1 <M> >(T—t)_%ﬂ/jﬂ_m.
s

2 gs
Then, we evaluate the call option from the integral

A
C, = ,/) E?(ST—aX)cU(AT,ST):
Sr=X t

<A <A
_ / AT 5 df (Ar. S1r) - / SEX dF (A, S1).
Sr=X t Sr=X t

The objects on the right hand side are known. We know the distribution of the terminal
stock price St and discount factor Ar. To find the call price, we just have to evaluate an
expectation or integral. Often thisis done numerically, but this example has enough structure
that we can find an analytical formula at some cost in algebra.

Doing theintegral
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In generd, we have to find a joint distribution for A and S7. But S and A are
transforms of the same Normal(0,1), which I'll denote x, so we can reduce the problem to a
single integral ovet:. Plugging in the above expressions ¢ andAr,

oo _ 2 _
Ct:/ exp(—(r—&—l(M))(T—t)—M\/T—m)x
Sr=X 2 s os

xS exp (+ (MS - ”—;5> (T —t)+ st/T——tx> df (x) —

-X b exp ( <T+1 <M)2> (T —1t) — M\/Ttac) df (z)
Sr=X 2\ os os

I change variables to express the result as the integrahof@ 1) rather than the expectation
of a function of an\V (0, 1). Organize in powers of,

1 &0 o2 1 g —r 2
C, = S, e _e_2sS_Z (B °
¢ V2 t/sT_X Xp{lus " 2 2( os )

— 1
+ [03— Hs T] VT —tx — §x2}dx

gs

—LX - exp [ — r+1(ﬂs—r>2
V2T Sr=X P 2 s

Express as quadratic functionsagf

1 e 1 fg —T 2
Ct—mst/ST_XeXp{2 <:1: [(rs > ] T t> }da}

1 o 1 —r 2
mXe /ST_X exp{ 5 (gc—l— p x.

(T 1)

gs 2

(T —t)— Bs =T /T —tz — 1302) dx.

The lower boundSt = X is, in terms ofr,

2
InX =InSr =InS; + (,us — 0—28> (T—t)+osVT —tx
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InX —InS, — (Ms - %a) (T —t)
osVI —t

xr =
Finaly, we use
L /Oo e 31y = & (1 — a)
V2T Ja

i.e, ®() istheareaunder theleft tail of the normal distribution, to get

X —InS; — (ug— 2 ) (T —1) _
ct_st<1>< ( 2) +[03%]\/Tt
S

(Ts\/T—t

agsy/ T—t gs
Simplifying, we get the Black-Scholes formula

InS;/X + [r+30%] (T —t) e T g InS;/X + [r—$0%] (T — 1)
— e .
osVI —t osVI —t

2
lnX—lnS—( —Zi)T—t B
e (T (_ t Hs 2 ( ) g —T T—t)

Ct - Stq) (

16.6.2 Method 2: Derive Black-Scholes differential equation

Guess that the solution for the call price is a function of stock price and time to expiration,
Cy = C(S,t). We can use the basic pricing equation 0 = E; (dAC) to derive a differential
equation for the call price function of stock price and time to expiration, .

We use Ito's lemma tofind derivatives of”' (S, t),

1
dC = Cydt + CsdS + §Cgsd82

1
dC = |Cy + CsSpug + 50555%2 dt + CsSogdz
Plugging into thefirst order condition and cancelingit, we get
1
0=-rC+Cy+ CsSpug + 50558%% — S (ug —1)Cs.
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1
0=—rC+C,+ SrCs + 503552025.

This is the Black-Scholes differential equation (Dfug p.238) solved with boundary condi-
tion

CIHl&X{ST*X,O}

it yields the familiar formula.

16.7  Arbitrage boundsusing discount factors
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Chapter 17. “Good-deal” pricing
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Chapter 18. Term structure of interest
rates

181 Overview
18.2 Modelsbased on a short rate process
18.3 Ho-Lee approach

18.4  Use to price options
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Chapter 19. Frictions

Short sale borrowing constraints transactions costs.
all cases of short sale constraints
Sublinear extension of basic theorems.
Luttmer T bill results
Constantinides trade |ess often results
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PART IV
Empirical survey
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Chapter 20. Return Predictability

20.1  Stocks
20.1.1  Univariate: Long horizon regressions and varianceratios,

20.1.2  Multivariate: Term, d/p, and anomalies.

20.2 Term structure

Fama/Bliss, Campbell

20.3  Comparison to continuous-time models
20.4  Foreign exchange

20.5 Econometric issues

Big picture: yield differences don't predict right changes.

20.6  Conditional variance
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20.7  Conditional Sharperatiosand portfolio implications

Conditional mean vs. conditional variance. Some ARCH evidence on ¢ var

Want to estimate E(R)/sigma(R). Brandt
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Chapter 21. Present valuetests

Issue ex-post volatility, R
Volatility tests. bound and decomposition.
Equivalence to forecastability
Bubbles and sunspots
Use ks to illustrate identity.
Cross-sectional
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Chapter 22. Factor pricing models
221 Capm
22.2  Chen Roll Ross model

22.3 Investment and macro factors

Jagannathan Wang
Campbell

224  Book to market
225 Momentum and more

22.6  Digesting thetests

2261 Statisticsversusplots

Statistics never convinced anyone. But plots depend on portfolios.
Solution: individual securities?
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Chapter 24. Hansen-Jagannathan
bounds and equity premium puzzle.

Much work on the consumption-based model has proceeded by shooting in the dark. A model

is rejected, for reasons that are unclear. One then uses introspection to dream up a new utility
function, tries it out on the data, rejects it, and iterates. Progress is slow in this loop. It would
clearly be more productive thnd what qualitative properties of the data drive rejections of

a given model. This knowledge could give our search for new models sbme target.

The GMM diagnostics described above are one approach to this characterization. Hansen-
Jagannathan bounds are another approadiatmosing the failures of a model.

As another motivation, it is desirable to say more about the performance of a model than
just to “reject” or “fail to reject” it. Statistical tests answer the questions “is this model
literally true, except for sampling variation?” That's often not a usefidstion. We are
interested in ways of characterizing the performance of false models as well as testing for
truth. For instance, it is interesting to know if a rejected model produces expected return
errors of 0.001% rather than 10%. Above, | advocated examination of the pricing errors,
along with GMM-based standard errors and ad-hoc weighting matrices to this end. The
Hansen-Jagannathan bound provides another set of characterization tools.

The basic idea is to summarize a set of asset data by “what discount factors are consistent
with this set of asset data?” Then, we can try on each model in turn, to see if its discount factor
satidies the characterization. Instead of performing (#datasetsnodels) tests, we need
only perform #data sets + #models calculations. Better yet, knowing what characteristics
of the discount factor we need should be helpful information in constructing new models.
For example, Campbell and | (1997) reverse-engineered a utility function to generate the
conditional heteroskedasticity in the discount factor that we knew we needed, from this kind
of diagnostic.

The basic Hansen-Jagannathan bound characterizes discount factors by mean and vari-
ance. Knowledge that standard data sets require a large discount factor variance been a great
spur to development of the consumption-based model. I'll also survey extensions of the
bound from Cochrane and Hansen (1991) that characterize the correlation of discount factors
with asset returns, and the predictability and conditional heteroskedasticity of the discount
factor. Much work remains to be done finding other interesting moments or characteriza-
tions that will be useful for constructing asset pricing models.

Shiller (198x) made thérst calculation that showed either a large risk aversionfcoef
cient or counterfactually large consumption variability was required to explain means and
variances of asset returns. Mehra and Prescott (198x) labeled this fact the “equity premium
puzzle” and described the risk free rate puzzle discussed below. However, they described
these puzzles in the context of a two-state Markov model for consumption growth, identi-
fying a stock as a claim to consumption and a risk free bond. As we will see, the equity
premium-risk free rate puzzle can be deduced fiom E(mR) and the basic moments of
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SECTION 24.1 THE BASIC HIBOUND AND EQUITY PREMIUM
asset returns, without all the rest of the Mehra-Prescott structure.

24.1  Thebasic HJ bound and equity premium

>

o(Re)’

In postwar US data, this calculation implieém) > 50% on an annual basis, requiring huge
risk aversion or consumption growth volatility.

Recall that in chapter (ref), we started with a consumption-based model, and related the
slope of the mean-variance frontier to the volatility of the discount factor. Reviewing the
logic,

0= E(mR°) = E(m)E(R®) + po(m)o(R®).

implies

~—

1B
(—=p) o(Re)

Correlation codicients must be less than one,aty discount factor mthat pricesthe excess
return R must have standard deviation

o(m) = E(m)

In chapter (ref) we took thdiscount factor as given, and used this equation to characterize
the mean-variance frontier. Here, we use the opposite interpretation. Givematipe ratio
of assets, what do we learn abaliscount factors that might price them? The answer is a
restriction on their means and variances. As graphetyime (ref),c(m) must lie above a
line with slopeE(R°)/c(R®). The latter is the slope of the mean-variance frontier or Sharpe
ratio.

Numbers. The essence of the Hansen-Jagannathan distillation of the equity premium
puzzle is straightforward now. The postwar mean value weighted NYSE is about 8% per
year over the T-bill rate, with a standard deviation of about 16%. TBU®®)/o(R°) is
about 0.5 in annual data, or 0.25 in quarterly data. (Standard deviations scale with the square
root of the horizon.) If there was a constant risk free r&én) = 1/R’ would nail down
E(m). The t-bill rate is not very risky, s&(m) is not far from the inverse of the mean T-bill
rate, or about 0.99. Thus, these basic facts about the mean and variance of stocks and bonds
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CHAPTER 24 HANSEN-JAGANNATHAN BOUNDS AND EQUITY PREMIUM PUZZLE.

imply o(m) > 0.5 = 50%, or 25%, in quarterly data.

In the standard consumption-based model,= 5(c;/c;—1) 7. Per capita consumption
growth has standard deviation about 1% per year. With log utility, that implies) =
0.01 = 1% which off by a factor of 50!. Raising the risk aversion dogént helps. But, to
first ordero((c;/c;—1)~7] = yoler/ei—1] SO huge risk aversion cdefients are required.

The difference between the bound and log utilityn) poses a huge challenge for the
consumption-based model. Mismeasurement of consumption data or lack of aggregation
due to uninsurable individual risk are often mentioned as possible solutions to asset pric-
ing puzzles, but we can see they won't help here. It's not credible that perfectly measured
aggregate or individual consumption growth variessbyo per year! (25% per quarter, or
50/v/12 ~ 15% = per month.) Mine doesn’t. Does yours?

Retreating to the CAPM or other models really doesn’t help, either. For example, the
best derivation of the CAPM starts with the consumption-based model and log utility. The
log utility consumption-based model is in there! Most implementations of the CAPM take
the market premium as givebut to believe the market Sharpe ratio of 0.5 and the CAPM,
you have to believe that properly measured consumption growth has a 50% per year standard
deviation!

I now digress into better ways of making the calculation. Then I return to the numbers
and extensions of the calculation.

24.2  Many returns—formulas

Technically, it's clear we want to calculate a bound ém(m), E(m)} using a vector of re-
turns rather than a single return. | present several ways to make this calculation. | return to
the results later.

2421 A quick argument.

A quick derivation of the Hansen-Jagannathan bound with no restrietion0,

a*(m) > (p — E(m)E(x)) 27" (p — E(m)E(x)).

Hansen and Jagannathan give a quick regression derivation. Take any.yvakd anm
such thap = E(mx). Think of running a regression af on the asset payoffs in question,

my = E(m) + (Xt — E(X))/,B + €
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SECTION 24.2 MANY RETURNS—FORMULAS

We can infer the regression céiefent3 by the requirement that correctly price the assets.
p = E(mx) =E(m)E(x) + 33
where
Z = cov(x,x’)
and, by dénition of a regressionk(s;x) = E(e;) = 0. Solving,
B=%""(p— E(mE(X)).

Again, the latter equality holds becausemust price the assets.

Now, regression residuals are uncorrelated with right hand variables, by construction.
Thus,

o*(m) = 0 [(x¢ — E(x))'B] + °(e)
andfinally, theHansen-Jagannathan Bound:

a*(m) > (p — E(m)E(x)) 27" (p — E(m)E(x)). (172)

Thisis aparabolic regionin { E(m), 0?(m)} space, or ahyperbolain { E(m), o(m)} as
illustrated in Figure (ref)

24.2.2 A projection argument.

The mean-variance frontier of discount factors can be characterized analogously to the
mean-variance frontier of asset returns,

m=x"+we"+n

The projection or regression of onto asset payoffs ought to remind you of the geometric
arguments used in Chapter (ref) to discuss arbitrage and mean-variance frontiers. In fact,
same geometry and arguments generate the mean-variance froligoaft factors®.

Recall that there is always art in the payoff spaceX that prices all payoffs inX.
Furthermore, anyn must be equal te* plus some random variable orthogonallfo andz*
is the projection of anyn on the space of payoffs = E(z*z) & p = E[(z* + ¢)x] where
E(ex) = 0.

9 Asanotein the history of thought, this was the argument in the first draft of Hansen and Jagannathan's paper
the more intuitive arguements came later. This presentation can be found in Gallant Hasnen and Tauchen (1989).
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CHAPTER 24 HANSEN-JAGANNATHAN BOUNDS AND EQUITY PREMIUM PUZZLE.

We can construct a three-way orthogonal decomposition of discount factjust as we
did for returns, as illustrated ifigure 25. (In fact this is the same drawing with different

labels.) Anym must line in the plane marketl/, perpendicular toX throughz*. Any m
must be of the form

m=za"+we"+n

e* is ddined as the residual from the projectionlobnto X or, equivalently the projection
of 1 on the spacé’ of “excessn’s”, random variables of the forrm — z*.

e=1—proj(1|X) = proj(1|E).
e* generates means of just asR** did for returns:
E(m — ") = E[l x (m — 2")] = E[proj(1|E)(m — 27)]

Finally n, defined as the leftovers, has mean zero since it's orthogoratal is orthogonal
to X. As with returns, then, the mean-variance frontiends is given by

m* = 2% + we.
(If all this seems a bit rushed, go back to Chapter (ref). ék&tly the same argument.)

1 X = payoff space

M = gpace of discount factors

*
X*+wer n
X* :

i ; m = x*+we'+n
1 .

proj (1] X)/3

01
HE()=0

E = space of m-x*

Figure 25. Decomposition of any discount facter= z* + we + n.

This construction can be used to derive a formula for the Hansen-Jagannathan bound
for the finite-dimensional cases discussed above. It's more general, since it can be used in
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SECTION 24.2 MANY RETURNS—FORMULAS

infinite-dimensional payoff spaces as well. It extends to conditional vs. unconditional bounds
in the same way, and more easily than the regression approach given above.

Now, to give equations for the construction dimd the mean-variance frontier of discount
factors. Wefind z* as before, it is the portfolie’x in X that pricesx (see (ref)):

" = p'E(xx')"'x.
Similarly, let's find e*. Using the standard OLS formula and remembering fiatl) =
E(x), the projection ofl on X is
proj(1|1X) = E(x)' E(xx)"'x.

(After a while you get used to the idea of running regressions with 1 on the left hand side and
random variables on the right hand side!) Thus,

e* =1—- E(x)E(xx)"x.
Again, you can construct time-seriessfande* from these dénitions.
Finally, we now can construct our variance minimizing discount factors

m* =z* + we* = p'E(xx') 'x + w[1 - E(x)' E(xx’) 'x]
or
m* =w+ [p—wE(x)] B(xx')"'x (173)
As w varies, we trace out discount factors'on the frontier with varying means and vari-

ances. It's easiest find mean and second moment:

E(m*) =w+ [p — wB(x)] E(xx) ' B(x)

E(m?) = [p —wE(x)] E(xx')"" [p— wE(x)];

variance follows fromr?(m) = E(m?) — E(m)?. With a little algebra one can also show
that these formulas are equivalent to equation (172).

What if there is a riskfree rate?

So far | have assumed that the payoff space does not include a (constant) riskfree rate.
What if it does? The answer is, of course, tRdt= 1/E(m) nails down the mean discount
factor, so the “cup” reduces to a vertical line. In this case, the mean-variance frontier of
discount factors is thpoint 2* alone. If this isn’t clear from the picture, we can characterize
any discount factor algebraically as = «* + ¢ with E(ze) = 0. With1 € X, E(ze) =0
implies E(e) = 0. Thus,any m must have the samB(m) = E(z*). The minimumsecond
moment discount factorz*, is then also the minimumwariance discount factor.

This observation leads to another way of thinking about the Hansen-Jagannathan frontier
for payoff spaces that doot contain a unit payoff. Add a unit payoff, supposing that its
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CHAPTER 24 HANSEN-JAGANNATHAN BOUNDS AND EQUITY PREMIUM PUZZLE.

price is a prespefied value ofE(m), thenfind «* and take its variance. Note that all the
above formulas for Hansen-Jagannathan minimizersonsist of some unit payoff and some
combination of the original asset returns. A good exercise is to go through the construction
of z* in augmented payoff spaces and show that you get the same answer

24.2.3 Bruteforce.

You can obtain the same result with a brute force minimization, pickirgiate-by-state
or date-by-date to minimize variance.

A brute force approach to the bound is also useful. It is a technique that is easily adapt-
able tofinding more interesting bounds on fancier moments, and bounds with frictions. It
also shows graphically how we are constructingahastic process for the discount fac-
tor Finally, though the derivations given below are much more elegant and short, it's hard to
see how one would ever have thought of them. It's comforting to see that one can get di-
rectly and constructively to the same answer. (In fact, | know that at least a few of the bounds
in Cochrane and Hansen (199x) wéirst derived this way, and then presented with more
beautiful arguments like the abovel)

By brute force, | mean, solve the problem

I{ni? var(m) givenE(m), p = E(mx).

wherex is a vector of asset payoffs with prige We need to pick theandom variable m,
state-by-state or date-by-date. Since the mean isfixeld, we can minimize second moment
as well as variance, or

1z 1z 1 I
. 2 . _
min E my given T tgl My, P = tgl myXy.

{m} =

If you prefer, you can get the same answer starting with

{'nr?(i.g} 7(s)m(s)? given Zﬂ'(s)m(s), p= Zw(s)m(s)x(s).

S

Introduce a Lagrange multipli@\ on thefirst constraint andé on the second. Then the
first order conditions are
0

a—mt:mf:)\—l—yxt

Thus,the variance minimizing discount factor m* isa combination of a constant and a linear
combination of x;.
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The next step (as in any Lagrangian minimization) is to determiagadd to satisfy the
constraints. It is more convenient to reparameterize the variance minimizing discount factor

m; = BE(m) + (x — E(x))'8.

This is still some combination of a constant and a payoff’efso nothing has changed. Now

we are back where we started with the regression derivation. (If you wiite= \ + §’x;

you are at the same point in the mean-variance characterization, and will get the same answer
as equation (173).) ThE(m) constraint is obviously safied, so we only have to pic# to

satisfy the pricing constraint

E(p) = E [E(m)x, + x,(x; — E(x))'8] = E(m)E(x) + 28
whereX is the variance-covariance matrix of the payoffsThus,
B=3""'[p - E(m)Ex)
and,finally,

m; = BE(m) + [x — E(x)]' S7" [p — B(m)E(x)] (174)

o*(m*) = [p — E(m)E(x)]'S™" [p — E(m)E(x)]
just as before.

Equation (174) is useful. You can use itdiat the time series of the variance-minimizing
discount factor and see what it looks like.

2424  Sharperatiointuition

How to connect the Hansen-Jagannathan bound to the Mean-variance frontier.

In a single excess return case, we found

o(m) _ E(R)
> .
E(m) — o(Re)
This suggests a graphical way fiod a Hansen-Jagannathan bound with many assets: For
any hypothetical risk-free raténd the highest Sharpe ratio. That is, of course the tangency

portfolio. Then the slope to the tangency portfolio gives the rati®)/E(m). Figure 26
illustrates.

As we sweep through values @(m), the slope to the tangency becomes lower, and
the Hansen-Jagannathan bound declines. At the mean return corresponding to the minimum
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ER)

—— o(m=
E(RY/(R®

VE(m) E(R)/0(R)

a(R)

Figure 26. Graphical construction of the Hansen-Jagannathan bound.
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variance point, the HJ bound attains its minimum. Continuing, the Sharpe ratio rises again
and so does the bound.

This fact emphasizes the equivalence between Hansen-Jagannathan frontiers and mean-
variance frontiers. For example, an obvious exercise is to see how much the addition of
assets raises the Hansen-Jagannathan bound. Execily the same as asking how much
those assets expand the mean-variance frontier. It was, in fact, this link between Hansen-
Jagannathan bounds and mean-variance frontiers rather than the logic | described that in-
spired Knez and Chen (1996) and DeSantis (1994) to test for mean-varifin@mney using,
essentially, Hansen-Jagannathan bounds.

24.25 A beautiful inequality

Another way of stating the relation between bounds and Sharpe ratios is the following:

. o(m) E(R®)
min = max .
{al m that pricexe X } E(m) {al excessreturns R¢ in X } U(Re)

(175)

24.2.6 Positive Discount factors

The discount factors produced by consumption based models are always positive, while the
discount factors produced by the Hansen-Jagannathan procedure can be negative at times.
(z* is one of them.) We will get a tighter bound if we construct the space gfasitive
discount factors.

More generally, this is the main advantage of using the discount factor language rather
than expected return and mean-variance frontier language. In that language, it is very hard to
incorporate positivity and arbitrage, while it is seamless in discount factor language.

Direct approach
To derive this bound, try the brute force method.

min E(m?) given E(m), p = E(mx), m > 0.

.1 . 1 1
min T;mf g|Ven?;mt, P = T;mtxt, mye 20

Denote the Lagrange multipliers on thist two constraint@\ and24, and the Kuhn-Tucker
multiplier on the last constrai®,. Thefirst order conditions are

9 .
a_TrLt: my :>\+6IXt+77t, {

nt:Oifmt>0
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Equivalently,
m* = max(A + 8'x,0) = [A + 5/X]+ .

The last equality dénes the-] notation for the truncation of a random variable.

This formula has a nice interpretatiom:; is acall option with zero strike price on a
portfolio of payoffsz augmented by a constant.

Note that if the previous formula happened to produce a positiVethen it solves this
problem as well. If it did not, then we now get a tighter bound.

As before, we have to determirleandé in order to satisfy the mean and pricing con-
straints. Since the problem is no longer linear, this must be done numerically. One approach
is obvious: hand the two equations in two unknowns

E ([ +8%]") = B(m)

E([A+5/x]+ X) =p

to a nonlinear equation solver. Good starting values are the solutions to the HJ bound without
positivity, or the solution at a nearb¥(m), since you will typically do this for a grid of
E(m)'s.

An approach using a minimization.

Nonlinear equations solvers often get stuck, so a second approach that uses straight mini-
mization often works better. Remember that the variance minimiziag a givenE (m) can

be found by augmenting the payoff space with a unit payoff, supposing its priceE¢rbie
andfinding z*. The same approach adapts easilyitaling the bound with positivity, and
yields a numerically more stable procedure.

Recall thatz* = R*/E(R*?) where R* is the minimum second momengturn. We
know that the non-negative variance minimizing discount factor will be a truncated payoff
of the frommax(\ + 8’x;,0). Thus, consider the payoff space composed of the original
payoffs, the unit payoff with pricéZ(m) and truncations of these. All we have to ddiizd
the minimum second moment return in this payoff spéiog,«*, and take its variance.

To be spedic, suppose we start with two returnB? and R°. The return on the unit
payoffis1/E(m). Then,R* solves

E(R**) = min E
{e,cv}

2
max (caRa + PR+ (11— — )=, 0) ]
m

at the optimal choice of%, . You still have to use a search routinefiod c* and c?,
but you are searching for the minimum of a “quadratic” function, which is a lot easier nu-
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merically than solving systems of equations. Finally, you conswritt*?) = E(x*2) —
E(z*)? = 1/E(R*?) — E(m)?. Do all this for a range ofZ(m), and you trace out the
Hansen-Jagannathan bound with positivity.

A duality approach.

Here’s another way to calculate the bound. Write the original problem in Lagrangian form as

. 2y _ 1 okt _
{nnllé%} ?Ali% E(m?®) — 2X[E(m) — p] — 26" [E(mx) — p].

We can interchangmin and max yielding

. 2 _ _ _ / _
max {gg%}E(m) 2A[E(m) — p] — 26" [E(mx) — p]

Do the inner minimization: For giveh andé state-by-state minimization gives
m* = [)\+6’x]+.
Now the problem is simply

E[A & +2]—)\[E()\ & *)— }—5’[E(A &'x] " )— }
g%}i[—&-x] [+x] W [+X]xp

While our original minimization problenming,,, meant choosingn in every state (or
date, in afinite sample), this conjugate or dual minimization only chooses)onad 4, a
vector with as many elements as payoffs. It is quite straightforward to hand this problem
directly to a numerical maximizer.

Arbitrage bounds

While the original Hansen-Jagannathan bound is parabolic, the bound with positivity rises to
infinity at finite values ofE'(m). Thus, it appears that there are valuegigfn) for which

we cannot construct any positive discount factor. It must be that they imply an arbitrage
opportunity.

We can calculate the arbitrage boundsifn) directly. Suppose a payoff is always
greater than 13 > 1 Then price of this payoff must satispy(x) > p(1) = E(m) by absence
of arbitrage. Interpreting the equation backwards, we |&gm) < p(z). (Or, the minimum
variance of a positive discount factor with mean greater tiianis infinite.)

You will generally be able to construct such a payoff ifirite sample. For example,
10 times the T-bill return will undoubtedly be greater than 1 at every data point. (These
are payoffs, not portfolios — the weights do not have to sum to one.) Then, we know that
E(m) < 10.

If 1 wasin the payoff space (if there was areal risk freerate) then we would know E(m)
exactly. If the payoff space does not contain 1, it may well contain a payoff (payoff, not
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return) that is alwaygreater or smaller than one. The price of these payoffs givesinite
limits on the range of(m).

Finding the arbitrage bounds is straightforward. We want the payoff greater than one
with smallest price. So search for it. In our two-return example payoffs are combinations
c®R® + ¢’ R?, and have price® + c*. Thus, you want tdind

{mirll} (¢ + cb) s.t. c*R¢ + cPRY > 1 forallt.

Again, we donot imposec® + ¢® = 1; these are payoffs, not necessarily returns. Similarly,
you canfind the lower arbitrage bound tinding the payoff with largest price that is always
less than one.

You should already be concerned aboutfihée-sample performance of this procedure.
For example, suppose returns are lognormally distributed. Then, any return will eventually
be arbitrarily close to zero and arbitrarily large, so there is no arbitrage bound using the
population moments. But of course, any sample will feature a minimum and a maximum
return, so that it will look like there is an arbitrage bound in any sample.

24.3 Resaults

244  Beyond mean and variance.

The point of the bound is to characterize discount factors in ways that will be useful to the
construction of asset pricing models. By now, it is well known that discount factors must

be quite volatile. But whatther moments must a successful discount factor posses? Work

is just beginning on this question. Here | report two calculations, taken from Cochrane and
Hansen (1992).

2441  Correlation Puzzle

Go back to the derivation simplest one excess return bound, we manipbilatdemr) to
obtain

E(m)E(R°)

e

(176)

At this point, we noted thai| < 1, yielding the HJ bound. This means that theon the
bound isperfectly correlated with the excess return. More generally, Hansen-Jagannathan
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minimizers are of the form m = v+ R’3 and so are perfectly correlated with some portfolio
of asset returns..

This problem is more general. The stock returns in the Mehra-Prescott model are also
nearly perfectly correlated with consumption growth. Most general equilibrium models also
feature consumption growth highly or perfectly correlated with stock returns. At an elemental
level, most general equilibrium models use only one shock, so there is a sense iralivhich
time series are perfectly correlated (stochastically singular).

But consumption growth isot highly correlated with returns. In quarterly data, the corre-
lation of consumption growth with the VW excess return is about 0.2. Using equation (176),
this observation raises the required variance:dfy a factor of 5, to about 1.0 or 100% per
quarter!

Furthermore, it's easy to modify a discount factor model to give you lots of variance: Just
add an i.i.d. errorE [(m + €)R] = E(mR) so this has no effect whatsoever on the pricing
predictions but obviously gives a much bigger variance.

Finally, correlation is what asset pricing is fundamentally all ab&8{f¢) = —cov(m, R¢)/E(m)
so anm only explains expected return variation if it is correlated with returns. We don’t want
to produce models with variable discount factors uncorrelated with returns!

A simple bound

Based on equation (176) we could thus generalize the previous bound to a minimum
variance ofn given the mean ofz and a correlation ofn and excess returns not to exceed a
given valuep. This calculation yields bounds proportionately higher than the original bound.

A multivariate version

One can do the same thing in a multivariate context. Think of runningraion the set
of asset returns under consideration and a constant,

my = E(m) + [x¢ — E(X)]8 + &

We know whatx; — E(x)]3 should bethat’s the HJ minimizern* at this value ofE(m).
Thus,

o?(m) = o*(m*) + o*(e).
The R? of the regression af onx is
R? = 0*(m*) o (m)
Thus, for any discount factor,
o*(m) = o®(m")/R*.

Here’s what it means. Take the Hansen-Jagannathan bound, and divide by a value of
R?, say 0.2. This is the minimum variance of all s with the given mearfZ(m) and that,
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when regressed on asset returns, havg4no less than 0.2. Formally, denote By*® 2 the
desired upper bound of th@? of the discount factor on asset payoffs. The problem

min o%(m) s.tp = E(mx),R?* < Rmax2
has solution
o?(m) = o?(m*)/R?.

Obviously, you get a series of higher and higher bound®?is lower and lower.

Changing the mrather than the bound.

Instead of changing tHmund, we can achieve the same thing by changingtmelidates.
Consider the problem

min o2 (proj(m|X)) s.tp = E(mx)

Sincem* = proj(m|X, 1), we have the answer to this problem,

o*(proj(m| X)) = o*(m”)

The Hansen-Jagannathan bound doesn’t only apply to the actual discountifagiplies
just as well to theprojection of the discount factor on the space of asset payoffs (with a
constant). If a discount factor model has lots of variance, but is uncorrelated with asset
payoffs, it mayfit in the HJ bound, but it will utterly fail this test, revealing (or diagnosing)
its problem: lack otorrelation with asset returns.

Conditional mean vs. variance

245  What do we know about discount factors: a summary

24.6 Commentson the Hansen-Jagannathan bound.

It's fairly easy to produce a discount factor that has a lotasfance. Given a miserable
candidate/n, thenm + €, E(ex) = 0 prices assets just as badly iasbut has a lot more
variance!

Thus, the HJ bound seems most useful for evaluating models such as the standard consumption-
based model that produce a unique seriesiediscount factorn. One evaluates habit per-
sistence with pricing objects in the classt e that may have a lot more variance than the true
m. The HJ bound is basically useless for evaluating factor mptledse make no pretence
at beingthe m.

266



SECTION 24.6 COMMENTS ON THE HANSEN-JAGANNATHAN BOUND.

The most lasting impact of the HJ bound may come from its impact on other questions in
Finance.

We can exploit HJ bounds to ask questions about mean-variance frontiers, and apply the
above GMM testing methodology to those questions. It's natural to ask whether adding an
asset return or group of asset returns makes bounds go up. Ekiégtly the same question
as asking whether the addition of a return makes the mean-variance frontier expand. Snow
(1991) uses this idea to test whether the addition of sfiratl returns expands the mean-
variance frontier beyond what is available using ldig® returns. This is a nice test of the
“small firm effect.” DeSantis (1993) uses the same idea to test whether one can really expand
the mean-variance frontier by international divecsition. Like adding domestic returrex-
postmean variance frontier can enlarge a great deal by adding assets, but this is probably
spurious. By testing we can see if the ex-antemean variance frontier is enlarged by adding
some asset returns.. Thisis an important test of international diversification.

More generaly, the Hansen-Jagannathan methodology is the inspiration for testing factor
pricing models by testing models of the form = a + b’f. These models look just like
Hansen-Jagannathan candidate discount factors, and they are. By testing such a model, we
are testing whether the factdisspan the mean-variance frontier of the assets.
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Chapter 26. Notation

| use bondface to distinguish vectors from scalars. For example x isascalar, but x isavector.
| use capitd letters for matrices, though not all capital letters are matrices (e.g. R). A partia
list of frequently-used symbols:

x = payoff

p, p(x) = price, price of payoff x

R =z /p = gross return

r = R—1lorIn(R) = netor log return

R¢ = excess return

R' = notation to indicate one among many asset returasl, 2,..N is implicit.
m = discount factarp = E(mx)

u(c), v/(c) = utility, marginal utility

X = space of all payoffs € X

x* = payoff that acts as discount factpr= F(z*x)

R* = return that acts as discount fact®t = z* /p(z*)

0 subjective discount factar(c;) + Su(c.1) and to denote regression cheient
B, B, .. regression coétients.

A = factor risk premium in beta pricing model

f: =factor e.g., market return for the CAPM

2, dz; = standard Brownian motion

Returns| use capitalR to denote grossreturn, e.g.

_ $back
~ $paid’
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For astock that pays adividend D, the grossreturnis

Piy1+ Dy _ $back; 1
P, $paid,

Ry = (for example, 1.10)

R isanumber like 1.10 for a 10% return.
Severa other unitsfor returns are convenient. The net returnis

riy1 = Rep1 — 1 (For example, 0.10).
The percent returnis
100 x 741 (For example, 10%)
The log or continuously compounded returnis

ry = In R, (For example, In(1.10) = 0.09531 or 9.531%)

Thereal return corrects for inflation,

Goods back;. 1

real __
Ry = Goods paid;

The consumer price index is defined as

$t CPIt+1
Pl = ——: 11 =
CPIL Goods,” ~ “** T TCPI,

Thus, we can use CPI datato find real returns as follows.

Goods; 41 _ 1 nominal

R 111 X $ip0 Sit1 CPLiyi _ pnomid CPL _ Rifi
1= = — th41 - ’

+ $, x Gqﬁc;)tdsz $tﬁ tCPIyy BN}

|.e., divide the gross nominal return by the gross inflation rate to get the grossreal return.

You're probably used teubtracting inflation from nominal returns. This is exactly true
for log returns. Since

In(A/B) =In A —InB,
we have
InRI% =In R — InT,.
For example, 10%-5% = 5%. It is approximately true that you can subtract net returns this
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CHAPTER 26 NOTATION

Waya

R?ir?inal B (1 _;'_,rnomia,l)
Ht+1 - 1+7

147" —m.

The approximation is ok for low inflation (10%) or less, but really bad for 100% or more
inflation.

Using the same idea as for real returns, you can find dollar returns of international secu-
rities. Suppose you have a German security, that pays a gross Deutchmark return

RDM _ DM back;
+ DM paid

Then change the units to dollar returns just like you did for real returns. The exchange rate is
defined as

$/pM St
€; = —.
DM,
Thus,
$/DM

ps. St DMipy Sea /DMy RDM  Cit1
18 DM, © 8,/DM, s

Compound returns Suppose you hold an instrument that pays 10% per year for 10 years.
What do you get for a $1 investment? The answer is not $2, since you get “interest on the
interest.” The right answer is tleempound return. Denote

V, = value attime t
Then

V1:RVO:(1+T)V0
Va = R x (RVp) = R*Vj

Vy = RTV,

Thus,R” is thecompound return.

As you can see, it's not obvious what the answer to 10 years at 10% is. Here is why log
returns are so convenient. Logs have the property that

In(ab) =Ina+1nb; In (aQ) =2Ina.
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Thus
InVi=InR+1InVj

InVyp=TIhR+1InV

Thus the compound log returnisT" times the one-period log return.

More generally, log returns are really handy for multi-period problems. Thmeriod
return is

RiRs..Rp
while theT' period log return is

ln(Rle...RT) = 1H(R1) + IH(RQ) =+ ... IH(RT)

Within period compounding This is best explained by example. Suppose a bond that
pays 10% is compounded semiannually, i.e. two payments of 5% are made at 6 month inter-
vals. Then the total annual gross return is

compounded semi-annually(1.05) (1.05) = 1.1025 = 10.25%
What if it is compounded quarterly? Then you get
compounded quarterly(1.025)* = 1.1038 = 10.38%

Continuing this way,

. r\N
compounded N tlmes<1 + N)

What if you go all the way and compouedntinuously? Then you get

N 1 1
1?@(1‘%%) :1+T+§7’2+mr3...:€r.

Well, if the gross retur? = e”, thenr = In R. For example a stated rate of 10%, continu-
ously compounded is really a gross returre®f® = 1.1051709 = 10.517%.

Both kinds of compounding If you really want a headache, what is the two year return
of a security that pays a stated ré&tecompunded semiannually? Well, again wite- R —1,

it must be
r\ 2
1 —) .
(143
Similarly, the continuously compound@&tyear return is

e
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Chapter 27. Utility functions

The standard representation of investor preferences or utility is

E, Zﬁju(0t+j)~

Jj=0

This maps a consumption stream into “utility” or “happiness.” Theperiod utility function
u(c) is an increasing function — more consumption makes you happier— but concave — the
extra dollar of consumption increases happiness less and less the more you have.

Standard functional form$ower or constant relative risk aversion utility is

1—y
u(c) = 16_ S

a special case when= 1 islog utility
u(e) = In(c)

We sometimes usguadratic utility
1
u(e) = —5(c ")

it's convenient for solving problems, but obviously limiteddec ¢*. It has the unattractive
property that you get more risk averse as consumption rises.

This concavity of the utility function also generategsk aversion. For example if there
are two possible events,= win $100 andb = lose$100 then

U(bet) = mou(cy) + mpu(ey) = E [u(z)].
the concavity of utility means sk aversion, people will pay to avoid fair bets. In equations,
Efu(bet)] =mqu(cy) + mpul(cy) < u(macqa + mpep) = u[E(bet)]

Risk aversion means that an equal chance of getting or losing $100 (say) of consumption
makes you worse off. If utility idlat (linear), the investor isisk-neutral and indifferent to
such abet. The utility of such abetis expected utility, not utility of expected consumption

The sum part of the utility function captures the effect of time. You prefer consumption
today to consumption 10 years from now. To capture this, the momentary utility u(c) is
multiplied by asubjective discount factgf, somewhat less than one.
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Chapter 28. Probability and statistics

28.1  Probability

28.1.1 Random variables

We model returns as random variables. A random variable can take on one of many values,
with an associated probability. For example, the gross return on a stock might be one of four
values.

Value Probability

1.1 1/5
R= 105 1/5
1.00 2/5
0.00 1/5

Each value is a possible realization of the random variable. Of course, stock returns can
typically take on a much wider range of values, but the idea is the same. Many finance texts
distinguish the random variable from its realization by using R for the random variable and
R for theredlization. | don't.

Thedistribution of the random variable is a listing of the values it can take on along with
their probabilities. For example, the distribution of return in the above example is

(Real statisticians call this thiensity and reserve the wordistribution for thecumulative
distribution, a plot of values vs. the probability that the random variable is at or below that
value.)

A deeper way to think of a random variable iguaction. It maps “states of the world”
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CHAPTER 28 PROBABILITY AND STATISTICS

into real numbers. The above example might realy be

Value State of the world Probability
1.1 New product works, competitor burns down 1/5
R= 105 New product works, competitor ok. 1/5
1.00 Only old products work. 2/5
0.00 Factory burns down, no insurance. 1/5

The probability really describes the external events that define the state of the world. How-
ever, we usually can’'t name those events, so we just think about the probability that the stock
return takes on various values.

In the end, all random variables have a discrete number of values, as in this example.
Stock prices are only listed to 1/8 dollar, all payments are rounded to the nearest cent, com-
puters can't distinguish numbers less tharr*9 or so apart. However, we often think of
continuous random variables, that can be any real number. Corresponding to the discrete
probabilities above, we now have a continuous probalifysity, usually denoted’ (R).

The density tells you the probability per unit 8f f (Ro) AR tells you the probability that
the random variabl® lies betweerRy andRg + AR.

A common assumption is that returns (or log returns) ramemally distributed. This
means that the density is given by a sfiedunction,

2
F(R) = e l“’;%] |

The graph of this function looks like

About 30% (really 31.73%) of the probability of a normal distribution is more than one
standard deviation from the mean and about 5% is more than two standard deviations from
the mean (really 4.55%, the 5% probability line is at 1.96 standard deviations). That means
that there is only one chance in 20 of seeing a value more than two standard deviations from
the mean of a normal distribution. Stock returns have “fat tails” in that they are slightly more
likely to take on extreme values than the normal distribution would predict.
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SECTION 28.1 PROBABILITY

28.1.2 Moments

Rather than plot whole distributions, we usual ly summarize the behavior of arandom variable
by afew moments such as the mean and variance.

I'll denote the values thaR can take on a®; with associated probabilities;. Then the
mean is defined as

Mean:E (R) = Z i R;.
possible valuesi

The mean is aneasure of central tendency, it tells you whereR is “on average.” A high mean
stock return is obviously a good thing!

Thevarianceis defined as

Variance:o? (R) = E [(R - B (R))Q} = m[Ri—E (R)]?

Since squares of negative as well as positive numbers are positive, variance tells you how far
away from the meaiR typically is. It measures the spread of the distribution. High variance
is not a good thingit will be one of our measures ofsk.

Thecovarianceis

Covariancerov (R*, R”) = E [(R* — E (R")) (R* — E (R"))]

= mlRi — E(R)| [R! - E (R')]

It measures the tendency of two returns to move together. It's positive if they typically move
in the same direction, negative if one tends to go down when the other goes up, and zero if
there is no tendency for one to be high or low when the other is high.

The size of the covariance depends on the units of measurement. For example, if we
measure one return in cents, the covariance goes up by 100, even though the tendency of
the two returns to move together hasn’t changed. ddmeelation coefficient resolves this
problem.

cov (Ra, Rb)
o (R)o (Rb)

The correlation coéifcient is always between -1 and 1.

Correlation:corr (R, Rb) =p=

For continuously valued random variables, the sums become integrals. For example, the
mean is

E(R):/Rf(R)dR.
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CHAPTER 28 PROBABILITY AND STATISTICS

The normal distribution defined above has the property that the mean equal s the parameter (.,
and the variance equals the parameter o2, (To show this, you have to do the integral )

28.1.3 M oments of combinations

We will soon have to do a lot of manipulation of random variables. For example, we soon
will want to know what is the mean and standard deviation of a portfolio of two returns. The
basic results are

1) Constants come out of expectations and expectations of sums are equal to sums of
expectations. If ¢ and d are numbers,

E (cR*) =cE(R")

E(R*+ R’) = E(R*) + E (R)
or, more generaly,
E (cR*+dR") = cE (R") + dE (R®).
2) Variance of sumsworks like taking a square,
var (cR* + de) = c2var (RY) + d*var (Rb) + 2cd cov (R, Rb) .
3) Covariances work linearly
cov (CR“, de) = cd cov (Ra', Rb)
To derive any of these or related rules, just go back to the definitions. For example,

E(cR*) =) micR{ =¢) _ mR}=cE(R").

28.14 Normal distributions.

Normal distributions have an extra property. Linear combinations of normally distributed
random variables are again normally distributed. Precisely, if R* and R’ are normally dis-
tributed, and

RP = cR® + dR°
then, R? is also normally distributed with the mean and variance given above.
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28.1.5 Lognormal distributions

A varigble R islognormally distributed if » = In(R) is normally distributed. Thisisanice
model for returns since we can never see R < 0 and alognormal captures that fact, where
you cansee R < 0 if itisnormaly distributed. Lognormal returns are like log returns, useful
for handling multiperiod problems.

Since R = e % = ¢7 by definition, wouldn't it be nice if E(R) = ¢”(")? Of course, that
isn’t true becaus& | f(z)] # f[E(x)] . But something close to it is true. By working out the
integral déinition of mean and variance, you can show that

E(R) = eE(+o*(1)/2,
The variance is a little trickietR? = ¢ so this is also lognormally distributed. Then
o%(R) = E(R?) — E(R)? = G2E(r)+20%(R) _ 2B(r)+0*(R) _ 2E(r)+0*(R) [eoz(R) -~ 1} .
As a linear combination of normals is normal, a product of lognormals (raised to powers)
is lognormal. For example,
RiRy = et

sincer; andr, are normal so is; + 2, and therefore?, R, is lognormal.

28.2 Statistics

2821  Samplemean and variance

What if you don't know the probabilities? Then you havesttimate them from asample.
Similarly, if you don’t know the mean, variance, regression ficieint, etc., you have to
estimate them as well. That’s whatstisticsis all about.

Theaverage or sample mean is
1 &
R= t; R,

where{ Ry, Ry, ...R;,...Rr} is asample of data on a stock return. Just to be confusing,
many people usg for sample as well as population mean. Sometimes people usg:tats,
distinguish estimates or sample quantities from true population quantities.

Keep thesample mean and the true, opopulation mean separate in your head. For exam-
ple, the true probabilities that a coin will land heads or tails is 1/2, so the mean of a bet on a
coin toss ($1 for heads, -$1 for tails) is 0.sAmple of coin tosses might be {H,T,T,H,H}. In
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that sample, the frequency of heads is 3/5 and tails 2/5, so the sample mean of a coin toss bet
is1/5.

Obvioudly, as the sample gets bigger and bigger, the sample mean will get closer and
closer to the true or population mean. That property of the sample mean (consistency) makes
it agood estimator. But the sample and popul ation mean are not the same thing for any finite
sample! Also, sample means approach population means only if you are repeatedly doing the
same thing, such as tossing the same coin. This may not be true for stocks. If there are days
when expected returns are high and days when they are low, then the average return will not
necessarily recover either expected return. The sample of the Peso/Dollar exchange rate was
pretty useless the day before the Peso plunged.

The sample varianceis

SPCRR Tk
S—O'—T_lz[t ]
t=1

Sample values of the other moments are defined similarly, as obvious analogs of their popu-
lation definitions.

28.2.2  Variation of sample moments

The sample mean and sample variance vary from sample to sample. If | got {H,T,T,H,H},
the sample mean is 1/5, but if | happened to get {T,T,H, T, T}, the sample mean would be -4/5.
Thus the sample mean, standard deviation, and other statistics aranalsm variables; they

vary from sample to sample. They are random variables that depend on the whole sample,
not just what happened one day, but they are random variables nonetheless. The population
mean and variance, by contrast are just numbers.

We can then ask, “how much does the sample mean (or other statistic) vary from sample
to sample?” This is an interesting question. If a mutual fund manager tells you “my mean
return for the lasfive years was 20% and the S&P500 was 10%” you want to know if that
was just due to chance, or means that his true, population mean, which you are likely to earn
in thenext 5 years is also 10% more than the S&P500. In other words, wasdtigation of
the random variable called “my estimate of manager As mean return” near the mean of the
true or population mean of the random variable “manager As return?”

Figuring out the variation of the sample mean is a good use of our formulas for means
and variances of sums. The sample mean is

1 T
R - ZRt
t=1
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Therefore,
E(R) = %ZE(Rt) = E(R)

assuming all the R} s are drawn from the samedistribution (acrucially important assumption).
This verifies that the sample mean is unbiased. On average, across many samples, the sample
mean will reveal the true mean.

The variance of the sample meanis

T T
_ 1 1
2 2 2 H
o*(R) =0 <_T ;:1 Rt> =75 ;:1 o“ (R;) + (covariance terms)

If we assume that all the covariances are zero, we get the familiar formula

o (R) = o z(1R)

or
- o (R)
W=7

For stock return, cov (R, Ryy1) = 0 isapretty good assumption. It's a great assumption for
coin tosses: seeing heads this time makes it no more likely that you'll see heads next time.
For other variables, it isn’'t such a good assumption, so you shouldn’t use this formula.

You don’'t knowo. Well, you canestimate the sampling variation of the sample mean
by using your estimate of, namely the sample standard deviatidising hats to denote
estimates,

The classic use of this formula is to give a standard error or measure of uncertainty of the
sample mean, and to test whether the sample mean is equal to some value, usually zero.

The test is usually based oncanfidence interval. Assuming normal distributions, the
corfidence interval for the mean is the sample mean plus or minus 2 (well, 1.96) standard
errors. The meaning of this interval is that if the true mean was outside the interval, there
would be less than a 5% chance of seeing a sample mean as high (or low) as the one we
actually see.
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Now that we have computers, there is an easier method. We can just calculate the proba-
bility that the sample mean comes out at its actual value (or larger) given the null hypothesis,
i.e. calculate this area

This is called thep-value.

Usudlly, tests are run using the t-distribution When you take account of sampling varia-
tion in 4, you can show that the ratio

JFR-ER)

is not a normal distribution with mean zero and variance 1, thaligiribution.
28.3 Regressions
We will run regressions, for example of a return on the market return,
Ri=a+ PR, +e; t=12.T
and sometimes multiple regressions of returns on the returns of several portfolios
Ri=a+ PRy + YRy +e; t=1,2..T.
The generic form is usually written

ye=a+ G121+ Boxar + ... +e&; t=1,2,..7T

Both textbooks and regression packages give standard formulas for estimates of the re-
gression codicients,; and standard errors with which you can construct hypothesis tests.

Several important facts about regressions.

282



SECTION 28.4 PARTITIONED MATRIX INVERSE FORMULAS

1) The population value of a single regression coefficient is'®

~ cov (y,x)
p= var (z)

2) The regression recovers the true 3 (precisely, the estimate of G is unbiased) only if
the error term is uncorrelated with the right hand variables. For example, suppose you run a
regression

sales = « + [ advertising expenses + .

Discounts aso help sales, so discounts are part of the error term. If advertising campaigns
happen at the same time as discounts, then the coefficient on advertising will pick up the
effects of discounts on sales.

3) In amultiple regression, 3, captures the effect on y of only movementsin z; that are
not correlated with movements in x». If you run a regression of price of shoes on sales of
right shoes and left shoes, the coefficient on right shoes only captures what happens to price
when right shoe sales go up and left shoe salesdon't. I.e., it doesn’'t mean much.

284  Partitioned matrix inver se formulas

H“% ”H—ma'A—leA

a «

A Bl '  [A'4A'BE-'CA™' —A"'BE-!
C D - —E-lcA™! E-!
E = D-CA'B
or,
A B] ' E-! —~E-1BD"!
C D = | -p'CE"! D'+ D 'CE'BD!

E = A-BD™'C

10 1f you forgot why, start with
Yyt = o+ B + et
multiply both sidesby z; — E (x+) and take expectations, which gives you

cov (z¢,yt) = Puar (z¢).
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If they are symmetric,

A B -1 - A1 +A_1B/E_1BA_1 _AIB'E-?
B D - —E1BA! E!
E = D-BA'B
or,
A Bt E-1 ~E-1B'D!
B D =~ | —=D"'BE"! D-'4+ D-'BE-'B'D-!

E = A-BD'B
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