
To Block or not to Block, That is the Question: Students’
Perceptions of Blocks-based Programming

David Weintrop

Northwestern University
2120 Campus Drive, Suite 332

Evanston, Illinois 60628
dweintrop@u.northwestern.edu

Uri Wilensky
Northwestern University

2120 Campus Drive, Suite 337
Evanston, Illinois 60628

uri@northwestern.edu

ABSTRACT
Blocks-based programming tools are becoming increasingly
common in high-school introductory computer science classes.
Such contexts are quite different than the younger audience and
informal settings where these tools are more often used. This
paper reports findings from a study looking at how high school
students view blocks-based programming tools, what they identify
as contributing to the perceived ease-of-use of such tools, and
what they see as the most salient differences between blocks-
based and text-based programming. Students report that numerous
factors contribute to making blocks-based programming easy,
including the natural language description of blocks, the drag-and-
drop composition interaction, and the ease of browsing the
language. Students also identify drawbacks to blocks-based
programming compared to the conventional text-based approach,
including a perceived lack of authenticity and being less powerful.
These findings, along with the identified differences between
blocks-based and text-based programming, contribute to our
understanding of the suitability of using such tools in formal high
school settings and can be used to inform the design of new, and
revision of existing, introductory programming tools.

Categories and Subject Descriptors
D.1.7 [Visual Programming]. K.3.2 [Computer and Information
Science Education]: Computer science education.

General Terms
Design, Human Factors, Languages

Keywords
Blocks-based Programming; High School Computer Science
Education; Perceptions of Programming

1. INTRODUCTION
Computation is changing our world. Competencies and skills
grounded in the ability to effectively use computational tools, and
design and implement solutions that rely on computation, often
collected under umbrella terms like “Computational Thinking,”
or “21st Century Skills,” are now the focus of many new K-12
initiatives. This has resulted in new curricula and learning
environments for introducing students to the field of computer
science. Increasingly, these courses are turning to blocks-based
visual programming tools to serve as students’ first introductions
to the practice of programming. Notably, the Exploring Computer
Science Curriculum [13], the CS Principles course [1], and the
materials produced by code.org for classrooms, all rely on the use
of blocks-based programming. This trend is in part due to the
general perception that blocks-based programming is easier for
novice programmers. Despite the rise in prominence of blocks-
based programming in formal settings, open questions remain as
the strengths and drawbacks of this programming modality in
classroom settings. Notably, little work has been done examining
how learners perceive blocks-based programming interfaces and
what they see as the utility of the approach relative to the more
conventional text-based alternatives. Additionally, much of the
work done on evaluating block-based programming has focused
on younger learners and informal settings, contexts quite distinct
from the high school classrooms where blocks-based
programming is increasingly being used. This paper seeks to
address these gaps in the literature by answering the following
three research questions:

• Do high school students think blocks-based programming is
easier than text-based programming and if so why?

• What do high school students perceive as the differences
between blocks-based and text-based programming?

• What potential drawbacks to block-based programming do high
school students identify?

We begin the paper with an introduction to blocks-based
programming, trying to capture the current state and popularity of
the programming approach. We then present our study design, a
ten-week intervention in three sections of an introductory high
school computer science course that followed students as they
spend five weeks working in blocks-based tools then transitioned
to a text-based programming language. Next, we present our
findings, which include student identified strengths and
weaknesses of blocks-based programming and reports on what
they see as the major differences between blocks-based and text-
base programming. Finally, we discuss the implications of these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IDC '15, June 21 - 25, 2015, Medford, MA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3590-4/15/06…$15.00
DOI: http://dx.doi.org/10.1145/2771839.2771860

Full Papers ID 2015 Medford, MA, USA

199

findings with respect to the design of introductory tools and the
use of blocks-based programming in formal classroom settings.

2. BLOCKS-BASED PROGRAMMING
Blocks-based programming environments are a variety of visual
programming languages that leverage a primitives-as-puzzle-
pieces metaphor (Figure 1). In such environments, learners can
assemble functioning programs using only a mouse by snapping
together instructions and receiving visual (and sometime audio)
feedback informing the user if a given construction is valid. Each
block provides visual cues to the user on how and where the block
can be used through the block’s shape, its color (which is
associated with categories of similar blocks), and the use of
natural language label on the block to communicate its function.
Along with the visual information depicted by each block, the
construction space in which the blocks are used also provides
various forms of scaffoldings including the grouping of similar
blocks together, making it possible to easily browse the available
set of blocks by category, and often providing a visual execution
space in which the authored programs are enacted.

(A) LogoBlocks (B) Scratch (C) Alice

Figure 1. Three examples of blocks-based programming tools.

Blocks-based programming is a relatively recent addition to the
long line of programming languages and environments designed
explicitly with learners in mind (for reviews of this work, see: [8,
14, 22]). The earliest language designed explicitly for children,
and a direct influence for blocks-based programming tools is the
Logo programming language [10, 28]. The Logo language
introduced a number of characteristics that feature prominently in
blocks-based programming environments, notably, the use of
egocentric motion commands like forward and turn right, the
presence of onscreen avatars to carryout those commands (Logo
had the turtle, while newer environments have sprites), and
language primitives and syntax designed to be accessible to
novices. Beyond features of the programming interface, the types
of activities supported by blocks-based tools draw from the
constructionist tradition that emphasizes learner-directed
construction and exploration and the importance of learners
creating public, sharable artifacts, often in the form of artwork,
games, and interactive stories [15, 28].

In recent years, there has been a proliferation of programming
environments that utilize a blocks-based approach. Well known
block-based programming environments such as Scratch [29] and
Alice [5] provide learners with open-ended, exploratory spaces
designed to support creative activities like story telling and game
making. With the rise in popularity of these and other similar
tools, the number of activities a learner can engage with through
blocks-based programming is growing increasingly diverse. For
example, you can develop mobile applications with MIT App
Inventor and Pocket Code [32], build and interact with
computational models with DeltaTick [36], NetTango [19], Frog
Pond [18] or StarLogo TNG [2], create artistic masterpieces with
Turtle Art [3] or PicoBlocks, and play video games like

RoboBuilder [34] and CodeSpells [9]. Similarly, informal
computer science education initiatives are increasingly relying on
blocks-based programming, including the activities provided as
part of Code.org’s Hour of Code and Google’s Made with Code
initiative. The rise of blocks-based tools is especially prominent in
the design of programming tools for younger learners. A recent
review of coding environments for children included 19 drag-and-
drop tools among the 24 environments reviewed for learners
under the age of eight, and 28 drag-and-drop environments out of
the 47 total reviewed environments [8]. Further, we expect this
trend to continue as a growing number of libraries are making it
easy to develop environments that incorporate a blocks-based
programming interface [12, 30]. With the growth of these
environments, it is crucial to understand where they came from, if
and why they work, and identify how learners perceive and
interact with such tools and learn with such tools.

The blocks-based programming approach weaves together two
historically distinct strands of research on ways to scaffold novice
programmers. The first is the use of direct manipulation interfaces
that present users with on-screen icons that depict the concepts or
objects that the users will use to accomplish the desired goal.
Programming in these environments takes the form of connecting
the appropriate icons on screen. This approach has become
popular for designing robotics kits such as Lego Mindstorms
NXT-G [23] and the MiniBloq programming environment for the
Arduino family of microcontrollers [31]. The second influence on
blocks-based programming arose from the rise of structured
editors [7], which are software authoring environments that use
information about a programming language’s underlying grammar
to provide scaffolds to the users such as code-complete
suggestions, syntax highlighting and real-time complication
checking [27]. Similar to structured editors, blocks-based
programming environments use the grammar of the language to
support the act of programming by encoding the grammar of the
language into the individual blocks through the name, shape and
color ascribed to each block. The environments then allow the
user to interact with these grammar elements (the blocks) directly
though a drag-and-drop interface. In this way blocks-based tools
provide the transparency and ease-of-use of direct manipulation
interfaces with the scaffolds enabled by structured editors to
create an introductory programming environment that is inviting
and easy to use that also faithfully embodies the practice of
programming and introduces learners to central ideas of
programming.

Some have conceptualized blocks-based programming as serving
as an introduction to programming that can lay the foundation for
an eventual transition to text-based programming, but this remains
an open empirical question that is only starting to be answered. A
first step towards understanding if and how blocks-based
programming prepares learners for future text-based programming
is to identify what features of blocks-based programming learners
find salient and how they perceive them relative to more
conventional text-based programming.

3. METHODS AND PARTICIPANTS
The data presented in this paper are part of a larger study
comparing blocks-based, text-based, and hybrid blocks/text
programming environments at a selective enrollment public high
school in a Midwestern city. We followed students in three
sections of an elective introductory programming course for the
first 10 weeks of the school year. Each class spent the first five
weeks of the course working in a form of blocks-based
programming environment. The students then transitioned to Java,

Full Papers ID 2015 Medford, MA, USA

200

a text-based programming language, for the next five weeks of the
study and then continued with Java for the duration of the year.
Two teachers participated in this study (one teacher taught two of
the classes), both of whom have over five years of teaching high
school computer science and have previously taught the course.
Both teachers run a workshop-style class, doing little lecturing,
instead having students spend class time working on assignments
and asking for help when it is needed.

The three classes participating in our study used different
modified versions of the Snap! programming environment during
the first phase of the study [16]. The Snap! environment closely
mirrors Scratch, but adds a few additional features (like first order
functions) and was created with the goal of creating a “no ceiling”
blocks-based programming environment [16]. The first class used
a version of Snap! that added the ability to right-click on any
block or script and open up a window showing a JavaScript
implementation of what was clicked on (Figure 2). This served as
a hybrid, blocks/text read only environment, as students were able
to read, but not edit or write, text-based versions of the programs
they constructed with the blocks. The second class used a version
of Snap! that allowed students to read their programs, like the
read-only condition, but also added the ability to define the
behavior of new blocks in JavaScript. This served as a hybrid
blocks/text read/write environment, as students could both read a
text-based version of their own blocks, as well as define the
behaviors of new blocks in JavaScript. The usual workflow for
defining new blocks was for students to author the behavior with
blocks, view the JavaScript equivalent, and then copy/paste the
text into their new block. In this way, students in the read-write
condition were usually not writing JavaScript from scratch, but
instead doing more tinkering and tweaking of the textually
defined behaviors. It is important to note in this condition,
students were only writing small snippets of code (usually four
lines or less) to define custom block behaviors and then
integrating the text-defined custom blocks into larger scripts.
Thus, this condition is quite different than a full text-based
programming environment as block-based composition was still
the predominant form of authoring, but is also distinct from fully
blocks-based programming given the need to write some text-
based code. Students in the third class used a version of Snap! that
had no text-based features, so they never saw any text-based
versions of their programs during class time. These three classes
served as our three conditions for the study, which we abbreviate
as: read-only, read-write, and graphical. All three classes followed
the same curriculum based on UC Berkeley’s Beauty and Joy of
Computing course that covers topics including control structures,
variables, and defining new functions. We chose this curriculum
because it include the creation of new blocks early, so students in
the read-write condition would get early exposure to authoring
blocks in JavaScript.

Figure 2. Side-by-side blocks and text in our version of Snap!

At the conclusion of the 5-week blocks-based introduction, the
students transition to Java, following an objects-first curriculum

designed around the Java Concepts: Early Objects textbook [20].
During the Java portion of the study, the topics covered in class
included how to compile and run Java programs, simple data input
and output, and the basics of defining and calling functions. It is
worth noting this is a much more limited set of programming
concepts than were covered in the 5-week Snap! curriculum.

A variety of data were collected as part of the study and used in
the analysis presented below. Attitudinal surveys and content
assessments were administered three times during the 10-weeks
study: at the outset of the study (beginning of week 1), at the
midpoint of the study after students had completed working with
the blocks-based environments but before they had started with
Java (end of week 5), and at the conclusion of the study after
using Java for five week (end of week 10). All three surveys were
administered online during class time. Additionally, a total of 27
semi-structured clinical interviews were conducted with students:
nine during the first week of the study, ten at the midpoint (during
weeks 5 and 6), and eight in the final week. The interviews took
place in empty classrooms outside of class time, usually either
during the student’s lunch period or after school. For the
interviews, the researcher sat alongside the student as they both
faced a computer that had the Snap! programming environment on
screen (Figure 3). Each interview was recorded using software
that captures both the user sitting at the computer and what is
being shown on screen. We will discuss details of the interview
protocols later as part of our analysis.

Figure 3. A screen shot from an interview.

The school we worked with was chosen as it offers three sections
of their Programming I course allowing us to carry out our three-
condition study design with students from the same student
population. A total of 90 students across three sections of the
course participated in the study, which included 67 male students
and 23 female students. The students participating in the study
were 43% Hispanic, 29% White, 10% Asian, 6% African
American, and 10% Multi-racial - a breakdown comparable to the
larger student body. The classes included one student in eighth
grade, three high school freshman, 43 sophomores, 18 juniors, and
25 high school seniors. Two-thirds of the students in these classes
speak a language other than English in their homes.

4. FINDINGS
4.1 Is Blocks-based Programming Easier?
Our first research question asks if students think blocks-based
programming is easier than text-based programming, and if so
why. To answer this question, we will use data from the survey
administered at the conclusion of our study, after students had
spent five weeks working in Snap! and then another five weeks
learning Java. On the survey we asked students to compare the
two environments, specifically asking what they saw as the major
difference between the two tools. We then analyzed each
response, identifying which answers attended to ease-of-use as

Full Papers ID 2015 Medford, MA, USA

201

contributing to the difference between Snap! and Java. Of the 84
responses collected, more than half of students (58%) included
ease-of-use as a major difference between the graphical and text-
based environments. Table 1 shows the outcome of the coding of
the responses for ease-of-use. The subscript numbers in the table
show the breakdown by the three Snap! conditions.

In this analysis, we were careful to only include responses that
clearly attended to a difference in difficulty between the two

Table 1. Student responses comparing Java to Snap! - coded
for ease-of-use of the environment.

Perception Count (Graph/Read-only/Read-write)
Text-based Programming is Easier 4 (0/1/3)

Blocks-based Programming is Easier 42 (14/15/13)

Comparable Difficulty 2 (0/1/1)

Did not attend to Difficulty 41 (13/13/14)

environments. For example, the response “[In Java] there are no
blocks to help out, it is basically done from scratch” was coded as
attending to ease-of-use, since the blocks “help out”, while the
response: “Java is more writing as if it was a language, while
Snap! you use logic to put blocks together” was not coded as
attending to ease-of-use because the student did not make it clear
that this difference made one environment easier than the other.
We included responses that mentioned the need to memorize
commands in Java to mean that Snap! was easier due to the
assumption that memorization contributes to difficulty. While
many responses required some interpretation, others were very
clear on which environment they found easier, giving responses
like: “Learning Java is more complicated than Snap!” and “Java
is much easier for me than Snap!” Additionally, two students
attended to ease-of-use, but specifically said the two modalities
were comparable: “one is hard and the other is equally as hard.”

These data show that students found the blocks-based
programming approach of Snap! to be easier than Java, thus
supporting the general view of blocks-based tools being easier for
novice programmers. There were no significant differences in
responses across the three conditions of the study with the
exception that three of the four responses that said Java was easier
came from the read-write condition, where students were asked to
write JavaScript along with compose in blocks. One explanation
of this is that these students preferred the text-based programming
in Java because composing text in Snap! required additional steps
(creating new blocks and opening the editor), so students who
were already comfortable with text-based programming may have
found Java easier as it didn’t require these additional steps.

4.2 Why is blocks-based programming easy?
Since our analysis shows that students perceive blocks-based
programming as easier than text-based programming, we now
move to the second part of our first research question, why? To
answer this question we draw on the interviews we conducted
during the first week of our study when students were initially
introduced to the Snap! programming environment. We focus on
these interviews as they give us insight into students’ first
impressions of the blocks-based and text-based representations.
Data from later in the study, after students have experience using
the two representations, will be incorporated later in our analysis.
The protocol for these interviews starts with a series of questions
asking about students’ prior programming experience and their
reasons for taking the course. From there, we introduced them to

the Snap! programming environment and, if they had never seen
blocks-based programming before, showed them how to write a
basic program (i.e. how to drag-and-drop blocks together to
control the onscreen sprite). The main portion of the interview had
students try and write a simple program (programs differed
depending on their prior experience, but ranged from having a
sprite draw a square to a basic number guessing game for more
experienced students). Having written the short program, we then
opened up the text window to display a JavaScript implementation
of the program they just authored (Figure 3.) and began a
discussion about the differences between the two program
representations.

Nine students were interviewed using this protocol, five male and
four female. The students were distributed across the grades, with
four grade 10 students, two grade 12 students, and one student
each from grades, 8, 9, and 11. The students were chosen as they
were representative of the larger sample with respect to grade,
gender, and ethnicity, and had reported having little prior
programming experience. From the nine interviews, four major
reasons for blocks-based programming being easier emerged.

4.2.1 Blocks are Easier to Read
The first aspect of the blocks-based tools that students identified
as helpful was the descriptive, easy-to-read labels on the blocks.
“Well, I mean, if you can read it…for humans this looks better, it's
easier to understand.” Despite its looking less like a text editor
when compared with the text-based code, a number of students
viewed the blocks-based representation as closer to English than
its text-based counterpart. “With blocks, it's in English, it's like
pretty, like, more easier to understand and read,” a second
student highlighted this difference, saying: “Java is not in English
it's in Java language, and the blocks are in English, it's easier to
understand.” A third student explained: “[the blocks] are
basically a translation of what [the JavaScript] is doing, in, I
guess, English for lack of better words. It is describing what [the
JavaScript] is doing, but it's describing it in an English form...like
a conversion.” In calling the blocks a translation of the JavaScript,
the student recognizes the equivalence of the two representations
and identifies the blocks as being more easily read. Across these
responses we see the blocks-based representation serving as an
intermediary between English and conventional text-based
programming, with students recognizing features of both in the
blocks-based representation. Another way this difference
appeared in our interviews was in students highlighting the lack of
obscure punctuation in the block-based tool: “[the JavaScript] is
really confusing to understand with all the parenthesis and
bracket and all of that.” Of the nine student interviewed, seven
mentioned the readability of the blocks as a feature that made
them easier to use than the text-based alternative. That students
find the natural language nature of Snap! helpful is supported by
research on the design of novice programming languages that has
found the strategy of drawing on learners’ natural language
knowledge to be effective [4].

4.2.2 Shape and Visual Layout of the Blocks
The second feature students identified that makes blocks-based
programming easy is the visual nature of the blocks and the
graphical cues that each block provides for how and where they
can be used. Four of the nine students interviewed explicitly
mentioned the shape of the blocks as being useful. For example,
when our eighth grade student was asked why some blocks have
rounded edges and others have diamond shaped edges, she
explained that it was so “the user knows that…they have a limited

Full Papers ID 2015 Medford, MA, USA

202

choice so that you don't make the mistake, because if all of [the
blocks] were the same, it might not work. If [the block is] rounded
or diagonal, they'll know the difference; they'll know that you
can't put [a diamond block] in [an oval slot], it's like a puzzle.” A
second student echoed this fact, when asked how he knew that
Boolean blocks could be used with control structure blocks and
numbers and mathematical operators worked with motion blocks
he explained “it’s because of their outline, [the Boolean blocks
shape] is the same as [the control blocks inputs] and then in
motion, the [oval input] is the same as [the mathematical blocks].”
The shape was identified as being useful to see how blocks fit
inside each other, as well as how sequences of blocks could be
built, which was helpful for making sense of the resulting
behavior. “When [the blocks] are attached to each other, you
know that the first one is going to affect the ones underneath
it…everything is connected and it's easier to understand what is
going on…I guess it's more intuitive too, because you can see how
they all connect.” Students said that these shape cues helped not
only to see where blocks could be used, but also the larger idea of
the importance of the sequence of commands, “[the environment]
teaches you that order is important.”

There is a potential drawback to the programming-primitives-as-
puzzle-pieces metaphor stemming from the fact that in a puzzle,
each piece has one specific place that it belongs. As one student
said when talking about the blocks “everything has its place.”
This is not true with programming, as commands can be used in a
variety of ways and in various places within a program to produce
an infinite number of behaviors. One of our interviewees
struggled due to holding this perspective, which became clear
when he recounted his difficulty on the first class assignment.
When asked if it was the blocks he struggled with, he answered
that it was not the blocks themselves, but in not knowing “the
combinations that do something specific, like, I'm not exactly sure
which blocks snap together to do something, like a specific
action.” The idea that particular sequences of blocks, when
snapped together, produce a specific action calls to mind special
combinations used in video games, where unique combinations of
moves results in special actions that are different that the sum of
the inputs used to produce them. As a result, this participant felt
there was something he did not know, some knowledge beyond
what is shown in the interface. After getting help from a neighbor,
he said the program he eventually wrote made sense, but admitted
to not knowing how to create it initially. We raise this issue with
blocks-based interfaces as we fear it may be exacerbated by
introductory activities that provide fill-in-the-missing-command
style challenges, as they may reinforce the “everything has its
place” perception of programming as opposed to the more
accurate view of there being multiple ways to successfully
achieve a desired programming outcome.

4.2.3 Easier to compose
A third advantage identified by students was how the act of
composing a program was easier with blocks. This is in part due
to the shape of the blocks that we just discussed, but also a
product of a number of other features of the blocks-based
modality. The first is that the act of dragging-and-dropping
commands is easier and less error prone than having to type in
commands character-by-character: “If you type it, with like one
word or one period or one something that's wrong it's going to
mess everything up…it’s just harder to write with the codes.”
Another student put it slightly differently saying: “I like
visualizing things more so with Snap, it's a lot easier than having
to type everything in,” continuing by saying how with text-based

programing “you have to be pretty precise with your punctuation,
you have to type everything in.” A third student succinctly put it,
with blocks “you don’t end up making as much mistakes.”

Along with the ease of composing valid programs, a number of
students highlight how blocks make it easier to tinker with a
program. “You get to play around with [blocks]…because if you
do it with writing, you like, have to erase everything or like start
all over. It's not as easy to change and make new things. With
blocks, you can just drag them and change what it's going to do.”
This benefit can be seen when watching students compose
programs, often taking a block or sets of blocks and putting them
off to the side while trying new blocks in their script, only to
ultimately return the removed blocks back into the script.
Similarly, with blocks it becomes easy to compose complex
statement in a non-linear order. For example, during her interview
we asked one of our tenth grade students to write a program that
required using a conditional statement to compare two numbers.
The student built her statement in four discrete steps (Figure 4).
First, she dragged out the green = comparison block. Second, she
added the answer block to its left side and the number variable
block to its right. Next, she dragged out the if block, placing her
newly constructed comparator inside it, then finally completing
the statement by nesting the say block inside the parent if block.
This sequence of composition is quite different than how one
conventionally goes about writing a conditional statement in a
text-based language, where the left-to-right orientation imposed
by the text editor makes it unnatural to start with anything other
than the word if, making the approach this student took to
building a conditional statements difficult. In this way, the blocks-
based representation facilitates what Turkle and Papert [33] call
epistemological pluralism, where the medium can support a
variety of authoring approaches, including the traditionally
favored planner mentality, as well as a bricolage orientation that
emphasizes negotiation and rearranging of materials.

Step 1. Step 2.

Step 3.

Step 4.

Figure 4. The sequence of steps followed by one student to
assemble a conditional statement.

4.2.4 Blocks as Memory Aids
The final feature of blocks-based programming that was identified
by four of the nine students interviewed, stems from the ease of
finding block and understanding what they do through their
organization within the programming environment. More
specifically, how the blocks themselves alleviate the
memorization that is required in text-based programming. “[The
blocks] kind of jog your memory, so you can see something and be
like 'oh, I remember how to do that now', but with [text-based
programming] you don't really have anything there to help you
remember how to code something.” As a second student put it:
“[In JavaScript] you need to like, know all the code words to draw
something. Let's say you want to draw something, you need to
type in a certain word to do that when in scratch you could just

Full Papers ID 2015 Medford, MA, USA

203

like, find the pen down block or something.” This last point is
critical, blocks-based environments provide an easy and organized
way to browse all the available blocks, making it possible to use
the blocks themselves as a source of ideas, as one student put it:
“everything is here that you can do.” Another student focused on
how easy it was to browse the available set of blocks as being a
key reason blocks-based programming was easier, saying “it's just
because of the blocks and how they're separated into
categories…so it's just much simpler to find the blocks and put
them in to the pane.” The utility of the organization and ease of
browsing of the blocks was evident throughout the interviews. For
example, during an interview with a grade ten student, we asked if
he could draw a square on the screen, he successfully did so, but
relied on the forever block in his program. When asked how he
would change his program so it would be possible to draw a
second square next to the first, he opened, the Control category
where looping blocks were stored, read through the blocks, and
said “I’m not really sure, I think it's in the tab somewhere
though,” showing how the organization of the blocks within the
environment can support novices in constructing programs.

Recognizing the way that the graphical features of the blocks-
based language support various cognitive aspects of the
programming activity is important as a designer as it provides a
powerful scaffold for learners. Viewing this characteristic of
blocks-based tools through a distributed cognition lens [17, 21]
provides a larger explanation that encompasses many of the
features of blocks-based environments that students cited as
supporting their learning. The distribution cognition theory argues
that a cognitive system is not limited to just the internal processes
of the individual, but includes the larger environment in which the
activity occurs. In this expanded view, physical objects can serve
as memories devices and aid the individual in accomplishing the
task at hand. In blocks-based environments, this means the blocks
themselves “remember” much of what would otherwise need to be
known a priori by the user, including what the blocks do (captured
by the text labels and what color and category the reside in) and
how and where they can be used (denoted by the shape of the
blocks). Similarly, the browsable categories offload the need for
the user to have to remember everything that is possible in the
language, and instead can serve as a guide for what is possible and
act as a source of inspiration for the user [35]. Through this lens,
the affordances of the blocks-based environment that contribute to
their ease-of-use can be understood as the aspects of the
knowledge one needs to be a successful programmer that are
designed into the environment and the representation itself.

That blocks can serve as memory aids, along with the other three
characteristics of blocks-based programming tools discussed
above, make up the four most salient features of blocks-based
programming for the novice programmers we interviewed. It is
important to reiterate that these features were identified at the
outset of the learning process, not by the designers, researchers, or
educators who bring specific goals to the use of such tools, or by
learners who had not already mastered the use of either text-based
or blocks-based programming. This analysis provides evidence
that these tools are effective at scaffolding learners during the
early stages of learning to programming and identifies specific
features of blocks-based tools that the learners found useful.

4.3 What are the differences between blocks-
based and text-based programming?
Having identified four reasons for the perception that blocks-
based programming is easier than the text-based alternative, we

now proceed to our second question, which asks what students see
as the main differences between blocks-based and text-based
programming. To answer this question we analyzed student
responses to a pair of survey questions asking them to compare
blocks-based programming in our custom versions of Snap! to
text-based Java programming. The questions were asked at two
points during the study. First, on the mid-study survey we asked:
“The thing that will be the most different about programming in
Java compared to programming in Snap! is:” Students answered
this question after using Snap! for five weeks but before they had
started working in Java. Five weeks later, after students had been
working in Java, we asked the same question, just shifting from
the future tense to the present tense. A total of 85 students took
the mid-study survey with one fewer student taking the final
survey, resulting in a total of 169 responses. We open-coded these
two sets of responses and categorized them by what students
chose to identify as the largest difference between the two
environments. Figure 5 shows student responses to these
questions grouped by difference identified, point-in-time, and the
version of Snap! the students used.

Figure 5. Student reported differences between Snap! and
Java given at the mid-point and conclusion of the study.

This analysis revealed three new categories on top of the four
themes that emerged during our interviews about what makes
blocks-based programming easier. The new categories include the
presence of prefabricated commands, the ease of trial-and-error
programming in Snap!, and the different types of programs
authored in Snap! versus Java. Table 2 provides examples of
student responses for each category identified.

Despite the importance of the natural language labels on the
blocks and the ease of readability that students emphasized at the
outset of the study, students rarely cited this feature of blocks-
based programming as being a major difference on the survey.
The other three categories from the previous section were much
more prominent. For the Visual Layout category, we included
student responses that attended to shape or color of a block along
with more general responses speaking to the graphical nature of
the blocks. The Ease of Composition category included responses
that directly referenced the drag-and-drop nature of the blocks or
how the blocks can snap together. Our final category from the
previous section, in which students highlighted the browsability of
the blocks-based environment and how it alleviated the need to
memorize syntax, was included in 37 student responses. Most of
these responses highlighted how in Java, you have to know a
command as well as it’s syntax in order to use it in a program.

Beyond the four features discussed in the previous section, three
other differences were repeatedly mentioned in students’ survey
responses. The first was how Java was not as conducive to the use
of trial-and-error programming. This is particularly interesting as
the trial-and-error approach is as valuable in text-based

Full Papers ID 2015 Medford, MA, USA

204

Table 2. Sample responses to the question having students compare Snap! and Java

Category Example Responses
Ease of

Readability
“The programming language will no longer be translated to English completely for a user to easily understand what
is going on.”
“Snap! was easy to read.”

Visual Layout “There aren't going to be anymore colorful blocks.”
“I will have to code without having help from blocks.”

Ease to
Composition

“Actually having to type everything out instead of dragging and dropping.”
“Java is all hand typed while in Snap! you grab and drop blocks.”

Browsability
“You will not have the blocks to aid you anymore and you will have to memorize and learn the Java script for
everything you are trying to do.”
“Not feeling as restricted and having to think more because you don't have all the options in front of you.”

Support for
Trial & Error

“Java is not a trial-and-error program. If I make a mistake, then I must fix it on my own. There is no guessing
involved, and I think I will have a really difficult time adapting to this process.”
“In Java, I will not be able to test out blocks and incorporate them and see if they work.”

Prefabricated
Commands

“There will be no set blocks that will provide you with pre made functions.”
“You do everything on your own without the help of preset blocks for the code, and you have to compile the file.”

Visual
Outcomes

“Java is more about having things such as text be displayed while Snap! was more about making sprites do things
such as move or complete a goal etc.”

programming as in blocks-based, and nothing about text-based
programming prevents the programmer from using the strategy.
There are also potential consequences to thinking trial-and-error is
not possible or not acceptable in text-based programming. Papert
[28] addresses this in his discussion of the difference between
learners perceiving errors as wrong versus errors as fixable and
how the errors-as-fixable orientation is a much more productive
learning strategy. If the shift from blocks-based to text-based
programming also carries with it a shift from the trial-and-error
strategy being supported to it being viewed as impractical or even
not possible, it is important that we as designers and educators be
aware of this misconception and try and address it.

The second new category to emerge was that of the lack of pre-
fabricated commands in text-based programming. Whereas a
single block can do something in Snap!, like move a sprite or ask
a question, students thought that with text-based programming,
the individual commands were more fine-grained, requiring more
commands to be used to accomplish a comparable behavior.
While this is not necessarily true when calling APIs or other pre-
defined functions, this reported difference highlights the perceived
contrast in the size of atomic block commands and text-based
language primitives. The final new category captures students
identifying the visual enactment of programs as being a major
difference between Java and Snap! This difference speaks less to
the blocks versus textual nature of the languages themselves, and
more to the larger environments in which the programming is
occurring. Interestingly, this was only identified by one student as
a difference before the Java portion of the course, but was
highlighted by eight students at the end of the study. It is worth
mentioning this last difference need not always be the case as
numerous text-based development environments (Java and
otherwise) make it possible to have visual outcomes from the
outset, with Logo being one prominent example.

Between the two sets of survey responses, there were an
additional 35 differences identified that did not occur often
enough to warrant their own category. These responses including
Java requiring more planning upfront, Snap! running scripts in
parallel, the compilation step required in Java programming, and
the ease of debugging in the blocks-based environment.
Additionally, 19 responses across the two sets of survey responses
did not articulate a specific difference, instead giving broad,

vague responses like “[Java] won’t be as fun” or “Java is much
easier for me than Snap!”

Looking at the differences between responses given at the
midpoint of the study when students had only used the blocks-
based tools and the end of the study after students had been
exposed to Java, a number of shifts are visible. First, there was a
significant drop in the number of students who identified the
visual nature of the blocks (referring to their shape, color, and
nested structure) as being the most significant difference between
the modalities. This suggests that after working in Java, the visual
representation loses significance relative to other differences that
exist. A second difference was the growth in students attending to
what is possible with Snap! and how the language supports
accomplishing that objective. This can be seen in the rise of
students identifying the visual outcomes of programs as being the
most salient different as well as the loss of prefabricated blocks
and the need to use more commands to achieve a specific
outcome. Taking a step back, these shifts suggest that as
experience with text-based programming language grows, what
students attend to shifts from the visual presentation and layout of
the program to differences in what can be done with the different
tools and how one goes about accomplishing it.

Up to this point in our discussion, we have grouped the three
conditions of the blocks-based environment together. As a
reminder, the three versions of Snap! that students used were: an
all-graphical version (the lightest colors in Figure 5), a read-only
version of Snap! where students could read JavaScript versions of
the programs they authored (the middle shade of blue/red in
Figure 5), and a read-write version that added the ability for
learners to define the behaviors of new blocks by writing short
JavaScript programs (the darkest shade of the colors in Figure 5).
For the most part, there was little difference between the
conditions in students’ responses. One notable exception is in the
Ease of Composition category, which was rarely cited as a
difference between the blocks-based and text-based tools in the
read-write condition. This is unsurprising given that in this
version of Snap! it was possible for students to write small
snippets of text-based code, thus making the ease of composition
a less prominent difference. A second major difference among
responses across the three conditions was the number of
differences cited by students in the read-write condition that fell
outside of the larger categories. After recoding the Other

Full Papers ID 2015 Medford, MA, USA

205

responses, we were unable to identify a pattern to explain this
difference and leave it as an open question we hope to return to in
future analyses of the data we collected in this study.

4.4 Drawbacks to blocks-based programming
While most of the differences we have presented thus far have
generally showed students holding a positive impression of the
blocks-based programming approach, stemming from its
perceived ease-of-use, the use of blocks-based tools for
introducing high school students to programming was not entirely
unproblematic. Over the course of our ten-week study, students
identified a number of drawbacks to blocks-based programming.
We present these drawbacks to shed light on reservations students
have regarding the use of this strategy in formal introductory
programming contexts at the high school level. The data we
present below were drawn from both the introductory interviews
we used to answer our first research question as well as the survey
responses given at the midpoint and conclusion of our study
asking students to compare the Snap! and Java programming
environments. Across this dataset, three drawbacks to
programming in a block-based environment were raised.

4.4.1 Less Powerful
The first drawback to blocks-based programming students cited
was that block-based programming was viewed as a less powerful
programming technique compared to the text-based alternative.
By power, we are referring to the set of things that are possible
with the language. As one student said, with text-based
programming “you can do a lot more.” A second student
reiterated this point, saying: “blocks are limiting, like you can't do
everything you can with Java, I guess. There is not a block for
everything.” This comment is interesting as one could rebut that
there is not a command for everything in Java either. The student
who made this comment did not know how to program in Java,
but nonetheless held the belief that the two representations were
not equally powerful or expressive. Another student made these
same points saying: “In Java you can make it more complex than
something you make in Snap! or Scratch.” She then continued:
“I'm pretty sure there are going to be some things that are too big
to put in blocks...too complex.” This student viewed the blocks-
based interface as a simplified version of Java, saying: “I think
what Snap! does it just takes the simpler things in Java and then
turns them into blocks.” This last statement is particularly
interesting given that the available set of primitives provided by
Snap! is largely a superset of the keywords reserved in Java, not
the other way around. When asked why we chose to start the
course with Snap! before moving to Java, a grade ten student
responded: “to increase understanding of programming. I mean
like, Snap! is an awesome program, but there is only so much you
can learn in it. But in Java, you can like figure out how to do like,
all the other stuff.” When pressed, the student was unable to
articulate what “other stuff” consisted of, but still, this reveals a
perceived limitation of what can be accomplished with blocks-
based programming environments. In our post survey, one student
summed up the difference between Java and Snap! succinctly by
saying of Java: “there are more possibilities.”

4.4.2 Slower Authoring and More Verbose
The second drawback brought up by a number of students was the
time and number of blocks it takes to compose a program in the
blocks-based interface compared to the text-based alternative. For
example, when comparing Snap! to her previous experience
making web pages, a 9th grade interviewee said: “I know you have
the variables [in Snap!] that you can edit and mess around with

but sometimes that takes a lot of time, but HTML and CSS you can
kind of get creative and quickly just type something in to do
something different”. This was reiterated by a second student who
said: “if you want a specific block and it's not there, you're going
to have to put a lot of blocks together to make it do what you want
it to do, and I think with JavaScript, it's just, like, one sentence I
guess.” While it is unclear what is mean by a “sentence” in
JavaScript, this comment does give us insight into how the student
perceived text-based programming to be advantageous. Text being
more concise was identified as not only useful for composing
programs, but students also thought that the resulting shorter text-
based programs could be easier to understand. “It seems like when
there is more blocks it's more confusing…when we did the games,
we did a lot of, like a whole bunch of blocks, it was really hard to
find where mistakes were. [Text-based programming] seems
easier when there is like a lot.” During our five-week study,
programs rarely exceeded the size of the screen the students were
working on, but in this case, the students experience with longer
blocks-based programs lead to the recognition that longer blocks-
based programs can be difficult to manage.

4.4.3 Inauthentic
The third and final drawback identified about the use of blocks-
based tools is potentially the most damaging with respect to the
effectiveness of their being used in introductory programming
courses for older learners. Some of the students we interviewed
expressed concerns over the authenticity of blocks-based
programming. By authenticity, we mean how closely the
programming tool and practices adhere to conventional, non-
educational programming contexts. As one student said: “Java is
actual code, while Snap! is something nobody will let you code
in.” This same point was made by another student who said: “if
we actually want to program something, we wouldn't have
blocks.” It is important to note that this view was not universally
held. As part of our interview protocol, students were asked if
they thought what they were doing in Snap! constituted
programming, to which every student answered in the affirmative.
A number of students recognized blocks-based programming as
being an introductory tool, giving responses like “I think [blocks-
based programming] is the same thing, just easier” and “I would
say [blocks-based programming] is like beginners programming”.
This suggests that even when perceived as potentially inauthentic,
students still recognize the pedagogical usefulness of blocks-
based tools. This drawback in particular seems like it is more
likely to affect older learners who are eager to develop skills that
can be used beyond the classroom, be it for a job or further
computer science coursework.

These three perceived issues with blocks-based programming
expressed by our participants gives us insight into potential
drawbacks of the use of this approach at the high school level. We
do not see this finding as undermining the use of blocks-based
programming in formal, high school contexts, but instead, see
these data as providing a fuller picture of how students perceive
the tools we use for instruction, which in turn can be used to better
inform educators on how to best utilize them in their classrooms.
Further, identifying these perceived drawbacks can provide a
roadmap for the improvement of these tools moving forward.

5. DISCUSSION
This study looks at the use of block-based programming tools in
high-school introductory programming contexts. This means older
students learning in a formal setting, which is quite distinct from
the younger audience and informal settings that Scratch, and many

Full Papers ID 2015 Medford, MA, USA

206

of the tools inspired by Scratch, were initially designed for [26].
Much of the empirical work that has been done on these tools
focuses on the younger audiences and informal spaces that match
the audience they were initially designed for [e.g. 9, 20, 21].
Given the role these tools are increasingly playing in introductory
computer science classes at the high school level, it is important to
understand how high-school aged learners are making sense of
them and if they are effective in their role of introducing learner to
the programming component of the field of computer science. As
the data in this study show, high school students generally find
blocks-based programming tools to be easier to use than
conventional text-based alternatives. They attribute this ease-of-
use largely to visual features of the environment including the
graphical presentation of the blocks, the drag-and-drop
mechanism for authoring programs, and the ease of browsing the
available set of blocks to figure out what commands to include in
the program. This suggests that such blocks-based tools are
effective for making it easier for high school aged students to get
started programming, but that is not the whole story. Our study
also found that some high school students see drawbacks to the
use of such tools. Students saw the blocks-based tools as less
powerful, potentially more cumbersome to use for larger projects,
and inauthentic relative to conventional text-based programming.
These findings are similar to what DiSalvo found in her analysis
of high school students’ preferences after work with both Alice
and Jython (a text-based language) [6]. That study had the
additional finding that student motivation and interest further
influences student perceptions.

One obvious take-away from this research is to make teachers
aware of these findings. Teachers can highlight the useful features
of the environments while also addressing and downplaying
concerns students have, like the perceived inauthenticity or lack of
expressive power that some students associate with blocks-based
interfaces. The presence of the teacher is a feature of formal
education spaces that we can leverage to alleviate some of these
drawbacks. Additionally, as designers, we can use the findings
reported above to potentially improve both the graphical
introductory tools as well as the text-based programming
environments the students use as they move on to Java, Python, or
whatever languages await them.

Knowing the strengths and drawbacks of blocks-based
programming environments as perceived by the high school
learners that are using them, helps inform us as educators and
designers about what is working, what aspects of their design we
might want to modify for the high school audience, and what
features of these tools we might want to introduce to text-based
environments for novices. For example, to address authenticity,
the blocks-based environments could support not just controlling
on-screen sprites, but also make it possible to have programs read
from and output to a conventional terminal, akin to what many
early Java programs do. The idea is not to replace the stage or
introductory activities with less engaging text-only exercises, but
instead to reinforce the similarities between programming in
blocks-based tools and text-based languages; to provide a concrete
way to more directly show the isomorphism between the two
types of programming by making it possible to write (and run) the
exact same program in blocks-based tools and Java to see how the
two tools are similar. Such an addition to a blocks-based
environment could start to break the perception that blocks-based
tools can only be used to control graphical sprites and show how it
can be used to accomplish what students might perceive as more
authentic programming tasks.

Just as our findings can inform the design of blocks-based tools,
so to can they be used to improve introductory text-based
environments. For example, students frequently cited the
browsability of the blocks-based environment as a feature that
made it easy to use. Why not add a similar browsability to
introductory text-based environments? The auto-complete feature
of modern programming environments is similar to this, but is not
curated or displayed in the same way the blocks environments are,
where the commands are persistent and grouped by function.
Adding an easily browsed, well organized library of valid
commands that lives inside the Java or Python programming
environment is one example of how we can use what we learn
from novices about what makes blocks-based tools easy to
improve and better prepare them for the transition to the text-
based tools that await them in more advanced courses.

The final point we want to make is on the importance of
recognizing the gap between how novices and experts approach a
program or, in our case, a programming environment. When a
seasoned programmer looks at a blocks-based language, the
meaning of the shapes and colors of blocks are immediately
apparent, with the most common response being “how clever,” as
they can see how the blocks convey syntactic information and
obviate some of the less obvious features of programming
languages (like semi-colons and curly braces). It cannot be
assumed that novices see the same thing. They have no prior
knowledge of the syntax that is being represented and do not
know what difficulties the graphical representation is alleviating
from the act of programming. This is apparent as we have seen
students using Snap! and other blocks-based tools write their first
program left to right, completely ignoring the shape of the blocks.
Upon telling students that programs are written top-to-bottom and
showing the how blocks fit together, the shape of the blocks start
to take on meaning, but it is important to state that we cannot take
this knowledge for granted. We bring this point up as a reminder
of the expert blindness that a designer who already knows how to
program brings to the design of introductory programming tools.
The solution to this is to remember that learners are the experts
when it comes to understanding how novices make sense of and
build an understanding of the practice of programming. As such, it
is critical that we conduct studies like the one presented here,
analyzing tools not from the perspective of those who have
already mastered the content, but instead from the perspective of
the learners who the tools is designed for.

5.1 Limitations
There are a few limitations to the study we conducted that may
affect the generalizability of the findings. First, the school we
conducted our study in is a selective enrollment school with an
exceptional computer science department. This issue is partially
mitigated by the fact that the school is public and the selectivity
criteria for enrollment are designed to ensure the student body
reflects the racial and socio-economic diversity of the district, but
we do recognize that the students we worked with were
exceptionally bright and motivated. Second, in these interviews,
while we were trying to ask questions about the nature of blocks-
based programming, we often got responses that were specific to
the Snap! and Java or JavaScript tools we were using. Students
struggled to disentangle the specific instance from the larger class
of languages that we were using them to represent. While we
recognize this drawback, we still find student responses to be
insightful as to differences between the two modalities and, as we
move forward in our work, intend on adding new languages and
tools to address this. Finally, the study design followed students

Full Papers ID 2015 Medford, MA, USA

207

for five weeks in Snap! and five weeks in Java, but the amount of
material that can be covered in five weeks is vastly different.
Wherein after five weeks of Snap! students were using conditional
logic, variables, and loops, in Java, at the end of five weeks, we
had only covered basic I/O and started calling methods, and thus,
had not discussed many of the other topics we covered in Snap!
This difference in coverage speaks to the ease of teaching with
Snap! but also means students had not been exposed to the same
set of material in the two modalities.

6. CONCLUSION
Blocks-based programming is becoming the standard way to
introduce learners to programming both inside classrooms and
beyond. Educators and designers advocate for this approach
arguing that it is easier to get started and more engaging for the
learner. In this paper, we sought to understand how high school
students enrolled in an introductory programming course
perceived the blocks-based programming approach. Through
cognitive interviews and surveys, we found that students generally
found blocks-based programming to be easier than the text-based
alternative, citing reasons including the natural language labels on
the blocks, the shapes and colors of the blocks, the drag-and-drop
composition mechanism, and the ease of browsing the blocks
library. Students also identified drawbacks to the blocks-based
programming approach, including issues of authenticity,
expressive power, and challenges in authoring larger, more
sophisticated programs. We also found that the differences high
school students see between blocks-based and text-based
programming span the visual interface, the types of programs that
can be authored, as well a different programming practices that
each representation supports. By analyzing student responses, we
can better understand how the learners themselves are making
sense of these introductory tools, isolate what they are identifying
as useful about the environment in advancing their developing
understanding, and use these insights to improve the tools we are
currently using in classrooms and inform the design of the next
generation of introductory programming environments. Our hope
is that by doing so, we can better prepare today’s students for the
computational challenges of tomorrow.

7. REFERENCES
[1] Astrachan, O. and Briggs, A. 2012. The CS principles

project. ACM Inroads. 3, 2 (2012), 38–42.
[2] Begel, A. and Klopfer, E. 2007. Starlogo TNG: An

introduction to game development. Journal of E-Learning.
[3] Bontá, P. et al. 2010. Turtle, Art, TurtleArt. Proc. of

Constructionism 2010 Conference (Paris, Fr., 2010).
[4] Bruckman, A. and Edwards, E. 1999. Should we leverage

natural-language knowledge? Proc. of the SIGCHI
conference 1999, 207–214.

[5] Cooper, S. et al. 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in
Colleges. 15, 5, 107–116.

[6] DiSalvo, B. 2014. Graphical Qualities of Educational
Technology: Using Drag-and-Drop and Text-Based
Programs for Introductory Computer Science. IEEE
computer graphics and applications. 6, 12–15.

[7] Donzeau-Gouge, V. et al. 1984. Programming environments
based on structured editors: The MENTOR experience.
Interactive Programming Environments. McGraw Hill.

[8] Duncan, C. et al. 2014. Should Your 8-year-old Learn
Coding? Proc. of WiPSCE 2014 (New York, USA), 60–69.

[9] Esper, S. et al. 2013. CodeSpells: embodying the metaphor
of wizardry for programming. Proc. of ITiCSE, 249–254.

[10] Feurzeig, W. et al. 1970. Programming-languages as a
conceptual framework for teaching mathematics. SIGCUE
Outlook. 4, 2, 13–17.

[11] Fields, D.A. et al. 2014. Programming in the wild: trends in
youth computational participation in the online scratch
community. Proc. of WiPSCE 2014, (New York, USA) 2–11.

[12] Fraser, N. 2013. Blockly. Google.
[13] Goode, J. et al. 2012. Beyond curriculum: the exploring

computer science program. ACM Inroads. 3, 2, 47–53.
[14] Guzdial, M. 2004. Programming environments for novices.

Computer Science Education Research. 2004, 127–154.
[15] Harel and Papert. 1991. Constructionism. Ablex Publishing.
[16] Harvey, B. and Mönig, J. 2010. Bringing “no ceiling” to

Scratch: Can one language serve kids and computer
scientists? Proc. of Constructionism 2010 (Paris, Fr.), 1–10.

[17] Hollan, J. et al. 2000. Distributed cognition: toward a new
foundation for human-computer interaction research. ACM
Trans. on Computer-Human Interaction. 7, 2, 174–196.

[18] Horn, M.S. et al. 2014. Frog pond: a codefirst learning
environment on evolution and natural selection. Proc. of the
2014 IDC conference, 357–360.

[19] Horn, M.S. and Wilensky, U. 2012. NetTango: A mash-up of
NetLogo and Tern. Paper presented at AERA 2012.

[20] Horstmann, C.S. 2012. Java Concepts: Early Objects. Wiley
[21] Hutchins, E. 1995. How a cockpit remembers its speeds.

Cognitive science. 19, 3, 265–288.
[22] Kelleher, C. and Pausch, R. 2005. Lowering the barriers to

programming: A taxonomy of programming environments
for novice programmers. ACM Computing Surveys. 37, 2.

[23] Lego Systems Inc 2008. Lego Mindstorms NXT-G System.
[24] Lewis, C.M. 2010. How programming environment shapes

perception, learning and goals: Logo vs. Scratch. Proc. of the
41st ACM Technical Symposium on CSE, 346–350.

[25] Maloney, J.H. et al. 2008. Programming by choice: Urban
youth learning programming with Scratch. ACM SIGCSE
Bulletin. 40, 1, 367–371.

[26] Maloney, J.H. et al. 2010. The scratch programming
language and environment. ACM Transactions on Computing
Education. 10, 4, 16.

[27] Miller, P. et al. 1994. Evolution of novice programming
environments: the structure editors of Carnegie Mellon
University. Interactive Learning Envs. 4, 2, 140–158.

[28] Papert, S. 1980. Mindstorms: Children, computers, and
powerful ideas. Basic books.

[29] Resnick, M. et al. 2009. Scratch: Programming for all.
Comm. of the ACM. 52, 11, 60.

[30] Roque, R.V. 2007. OpenBlocks: An extendable framework
for graphical block programming systems. MIT.

[31] Da Silva Gillig, J. 2014. miniBloq.
[32] Slany, W. 2014. Tinkering with Pocket Code. Proc. of

Constructionism 2014 (Vienna, Au.).
[33] Turkle, S. and Papert, S. 1990. Epistemological pluralism:

Styles and voices within the computer culture. SIGNS:
Journal of Women in Culture and Society. 16, 1, 128–157.

[34] Weintrop, D. and Wilensky, U. 2012. RoboBuilder: A
program-to-play constructionist video game. Proc. of
Constructionism 2012 (Athens, Gr.).

[35] Weintrop, D. and Wilensky, U. 2013. Supporting
computational expression: How novices use programming
primitives in achieving a computational goal. Paper
presented at AERA 2013.

[36] Wilkerson-Jerde, M.H. and Wilensky, U. 2010. Restructuring
Change, Interpreting Changes: The DeltaTick Modeling and
Analysis Toolkit. Proc. of Constructionism 2010 (Paris, Fr.).

Full Papers ID 2015 Medford, MA, USA

208

