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ABSTRACT 
Blocks-based programming environments are becoming 
increasingly common in introductory programming courses, but to 
date, little comparative work has been done to understand if and 
how this approach affects students’ emerging understanding of 
fundamental programming concepts. In an effort to understand 
how tools like Scratch and Blockly differ from more conventional 
text-based introductory programming languages with respect to 
conceptual understanding, we developed a set of “commutative” 
assessments. Each multiple-choice question on the assessment 
includes a short program that can be displayed in either a blocks-
based or text-based form. The set of potential answers for each 
question includes the correct answer along with choices informed 
by prior research on novice programming misconceptions. In this 
paper we introduce the Commutative Assessment, discuss the 
theoretical and practical motivations for the assessment, and 
present findings from a study that used the assessment. The study 
had 90 high school students take the assessment at three points 
over the course of the first ten weeks of an introduction to 
programming course, alternating the modality (blocks vs. text) for 
each question over the course of the three administrations of the 
assessment. Our analysis reveals differences on performance 
between blocks-based and text-based questions as well as 
differences in the frequency of misconceptions based on the 
modality. Future work, potential implications, and limitations of 
these findings are also discussed. 

Categories and Subject Descriptors 
D.1.7 [Visual Programming]. K.3.2 [Computer and Information 
Science Education]:Computer science education. 
General Terms 
Measurement, Design, Human Factors, Languages 
Keywords 
Introductory Programming Environments; High School Computer 
Science Education; Blocks-based Programming; Assessment 

1. INTRODUCTION 
A long-standing question faced by computer science educators is 
what language to use to introduce learners to programming. Ask 
this question to a room of ten teachers and you are likely to hear 
more than ten languages mentioned, many of which will carry 

qualifiers describing under what conditions a given language is 
the best choice. These so called ‘language wars’ have been raging 
for as long as computer science has been taught, with little in the 
way of consensus emerging and with potentially detrimental 
effects [58]. Much work has been done attempting to empirically 
answer the question of which text-based language is best for 
novices, or at least identify features that make a language more or 
less accessible to beginners. While there is much to show for this 
effort, an alternative to conventional text-based languages is 
emerging in novice programming classrooms that brings a new 
dimension to introductory tools. Graphical blocks-based 
programming tools like Scratch [49], Blockly [23], and Alice [13] 
are becoming commonplace in introductory programming 
contexts, with a growing number of new curricula utilizing 
blocks-based programming tools in their materials, including the 
CS Principles project, the Exploring Computer Science program, 
and the materials being developed by code.org. The introduction 
of blocks-based programming environments changes the 
landscape of introductory tools, replacing questions of syntactic 
features of textual languages with the larger question of if text-
based programming altogether is the best way to introduce 
novices to programming. Despite the increasing use of blocks-
based tools in formal computer science learning contexts, 
relatively little work has investigated the cognitive affordances 
and drawbacks to the use of the graphical, blocks-based modality 
in classrooms. Similarly, few side-by-side studies have compared 
blocks-based and text-based tools directly (a notable exception 
being [32]). In their review of assessments of introductory 
programming, Gross and Powers [26] found that “one of the least 
studied questions are those that focus on how the environments 
impact a student’s learning process and understanding from a 
formative perspective.” In this paper, we set out to begin the 
process of filling in these gaps in the literature, specifically, we 
seek to answer the following two research questions: 

1. How can we comparatively assess student understanding in 
blocks-based and text-based programming environments? 

2. Does modality (blocks-based versus text-based) affect novice 
programmers’ understanding of basic programming 
concepts? And if so, how does it differ by concept? 

To answer to the first question, we created the Commutative 
Assessment, a novel programming assessment designed to 
measure students’ understanding of programming concepts in 
both blocks-based and text-based modalities. Each question on the 
assessment requires the learner to read a short program (usually 4 
or 5 lines) then answer a question about the outcome of the script. 
The key feature of the assessment is that every question can be 
asked with either a blocks-based or text-based program. In pursuit 
of our second question, the assessments were given three times 
over the course of a ten-week study in three introductory high 
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school programming courses. By administering the assessment at 
three points, students answered each question in both modalities. 
In this paper, we present the Commutative Assessment and share 
findings from its use as part of a larger study on the relationship 
between modality and student understanding.  

2. Previous Research 
2.1 Representations and Learning 
“The tools we use have a profound (and devious!) influence on our 
thinking habits, and, therefore, on our thinking abilities.” [16] 

As stated by the Turing Award winning computer scientist Edsger 
Dijkstra in the quote above, the tools we use, in this case the 
programming languages and development environments, have a 
profound, and often unforeseen, impact on how and what we 
think. diSessa [17] calls this material intelligence, arguing for 
close ties between the internal cognitive process and the external 
representations that support them: “we don’t always have ideas 
and then express them in the medium. We have ideas with the 
medium” [17 emphasis in the original]. He continues: “thinking in 
the presence of a medium that is manipulated to support your 
thought is simply different from unsupported thinking” [17]. The 
recognition that mental activity is mediated by tools and signs is 
one of the major contributions of the work of Vygotsky [65, 66] 
who argued that it is the external world that shapes internal 
cognitive functioning [72]. This perspective, coupled with 
Piaget’s constructivist learning theory, which contributes an 
interactionist perspective to learning that foregrounds the mutual 
dynamic of tools and thought [46], informs why it is so crucial to 
understand the relationship between the growing family of 
graphical programming representations and the understandings 
and practices they promote. 

The role of representations in cognition has been studied across a 
variety of representational systems and their influence on various 
cognitive tasks. One large body of work that has emerged from 
studying this question is identifying the relationship between 
language, literacy and thought [33, 41, 66, 73], but as we are 
primarily concerned with the use of symbolic formalisms, we 
focus our review on scholarship looking at the role of arithmetic 
representation in supporting thought. The recognition that a 
learner’s own knowledge and experience influences the 
representations used and how it is understood and evaluated has 
been a recurring idea within the Learning Sciences [18, 31, 39, 
52, 69]. For example, focusing on concepts from physics and 
investigating the use of conventional algebraic notation as 
compared to programmatic representations, Sherin [51] found that 
differing representational forms had different affordances with 
respect to students learning physics concepts and, as result, 
affected their conceptualization of the concepts learned. “Algebra 
physics trains students to seek out equilibria in the world. 
Programming encourages students to look for time-varying 
phenomena, and supports certain types of causal explanations, as 
well as the segmenting of the world into processes” [51]. Similar 
investigations have been done between programming languages. 
For example, Gilmore and Green [25] compared declarative and 
procedural notations and found that each notation afforded 
different types of reasoning. The procedural notation was superior 
for answering sequential questions while the declarative notation 
was better for answering circumstantial questions. This lead them 
to conclude that “the structure of a notation affects the ease with 
which information can be extracted both from the printed page 
and from recall” [25].  

Wilensky and Papert [74] use the term structuration to describe 
this relationship between the representational infrastructure used 
within a knowledge domain and the knowledge and understanding 
that the infrastructure enables and promotes. While often thought 
of as static, the structurations that underpin a discipline can 
change as new technologies and ideas emerge. Wilensky and 
Papert document a number of restructurations - shifts in 
representational infrastructure - including the move from Roman 
numerals to Hindu-Arabic numerals [61], the use of the Logo 
programming language to serve as a representational system to 
explore geometry [1], and the use of agent-based modeling to 
representation various biological, physical, and social systems [8, 
50, 67, 75]. These shifts, and the new possibilities they enable, 
highlight the importance of studying representational systems, as 
restructurations can profoundly change the expressiveness, 
learnability, and communicability of ideas within a domain. 
While we are not claiming that the introduction of blocks-based 
tools constitutes a restructuration of programming knowledge, the 
recognition of the influence of representational infrastructure 
motivates this work and frames our larger program of research. 

2.2 Programming Languages for Learners 
Early on it was recognized that the design of a programming 
language itself can support or hinder students in their quest to 
master programming, which resulted in early efforts to develop 
more accessible programming languages [36]. Lead by Logo [22], 
which was explicitly designed with mathematics learning in mind, 
a number of languages emerged with the goal of serving as an 
introduction to the field of computer science. An early, influential 
language designed for novices was BASIC, whose acronym 
stands for Beginner's All-purpose Symbolic Instruction Code. 
BASIC included a relatively small instruction set, removed all 
unnecessary syntax, and was designed to support short turn 
around times between composition and execution of programs, 
which collectively made it more accessible to novices.  

As the field of computer science education matured, new 
languages and strategies emerged that were designed to serve as 
introductory tools and prepare learners for more powerful, fully 
featured languages. Languages such as Blue [30] and JJ [37] 
simplified syntax and provided tools to allow learners to focus on 
programming fundamentals before progressing to professional 
languages. Mini-languages, which are small languages designed 
to support the first steps in learning to program, are another 
approach for introductory languages [11]. These languages often 
center around specific activities and provided only the commands 
necessary to accomplish the immediate task, such as Karel the 
Robot, which has learners write short programs to control an on-
screen robot [44]. Mini-languages are not intended for general 
purpose programming, they instead tailor the language around 
specific tasks, narrowing the gap between the objective and the 
representations in which intentions are encoded [15]. 

A final strategy that speaks directly to the work we are pursing 
here is the creation of languages that try and address the 
documented issues that novices have with the syntax of 
programming languages. Research has found language syntax, the 
seemingly esoteric punctuation and formatting rules that must be 
followed when composing programs, can a serious barrier for 
novice programmers [14, 59]. Through a serious of controlled 
experiments that had novices use one of a variety of languages 
that demonstrated various syntactic features, Stefik and Siebert 
[59] found that characteristics of syntax directly influence a 
language’s learnability. One solution to the problem of syntax is 
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the creation of visual programming tools that visually represent 
syntactic information of commands, making it easier to compose 
programs without encountering syntax errors.  

2.3 Blocks-based Programming 

   
LogoBlocks Scratch Alice 

Figure 1. Three examples of blocks-based programming tools. 

The blocks-based approach of visual programming (Figure 1), 
while not a recent innovation, has become widespread in recent 
years with the emergence of a new generation of tools, lead by the 
popularity of Scratch [49], Alice [13]Snap! [28], and Blockly 
[23]. These programming tools are a subset of the larger group of 
editors called structured editors [19]  that make the atomic unit of 
composition a node in the abstract syntax tree (AST) of the 
program, as opposed to a smaller element (i.e. a character) or a 
larger element (like a fully formed functional unit). In making 
these AST elements the building blocks, then providing 
constraints to ensure nodes can only be added to the program’s 
AST in valid ways, the environment can prevent syntax errors. 
Blocks-based programming environments leverage a 
programming-primitive-as-puzzle-piece metaphor that provides 
visual cues to the user about how and where commands can be 
used as their means of constraining program composition. 
Programming in these environments takes the form of dragging 
blocks into a composition area and snapping them together to 
form scripts. If two blocks cannot be joined to form a valid 
syntactic statement, the environment prevents them from snapping 
together, thus helping to alleviate difficulties with syntax while 
retaining the practice of assembling programs instruction-by-
instruction. This feature is especially relevant to the proposed 
study, as graphical programming proponents argue that visual 
depiction of syntax information is a key feature that contributes to 
its appropriateness for novice programmers [49]. However, other 
researchers are finding this approach does not solve the syntax 
problem, but merely delays it [43, 48]. Along with using block 
shape to denote usage, there are other visual cues to help novices, 
including color coding blocks by conceptual use, and nesting 
blocks to denote scope. Blocks-based programming has been 
found to be perceived as easier by learners, with a number of 
these visual features cited for its relative ease-of-use [70].  

Early version of this interlocking approach include LogoBlocks 
[6] and BridgeTalk [9], which helped formulate the programming 
approach which has since grown to be used in dozens of 
applications. Alice [13], an influential and widely used 
environment in introductory programming classes, uses a very 
similar interface and has been the focus of much scholarship 
evaluating the merits of the approach at the undergraduate level.  
In addition to being used in more conventional computer science 
contexts, a growing number of environments have adopted the 
blocks-based programming approach to lower the barrier to 
programing across a variety of domains including mobile app 
development with MIT App Inventor and Pocket Code [53], 
modeling and simulation tools like StarLogo TNG [7], DeltaTick 
[76], NetTango [40] and EvoBuild [67], creative and artistic tools 
like Turtle Art and PicoBlocks, commercial educational tools like 

Tynker and Hopscotch, game-based learning environments like 
RoboBuilder [68] and CodeSpells [21], and the activities included 
in Code.org’s Hour of Code, and Google’s Made with Code.  

2.4 Programming assessments 
Across educational research broadly there is a recognized need for 
high quality and validated assessments, a position echoed in 
computer science education circles [62]. Towards this end, a 
number of assessments have been developed and validated with 
the goal of improving our ability to evaluate and measure student 
learning across a variety of languages, environments, and contexts 
[27]. Related work has sought to define the process one follows to 
develop quality computer science assessments, beginning with 
identifying the goals of the assessment and the material to cover, 
through validating, piloting, and refining the instrument [12]. 
Additionally, new techniques are being developed and applied to 
programming assessments to improve accuracy and build 
confidence in new assessments [60]. One notable example of a 
rigorous, validated assessment is the Foundational CS1 
assessment (FCS1) [64], which is a language independent 
instrument designed to decouple concepts from the language used 
to represent them. This makes it possible to be used with learners 
regardless of the language used during instruction. This is in 
contrast to most validated programming assessments developed 
by testing boards, like the Advanced Placement (AP) CS exam 
and the A-level General Certificate of Education in Computing, 
both of which are currently designed for the Java language.  
There are a growing number of projects working towards 
developing assessments for the blocks-based approach to 
programming that we are investigating herein. Much of this work 
looks to assess not programming specifically, but computational 
thinking more broadly [27]. For example, the Fairy assessment 
[71], designed for middle school aged learners, uses Alice and 
presents learners with partially completed, or buggy, programs 
that need to be fixed in order for in-world characters to 
accomplish a specific task. In taking this approach, the Fairy 
assessment evaluates both comprehension (learners understanding 
of what a written program does) as well as gives learners a chance 
to problem solve, design and implement algorithmic solutions to 
assessment tasks. This design addresses the critique that process is 
often lost in conventional assessments of programming 
knowledge [47]. Another innovative assessment approach to 
computational thinking comes out of the Scalable Game Design 
group that developed an automated way to measure the frequency 
of computational thinking patterns in student-authored programs 
as a way to assess learning [29].  

2.5 Evaluating Blocks-based Programming  
A small, but growing body of literature is investigating the 
learning that happens with blocks-based programming tools. To 
date, most of this work has focused on Scratch and Alice, as these 
two environments have the widest use in contemporary computer 
science education. While both Alice and Scratch have been used 
in formal education environments, it is important to keep in mind 
that the two projects initially had different goals and targeted 
different age groups. Scratch from its inception, was focused on 
younger learners and informal settings [49], while Alice was 
targeted at more conventional computer science learning contexts 
and, as such, has a been the focus of more initiatives to evaluate 
student learning of programming concepts [13]. 

Ben-Ari and colleagues have conducted a number of studies on 
the use of Scratch for teaching computer science in formal 
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contexts [3, 4, 34, 35]. Meerbaum-Salant et al. [35] found that 
Scratch could successfully be used to introduce learners to central 
computer science concepts including variables, conditional and 
iterative logic, and concurrency. While students did perform well 
on the post-test evaluation in this project, a closer look at the 
programming practices learners developed while working in 
Scratch gave pause to the excitement around the results. The 
researchers found that students developed some undesirable 
programming habits, including a totally bottom-up programming 
approach, a tendency towards extremely fine-grained 
programming, and often unconventional, non-optimal usages of 
programming structures [34]. In a continuation of this study, the 
researchers concluded that students who learned Scratch in middle 
school more quickly grasped concepts in text-based languages 
when they reached high school (although they did not perform 
better on content assessments) [4]. Other work looking at 
comparing blocks-based to text-based programming using Scratch 
found that Scratch can be an effective way to introduce learners to 
programming concepts, although it is not universally more 
effective than comparable text languages [32]. There is also a 
growing body of work suggesting that the transition from blocks-
based to text-based programming contexts is not as smooth as had 
once been assumed [24, 43, 48]. This suggests there are cognitive 
differences between these two programming modalities and is at 
the heart of the questions we pursuing here. 

3. The Commutative Assessment 
In pursuit of our first research question, we developed the 
Commutative Assessment as a way to evaluate if and how 
programming modality affects learnability. Each question on the 
assessment includes a short program for the student to read that 
can be expressed either in a blocks-based or text-based form. This 
means that no question relies on a construct unique to either 
modality, so for example, there are no questions that use blocks 
related to motion that students familiar with Scratch would 
recognize, as these instructions are not native to JavaScript. For 
each administration of the assessment, half of the questions are 
presented with blocks-based code and the other half use the text-
based modality. The design of the Commutative Assessment 
makes it possible to group the responses along a number of 
dimensions that collectively yield insight into the relationship 
between modality and emerging understanding and provides data 
to support or refute claims about whether one modality is easier to 
interpret than another with respect to the various concepts. 

To decide what concepts to include in our assessment, we 
primarily drew on two resources: the recently released 2013 CS 
Curriculum [2] and the work of Tew and Guzdial [63, 64]. In 
making the FCS1 assessment, Tew and Guzdial reviewed the 
contents of 12 introductory computer science textbooks along 
with other published curricula to establish a list of ten core CS1 
concepts. Of this list, we chose to include five concepts in our 
assessment: fundamentals (variables, assignment, etc.), selection 
statements (conditional logic), definite loops (for loops), 
indefinite loops (while loops), and function/method parameters. 
Based on our review of the CS2013 Curriculum and what it 
emphasizes for introductory courses, we decided to add two 
additional content categories: program comprehension and 
algorithms (natural language descriptions of steps to be followed 
to solve a problem). As the algorithm questions do not include 
blocks-based or text-based programs, they are not discussed here. 

The Commutative Assessment includes 28 questions, five each 
for conditional logic, loops, functions, and algorithms, and four 

from the categories of variables and comprehension. While we 
would have liked to include a larger number of questions, we 
were constrained by the length of class and an awareness of 
testing fatigue effects from long assessments. All of the questions 
are multiple choice or true/false and, with the exception of the 
algorithm questions, take the form of a short piece of code that 
students are asked to interpret. The multiple choice answers were 
informed by misconceptions that have been identified in the 
literature (see appendix A of [56] for a summary of 
misconceptions). Figure 2 shows a sample variable question from 
the assessment. When taking the assessment, students see either 
the text version or the blocks version of the program. 

What will be the value of x and y after this script is run? 

 
vs. 

 
A) x is equal to 15 and y is equal to 15 
B) x is equal to 5 and y is equal to 10 
C) x is equal to 15 and y is equal to 10 
D) x is equal to “x + 5” and y is equal to “x” 
E) x is equal to 10, 15 and y is equal to 10 

Figure 2. A question from the Commutative Assessment. 

The set of available choices includes the correct answer as well as 
responses drawn from the literature on misconceptions around 
variable assignment. Option A would be chosen by a student that 
holds the misconception that when one variable is assigned to 
another, the two values are linked and that whatever happens to 
one, happens to the other [10]. If a student incorrectly thinks that 
a value gets passed from one variable to another (i.e. the variable 
does not retain its value if another variable is set to it), then the 
student would choose option B. Option D would be chosen by a 
student who thinks expressions do not get evaluated during 
assignment [5, 55]. Finally, option E would be chosen by students 
who think that variables “remember” prior values [10, 20]. We 
also choose to write out “is equal to” instead of using an equals 
sign to be explicit about the meaning of the choices. Throughout 
the assessment we tried to follow this approach as much as 
possible to shed light on potential misconceptions conveyed or 
supported by the different modalities.  

It is important to note that while the goal of this assessment is to 
understand the effect of programming modality on learning, there 
are other factors complicating the issue, most notably, differences 
in the language itself. For example, in Figure 2, the syntax and 
keywords used in variable declaration and assignment are 
different between the two modalities, making the difference 
between the two forms of the question more than just a shift in 
modality. This is a constant challenge with this work as a feature 
of the blocks-based modality is the ability to support more 
conversational and readable commands [70]. We will return to 
this challenge through the paper.  

4. Methods and Participants 
The data presented in this paper are part of a larger study 
comparing blocks-based, text-based, and hybrid blocks/text 
programming environments at a selective enrollment public high 
school in a Midwestern city. We followed students in three 
sections of an elective introductory programming course for the 
first 10 weeks of the school year. Each class spent the first five 
weeks of the course working in a blocks-based programming 
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environment. The students then transition to Java for the next five 
weeks of the study and then continued with Java for the remainder 
of the year. Two teachers participated in this study (one teacher 
taught two of the classes), both of whom had over five years of 
computer science teaching experience at the high school level. 

The Commutative Assessment was administered online during 
class time at three points over the course of the 10-week study: at 
the outset, at the midpoint (end of week 5), and the conclusion of 
the study (end of week 10). Each time students took the 
assessment, they were asked the same set of 28 questions but the 
order and the modality (blocks vs. text) changed between 
administrations. The questions on the second content assessment 
used the opposite modality from the first assessment, so after 
taking the content assessment twice, all students had seen every 
question in both modalities. For the third assessment, two version 
of the assessment were created that asked question in the same 
order, but varied modality. Students were then randomly given 
one of the two versions of the third assessment.  

For the first five weeks of the course, each class used a slightly 
different programming environment based on Snap! [15]. Snap! is 
a blocks-based programming tool that is very similar to Scratch, 
but adds a few features (notably Snap! has first-class functions), 
and is implemented in JavaScript. The first class used a version of 
Snap! that gave students the ability to right-click on any block or 
script to see a JavaScript implementation of the program (Figure 
3). In this tool, students were able to read, but not edit or write, 
text-based versions of the programs they constructed with the 
blocks. The second class used a version of Snap! that allowed 
students to read their programs in text and added the ability to 
define the behavior of new custom blocks in JavaScript. This 
served as a hybrid blocks/text read/write environment, as students 
could both read a text-based version of their own blocks, as well 
as write the behaviors of new blocks in JavaScript. The final class 
served as a control and used an unmodified version of Snap! All 
three classes followed the same curriculum based on UC 
Berkeley’s Beauty and Joy of Computing course, which covers all 
concepts included in the Commutative Assessment.  

  
Figure 3. Side-by-side blocks and text in our version of Snap! 

At the conclusion of the 5-week blocks-based introduction, the 
students transitioned to Java, following an objects-first 
curriculum. During the Java portion of the study, the topics 
covered in class included how to compile and run Java programs, 
simple data input and output, and the basics of defining and 
calling functions. While Java and JavaScript have syntactic 
differences, few of these differences were encountered by 
students during the five weeks of Java, the notable exception 
being the existence of variable types in Java as opposed to 
JavaScript’s weak typing. This difference was discussed by the 
teachers and was not identified as problematic by students during 
the study. 

The school we worked with was chosen as it has a large computer 
science department, offering three sections of their Programming 
I course. A total of 90 students across three sections of the course 
participated in the study, which included 67 male students and 23 
female students. The students participating in the study were 43% 
Hispanic, 29% White, 10% Asian, 6% African American, and 
10% Multi-racial - a breakdown comparable to the larger student 
body. The classes included one student in eighth grade, three high 
school freshman, 43 sophomores, 18 juniors, and 25 high school 
seniors. Two-thirds of the students in the study speak a language 
other than English in their homes. 

5. Results 
As our research questions focus on the relationship between 
modality and concept, the first step of our analysis was to come 
up with a score for each concept/modality pair for every 
participant in the study. This means for each student we had 10 
unique scores, one for each concept/modality tuple (variable/text; 
variables/blocks; loops/text, loops/blocks, etc.), resulting in 180 
data points for each concept (90 students * 2 modalities). These 
scores were calculated by averaging together the student’s score 
for every question that fell into the tuple. Grouping this way helps 
us control for features of specific questions, and gives us a more 
accurate within-participant score for conceptual understanding by 
modality. These scores were then aggregated across the full set of 
participants to determine the relationship between concept and 
modality. We do not present a breakdown of responses by 
condition or time period. As this is our first analysis of data from 
the Commutative Assessment, we chose to focus on general 
outcomes, specifically looking for patterns and differences in 
student responses by concept/modality. Figure 4 shows the 
difference found for each concept. 

 
Figure 4. Student performance on the Commutative 

Assessment grouped by modality and concept. 

Looking across the five conceptual categories covered in the 
Commutative Assessment using paired-samples t-tests shows that 
students in the graphical condition perform significantly better 
with the blocks-based modality on questions related to iterative 
logic t(178) = 10.40, p < .001, d = 1.57, conditional logic t(178) = 
2.82, p < .01, d = .41 and functions t(178) = 2.89, p < .01, d = .41. 
Students also performed better in the graphical condition on 
variable questions, but not significantly so, t(178) = 1.66, p = .10, 
d = .25. Interestingly, there was almost no difference in how 
students performed on the comprehension questions between the 
two modalities t(178) = .094, p = .92, d = .01. These data suggest 
that the answer to the first part of our second research question is 
yes, modality does affect novice programmers’ understanding of 
basic programming concepts. Further, these data show that the 
effect is not uniform across concepts and does not seem to 
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influence comprehension of programs in the same way it effects 
basic understanding of what a construct does within a program. 
Seeing that a difference does exist, we now further investigate 
each category to answer the second part of our second research 
question, looking at how specific concepts are differentially 
influenced by modality and if they can be explained by 
misconceptions from the literature.  

5.1 Iterative Logic Questions 
While iterative logic showed the largest difference in scores 
between blocks-based and text-based questions, a closer analysis 
of the questions shows that a majority of this difference can be 
attributed to the difficulty students have with the structure of for 
loops [10]. Two of our five iterative logic questions compared a 
graphical repeat block to a text-based for loop (Figure 5).  

 
Figure 5. A sample iterative logic question. 

On these two questions, students performed significantly better in 
the graphical condition (83% correct) versus the text-based for 
loop version of the question (16.1% correct). This provides 
compelling evidence for the finding that students find the repeat 
command common to blocks-based languages easier to 
understand than text-based for loops, a finding already 
documented in the literature [57, 59]. By examining the incorrect 
responses given by students, we can glean additional information 
about how students understand the concepts with respect to the 
way they are presented. For example, on the text-based for loop 
questions, almost half of the students (49.3%) chose an answer 
that had each command inside the for loop run once and only 
once – suggesting it was not clear that any looping was going to 
occur. When answering the same questions with the graphical 
repeat blocks, only 1.5% of students chose those options. 
Second, in the text-based conditions, 20.7% of students chose the 
answer that suggested the number of times a given for loop would 
run was variable, and would be different each time it was 
executed. In the graphical repeat versions of the questions, only 
one student chose this option. The Commutative Assessment 
includes one looping question that compared a blocks-based 
version of a for loop to a text-based version (Figure 6). 

 
Figure 6. Comparing blocks-based and text-based for loops. 

On this question, students performed comparably, answering the 
question correctly 19.6% percent of the time in the graphical 
condition and 18.0% of the time in the text-based condition. One 
possible explanation for the lack of difference on this question 
compared to what we saw on the two questions that use repeat is 
the confusion around the use of the term “for” to capture the 
concept of looping and the lack of transparency in how for loops 
behave based on this conventional representation [10, 57]. This 
outcome, along with the other for loop questions adds to the 

evidence that students find the word “for” unintuitive, and that 
“repeat” better describes the looping behavior. As there are 
languages that utilize the keyword “repeat” (Logo in particular 
comes to mind), this finding speaks more to language design than 
features of the modality.  

The two indefinite loop questions use the while construct. There 
was little difference in performance between the blocks-based and 
text-based versions of these questions. For both questions, 
students’ performance was very similar (a difference of .6% and 
2.3% for the two questions). A closer investigation of the answers 
given (include incorrect answers) does not show a systematic 
difference between the types of representations used. This 
suggests that on indefinite loops, the blocks-based representation 
does not seem to provide any distinct advantage over a 
comparable text-based implementation. The lack of a difference 
between the two modalities when using comparable 
syntax/keywords, both with while loops and for loops, matches 
the finding from Lewis [32], who found no significant difference 
in accuracy between questions asked using the repeat block in 
Scratch and the repeat command in Logo. This suggests that for 
iterative logic, the blocks-based representation does not provide 
additional conceptual support; meaning the nested scoping and 
visual syntactic information did not better support student 
comprehension. A closer analysis of the five iterative logic 
questions only reinforces what we already know about the 
difficulty learners have with for loop syntax.  

5.2 Conditional Logic questions 
Students performed significantly better in the blocks-based 
modality on three of the five conditional logic questions. On one 
question the students performed comparably (.34% better on the 
blocks-based form), and on the last question students performed 
slightly better on text, scoring only 2.72% higher. On this final 
question, students were asked about the overall behavior of the 
script, as opposed to just the output, making it closer to our 
comprehension questions than the others, which may in part 
explain the better performance for the text-based representation - 
we will return to this issue later in the paper. On the three 
questions where students performed better in the graphical 
condition, two patterns emerged in analyzing the incorrect 
responses, revealing a slight systematic bias. First, on the two 
questions where the test of an if/else statement evaluated to 
true, students in the text condition were more likely to think both 
the if and the else branches would execute  (11.5% for text 
versus 7.1% in the graphical case). This misconception has been 
identified in the literature [54] and is part of the work showing the 
if/else construct to be challenging for learners. In the current 
version of the Commutative Assessment only one of our five 
questions exposes this misconception, so we cannot make a strong 
claim about this error being alleviated by the blocks-based 
representation, but we plan on addressing this shortcoming in the 
next iteration of the assessment. Second, we found that students in 
the text condition were more likely to think the last statement is 
the one that is evaluated regardless of the outcome of the 
conditional logic surrounding it. On all three questions where this 
was a possible incorrect answer, students were more likely to 
choose it in the text-based condition (10.7% for text, versus 3.5% 
in blocks). This could be explained a number of ways, including 
students thinking that the body of a conditional statement gets 
executed regardless of the outcome of the conditional test, 
thinking the else outcome is always evaluated (which matches 
the first misconception identified and could explain two of the 
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three questions we saw this error in), or not know how or when 
conditions evaluate to true so defaulting to falling through to the 
last statement. Overall, the finding that students performed better 
on blocks-based conditional logic questions matches Lewis’ 
pervious work [32].  

5.3 Variables Questions 
Like with the two previous conceptual categories, students 
performed better (although not at a statistically significant level) 
on the variable questions when they were presented in the blocks-
based form. A more detailed look reveals that students only 
performed better on the graphical case on three of the four 
questions in this category. On the one question that students 
performed better in the textual modality (Figure 7), one difference 
stands out from the others: variables are set then used, but never 
re-assigned, making it the simplest of the four questions.  

 
Figure 7. The variable question that students performed 

better in the text condition than the blocks-based condition. 

This suggests that the text-based representation is comparable to 
the blocks-based version for simple variable assignment and 
usage, but that as statements and programs get more sophisticated 
(i.e. variables are assigned to other variables or variable values 
are set then reset), that the blocks-based modality is more intuitive 
for learners. As this is only a single question, we only mention is 
as a potential finding and plan to further investigate this in the 
future. 

Looking at the incorrect responses given by students across the 
four variable questions reveals three findings that link modality to 
the existing misconceptions literature on variables. First, all four 
questions included an option that would be chosen by students 
who mistakenly thought expressions do not get evaluated as part 
of assignment (option D in Figure 2) and for all four questions, 
this incorrect option was chosen slightly more often in text form 
(7.3% of text responses, 5.3% of graphical). This could 
potentially be explained by the text form not providing visual 
hints about how to parse the statement. Second, we found that on 
text-based questions, students were more likely to incorrectly 
choose the answer that would result if variables held their initial 
values, meaning the values do not get overwritten (30.6% in text, 
14.5% in graphical). We have not previously encountered this 
misconception in the literature. Our hypothesis is that in the case 
where students do not know what is supposed to happen when a 
variable that already contains a value has a new value set to it, the 
assumed behavior is for nothing to happen, i.e. the new value is 
ignored and the original value retained. Finally, students were 
also slightly more likely to choose answers that fit with the linked 
variables misconception (option A in figure 2) in the text 
questions (23.4% of text responses, 17.4% of graphical).  

5.4 Function Questions 
The fourth category of questions asked students about the 
outcome of running programs that contained function calls 
(Figure 8). On these questions, students performed better on the 
blocks-based version on four of the five questions we asked. 
Looking at the errors students made, we see a few cases where 

students show signs of displaying documented misconceptions 
and other patterns that seem systematic, but are new to this work 
and can, at least partially, be explained by features of the 
modality. First, in one of our questions, we intentionally wrote a 
program that would output 

(a) (b) 
Figure 8. Two sample function questions. 

the same word twice in a row, meaning the correct answer 
included the duplicated word while other choices included what 
students might assume was intended. Over half of the students 
(57%) in the text version of the question incorrectly chose the 
non-duplicated responses, compared to 38.6% of responses in the 
blocks-based version of the question. This suggests students 
found it easier to trace the flow in the blocks-based modality and 
were less likely to fall victim to what Pea [45] calls an 
“intentionality bug”, where the learner assumes the computer 
knows the programmer’s intention. A second systematic finding 
from analyzing these questions reinforces a trend observed in the 
variables questions, that students answering text-based questions 
were more likely to think that expressions do not get evaluated, 
but instead retain the expanded form (44% for text versus 31% of 
graphical responses). A third trend we found is that students were 
twice as likely (50% compared to 22%) to think that an 
unbounded recursive function stopped after a fixed number of 
calls in the text-based form than the blocks-based modality. 
Finally, two of our questions included functions that return values 
(report is the keyword used in the graphical form). Figure 8b 
provides an example of this type of question. Across these two 
questions, students were almost twice as likely to think the 
return command would cause an error in the text-based form 
(24.5% of responses) than the blocks-based alternative (13.2% of 
responses). In this case, we can point to a feature of the blocks-
based modality that can account for this difference. In the blocks-
based language, functions that return values are depicted as ovals 
or hexagons that need to be nested inside another block (like op2 
in Figure 8b), whereas functions that do not have return 
statements take the shape of the interlocking blocks (like the 
func1 block in figure 8a). This visual difference at the place 
where the function is being invoked, and the ability for the 
blocks-based representation to enforce syntactic validity, provide 
a pair of scaffolds for the learner that potentially explains this 
difference in student responses in the two modalities. 

5.5 Comprehension Questions 
The final type of question on the assessment is program 
comprehension. These questions, unlike the others, focus more on 
what the purpose of a script is, as opposed to specific outcomes. 
In each case, the question students must answer is: what does the 
following script do? These questions require students to mentally 
run the program, often for different sets of potential inputs, and 
then interpret that behavior into a natural language description of 
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the behavior. Figure 9 shows two examples of these questions, 
with the correct answer being that the program swaps two values 
(left) and returns the largest of the three numbers (right). 
Across the full set of questions, students performed comparably 
on the comprehension questions by modality (a difference of less 
then 1%). Looking at the questions individually, we see outcomes 

a, b and tmp are 
variables. What 
does this script do? 

 
vs. 

 

The function op4 takes in 3 numbers. What 
does op4 function do? 

 vs.   
(a) (b) 

Figure 9. Two comprehension questions 
that correlate with the trends of how students did on questions 
from the conceptual category of the constructs used in the 
question. So, for example, question b in Figure 9, involves 
conditional logic and we found students performed better on the 
graphical versions of the question. Conversely, on a 
comprehension question that included a while loop, students 
performed better in the text condition. Because these questions 
involve the additional step of interpreting the behavior of scripts 
and the intention of the author, it becomes more difficult to map 
incorrect responses to specific misconceptions from the literature. 
Additionally, the small difference in performance between 
blocks-based and text-based questions is also interesting as it is 
the only category for which this is true, which leads to some 
potentially interesting conclusions. Notably, this suggests that 
while the graphical representation supports students in 
understanding what a construct does (i.e. what the output from 
using it is), that support does not better facilitate learners in 
understanding how to use that construct.  

6. Discussion 
The first research question we posed was how to comparatively 
assess understandings in two different modalities as part of the 
larger goal of studying the relationship between programming 
modality and understandings. The Commutative Assessment is 
our answer to that question. This assessment gives us the ability 
to directly compare responses to questions based on modality and 
concept and by giving the assessment at multiple time points, we 
are able to do both within and across student analyses of 
responses. Additionally, by providing responses based on 
misconceptions in the literature, we can link representational 
features of modalities with understandings that novices hold.  
On three of our four conceptual categories we found significant 
differences in performance between modality, with the fourth 
category showing a similar, though less pronounced, trend. Three 
features of the blocks-based modality in particular stand out as 
possible explanations for this result. First, the graphical nesting of 
the blocks to denote scope appears to be an effective way to 
depict this concept, as we saw fewer errors made on blocks-based 
versions of questions where such misconceptions might be found. 
For example, students incorrectly thinking both branches of an 
if/else statement will be run was more prevalent in the text-
based condition. The difference between {}s and visually nested 
commands provides one plausible explanation for this. Second, 

the fact that the blocks-based modality allows for statements that 
can be closer to natural language can, in part, explain some of the 
differences we found. Notably, the command to assign values to 
variables takes the form of set __ to __, which is a closer 
description to what the command does than the comparable text-
based language command of var __ = __. This difference is not a 
feature of the blocks-based modality, but instead an example of 
the language designer taking advantage of the more 
conversational format that the block-based modality enables. This 
difference can explain at least part of the differences we saw in 
the variable questions. Finally, the different shape of commands 
that return values from those that carry out actions in the blocks-
based modality provides a compelling explanation for some of the 
differences we found in the function questions.  
One of the more interesting outcomes from this work is the lack 
of difference between student performance on the comprehension 
questions. There are a few possible ways to explain this. One 
explanation is that the gains learners get from the graphical 
affordances of the blocks-based modality that support conceptual 
understanding of specific constructs does not carry over to 
slightly more challenging comprehension tasks. A second possible 
explanation is that it takes longer than the time allotted in the 
study for the gains from the graphical layout to apply to these 
types of questions. If this were the case, we would expect that if 
given more time, we would see similar gaps in performance 
emerge. A third possible explanation is that the modality has little 
effect on student comprehension. Although prior research would 
suggest otherwise, we continue to test this possibility. Teasing out 
which of these explanations is most accurate, or developing a 
potentially new explanation for this outcome is one direction this 
work is heading. 
While we think the Commutative Assessment is a productive 
approach and can shed some light on the stated research 
questions, it is important to note what is not assessed by this work 
– the composition of programs. As such, the work we presented 
above only begins to answer our second research question on the 
relationship between modality and understanding. To more fully 
understand the relationship, additional data and complementary 
methods need to be applied. As part of this study we also 
conducted semi-structured clinical interviews with student and 
gathered log data of student programs. Our next step for this 
project is to use those data to triangulate patterns and 
relationships between the modalities and their cognitive 
affordances that we identified here. Additionally, the analyses 
presented herein did not account for time period or by Snap! 
condition. These are two dimensions we will pursue in future 
work. Finally, as previously mentioned, on some questions in the 
current form of the Commutative Assessment there is a conflation 
of modality and language features. While it is difficult to 
completely disentangle these characteristics of a programming 
language, in our next iteration of this study, we intend on using an 
environment where the language used in the blocks-based and 
text-based interfaces is syntactically more similar and uses a 
shared set of keywords and update the assessment with images 
from the new environment.  

7. Conclusion 
With the increasing presence of blocks-based programming in 
both formal and informal educational computing contexts, it is 
becoming increasingly important for us as educators and 
designers to more fully understand the effects of this modality on 
learners’ conceptual understanding. The Commutative 
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Assessment allows us to systematically compare student 
understanding of fundamental concepts in blocks-based and text-
based modalities, which in turn can give us insight into how 
learners are making sense of concepts using different 
representational tools. Through analyzing student responses, both 
correct and incorrect, we are starting to learn how blocks-based 
languages influence learners’ emerging understandings and 
identify how modality can elicit or suppress misconceptions. The 
next step is to apply these findings to design new environments 
that will prepare the next generation of learners for the 
computational futures that await them. 
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