
Block-based Comprehension: Exploring and Explaining Student
Outcomes from a Read-only Block-based Exam

David Weintrop
University of Maryland
College Park, MD, USA

weintrop@umd.edu

Heather Killen
University of Maryland
College Park, MD, USA

hkillen@umd.edu

Talal Munzar
University of Maryland College

Park, MD, USA
tmunzar@terpmail.umd.edu

Baker Franke
Code.org

Seattle, WA, USA
baker@code.org

ABSTRACT
The success of block-based programming environments like
Scratch and Alice has resulted in a growing presence of the block-
based modality in classrooms. For example, in the United States, a
new, nationally-administered computer science exam is evaluating
students’ understanding of programming concepts using both
block-based and text-based presentations of short programs
written in a custom pseudocode. The presence of the block-based
modality on a written exam in an unimplemented pseudocode is a
far cry from the informal, creative, and live coding contexts where
block-based programming initially gained popularity. Further, the
design of the block-based pseudocode used on the exam includes
few of the features cited in the research as contributing to positive
learner experiences. In this paper, we seek to understand the
implications of the inclusion of an unimplemented block-based
pseudocode on a written exam. To do so, we analyze responses
from over 5,000 students to a 20 item assessment that included
both block-based and text-based questions written in the same
pseudocode as the national exam. Our analysis shows students
performing better on questions presented in the block-based form
compared to text-based questions. Further analysis shows that this
difference is consistent across conceptual categories. This paper
contributes to our understanding of the affordances of block-based
programming and if and how the modality can help learners
succeed in early computer science learning experiences.

ACM Reference format:

D. Weintrop, H. Killen, T. Munzar, and B. Franke. 2019. Block-based
Comprehension: Exploring and Explaining Student Outcomes from a Read-
only Block-based Exam In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE '19). February 27-
March 2, 2019, Minneapolis, MN, USA, ACM, NY, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287348

KEYWORDS
Introductory Programming Environments; High School Computer
Science Education; Block-based Programming; Assessment

1 INTRODUCTION
The last five years have seen a steady flow of block-based

programming tools into K-12 classrooms. While some block-based
programming environments have a long history in formal
educational contexts (e.g. Alice), other block-based tools were
specifically designed for informal learning spaces (e.g. Scratch). As
part of the transition of block-based programming into K-12
classrooms, the modality is starting to be used in ways quite
distinct from how it was initially designed. Nowhere is this clearer
than when it comes to assessment.

Many introductory computer science courses assess student
knowledge through written exams that ask students questions
about specific syntactic features of a programming language and
evaluate student comprehension of programs. While not ideal,
such questions lend themselves well to the multiple-choice
question format and thus can be graded quickly and objectively.
As a result, written, multiple choice assessments are common in
introductory computing contexts.

The rise of block-based programming environments in
classrooms presents an interesting challenge for educators. What
happens when we use learning environments designed for
informal spaces that prioritize creativity and expression and
situate them in formal contexts where they are subject to
conventional educational institutional constraints, such as
summative written examinations? Often the result is for educators
to create pen-and-paper written exams or other static
presentations of material based on the block-based programming
environments students used in their classrooms. In moving from
the programming environment itself to the written assessment
context, many of the affordances of these environments are lost as
the graphical representation is recreated in static, often black-and-
white printed exam booklets. This raises interesting research
questions on the affordances of block-based tools and if and how
they support learning beyond the programming environment
itself. It is these questions we are pursuing with this research.
Specifically, we seek to answer the following questions:

Does the block-based programming modality support
novice programmers’ program comprehension on static,
read-only assessments? And, if so, how?
To answer these questions, we designed a 20-item assessment

asking questions using both block-based and text-based forms of a
custom pseudocode (Fig. 1). The exam was then included as an
optional activity in materials distributed nationally, resulting in
over 5,000 students completing the assessment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-5890-3/19/02…$15.00
https://doi.org/10.1145/3287324.3287348

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1218

https://doi.org/10.1145/3287324.3287348
mailto:Permissions@acm.org
https://doi.org/10.1145/3287324.3287348

(a) (b)

Figure 1. A sample text-based (left) and block-based (right)
program written in the AP CSP pseudocode.

The paper begins with a review of relevant literature. We
then describe the block-based pseudocode that was used in the
assessment and present a comparison of the pseudocode to
widely-used block-based languages to understand how they are
similar and where they diverge. Next, we present information on
the assessment we created and the methods and participants of the
study. The findings section follows and the paper concludes with
potential explanations for the findings and a discussion of the
implications of this work.

2. PRIOR WORK

2.1 The Role of Representation in Learning
The first and most foundational literature that this paper

builds on is prior work studying the role of representation in
learning. This work has come under a few labels. Kaput and
colleagues use the term representational system in their
investigation of the cognitive impacts of different symbol systems
used in mathematics and how they affect cognitive aspects of
engaging with mathematics [21]. Moving beyond the individual,
they expand this idea through the concept of representational
infrastructure as a way to talk about how a representational system
supports the cultural and social dimensions of thinking and
communicating about ideas [20]. Much of this work is specifically
in relation to technology and the new representations and
interaction patterns the medium affords. In his conceptualization
of Computational Literacy, diSessa builds on this idea with the
notion of material intelligence, saying “we don’t always have ideas
and then express them in the medium. We have ideas with the
medium” [7, emphasis in the original].

While often assumed to be static, Wilensky and Papert show
how representational infrastructures can and should change over
time [46]. As part of their Restructuration Theory, they present
examples of such representational shifts, or restructurations, and
provide criteria to evaluate the different capacities that
representational systems play. Our exploration of the impact of
presenting programs using block-based representations builds
directly on this work as it is trying to make sense of
representational affordances and understand if and how the way
ideas are represented shapes learners ability to interpret the ideas
presented. In doing so, this work shares a goal with Sherin’s
investigation into the role of representations in learning physics
[33] and Gilmore and Green in looking at declarative versus
procedural notation [13].

2.2 Block-based Programming
The second body this study builds off of and contributes to is

work on block-based programming. Block-based programming
(Fig. 2) is a graphical programming modality that presents
programming commands as visual blocks that can be assembled
via a drag-and-drop interaction [3]. The environment provides a
direct manipulation interface for authoring programs [34]. While
not a recent innovation (e.g. [4]), the block-based approach to
programming has become widespread in introductory contexts
due to the success of tools such as Scratch [30], Alice [6], and the
Blockly library [12].

(a) (b) (c)

Figure 2. Three examples of block-based programming
environments: (a) Scratch (b) Alice and (c) Code.org’s
AppLab.

A growing body of research is revealing how, where, and in
what ways block-based programming is effective for introducing
novices to the practice of programming and the field of computer
science more broadly. This includes research documenting novice
programmers’ learning gains [10, 17, 29, 42], as well as attitudinal
and perceptual shifts in interest in the field of computer science
[22, 25, 26]. Research has also investigated how block-based
environments can serve as a context around which participatory
cultures can form, further bolstering learners identities as
computational doers [9, 19, 32]. Section 4 of this paper presents a
more detailed account of the specific affordances of block-based
programming as these design features are central to this paper.

2.3 Evaluating Programming Knowledge
In their review of assessments of introductory programming,

Gross and Powers [14] found that “some of the least studied
questions are those that focus on how the environments impact a
student’s learning process and understanding from a formative
perspective.” In the decade since that statement was written, a
growing body of research has started to answer some of these
open questions [16]. This work includes creating and validating
traditional summative assessments that use multiple choice
questions to assess knowledge (e.g. [26]), performance-based
assessments where students are asked to complete a specific task
(e.g. [45]), and portfolio or artifact-based assessments that used
student-produced work as a way to measure students level of
understanding (e.g. [5]).

The work presented in this paper most closely builds off
research into program comprehension of statically presented
programs used in summative assessments. This includes
assessments such as the Foundations for Advancing
Computational Thinking assessment [17] which has been used to

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1219

investigate learner misconceptions in block-based programs [15].
A second line of work this study builds off is research comparing
block-based and text-based comprehension using the
Commutative Assessment [44]. Studies using the Commutative
Assessment have shown how students perform better on questions
presented in block-based forms, even when students’ preceding
programming instruction was in a text-based programming
environment [42]. The work presented in this paper contributes to
this literature by focusing on a relatively feature-light block-based
programming language: the AP Computers Science Principles
Pseudocode.

3. THE AP COMPUTER SCIENCE PRINCIPLES
PSEUDOCODE

In the 2016-2017 school year, the College Board introduced a
new Advanced Placement (AP) course to be taught in the United
States called Computer Science Principles (CSP) [2]. The course
focuses on seven big ideas of computer science, meaning, unlike
many other introductory computing courses, AP CSP does not
prioritize programming over other computer science content. One
feature of the course is that it is programming language agnostic,
meaning teachers are free to choose the programming language
and environments they will use in instruction. This presents a
challenge for the nationally-administered summative assessment
of the course as the programming questions need to reflect the
programming plurality welcomed in the design of the curriculum.

In response to this challenge, the AP CSP development
committee invented a pseudocode that had both text-based and
visual block-based representations (Fig. 1). The summative AP CSP
exam includes questions asked in BOTH block-based and text-
based modalities, meaning all students answer questions asked in
both forms. The goal of this decision is to ensure that students are
not rewarded or penalized for using one type of programming tool
or another during the school year.

The AP pseudocode developed for the AP CSP exam consists
of 23 keywords including looping constructs (e.g. REPEAT),
conditional operators (e.g. IF), and I/O (e.g. DISPLAY). The block-
based and text-based representations of the commands are
isomorphic, meaning that anything that can be represented in one
form can also be represented in the other. The place the two
representations differ with respect to the symbols used is in
relation to scope, where the text form uses ()s, []s, and {}s while
the block-based form conveys this information through the
boundaries of the blocks. In the opinion of the authors, the block-
based form of the pseudocode can be described as the text-based
form with ovals and rectangles drawn around the commands. The
full documentation for this pseudocode can be found on pages 14-
20 of the AP Computer Science Principles Assessment Overview
and Performance Task Directions for Students [1].

4. AFFORDANCES OF BLOCK-BASED
PROGRAMMING

In this section, we review specific features of block-based
tools that the literature has documented as supporting novices and
discuss if and how it is present or absent in the AP CSP

pseudocode. Following the strategy of Robins et al. in their review
of the literature and learning and teaching programming [31], we
break the affordances into two main categories: supports for
program comprehension and supports for program generation,
although we recognize some design features may support both
roles. The following list of features is compiled from a number of
resources delineating the characteristics and affordances of block-
based environments [3, 8, 11, 24, 27, 37, 43]. After discussing the
design feature, we briefly discuss if and how the feature is present
in the AP CSP pseudocode that is the focus of this study.

4.1 Supports for Program Comprehension
4.1.1 Visual Rendering of Blocks. The defining feature of block-

based programming environments is that each command is
rendered as a block. These blocks present visual cues denoting
information about the command. This information includes a
specific shape showing how and where the block can be used (e.g.
commands having notches at the top and bottom, Boolean
variables presented as hexagons, and “hat” blocks having rounded
tops to make clear that nothing can precede it). Similarly, blocks
that accept arguments can render their argument slots using the
same shape, making it clear the types of inputs the block will
accept. Blocks are also often color-coordinated, so families of
blocks related to a concept share a color (e.g. all control blocks in
Scratch are yellow). Block-based environments also use shape to
denote scope through “c-shaped” blocks that wrap commands and
render the nested inside the structure as can be seen in Fig. 2a and
Fig. 2c.

While the AP CSP block-based pseudocode includes some of
these features, such as encircling commands with lines to give the
appearance of blocks and nesting blocks inside each other, most of
the visual features cited in the literature are absent. For example,
the AP CSP blocks do not include notches to denote how blocks fit
together and do not use color to convey the block category.

4.1.2 Natural Language Block Labels. Another oft-cited
affordance of block-based environments is their ability to use
natural language expressions within the command themselves.
Since the block rendering itself defines the scope of each command
and how it is to be parsed by the compiler, the language designer
is free of the syntactic and keyword constraints of text-based
languages. As a result, it is possible to create block-based
commands that read like sentences (e.g. the change x by 1
block shown in Fig. 2a) as well as domain-specific block languages
with commands tailored to the specific domain (e.g. Frog Pond
[18] or CoBlox [39]).

Given the constraint that the AP CSP pseudocode needed to
support both block-based and text-based forms, the pseudocode
was not able to take advantage of this feature of the block-based
modality. This can be seen in the character-by-character
similarities between the programs shown in Fig. 1a and Fig. 1b.

4.1.3 Browsability. The third feature of block-based tools we
highlight is not a characteristic of the language itself, but rather, a
feature of the larger block-based apparatus that makes block-based
programming possible. Block-based programming environments
present users with the set of available blocks in a logically ordered
and easily browsed set of “drawers” since blocks need to be

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1220

present somewhere on the screen in order for the user to drag
them into their program. One benefit of this feature is that it
makes blocks “browsable”, meaning learners need not have
commands memorized, but instead can easily discover blocks,
which can then be used to bootstrap programming ideas.

A version of this feature is available to students for the AP
CSP pseudocode. During the exam, students have access to a
reference sheet describing the pseudocode and the keywords that
comprise the language, meaning they can “browse” the blocks.
However, the static, black-and-white reference sheet is a
simplified version of the interface of most block-based
environments.

4.2 Supports for Program Generation
In this section, we document additional features of block-

based programming that the literature has identified as
contributing to making it an effective way to introduce novices to
programming. Due to the fact that the AP CSP pseudocode was
only designed for comprehension on a written test, the language
itself has never been implemented. Thus, none of the benefits
listed in this section are present in the AP CSP Pseudocode.

4.2.1 Drag-and-Drop Composition. Unlike text-based languages
where statements are typed in one character at a time, authoring
programs in block-based tools allows learners to assemble
commands using a drag-and-drop interaction. The information
provided by the visual rendering of the command gives the user
information about how and where a block can be used. If two
blocks cannot be joined to form a valid statement, then the block-
based editor prevents the commands from snapping together, thus
preventing most types of syntax errors. This drag-and-drop
construction also lends a feeling of “tinkerability” and playfulness,
as changes can be made quickly and easily, especially for novice
computer users who may find typing commands cumbersome.

4.2.2 Dynamic Rendering. Given the graphical nature of the
block-based representation, the visual presentation of commands
allows for a number of additional dynamic rendering features that
can support the user. For example, the shapes of blocks can change
to fit changing characteristics of the program (e.g. c-shaped blocks
can grow to wrap a larger number of sub-commands).
Additionally, block-based tools can provide hover-over tooltips,
include images or short animations, or allow the user to modify
the shape of the block on the fly (e.g. Blockly’s mutator feature).
While such features are possible in text-based editors (e.g. Citrus
[23]), they are not as widely used or as central to the modality as
the dynamic rendering features of block-based tools.

5. METHODS AND PARTICIPANTS
To answer our stated research questions we gathered data on

students answering questions in both the block-based and text-
based forms of the AP CSP Pseudocode. To do so, we created a 20
question multiple choice assessment in the same form as the
multiple choice question portion of the AP CSP written exam. We
then included the assessment as an optional “Practice AP
Programming exam questions” module at the end of the

programming module of Code.org’s CSP curriculum
(http://code.org/csp). Code.org’s CSP curriculum is a full-year,
rigorous, entry-level course that introduces high school students
to the foundations of modern computing and prepares them for
the AP CSP Exam. Programming in the course is done in App Lab
(Fig. 2c, http://code.org/applab), which is a JavaScript-based, dual-
modality environment where students can construct programs in
both block-based and text-based modalities.

5.1 The AP CSP Pseudocode Assessment
The assessment used in this study is comprised of 20 multiple

choice questions, 10 in the block-based form and 10 in the text-
based form of the AP CSP pseudocode. The questions were drawn
from a previously used and validated assessment used in similar
research studies [41]. Each question on the assessment begins with
a short code snippet and is followed by the question: “What will
the output of the program be?” There are also a series of questions
that present short programs that use the prompt “What does this
program do?” These comprehension questions are intended to
evaluate a student’s ability to identify the purpose of a program as
opposed to just mentally running the program and reporting the
output. The assessment covers five programming topics: variables,
loops, conditionals, functions, and program comprehension. For
each of the five topics, the assessment asked two questions in the
block-based pseudocode form and two in the text-based
pseudocode. This counter-balance design ensures that every
student answered two questions for each concept in both forms of
the pseudocode. A sample question is shown in Fig. 1.

5.2 Data collection and participants

The assessment was administered through Code.org’s content
management system that tracks individual students as well as
classroom progress through the curriculum. At the beginning of
the course, students create a profile which includes optionally self-
reporting their gender, age, and race. The responses collected by
Code.org were de-identified and then shared with researchers. All
necessary institutional approval was acquired for conducting this
research.

The dataset for this study consists of 5,427 students and over
105,000 individual question responses. The sample includes 1,218
(22.4%) female students, 3,198 (58.9%) male students, and 1,011
students (18.6%) who chose to not provide gender information. Of
the 5,427 students, 1,040 (19.2%) learners self-identified as being
from an underrepresented minority in computing (URM), while
2,199 (40.5%) of students were classified as not URM and 2,188
(40.3%) of student did not self-report their race. For this work,
students that self-identified as Black, Hispanic, LatinX, Native
American, or Pacific Islander were categorized as being from a
URM. Finally, a majority of participants were between the ages of
15 and 18, which corresponds to the four years of American high-
school (9.6% 15 years old; 22.5% 16 years old; 30.7% 17 years old;
27.2 % 18 years old).

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1221

6. FINDINGS

6.1 Performance by Modality

Figure 3. Average scores on the assessment by modality.

6.1.1 Overall Performance. To answer our first research
question on the impact of modality, we first look at overall student
performance on the 20-question assessment. The leftmost column
of Fig. 3 shows student performance on the block-based questions
compared to the text-based questions. Overall, students scored an
average of 8.5 out of 10 on block-based questions (SD 1.9) and 7.7
out of 10 on text-based questions (SD 2.2), a difference that is
statistically significant t(4761) = 38.14, p < .001, d = .40. This
means, overall, students performed better on the block-based
questions than the text-based questions.

6.1.2 Performance by Gender. Looking at gender, we find that
both male and female students perform significantly better on
block-based questions: Female t(1081) = 20.25, p < .001, d = 0.62
and Male t(2852) = 29.344, p < .001, d = 0.55 (columns 2 and 3 in
Fig. 3 respectively). In the case of female students, this resulted in
a .92 point improvement on average while males had a .85 point
increase, as can be seen by the larger effect size for female
students.

6.1.3 Performance by Race. When conducting the same
analysis and dividing the participant population by race, we see a
similar pattern. Both URM and non-URM students performed
significantly better on block-based questions versus text-based
questions: URM students t(878) = 18.20, p < .001, d = 0.61 and non-
URM students t(2000) = 23.74, p < .001, d = 0.53 (the two right-
most pairs of columns in Fig. 3). For participants that self-
identified as a URM, there was, on average a full point difference
between mean block-based score and mean text-based score. Non-
URM students saw on average score improvement of .76 points
between block-based and text-based questions. A longer, more
detailed analysis of the impact of modality on learners from
historically underrepresented populations can be found in [41].

6.1.4 Performance by Concept. Along with analyzing results by
characteristics of the learner, we can also look at student
performance by modality across the concept being assessed. Fig. 4
reports the percentage of students that got each question correct
grouped by modality and concept.

Across all five content areas, students scored better on
questions asked in the block-based modality over the text-based

modality. Given students only answered 2 questions for each
modality-concept pairing, we present only averages in Fig. 4. A
redesign of the assessment is underway that will give us greater
power to further investigate the interaction of modality and
concept in code comprehension questions.

Figure 4. Average number of students who answered a
question correctly grouped by concept and modality

Taken together, this collection of results is slightly surprising
as the block-based format used in this assessment lacks many of
the features the literature has identified as making block-based
tools easier to comprehend. This suggests that the features that are
present, namely the block-shapes created by outlining each
command, play a central role in facilitating the comprehension of
programs by novice programmers.

7. DISCUSSION

7.1 Potential Explanations for these Findings

The main finding from this study is that students do better on
questions presented in a block-based form compared to
isomorphic text-based presentations. This on its own is not that
surprising as previous studies have found similar results (e.g. [44]).
What is surprising is that we see these same patterns using the AP
CSP pseudocode block-based presentation which includes
relatively few of the features that learners and researchers cite as
being responsible for the ease-of-comprehension. Further, the AP
CSP pseudocode is not a real language, meaning learners have
never written a program using it. In this section, we explore a
number of potential explanations for the findings presented.

7.1.1 The Simple Visual Cues are Sufficient. The first potential
explanation is that the basic visual cues that are present in the AP
CSP pseudocode are enough to cause the differences found in the
data. By visual cues, we are referring to both the rectangular and
oval lines encircling commands that give them their block-based
appearance and the nesting of commands. It is also possible that
the opposite is true, that the absence of potentially confusing or
difficult-to-parse language features that are present in the text-
based questions, such as {}s and ()s are the cause of student
difficulty in the text-based form. This explanation is supported by

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1222

prior research on the difficulty novices have with syntactic
features of programming languages, including the use of less
familiar symbols like the brackets and braces [36].

7.1.2 The Block-based Pseudocode is Closer to Prior
Programming Experiences. While the AP CSP Pseudocode used on
the assessment was created specifically for the written test,
students did have prior programming experience that could have
shaped these results. For example, if students had spent the two
months leading up to the exam programming in a block-based
environment such as Scratch it is possible that would make them
more likely to do better on the block-based questions. Similarly, if
students came into the test on the heels of a unit learning
JavaScript, the text-based questions may appear more familiar and
thus easier. While the AP CSP exam was designed to prevent this,
it is still possible.

The assessment used in this study was embedded in a
curricular unit based on Code.org’s AppLab environment (Fig. 2b).
While AppLab includes both a block-based and text-based
interface, research shows that novices generally prefer the block-
based modality [28, 40, 43], which also matches the anecdotal
evidence received from teachers of the course. Given these facts,
the prior experience explanation is certainly plausible. However,
prior research has not found a strong coupling of the modality
used for learning programming and ability to answer questions on
a static exam. In two separate studies, Weintrop and Wilensky
found students who worked in block-based environments
performed better on text-based programming questions than peers
who had learned using text-based programming tools [42, 44].

7.1.3 Block-based Programs are Friendlier. A third potential
explanation focuses not on a feature of the language itself or on
learners’ prior experiences, but on learners perception of the
language and how they relate to it. This explanation draws from
the literature on stereotype threat, which finds that students
underperform when there is a risk of their performance
confirming an existing stereotype [35]. This explanation posits
that when learners see the block-based pseudocode, the form is
closer to the fun and playful programming they relate to, as
opposed the serious and professional programming languages they
make them feel unwelcome. While there is more work that needs
to be done to confirm (or refute) this account, it does provide a
plausible explanation for the differences observed in the analysis
of gender and race presented in sections 6.1.2 and 6.1.3.

7.1.4 Classroom or Curricular Factors. Given that this study
took place in classrooms across the United States there are many
other possible environmental factors that may contribute to these
findings. For example, it is possible that teacher effects played a
role in this pattern. If a teacher was new to computer science, he
or she may have felt more comfortable with, and therefore chosen
to work in the block-based modality, resulting in block-based
examples during classroom instruction. Likewise, the curriculum
used in the classroom may have prioritized the block-based
modality over the text-based form.

While we think there is merit to all these explanations and
suspect the truth includes a bit of all of them. More work remains
to be done to further tease apart these potential explanations.

7.2 Broadening Participation in Computing
A second important discussion point from this work is how

these findings speak to the goal of broadening participation in
computing. One of the objectives of the AP CSP course was to
introduce learners from populations historically underrepresented
in computing to the field of computer science. By framing the
course around seven-big ideas, as opposed to just programming,
the hope was to present a broader (and more accurate) picture of
what computer science is. From this perspective, the finding that
students who self-identify as members of historically
underrepresented groups, like female, Black and Hispanic learners,
performed better on the block-based form is important. Having
early successes in computing experiences, especially for AP
classes, which are designed to be more challenging than traditional
high school coursework, has the potential to positively impact
their attitudes towards the field and reshape how they perceive
themselves with respect to whether or not they are (or can be) a
computer scientist.

8. IMPLICATIONS AND CONCLUSION
As this work was based on a newly introduced exam taken by

thousands of learners across the United States, there are a number
of implications for the findings. First, the finding that learners
perform better on questions presented in the block-based modality
has direct implications for educators and their choice of learning
environment and curricula. Second, the findings have implications
for designers of introductory programming tools and their
decisions about whether to include block-based features and if so,
how. This research suggests that even the most basic block-based
features are enough to improve learning outcomes. A final
potential implication for this work is related to assessing emerging
computing knowledge. The results from this research suggest that
the block-based pseudocode created for the exam was successful in
providing supports for novices. This means efforts to include
features of block-based tools into assessment contexts is a
potentially productive decision.

The growing interest in computing education across the K-12
spectrum has produced a variety of initiatives intended to bring
computer science to all. As part of this larger effort, educators,
curriculum designers, and assessment creators have drawn
inspiration from the successes and popularity of block-based tools
as a way to introduce learners to computer science in formal
contexts. This paper provides further evidence that the block-
based modality does help learners on static written assessments.
Further, it is particularly helpful for learners from historically
underrepresented groups. This finding validates some of the
decisions made by the designers of the AP CSP written exam. With
this finding, we continue to advance our understanding of the role
block-based programming might play in helping learners at the
beginning of their journey into the world of computer science.

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1223

9. REFERENCES
[1] AP Computer Science Principles Assessment Overview and Performance Task

Directions for Students: https://apcentral.collegeboard.org/pdf/ap-csp-student-task-
directions.pdf. Accessed: 2018-04-06.

[2] Arpaci-Dusseau, A. et al. 2013. Computer Science Principles: Analysis of a
Proposed Advanced Placement Course. Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (New York, NY, USA, 2013), 251–256.

[3] Bau, D., Gray, J., Kelleher, C., Sheldon, J. and Turbak, F. 2017. Learnable
programming: blocks and beyond. Communications of the ACM. 60, 6 (May 2017),
72–80. DOI:https://doi.org/10.1145/3015455.

[4] Begel, A. 1996. LogoBlocks: A graphical programming language for interacting with
the world. Electrical Engineering and Computer Science Department. MIT.

[5] Brennan, K. and Resnick, M. 2012. New frameworks for studying and assessing
the development of computational thinking. (Vancouver, Canada, 2012).

[6] Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges. 15, 5 (2000),
107–116.

[7] diSessa, A.A. 2000. Changing minds: Computers, learning, and literacy. MIT Press.
[8] Dwyer, H., Hill, C., Hansen, A., Iveland, A., Franklin, D. and Harlow, D. 2015.

Fourth Grade Students Reading Block-Based Programs: Predictions, Visual Cues,
and Affordances. Proceedings of the eleventh annual International Conference on
International Computing Education Research (2015), 111–119.

[9] Fields, D., Giang, M. and Kafai, Y. 2014. Programming in the wild: trends in youth
computational participation in the online Scratch community. Proceedings of the
9th Workshop in Primary and Secondary Computing Education (2014), 2–11.

[10] Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A., Weintrop,
D. and Harlow, D. 2017. Using Upper-Elementary Student Performance to
Understand Conceptual Sequencing in a Blocks-based Curriculum. Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (New
York, NY, USA, 2017), 231–236.

[11] Fraser, N. 2013. Blockly. Google.
[12] Fraser, N. 2015. Ten things we’ve learned from Blockly. 2015 IEEE Blocks and

Beyond Workshop (Blocks and Beyond) (Oct. 2015), 49–50.
[13] Gilmore, D.J. and Green, T.R.G. 1984. Comprehension and recall of miniature

programs. International Journal of Man-Machine Studies. 21, 1 (Jul. 1984), 31–48.
DOI:https://doi.org/10.1016/S0020-7373(84)80037-1.

[14] Gross, P. and Powers, K. 2005. Evaluating Assessments of Novice Programming
Environments. Proceedings of the First International Workshop on Computing
Education Research (New York, NY, USA, 2005), 99–110.

[15] Grover, S. and Basu, S. 2017. Measuring Student Learning in Introductory Block-
Based Programming: Examining Misconceptions of Loops, Variables, and
Boolean Logic. Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (New York, NY, 2017), 267–272.

[16] Grover, S., Cooper, S. and Pea, R. 2014. Assessing computational learning in K-12.
(2014), 57–62.

[17] Grover, S., Pea, R. and Cooper, S. 2015. Designing for deeper learning in a
blended computer science course for middle school students. Computer Science
Education. 25, 2 (Apr. 2015), 199–237.
DOI:https://doi.org/10.1080/08993408.2015.1033142.

[18] Horn, M.S., Brady, C., Hjorth, A., Wagh, A. and Wilensky, U. 2014. Frog pond: a
codefirst learning environment on evolution and natural selection. Proceedings of
the 2014 conference on Interaction design and children (2014), 357–360.

[19] Kafai, Y.B. and Burke, Q. 2014. Connected Code: Why Children Need to Learn
Programming. MIT Press.

[20] Kaput, J., Noss, R. and Hoyles, C. 2002. Developing new notations for a learnable
mathematics in the computational era. Handbook of international research in
mathematics education. (2002), 51–75.

[21] Kaput, J.J. 1987. Towards a Theory of Symbol. Problems of Representation in the
Teaching and Learning of Mathematics. C. Janvier, ed. Lawrence Erlbaum
Associates. 159.

[22] Kelleher, C., Pausch, R. and Kiesler, S. 2007. Storytelling alice motivates middle
school girls to learn computer programming. Proceedings of the SIGCHI conference
on Human factors in computing systems (2007), 1455–1464.

[23] Ko, A.J. and Myers, B.A. 2005. Citrus: a language and toolkit for simplifying the
creation of structured editors for code and data. Proceedings of the 18th annual
ACM symposium on User interface software and technology (2005), 3–12.

[24] Kölling, M., Brown, N.C.C. and Altadmri, A. 2015. Frame-Based Editing: Easing
the Transition from Blocks to Text-Based Programming. Proceedings of the
Workshop in Primary and Secondary Computing Education (New York, NY, USA,
2015), 29–38.

[25] Lewis, C.M. 2010. How programming environment shapes perception, learning
and goals: Logo vs. Scratch. Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (New York, NY, 2010), 346–350.

[26] Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M. and Rusk, N. 2008. Programming
by choice: Urban youth learning programming with Scratch. ACM SIGCSE
Bulletin. 40, 1 (2008), 367–371.

[27] Maloney, J.H., Resnick, M., Rusk, N., Silverman, B. and Eastmond, E. 2010. The
Scratch programming language and environment. ACM Transactions on
Computing Education (TOCE). 10, 4 (2010), 16.

[28] Matsuzawa, Y., Ohata, T., Sugiura, M. and Sakai, S. 2015. Language Migration in
non-CS Introductory Programming through Mutual Language Translation
Environment. Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (2015), 185–190.

[29] Price, T.W. and Barnes, T. 2015. Comparing Textual and Block Interfaces in a
Novice Programming Environment. (2015), 91–99.

[30] Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E. and Silver, J. 2009.
Scratch: Programming for all. Communications of the ACM. 52, 11 (Nov. 2009), 60.

[31] Robins, A., Rountree, J. and Rountree, N. 2003. Learning and teaching
programming: A review and discussion. Computer Science Education. 13, 2 (2003),
137–172.

[32] Roque, R., Kafai, Y. and Fields, D. 2012. From tools to communities: Designs to
support online creative collaboration in Scratch. Proceedings of the 11th
International Conference on Interaction Design and Children (2012), 220–223.

[33] Sherin, B.L. 2001. A comparison of programming languages and algebraic
notation as expressive languages for physics. International Journal of Computers
for Mathematical Learning. 6, 1 (2001), 1–61.

[34] Shneiderman, B. 1983. Direct manipulation: a step beyond programming
languages. Computer. 16, 8 (1983), 57–69.

[35] Steele, C.M. and Aronson, J. 1995. Stereotype threat and the intellectual test
performance of African Americans. Journal of personality and social psychology.
69, 5 (1995), 797.

[36] Stefik, A. and Siebert, S. 2013. An Empirical Investigation into Programming
Language Syntax. ACM Transactions on Computing Education. 13, 4 (Nov. 2013),
1–40. DOI:https://doi.org/10.1145/2534973.

[37] Tempel, M. 2013. Blocks Programming. CSTA Voice. 9, 1 (2013).
[38] Tew, A.E. and Guzdial, M. 2011. The FCS1: a language independent assessment of

CS1 knowledge. Proceedings of the 42nd ACM technical symposium on Computer
science education (2011), 111–116.

[39] Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D.C. and Franklin,
D. 2018. Evaluating CoBlox: A Comparative Study of Robotics Programming
Environments for Adult Novices. Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (Montreal QC, Canada, 2018), 366:1–12.

[40] Weintrop, D. and Holbert, N. 2017. From Blocks to Text and Back: Programming
Patterns in a Dual-Modality Environment. Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (New York, NY, USA, 2017),
633–638.

[41] Weintrop, D., Killen, H. and Franke, B. 2018. Blocks or Text? How programming
language modality makes a difference in assessing underrepresented
populations. Proceedings of the International Conference on the Learning Sciences
2018 (London, UK, 2018), 328–335.

[42] Weintrop, D. and Wilensky, U. 2017. Comparing Block-Based and Text-Based
Programming in High School Computer Science Classrooms. ACM Transactions
on Computing Education (TOCE). 18, 1 (Oct. 2017), 3.
DOI:https://doi.org/10.1145/3089799.

[43] Weintrop, D. and Wilensky, U. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-based Programming. Proceedings of the
14th International Conference on Interaction Design and Children (New York, NY,
USA, 2015), 199–208.

[44] Weintrop, D. and Wilensky, U. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based Programs.
Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (New York, NY, USA, 2015), 101–110.

[45] Werner, L., Denner, J., Campe, S. and Kawamoto, D.C. 2012. The fairy
performance assessment: measuring computational thinking in middle school.
Proceedings of the 43rd ACM technical symposium on Computer Science Education
(2012), 215–220.

[46] Wilensky, U. and Papert, S. 2010. Restructurations: Reformulating knowledge
disciplines through new representational forms. Proceedings of the
Constructionism 2010 conference (Paris, France, 2010).

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1224

