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ABSTRACT 
The success of block-based programming environments like 
Scratch and Alice has resulted in a growing presence of the block-
based modality in classrooms. For example, in the United States, a 
new, nationally-administered computer science exam is evaluating 
students’ understanding of programming concepts using both 
block-based and text-based presentations of short programs 
written in a custom pseudocode. The presence of the block-based 
modality on a written exam in an unimplemented pseudocode is a 
far cry from the informal, creative, and live coding contexts where 
block-based programming initially gained popularity. Further, the 
design of the block-based pseudocode used on the exam includes 
few of the features cited in the research as contributing to positive 
learner experiences. In this paper, we seek to understand the 
implications of the inclusion of an unimplemented block-based 
pseudocode on a written exam. To do so, we analyze responses 
from over 5,000 students to a 20 item assessment that included 
both block-based and text-based questions written in the same 
pseudocode as the national exam. Our analysis shows students 
performing better on questions presented in the block-based form 
compared to text-based questions. Further analysis shows that this 
difference is consistent across conceptual categories. This paper 
contributes to our understanding of the affordances of block-based 
programming and if and how the modality can help learners 
succeed in early computer science learning experiences. 
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1 INTRODUCTION 
The last five years have seen a steady flow of block-based 

programming tools into K-12 classrooms. While some block-based 
programming environments have a long history in formal 
educational contexts (e.g. Alice), other block-based tools were 
specifically designed for informal learning spaces (e.g. Scratch). As 
part of the transition of block-based programming into K-12 
classrooms, the modality is starting to be used in ways quite 
distinct from how it was initially designed. Nowhere is this clearer 
than when it comes to assessment.  

Many introductory computer science courses assess student 
knowledge through written exams that ask students questions 
about specific syntactic features of a programming language and 
evaluate student comprehension of programs. While not ideal, 
such questions lend themselves well to the multiple-choice 
question format and thus can be graded quickly and objectively. 
As a result, written, multiple choice assessments are common in 
introductory computing contexts. 

The rise of block-based programming environments in 
classrooms presents an interesting challenge for educators. What 
happens when we use learning environments designed for 
informal spaces that prioritize creativity and expression and 
situate them in formal contexts where they are subject to 
conventional educational institutional constraints, such as 
summative written examinations? Often the result is for educators 
to create pen-and-paper written exams or other static 
presentations of material based on the block-based programming 
environments students used in their classrooms. In moving from 
the programming environment itself to the written assessment 
context, many of the affordances of these environments are lost as 
the graphical representation is recreated in static, often black-and-
white printed exam booklets. This raises interesting research 
questions on the affordances of block-based tools and if and how 
they support learning beyond the programming environment 
itself. It is these questions we are pursuing with this research. 
Specifically, we seek to answer the following questions: 

Does the block-based programming modality support 
novice programmers’ program comprehension on static, 
read-only assessments? And, if so, how? 
To answer these questions, we designed a 20-item assessment 

asking questions using both block-based and text-based forms of a 
custom pseudocode (Fig. 1). The exam was then included as an 
optional activity in materials distributed nationally, resulting in 
over 5,000 students completing the assessment.  
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(a) (b) 

Figure 1. A sample text-based (left) and block-based (right) 
program written in the AP CSP pseudocode. 

The paper begins with a review of relevant literature. We 
then describe the block-based pseudocode that was used in the 
assessment and present a comparison of the pseudocode to 
widely-used block-based languages to understand how they are 
similar and where they diverge. Next, we present information on 
the assessment we created and the methods and participants of the 
study. The findings section follows and the paper concludes with 
potential explanations for the findings and a discussion of the 
implications of this work. 

2. PRIOR WORK 

2.1 The Role of Representation in Learning 
The first and most foundational literature that this paper 

builds on is prior work studying the role of representation in 
learning. This work has come under a few labels. Kaput and 
colleagues use the term representational system in their 
investigation of the cognitive impacts of different symbol systems 
used in mathematics and how they affect cognitive aspects of 
engaging with mathematics [21]. Moving beyond the individual, 
they expand this idea through the concept of representational 
infrastructure as a way to talk about how a representational system 
supports the cultural and social dimensions of thinking and 
communicating about ideas [20]. Much of this work is specifically 
in relation to technology and the new representations and 
interaction patterns the medium affords. In his conceptualization 
of Computational Literacy, diSessa builds on this idea with the 
notion of material intelligence, saying “we don’t always have ideas 
and then express them in the medium. We have ideas with the 
medium” [7, emphasis in the original]. 

While often assumed to be static, Wilensky and Papert show 
how representational infrastructures can and should change over 
time [46]. As part of their Restructuration Theory, they present 
examples of such representational shifts, or restructurations, and 
provide criteria to evaluate the different capacities that 
representational systems play. Our exploration of the impact of 
presenting programs using block-based representations builds 
directly on this work as it is trying to make sense of 
representational affordances and understand if and how the way 
ideas are represented shapes learners ability to interpret the ideas 
presented. In doing so, this work shares a goal with Sherin’s 
investigation into the role of representations in learning physics 
[33] and Gilmore and Green in looking at declarative versus 
procedural notation [13]. 

2.2 Block-based Programming 
The second body this study builds off of and contributes to is 

work on block-based programming. Block-based programming 
(Fig. 2) is a graphical programming modality that presents 
programming commands as visual blocks that can be assembled 
via a drag-and-drop interaction [3]. The environment provides a 
direct manipulation interface for authoring programs [34]. While 
not a recent innovation (e.g. [4]), the block-based approach to 
programming has become widespread in introductory contexts 
due to the success of tools such as Scratch [30], Alice [6], and the 
Blockly library [12].  

 

   
(a) (b) (c) 

Figure 2. Three examples of block-based programming 
environments: (a) Scratch (b) Alice and (c) Code.org’s 
AppLab. 

A growing body of research is revealing how, where, and in 
what ways block-based programming is effective for introducing 
novices to the practice of programming and the field of computer 
science more broadly. This includes research documenting novice 
programmers’ learning gains [10, 17, 29, 42], as well as attitudinal 
and perceptual shifts in interest in the field of computer science 
[22, 25, 26]. Research has also investigated how block-based 
environments can serve as a context around which participatory 
cultures can form, further bolstering learners identities as 
computational doers [9, 19, 32]. Section 4 of this paper presents a 
more detailed account of the specific affordances of block-based 
programming as these design features are central to this paper. 

2.3 Evaluating Programming Knowledge 
In their review of assessments of introductory programming, 

Gross and Powers [14] found that “some of the least studied 
questions are those that focus on how the environments impact a 
student’s learning process and understanding from a formative 
perspective.” In the decade since that statement was written, a 
growing body of research has started to answer some of these 
open questions [16]. This work includes creating and validating 
traditional summative assessments that use multiple choice 
questions to assess knowledge (e.g. [26]), performance-based 
assessments where students are asked to complete a specific task 
(e.g. [45]), and portfolio or artifact-based assessments that used 
student-produced work as a way to measure students level of 
understanding (e.g. [5]).  

The work presented in this paper most closely builds off 
research into program comprehension of statically presented 
programs used in summative assessments. This includes 
assessments such as the Foundations for Advancing 
Computational Thinking assessment [17] which has been used to 
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investigate learner misconceptions in block-based programs [15]. 
A second line of work this study builds off is research comparing 
block-based and text-based comprehension using the 
Commutative Assessment [44]. Studies using the Commutative 
Assessment have shown how students perform better on questions 
presented in block-based forms, even when students’ preceding 
programming instruction was in a text-based programming 
environment [42]. The work presented in this paper contributes to 
this literature by focusing on a relatively feature-light block-based 
programming language: the AP Computers Science Principles 
Pseudocode.  

3. THE AP COMPUTER SCIENCE PRINCIPLES 
PSEUDOCODE  

In the 2016-2017 school year, the College Board introduced a 
new Advanced Placement (AP) course to be taught in the United 
States called Computer Science Principles (CSP) [2]. The course 
focuses on seven big ideas of computer science, meaning, unlike 
many other introductory computing courses, AP CSP does not 
prioritize programming over other computer science content. One 
feature of the course is that it is programming language agnostic, 
meaning teachers are free to choose the programming language 
and environments they will use in instruction. This presents a 
challenge for the nationally-administered summative assessment 
of the course as the programming questions need to reflect the 
programming plurality welcomed in the design of the curriculum. 

In response to this challenge, the AP CSP development 
committee invented a pseudocode that had both text-based and 
visual block-based representations (Fig. 1). The summative AP CSP 
exam includes questions asked in BOTH block-based and text-
based modalities, meaning all students answer questions asked in 
both forms. The goal of this decision is to ensure that students are 
not rewarded or penalized for using one type of programming tool 
or another during the school year. 

The AP pseudocode developed for the AP CSP exam consists 
of 23 keywords including looping constructs (e.g. REPEAT), 
conditional operators (e.g. IF), and I/O (e.g. DISPLAY). The block-
based and text-based representations of the commands are 
isomorphic, meaning that anything that can be represented in one 
form can also be represented in the other. The place the two 
representations differ with respect to the symbols used is in 
relation to scope, where the text form uses ()s, []s, and {}s while 
the block-based form conveys this information through the 
boundaries of the blocks. In the opinion of the authors, the block-
based form of the pseudocode can be described as the text-based 
form with ovals and rectangles drawn around the commands. The 
full documentation for this pseudocode can be found on pages 14-
20 of the AP Computer Science Principles Assessment Overview 
and Performance Task Directions for Students [1].  

4. AFFORDANCES OF BLOCK-BASED 
PROGRAMMING 

In this section, we review specific features of block-based 
tools that the literature has documented as supporting novices and 
discuss if and how it is present or absent in the AP CSP 

pseudocode. Following the strategy of Robins et al. in their review 
of the literature and learning and teaching programming [31], we 
break the affordances into two main categories: supports for 
program comprehension and supports for program generation, 
although we recognize some design features may support both 
roles. The following list of features is compiled from a number of 
resources delineating the characteristics and affordances of block-
based environments [3, 8, 11, 24, 27, 37, 43]. After discussing the 
design feature, we briefly discuss if and how the feature is present 
in the AP CSP pseudocode that is the focus of this study. 

4.1 Supports for Program Comprehension 
4.1.1 Visual Rendering of Blocks. The defining feature of block-

based programming environments is that each command is 
rendered as a block. These blocks present visual cues denoting 
information about the command. This information includes a 
specific shape showing how and where the block can be used (e.g. 
commands having notches at the top and bottom, Boolean 
variables presented as hexagons, and “hat” blocks having rounded 
tops to make clear that nothing can precede it). Similarly, blocks 
that accept arguments can render their argument slots using the 
same shape, making it clear the types of inputs the block will 
accept. Blocks are also often color-coordinated, so families of 
blocks related to a concept share a color (e.g. all control blocks in 
Scratch are yellow). Block-based environments also use shape to 
denote scope through “c-shaped” blocks that wrap commands and 
render the nested inside the structure as can be seen in Fig. 2a and 
Fig. 2c. 

While the AP CSP block-based pseudocode includes some of 
these features, such as encircling commands with lines to give the 
appearance of blocks and nesting blocks inside each other, most of 
the visual features cited in the literature are absent. For example, 
the AP CSP blocks do not include notches to denote how blocks fit 
together and do not use color to convey the block category. 

4.1.2 Natural Language Block Labels. Another oft-cited 
affordance of block-based environments is their ability to use 
natural language expressions within the command themselves. 
Since the block rendering itself defines the scope of each command 
and how it is to be parsed by the compiler, the language designer 
is free of the syntactic and keyword constraints of text-based 
languages. As a result, it is possible to create block-based 
commands that read like sentences (e.g. the change x by 1 
block shown in Fig. 2a) as well as domain-specific block languages 
with commands tailored to the specific domain (e.g. Frog Pond 
[18] or CoBlox [39]).  

Given the constraint that the AP CSP pseudocode needed to 
support both block-based and text-based forms, the pseudocode 
was not able to take advantage of this feature of the block-based 
modality. This can be seen in the character-by-character 
similarities between the programs shown in Fig. 1a and Fig. 1b. 

4.1.3 Browsability. The third feature of block-based tools we 
highlight is not a characteristic of the language itself, but rather, a 
feature of the larger block-based apparatus that makes block-based 
programming possible. Block-based programming environments 
present users with the set of available blocks in a logically ordered 
and easily browsed set of “drawers” since blocks need to be 

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1220



 

present somewhere on the screen in order for the user to drag 
them into their program. One benefit of this feature is that it 
makes blocks “browsable”, meaning learners need not have 
commands memorized, but instead can easily discover blocks, 
which can then be used to bootstrap programming ideas.  

A version of this feature is available to students for the AP 
CSP pseudocode. During the exam, students have access to a 
reference sheet describing the pseudocode and the keywords that 
comprise the language, meaning they can “browse” the blocks. 
However, the static, black-and-white reference sheet is a 
simplified version of the interface of most block-based 
environments. 

4.2 Supports for Program Generation 
In this section, we document additional features of block-

based programming that the literature has identified as 
contributing to making it an effective way to introduce novices to 
programming. Due to the fact that the AP CSP pseudocode was 
only designed for comprehension on a written test, the language 
itself has never been implemented. Thus, none of the benefits 
listed in this section are present in the AP CSP Pseudocode. 

4.2.1 Drag-and-Drop Composition. Unlike text-based languages 
where statements are typed in one character at a time, authoring 
programs in block-based tools allows learners to assemble 
commands using a drag-and-drop interaction. The information 
provided by the visual rendering of the command gives the user 
information about how and where a block can be used. If two 
blocks cannot be joined to form a valid statement, then the block-
based editor prevents the commands from snapping together, thus 
preventing most types of syntax errors. This drag-and-drop 
construction also lends a feeling of “tinkerability” and playfulness, 
as changes can be made quickly and easily, especially for novice 
computer users who may find typing commands cumbersome. 

4.2.2 Dynamic Rendering. Given the graphical nature of the 
block-based representation, the visual presentation of commands 
allows for a number of additional dynamic rendering features that 
can support the user. For example, the shapes of blocks can change 
to fit changing characteristics of the program (e.g. c-shaped blocks 
can grow to wrap a larger number of sub-commands). 
Additionally, block-based tools can provide hover-over tooltips, 
include images or short animations, or allow the user to modify 
the shape of the block on the fly (e.g. Blockly’s mutator feature). 
While such features are possible in text-based editors (e.g. Citrus 
[23]), they are not as widely used or as central to the modality as 
the dynamic rendering features of block-based tools. 

5. METHODS AND PARTICIPANTS 
To answer our stated research questions we gathered data on 

students answering questions in both the block-based and text-
based forms of the AP CSP Pseudocode. To do so, we created a 20 
question multiple choice assessment in the same form as the 
multiple choice question portion of the AP CSP written exam. We 
then included the assessment as an optional “Practice AP 
Programming exam questions” module at the end of the 

programming module of Code.org’s CSP curriculum 
(http://code.org/csp). Code.org’s CSP curriculum is a full-year, 
rigorous, entry-level course that introduces high school students 
to the foundations of modern computing and prepares them for 
the AP CSP Exam. Programming in the course is done in App Lab 
(Fig. 2c, http://code.org/applab), which is a JavaScript-based, dual-
modality environment where students can construct programs in 
both block-based and text-based modalities. 

5.1 The AP CSP Pseudocode Assessment 
The assessment used in this study is comprised of 20 multiple 

choice questions, 10 in the block-based form and 10 in the text-
based form of the AP CSP pseudocode. The questions were drawn 
from a previously used and validated assessment used in similar 
research studies [41]. Each question on the assessment begins with 
a short code snippet and is followed by the question: “What will 
the output of the program be?” There are also a series of questions 
that present short programs that use the prompt “What does this 
program do?” These comprehension questions are intended to 
evaluate a student’s ability to identify the purpose of a program as 
opposed to just mentally running the program and reporting the 
output. The assessment covers five programming topics: variables, 
loops, conditionals, functions, and program comprehension. For 
each of the five topics, the assessment asked two questions in the 
block-based pseudocode form and two in the text-based 
pseudocode. This counter-balance design ensures that every 
student answered two questions for each concept in both forms of 
the pseudocode. A sample question is shown in Fig. 1. 

5.2 Data collection and participants 

The assessment was administered through Code.org’s content 
management system that tracks individual students as well as 
classroom progress through the curriculum. At the beginning of 
the course, students create a profile which includes optionally self-
reporting their gender, age, and race. The responses collected by 
Code.org were de-identified and then shared with researchers. All 
necessary institutional approval was acquired for conducting this 
research.  

The dataset for this study consists of 5,427 students and over 
105,000 individual question responses. The sample includes 1,218 
(22.4%) female students, 3,198 (58.9%) male students, and 1,011 
students (18.6%) who chose to not provide gender information. Of 
the 5,427 students, 1,040 (19.2%) learners self-identified as being 
from an underrepresented minority in computing (URM), while 
2,199 (40.5%) of students were classified as not URM and 2,188 
(40.3%) of student did not self-report their race. For this work, 
students that self-identified as Black, Hispanic, LatinX, Native 
American, or Pacific Islander were categorized as being from a 
URM. Finally, a majority of participants were between the ages of 
15 and 18, which corresponds to the four years of American high-
school (9.6% 15 years old; 22.5% 16 years old; 30.7% 17 years old; 
27.2 % 18 years old). 
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6. FINDINGS 

6.1 Performance by Modality  

 
Figure 3. Average scores on the assessment by modality. 

6.1.1 Overall Performance. To answer our first research 
question on the impact of modality, we first look at overall student 
performance on the 20-question assessment. The leftmost column 
of Fig. 3 shows student performance on the block-based questions 
compared to the text-based questions. Overall, students scored an 
average of 8.5 out of 10 on block-based questions (SD 1.9) and 7.7 
out of 10 on text-based questions (SD 2.2), a difference that is 
statistically significant t(4761) = 38.14, p < .001, d = .40. This 
means, overall, students performed better on the block-based 
questions than the text-based questions. 

6.1.2 Performance by Gender. Looking at gender, we find that 
both male and female students perform significantly better on 
block-based questions: Female t(1081) = 20.25, p < .001, d = 0.62 
and Male t(2852) = 29.344, p < .001, d = 0.55 (columns 2 and 3 in 
Fig. 3 respectively). In the case of female students, this resulted in 
a .92 point improvement on average while males had a .85 point 
increase, as can be seen by the larger effect size for female 
students.  

6.1.3 Performance by Race. When conducting the same 
analysis and dividing the participant population by race, we see a 
similar pattern. Both URM and non-URM students performed 
significantly better on block-based questions versus text-based 
questions: URM students t(878) = 18.20, p < .001, d = 0.61 and non-
URM students t(2000) = 23.74, p < .001, d = 0.53 (the two right-
most pairs of columns in Fig. 3). For participants that self-
identified as a URM, there was, on average a full point difference 
between mean block-based score and mean text-based score. Non-
URM students saw on average score improvement of .76 points 
between block-based and text-based questions. A longer, more 
detailed analysis of the impact of modality on learners from 
historically underrepresented populations can be found in [41]. 

6.1.4 Performance by Concept. Along with analyzing results by 
characteristics of the learner, we can also look at student 
performance by modality across the concept being assessed. Fig. 4 
reports the percentage of students that got each question correct 
grouped by modality and concept. 

Across all five content areas, students scored better on 
questions asked in the block-based modality over the text-based 

modality. Given students only answered 2 questions for each 
modality-concept pairing, we present only averages in Fig. 4. A 
redesign of the assessment is underway that will give us greater 
power to further investigate the interaction of modality and 
concept in code comprehension questions.  

 

 

Figure 4. Average number of students who answered a 
question correctly grouped by concept and modality 

Taken together, this collection of results is slightly surprising 
as the block-based format used in this assessment lacks many of 
the features the literature has identified as making block-based 
tools easier to comprehend. This suggests that the features that are 
present, namely the block-shapes created by outlining each 
command, play a central role in facilitating the comprehension of 
programs by novice programmers. 

7. DISCUSSION 

7.1 Potential Explanations for these Findings 

The main finding from this study is that students do better on 
questions presented in a block-based form compared to 
isomorphic text-based presentations. This on its own is not that 
surprising as previous studies have found similar results (e.g. [44]). 
What is surprising is that we see these same patterns using the AP 
CSP pseudocode block-based presentation which includes 
relatively few of the features that learners and researchers cite as 
being responsible for the ease-of-comprehension. Further, the AP 
CSP pseudocode is not a real language, meaning learners have 
never written a program using it. In this section, we explore a 
number of potential explanations for the findings presented. 

7.1.1 The Simple Visual Cues are Sufficient. The first potential 
explanation is that the basic visual cues that are present in the AP 
CSP pseudocode are enough to cause the differences found in the 
data. By visual cues, we are referring to both the rectangular and 
oval lines encircling commands that give them their block-based 
appearance and the nesting of commands. It is also possible that 
the opposite is true, that the absence of potentially confusing or 
difficult-to-parse language features that are present in the text-
based questions, such as {}s and ()s are the cause of student 
difficulty in the text-based form. This explanation is supported by 

Paper Session: Blocks SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1222



 

prior research on the difficulty novices have with syntactic 
features of programming languages, including the use of less 
familiar symbols like the brackets and braces [36].  

7.1.2 The Block-based Pseudocode is Closer to Prior 
Programming Experiences. While the AP CSP Pseudocode used on 
the assessment was created specifically for the written test, 
students did have prior programming experience that could have 
shaped these results. For example, if students had spent the two 
months leading up to the exam programming in a block-based 
environment such as Scratch it is possible that would make them 
more likely to do better on the block-based questions. Similarly, if 
students came into the test on the heels of a unit learning 
JavaScript, the text-based questions may appear more familiar and 
thus easier. While the AP CSP exam was designed to prevent this, 
it is still possible. 

The assessment used in this study was embedded in a 
curricular unit based on Code.org’s AppLab environment (Fig. 2b). 
While AppLab includes both a block-based and text-based 
interface, research shows that novices generally prefer the block-
based modality [28, 40, 43], which also matches the anecdotal 
evidence received from teachers of the course. Given these facts, 
the prior experience explanation is certainly plausible. However, 
prior research has not found a strong coupling of the modality 
used for learning programming and ability to answer questions on 
a static exam. In two separate studies, Weintrop and Wilensky 
found students who worked in block-based environments 
performed better on text-based programming questions than peers 
who had learned using text-based programming tools [42, 44]. 

7.1.3 Block-based Programs are Friendlier. A third potential 
explanation focuses not on a feature of the language itself or on 
learners’ prior experiences, but on learners perception of the 
language and how they relate to it. This explanation draws from 
the literature on stereotype threat, which finds that students 
underperform when there is a risk of their performance 
confirming an existing stereotype [35]. This explanation posits 
that when learners see the block-based pseudocode, the form is 
closer to the fun and playful programming they relate to, as 
opposed the serious and professional programming languages they 
make them feel unwelcome. While there is more work that needs 
to be done to confirm (or refute) this account, it does provide a 
plausible explanation for the differences observed in the analysis 
of gender and race presented in sections 6.1.2 and 6.1.3.  

7.1.4 Classroom or Curricular Factors. Given that this study 
took place in classrooms across the United States there are many 
other possible environmental factors that may contribute to these 
findings. For example, it is possible that teacher effects played a 
role in this pattern. If a teacher was new to computer science, he 
or she may have felt more comfortable with, and therefore chosen 
to work in the block-based modality, resulting in block-based 
examples during classroom instruction. Likewise, the curriculum 
used in the classroom may have prioritized the block-based 
modality over the text-based form.  

While we think there is merit to all these explanations and 
suspect the truth includes a bit of all of them. More work remains 
to be done to further tease apart these potential explanations.  

7.2 Broadening Participation in Computing 
A second important discussion point from this work is how 

these findings speak to the goal of broadening participation in 
computing. One of the objectives of the AP CSP course was to 
introduce learners from populations historically underrepresented 
in computing to the field of computer science. By framing the 
course around seven-big ideas, as opposed to just programming, 
the hope was to present a broader (and more accurate) picture of 
what computer science is. From this perspective, the finding that 
students who self-identify as members of historically 
underrepresented groups, like female, Black and Hispanic learners, 
performed better on the block-based form is important. Having 
early successes in computing experiences, especially for AP 
classes, which are designed to be more challenging than traditional 
high school coursework, has the potential to positively impact 
their attitudes towards the field and reshape how they perceive 
themselves with respect to whether or not they are (or can be) a 
computer scientist. 

8. IMPLICATIONS AND CONCLUSION 
As this work was based on a newly introduced exam taken by 

thousands of learners across the United States, there are a number 
of implications for the findings. First, the finding that learners 
perform better on questions presented in the block-based modality 
has direct implications for educators and their choice of learning 
environment and curricula. Second, the findings have implications 
for designers of introductory programming tools and their 
decisions about whether to include block-based features and if so, 
how. This research suggests that even the most basic block-based 
features are enough to improve learning outcomes. A final 
potential implication for this work is related to assessing emerging 
computing knowledge. The results from this research suggest that 
the block-based pseudocode created for the exam was successful in 
providing supports for novices. This means efforts to include 
features of block-based tools into assessment contexts is a 
potentially productive decision. 

The growing interest in computing education across the K-12 
spectrum has produced a variety of initiatives intended to bring 
computer science to all. As part of this larger effort, educators, 
curriculum designers, and assessment creators have drawn 
inspiration from the successes and popularity of block-based tools 
as a way to introduce learners to computer science in formal 
contexts. This paper provides further evidence that the block-
based modality does help learners on static written assessments. 
Further, it is particularly helpful for learners from historically 
underrepresented groups. This finding validates some of the 
decisions made by the designers of the AP CSP written exam. With 
this finding, we continue to advance our understanding of the role 
block-based programming might play in helping learners at the 
beginning of their journey into the world of computer science. 
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