

Constructionism 2020 Papers

213

Considering Alternative Endpoints: An
Exploration in the Space of Computing
Educations

David Weintrop, weintrop@umd.edu
College of Education & College of Information Studies,
University of Maryland, College Park, USA

Nathan Holbert, holbert@tc.columbia.edu
Department of Mathematics, Science, and Technology,
Teachers College, Columbia University, New York, USA

Michael Tissenbaum, miketiss@illinois.edu
Department of Curriculum and Instruction,
University of Illinois, Champaign, USA

Abstract
As more and more countries are pursuing the goal of integrating computing and computer science
instruction into curricula and standards, it is important that we carefully consider what the goals
and motivations of such programs are and whether or not it is in the best interest of the learners
most directly impacted by them. While many national efforts tend to deploy rhetoric elevating
economic concerns alongside statements about creativity and human flourishing, the programs,
software, curricula, and infrastructure being designed and implemented focus heavily on providing
learners with the skills, practices, and mindset of the professional software developer. We contend
that computing for all efforts must take the “for all” seriously and recognize that preparing every
learner for a career as a software developer is neither realistic nor desirable. Instead, those
working towards the goal of universal computing education should begin to consider alternative
endpoints for learners after completing computing curricula that better reflect the plurality of ways
the computing is impacting their current lives and their futures. Further, we argue that
constructionist designs and principles should play a central role in shaping what a computing
education might look like that supports these diverse endpoints. In developing this argument, we
provide examples of tools and environments that are designed towards alternative, yet equally
valid and valuable, endpoints. Central to these alternative endpoints and the tools used to support
learners are core constructionist ideas including the centrality of constructing computational
artifacts, the importance of pursuing personally meaningful projects, and presenting learners with
low-floor/high-ceiling tools with which to work.

Keywords
Constructionism, Computing Education, Computer Science Education, Equity, Access

Constructionism 2020 Papers

214

Introduction
In recent years, there has been a concerted effort to make computing and coding a core
educational experience in countries throughout the world (e.g. CSforAll, Make it Digital, Computing
at School, etc.). A variety of arguments are given for these large scale efforts ranging from a desire
to support young people in being able to “express themselves digitally” (BBC, 2019), empowering
them to impact their communities through programming (Bhattacharya, 2017), to providing “the
computational thinking skills they need to be creators in the digital economy” (Smith, 2016). These
three goals of computing education--creative expression, social justice, and economic opportunity-
-are frequently cited as primary reasons all students should be exposed to the powerful ideas of
computing. In their review of motivations for bringing computing instruction into all classrooms,
Vogel and colleagues (2017) identified seven distinct motivations, adding arguments such as
creating an informed citizenry and improving general technological literacy to the aforementioned
goals. The diversity of these goals speaks to the way in which computing has become a core part
of society. Furthermore, these goals highlight the need to make computing education efforts
universal--targeting all young people regardless of school, age, or interest.
We think the goal of bringing computer science experiences and practices to all young people as
part of their formal educational experience is a worthwhile endeavor and have each in our own
way worked to support this effort. We are encouraged to see public rhetoric highlighting the social
justice implications of computing education. Likewise, the explicit acknowledgment that computing
is a powerful new form of creative expression aligns with a long history of computing education
that emerged from early constructionist thought. And while we are hopeful that those participating
in computing education are attending to these important goals, the enactment of these initiatives-
-in the form of curricula, learning environments, tools, assessments, policy, etc.--suggest that the
most critical educational decision-makers most directly shaping the enactment of computing for all
initiatives are prioritizing place economic concerns first. In other words, while the computing
education community claims to attend to social justice and creative expression, the assumed
endpoint of computing education seems to be about job preparation--increasing the number of
programmers in the workforce so that we can compete in a global market.
Just as Papert explored the idea of alternative possible mathematics educations (1996), here we
aim to identify just a few points in a large N-dimensional space that might serve as examples of
possible versions of computing education. In this paper, we explore potential endpoints to
computing education--what might people do with computing? We argue that computing education
should truly acknowledge, and enact, the belief that computing has meaning and value in a host
of potential careers and daily experiences. This recognition of alternative endpoints is important
and potentially transformative. Identifying alternative potential computing educations invites us to
define the dimensions in which this point exists—to, in essence, think about how legitimizing
alternative endpoints beyond undergraduate degrees in computer science can bring new tools,
practices, and contexts into computer science classrooms and change the narrative around what
computer science is and what it looks like to practice it. As alternative endpoints become more
central to computer science, characteristics of the curricula, tools, assessments, and projects that
live in computer science classrooms can begin to change to reflect these alternative endpoints,
and in doing so, can open up the field to those not historically drawn to conventional computer
science pathways.
This paper argues that efforts to bring computing to all, and the learners who participate in such
programs, would be better served by considering the plurality of endpoints beyond those that
prioritize economic interests and career outcomes. Further, we argue that constructionist design
and values should play a central role in shaping what a computing education might look like that
supports these diverse endpoints. In doing so, various computing for all efforts can better welcome
and support the learners they are trying to reach by aligning instruction and learning opportunities
with the ideals, values, and goals of the learners. Further, legitimizing and valuing endpoints
beyond conventional computer science careers can lead to a more inclusive and welcoming form
of computer science, where creative, expressive, and culturally-valued instantiations of computer

Constructionism 2020 Papers

215

science ideas are valued alongside the skills that can lead to conventional computer science
careers. This work adds to a growing chorus of voices, both in academia and beyond, pushing to
rethink the goals, values, and priorities of contemporary computing education (Lewis, 2017; Santo
et al., 2019; Vakil, 2018; Vogel et al., 2017).
To demonstrate this idea, this paper lays out three distinct computer science endpoints outside of
the conventional computer science pipeline, showing how the consideration of alternative
endpoints can shape the tools used, the ways learners are supported in engaging with computer
science ideas, and ultimately reshape the computing education landscape and what it looks like
for a learner to authentically participate in meaningful computing.

Motivation for Considering Alternative Computing Endpoints
This paper argues for a re-examination of the nature and goals of broad computing education
initiatives. Instead of starting with specific values or goals, this work instead begins by considering
various desired endpoints of computing instruction and then works backward to reason about what
form learning activities might take and what are the underlying values and principles that support
learners in reaching these endpoints. The result of this exercise is a push for rethinking the form
of contemporary computing education with an eye towards more diverse, equitable, and
meaningful endpoints.
Across the literature, a broad array of motivations are provided for computing education. Working
with New York City school district stakeholders, Vogel et al. (2017) collected a total of 161
arguments for computer science instruction, and grouped them into seven categories: (1)
economic and workforce development, (2) equity and social justice, (3) competencies and
literacies, (4) citizenship and civic life, (5) scientific, technological and social innovation, (6) school
improvement and reform and (7) fun, fulfillment and personal agency. This plurality of ideas is
often not reflected in the nature of the tools, activities, and assessments used as part of classroom
instruction. This is especially true with older learners where priorities further shift toward the use
of professional programming languages and a prioritization for college and career readiness.
With this work, we introduce three distinct alternative endpoints for computing outside of the
conventional computer science pathway as a means of rethinking what forms instruction can or
should take.

Constructionism as a means to Reconceptualize Computing
Education
A constructionist lens is a particularly powerful means for positioning alternative endpoints to
computer education. Through the building of computational artifacts, learners have the opportunity
to engage in critical reflection on what they are making and why and how it relates to them
personally and to society more broadly (Ratto & Boler, 2014). By focusing on these broader socio-
technical aspects of learners' construction (beyond the end-goal of getting a job as a programmer),
we introduce opportunities for developing critical consciousness (Freire, 1974; Lee & Soep, 2016)
and an understanding how computing shapes the world around them and their ability to create
with it for their own goals, identity, construction, and expression (Holbert et al., in press;
Tissenbaum et al., 2019).
Papert touted that children learn how to think critically through the process of solving problems
that arise while programming computers (1996). Through the creative and investigative processes
that are at the core of constructionism, learners begin to understand the multi-faceted ways that
computing can and should be a central force for them to personally express themselves, construct
their digital and personal identities, and empower them to be critically aware and empowered
citizens.
Constructionism’s attention to the learner’s values and interests make it well suited to support
learners in using computational power to explore a diverse range of experiences, practices,

Constructionism 2020 Papers

216

phenomena, etc. Whether supporting young people in constructing video games (Harel & Papert,
1991; Kafai, 1991; Weintrop et al., 2012), interactive art (Bontá et al., 2010; Papert & Solomon,
1971), musical instruments (Cavallo et al., 2004; Gorson et al., 2017), e-fashion (Buechley &
Eisenberg, 2008; Kafai et al., 2014), or public service announcements (Blikstein, 2008), since the
inception of the design paradigm, constructionists have cared deeply about supporting learners
as they express their passions, explore their interests, or work to design solutions to real-world
problems. We argue that this foundational quality must be present in any effort to broaden
participation in computing education. When learners are given the space to construct objects--
both digital or physical--that have personal or communal meaning, they have the opportunity to
represent these passions in inspectable artifacts that can be viewed, critiqued, extended, or
repurposed by others. This not only has powerful cognitive benefits--being able to externalize
one’s thinking into representational systems that can be debugged, modified, etc.--but also
important identity implications. The computer code and resulting artifact can serve as a
representation of one’s work and one’s contributions to the broader computing community. From
a constructionist perspective, computing is not just an economically viable way to make things,
but a way of doing things, with others, to change and impact the world.

Alternative Endpoints for Computer Science
In this section, we lay out three distinct views drawn from our research of alternative endpoints for
computing education. The goal of this work is to argue for the importance of computing for all while
also providing legitimate and authentic applications of computer science knowledge outside the
existing pathway that leads to a computer science industry job.

Endpoint: Impacting local communities and immediate needs
The first endpoint we consider is the development of novices' identities as empowered to address
real issues in their own lives, schools, and communities. While traditional computing education
was locked to desktop computers, often taking place in computer lab settings, the introduction of
mobile technologies (in particular smartphones) has allowed computing education to move out of
the classroom and into learners' everyday lives. This ability for the products that students create
to be taken out of the computer lab and into the world has allowed students and educators to move
beyond simply writing code, instead critically asking why and who they are building it for, and to
what end (Holbert, 2016; Lee & Soep, 2016). By situating computing education directly in students'
lives, we open up computing education as a possibility space for impact and empowerment. This
is critically important, as a long line of research has shown that the failure to meaningfully connect
computing to the personal lives of students contributes to learners feeling computing is not useful
or relevant to them (American Association of University Women, 1994; Couragion Corporation,
2018; Margolis & Fisher, 2003). This is particularly true for students underrepresented in
computing and engineering careers (Cheryan et al., 2017; Pinkard et al., 2017; Taheri et al., 2019).
In response, we posit that there is a need to re-think the goals of computing education through a
lens of Computational Action (Tissenbaum et al., 2019), which focuses on three key factors: 1)
Computational identity, which is a person's recognition of themselves as capable of identifying and
creatively implementing computational solutions to issues in their lives, schools, and communities;
2) Digital empowerment, which focuses on people's ability to put their computational identity into
action in authentic and personally meaningful ways; and 3) Computational design thinking, in
which learners' can successfully articulate the processes by which they will design and develop
their solutions.
In order to support students' engagement in computational action, we need tools that reduce the
barriers for them to quickly build, implement, and refine their designs. One example of the kinds
of platforms particularly well-suited for such an approach is MIT's App Inventor, a block-based
programming language that enables users to build fully functioning, native Android mobile
applications. However, it is not enough to provide novice learners with a coding platform and
simply let them loose. Supporting computational action also requires the development of scaffolds
in the form of support materials (such as design documents) and scripted activities that lead

Constructionism 2020 Papers

217

students through the design process. Developing these additional supports is key to ensuring that
students progress from ideation to implementation.
To explore how a computational action-focused curriculum can support students in developing
meaningful solutions to personally-relevant issues, Tissenbaum, Sheldon & Ableson (2019)
implemented a computational action curriculum in an ethnically diverse urban high school in the
United States. Tissenbaum and colleagues chose this school as it encompassed a broad spectrum
of students, particularly those not traditionally represented in the computing career pipeline.
Working with the teacher, they identified an issue that was of interest to students at the school and
the broader local community: the pollution of the local river (a major feature that runs through the
middle of the city). Working in collaborative teams, students developed their own solutions to
increase awareness and investigation strategies for cleaning up the river. To ensure that the
students felt their work was meaningful (i.e. to support their computational empowerment), they
presented their final projects at the school-wide job fair, which included visits from local council
members and the mayor.
At the end of the curriculum, many of the students expressed that they never thought they would
be able to build an app themselves, let alone build one that they felt had a chance to make real
change. Many also expressed excitement towards developing solutions to new problems using
the computational tools and knowledge developed during this project.
As this example shows, a computational action approach to computing education has the potential
to support students to become, not only programmers but computationally literate, empowered
problem-solving citizens.

Endpoint: Means of personal and social creative expression
Many computing initiatives and tools pursue the goal of empowering young people to express
themselves digitally. These efforts see the computer and code as a digital canvas, a medium that
enables a host of alternative forms of creative expression. Early implementations of Logo, the first
true programming language for children, often invited young people to create “computer graphics”
similar to those they saw at the arcade and on their video game systems (Harel & Papert, 1990;
Kafai, 1996). Scratch, a successor of Logo and the programming environment most widely used
to introduce learners to programming, invites children to create interactive stories, games, and
animations (Resnick et al., 2009). Similarly, so-called “making,” a popular means of combining
computing with fabrication and craft work, invites learners to create personally interesting physical
and tangible artifacts (Halverson & Sheridan, 2014).
While many computing education efforts do engage learners in personal and social creative
expression, these activities are often used as a means to acquire STEM or computing content
knowledge or practices. However, creative construction offers more than just a compelling way to
encounter the practices of the software engineer. Here we propose that creative expression itself
can be a powerful and worthwhile endpoint of computing education.
The design and creation of compelling artifacts that speak to the experiences, values, or
perspectives of society has traditionally been considered the domain of the artist. While artists
work with a variety of media and materials, the computer has been a useful tool for artists since
its inception to ask questions about the nature of humanity, the role of technology in society, and
to reflect on social and governmental structures and systems.
Afrofuturism is a genre of art, music, and literature that has used the practices, affordances, and
implications of computing to great effect to imagine future societies and worlds that center the
experiences and values of people of color (Anderson & Jones, 2015; Dery, 1994). These
perspectives can be found in the costumes and pageantry of Parliament-Funkadelic, the stories
sung by Janelle Monea’s android alter ego Cindi Mayweather, and the futuristic technologies
created by Shuri in the Black Panther. In the Remixing Wakanda project, Holbert and colleagues
leveraged the Afrofuturist aesthetic and design genre to invite young people to reflect on the
current state of the world and to use computational tools and practices to create artistic artifacts

Constructionism 2020 Papers

218

that construct a future that represents their values and perspectives (Dando et al., 2019; Holbert
et al., in press).
In this project, making and computing became tools for Black teens to critically examine their
experiences as young people of color in a large American city. Working with professional comic
book artists, learning scientists, designers, and local activists, participants designed and ultimately
constructed futuristic artifacts or societies that imagined futures that valued harmony between
diverse groups of people and between humanity and nature. In these constructions, participants
used computational tools, sensors, and circuitry to creatively merge aesthetic considerations with
functionality to highlight humanity’s problematic relationship with the environment and to
acknowledge and respond to their experiences with racism and inequality (Figure 1). For example,
one participant designed a fashionable cloak that hid the wearer from prying eyes--eyes that she
said, “make you feel like you’re alien [...] like you some art exhibit or something.” While this cloak
offered protection in the form of anonymity as well as a battery of sensors that monitored the health
and wellbeing of the wearer (at one point the designer also considered including pepper spray as
a built-in feature), the cloak also elevated a distinctly African aesthetic. Using textiles and patterns
from her native Senegal, as well as a hypothetical technology that could morph into personally
meaningful 3D iconography, this participant created a computing-rich artifact that proudly
displayed her heritage.

Figure 1. Learners constructing artifacts as part of the Remixing Wakanda project.

Another participant reflected on her personal frustration about litter and trash in the city. More than
a visual blight, this trash often caused disruption in public transportation that impacted her ability
to move through her city. As a response, this participant designed an aesthetically appealing trash
receptacle that included a futuristic technology that would directly convert trash to energy that
could be used to power street lights (a safety concern for those that work late) or serve as a
charging station. She then went on to program a microcontroller to illustrate the principle behind
this imagined technology.
In each case of the Remixing Wakanda project, computing serves as a tool for critically reflecting
on the current state of the world and for creating representations of a possible future that might
initiate change today. While participants did encounter coding, and potentially came away with
new knowledge about computing concepts or practices, these experiences are themselves means
towards the end of creative expression, of creating artifacts and representations the center their
anxieties and fears as well as their hopes and dreams. While one implication of this work may be
that the construction of critical artifacts may appeal to a broad range of learners currently
underrepresented in computing domains, this is far from the only possible purpose of such design
experiences. Rather, in the Remixing Wakanda project, computing is a tool for engaging in critical
reflection on inequitable societies, unsustainable energy practices, and systems of oppression.
Here, computing is a means of agitating for change--itself a powerful and important endpoint
(Holbert, in press).

Constructionism 2020 Papers

219

Endpoint: Blue Collar Computing
The third endpoint we present is the closest to the conventional endpoint of a profession in a
computer science-related field but challenges the notion of what a computer science-related field
looks like. As the technologies that enable automation become cheaper and their capabilities
expand, the nature of manual labor is shifting. An example of this can be seen with collaborative
robotics where humans and robots work side-by-side in a complementary capacity (Colgate et al.,
1996; Kock et al., 2011). Where the robots excel at tasks that require precision or repetition,
humans are more efficient at decision-making that requires judgment, adaptability, and creativity
(Blank et al., 2006). Responding to this trend of the introduction of automation into new contexts,
the skills and knowledge one needs to succeed in this setting relies on an understanding of
foundational computing concepts in order to program and re-programming industrial robots. One
way to prepare workers for the new computational landscape is to integrate computing across the
K-12 landscape in an effort to prepare all learners to write and modify programs written in
complicated industrial robotics programming languages. That approach aligns with much of the
existing CS for all rhetoric which seeks to prepare all students for a future as a software developer.
An alternative approach to address this issue is to redesign the tools at hand, in this case, the
industrial robotics programming interface, so as to make it more intuitive, accessible, and draw
more directly from the existing knowledge and expertise of today’s worker.
Towards this end, Weintrop and colleagues set out to re-envision what it might look like to program
industrial robots and investigated training approaches to help adult novices successfully author
useful routines. The result of this work was a programming environment called CoBlox (Weintrop
et al., 2018) which allows users with little or no prior programming to program virtual (Figure 2a)
or physical (Figure 2b) robots. Drawing from prior work on the design of accessible and intuitive
programming environments (Bau et al., 2017; Weintrop, 2019), CoBlox uses the block-based
programming modality to situate the robotics programming task. Block-based programming using
a programming-command-as-puzzle-piece metaphor to provide visual cues as to how and where
a command can be used in the construction of a program (Maloney et al., 2010; Weintrop &
Wilensky, 2015). CoBlox also leverages several features of block-based programming
environments, such as natural language expressions within individual commands, predefined
templates for common routines, and integration with both virtual and physical robots (Weintrop et
al., 2017).

(a) (b)

Figure 2. Virtual (a) and physical (b) implementations of the CoBlox programming Environment.

The goal of highlighting the CoBlox design is to showcase what it looks like for computer science
knowledge to be used in professional settings historically not considered within the purview of
computer science. In documenting the ways that knowledge and practices clearly within the
bounds of the discipline of computer science (programming in this case) can be enacted outside
of what is typically viewed as a computer science endpoint, we show the importance of the
consideration for alternative endpoints. As the skills and concepts from the field of computer
science continue to impact a wider and more diverse set of professions, it is important for the
narrative motivating and arguments justifying computer science to reflect this new plurality. With
CoBlox, we see an authentic and legitimate professional endpoint in which computer science

Constructionism 2020 Papers

220

knowledge is valued but not typically included in the narrative around why computer science is
important. By including endpoints that reflect the larger swath of professions impacted by computer
science, students who do not see themselves as future software developers may come to
recognize the utility of learning computer science.

Conclusion
The increasingly digital nature of our world requires that all learners feel empowered to understand
and meaningfully participate in computational practices. The last decade has seen those from the
computer science community lead the effort in designing the tools, creating curricula, and crafting
the policy that will shape the form this instruction takes for future generations. While it is important
for computer science to have a seat at the table, it is just as important that the ideas, values, and
goals of those beyond the field also participate to reflect the growing role of computing in the world.
Through envisioning and valuing alternative, yet equally valid and important, endpoints, this work
seeks to start a conversation about the nature of the dimensions that might make up alternate
computing educations--to re-evaluate the current tools and curricula to prepare learners for a
future of active and empowered computing-literate citizens. In rethinking the goals of computing
education, we see the ideas and principles of constructionism as having much to contribute
towards realizing a form of computing education that more fully reflects the plurality and diversity
of computing endpoints.
Motivating computing instruction solely based on economic outcomes does not accurately reflect
the role of computing in the current and future society. In some contexts, the economic motivation
for teaching computer science lives alongside goals such as preparing learners to be informed
digital citizens or to prepare learners for 21st-century jobs beyond those in the technology sector.
While such framing more accurately reflects the influence of computing in society, the
programming languages, computer science curricula, and larger computing pathways still are
largely designed as on-ramps intended to lead learners into the computing industry. In this way,
the existing educational infrastructure is structured with computer science degrees and the
industry jobs that will follow as the endpoint of computing instruction. While it is important that
such pathways exist, it is equally important that instruction help learners recognize alternative
endpoints computer science can lead to and support those learners for whom computer science
can be a generative and valuable skill outside of professional contexts. By recognizing the value
of these alternative endpoints, and hypothesizing diverse forms of computing educations, we open
up the computing education landscape to be more inclusive, adaptive, and empowering for all,
rather than for the select few who choose programming jobs as their educational endpoint.

References
American Association of University Women. (1994). Shortchanging Girls, Shortchanging

America. AAUW Educational Foundation.
Anderson, R., & Jones, C. E. (2015). Afrofuturism 2.0: The Rise of Astro-Blackness. Lexington

Books.
Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks

and beyond. Communications of the ACM, 60(6), 72–80. https://doi.org/10.1145/3015455
BBC. (2019). Make It Digital—The BBC micro:bit. BBC.

https://www.bbc.co.uk/programmes/articles/4hVG2Br1W1LKCmw8nSm9WnQ/the-bbc-
micro-bit

Bhattacharya, A. (2017). What happens when girls in one of the world’s largest slums start
coding and building apps. Quartz India. https://qz.com/india/1032018/dharavi-diary-what-
happens-when-girls-in-one-of-the-worlds-largest-slums-start-coding-and-building-apps/

Blank, D., Kumar, D., Meeden, L., & Yanco, H. (2006). The Pyro toolkit for AI and robotics. AI
Magazine, 27(1), 39.

Constructionism 2020 Papers

221

Blikstein, P. (2008). Travels in Troy with Freire: Technology as an agent for emancipation. Paulo
Freire: The Possible Dream. Rotterdam, Netherlands: Sense.
http://tltl.stanford.edu/publications/papers-or-book-chapters/travels-troy-freire

Bontá, P., Papert, A., & Silverman, B. (2010). Turtle, Art, TurtleArt. Proceedings of
Constructionism 2010 Conference.

Buechley, L., & Eisenberg, M. (2008). The LilyPad Arduino: Toward wearable engineering for
everyone. Pervasive Computing, IEEE, 7(2), 12–15.

Cavallo, D., Papert, S., & Stager, G. (2004). Climbing to understanding: Lessons from an
experimental learning environment for adjudicated youth. Proceedings of the 6th
International Conference on Learning Sciences, 113–120.

Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more
gender balanced than others? Psychological Bulletin, 143(1), 1–35.
https://doi.org/10.1037/bul0000052

Colgate, J. E., Edward, J., Peshkin, M. A., & Wannasuphoprasit, W. (1996). Cobots: Robots For
Collaboration With Human Operators.

Couragion Coroporation. (2018). Altering the Vision of Who Can Succeed in Computing. Oracle
Academy.

Dando, M. B., Holbert, N., & Correa, I. (2019). Remixing Wakanda: Envisioning Critical
Afrofuturist Design Pedagogies. Proceedings of FabLearn 2019, 156–159.

Dery, M. (1994). Flame Wars: The Discourse of Cyberculture. Duke University Press.
Freire, P. (1974). Pedagogy of the Oppressed. Basic Books.
Gorson, J., Patel, N., Beheshti, E., Magerko, B., & Horn, M. (2017). TunePad: Computational

Thinking Through Sound Composition. Proceedings of the 2017 Conference on
Interaction Design and Children, 484–489.

Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard
Educational Review, 84(4), 495–504.

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning
Environments, 1(1), 1–32.

Harel, I., & Papert, S. (Eds.). (1991). Constructionism. Ablex Publishing.
Holbert, N. (In Press). Constructionism as a Pedagogy of Disrespect. In N Holbert, M. Berland, &

Y. Kafai (Eds.), Designing Constructionist Futures: The Art, Theory, and Practice of
Learning Designs. MIT Press.

Holbert, N, Dando, M. B., & Correa, I. (In Press). Afrofuturism as critical constructionist design:
Building futures from the past and present. Journal of Learning, Media, and Technology.
Journal of Learning, Media, and Technology.
http://dx.doi.org/10.1080/17439884.2020.1754237

Holbert, Nathan. (2016). Leveraging cultural values and “ways of knowing” to increase diversity
in maker activities. International Journal of Child-Computer Interaction, 9–10, 33–39.
https://doi.org/10.1016/j.ijcci.2016.10.002

Kafai, Y. (1996). Learning Design by Making Games: Children’s Development of Design
Strategies in the Creation of a Complex Computational Artifact. In M. Resnick & Y. Kafai
(Eds.), Constructionism in Practice (pp. 71–96). Lawrence Erlbaum.
https://www.taylorfrancis.com/books/e/9780203053492/chapters/10.4324/978020305349
2-11

Kafai, Y. B. (1991). Learning design by making games. In I. Harel & S. Papert (Eds.),
Constructionism (pp. 71–96). Ablex Publishing Corporation.

Constructionism 2020 Papers

222

Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A Crafts-Oriented
Approach to Computing in High School: Introducing Computational Concepts, Practices,
and Perspectives with Electronic Textiles. Trans. Comput. Educ., 14(1), 1:1–1:20.
https://doi.org/10.1145/2576874

Kock, S., Vittor, T., Matthias, B., Jerregard, H., Källman, M., Lundberg, I., Mellander, R., &
Hedelind, M. (2011). Robot concept for scalable, flexible assembly automation: A
technology study on a harmless dual-armed robot. 2011 IEEE International Symposium
on Assembly and Manufacturing (ISAM), 1–5.
https://doi.org/10.1109/ISAM.2011.5942358

Lee, C. H., & Soep, E. (2016). None But Ourselves Can Free Our Minds: Critical Computational
Literacy as a Pedagogy of Resistance. Equity & Excellence in Education, 49(4), 480–
492. https://doi.org/10.1080/10665684.2016.1227157

Lewis, C. M. (2017). Good (and Bad) Reasons to Teach All Students Computer Science. In S. B.
Fee, A. M. Holland-Minkley, & T. E. Lombardi (Eds.), New Directions for Computing
Education: Embedding Computing Across Disciplines (pp. 15–34). Springer International
Publishing. https://doi.org/10.1007/978-3-319-54226-3_2

Maloney, J. H., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch
programming language and environment. ACM Transactions on Computing Education
(TOCE), 10(4), 16.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. The MIT
Press.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal
of Computers for Mathematical Learning, 1(1). https://doi.org/10.1007/BF00191473

Papert, Seymour, & Solomon, C. (1971). Twenty things to do with a computer.
http://18.7.29.232/handle/1721.1/5836

Pinkard, N., Erete, S., Martin, C. K., & Royston, M. M. de. (2017). Digital Youth Divas: Exploring
Narrative-Driven Curriculum to Spark Middle School Girls’ Interest in Computational
Activities. Journal of the Learning Sciences, 26(3), 477–516.
https://doi.org/10.1080/10508406.2017.1307199

Ratto, M., & Boler, M. (2014). DIY citizenship: Critical making and social media. MIT Press.
Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond,

E., Brennan, K., Millner, A., Rosenbaum, E., & Silver, J. (2009). Scratch: Programming
for all. Communications of the ACM, 52(11), 60.

Santo, R., Vogel, S., & Ching, D. (2019). CS for What? Diverse Visions fo Computer Science
Education in Practice. CSforALL.

Smith, M. (2016). Computer Science For All. Whitehouse.Gov.
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

Taheri, M., Ross, M., Hazari, Z., Weiss, W., Georgiopoulos, M., Christensen, K., Solis, T., Chari,
D., & Taheri, Z. (2019). Exploring Computing Identity and Persistence Across Multiple
Groups Us-ing Structural Equation Modeling. American Society for Engineering
Education (ASEE) Conference Proceedings.

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to
computational action. Communications of the ACM, 62(3), 34–36.

Vakil, S. (2018). Ethics, Identity, and Political Vision: Toward a Justice-Centered Approach to
Equity in Computer Science Education. Harvard Educational Review, 88(1), 26–52.

Constructionism 2020 Papers

223

Vogel, S., Santo, R., & Ching, D. (2017). Visions of Computer Science Education: Unpacking
Arguments for and Projected Impacts of CS4All Initiatives. Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education - SIGCSE ’17, 609–614.

Weintrop, D. (2019). Block-based Programming in Computer Science Education. Commun.
ACM, 62(8), 22–25. https://doi.org/10.1145/3341221

Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D. C., & Franklin, D. (2018).
Evaluating CoBlox: A Comparative Study of Robotics Programming Environments for
Adult Novices. Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, 366:1-12. https://doi.org/10.1145/3173574.3173940

Weintrop, D., Holbert, N., Wilensky, U., & Horn, M. S. (2012). Redefining constructionist video
games: Marrying constructionism and video game design. In C. Kynigos, J. Clayson, & N.
Yiannoutsou (Eds.), Proceedings of the Constructionism 2012 Conference.

Weintrop, D., Shepherd, D. C., Francis, P., & Franklin, D. (2017). Blockly goes to work: Block-
based programming for industrial robots. 2017 IEEE Blocks and Beyond Workshop, 29–
36. https://doi.org/10.1109/BLOCKS.2017.8120406

Weintrop, D., & Wilensky, U. (2015). To Block or Not to Block, That is the Question: Students’
Perceptions of Blocks-based Programming. Proceedings of the 14th International
Conference on Interaction Design and Children, 199–208.
https://doi.org/10.1145/2771839.2771860

