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Figure 1: CodeStruct is an intermediary programming environment that eases the transition between block-based (Scratch)
and text-based (Python) programming, by breaking down and reducing the knowledge gap within each transition.

ABSTRACT
Transitioning from block-based programming environments to con-
ventional text-based programming languages is a challenge faced by
many learners as they progress in their computer science education.
In this paper, we introduce CodeStruct, a new intermediary pro-
gramming environment for novices designed to support children
who have prior experience with block-based programming to ease
the eventual transition to text-based programming. We describe
the development of CodeStruct and its key design features. We
then present the results from a two-week long programming class
with 26 high school students (ages 12-16;M=14 years) investigating
how CodeStruct supported learners in transitioning from Scratch
to Python. Our findings reveal how learners used the scaffolds de-
signed into CodeStruct to support their transition from blocks to
text, and that transitioning to CodeStruct reduced completion time
(1.98x) and help requests (4.63x) when compared to transitioning di-
rectly to Python. Finally, learners that used CodeStruct, performed
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equally well (and slightly better in 10/16 programming activities)
in their final transition to fully text-based Python programming.
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1 INTRODUCTION
Block-based programming environments (BBPEs), such as Scratch,
are designed to reduce the barrier of entry to programming for
young learners [7]. Research has shown that BBPEs are effective
at helping K-12 students develop foundational programming and
problem-solving skills [19, 37, 49], be a welcoming and fun way to
introduce kids to programming [29, 36], and can support them in
expressing their own ideas and interests [13, 16]. However youth
may perceive block-based programming to be less powerful [47] and
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wish (or need) to transition to text-based programming languages
as their education progresses.

The transition from block to text-based programming can be
difficult as there is a large knowledge gap of skills developed in
block-based environments that do not always transfer to text-based
languages [32, 46, 51] (Figure 1 Top). The difficulties associated with
the transition can be grouped into three major categories: (a) re-
moval of training wheels such as visualizing types and a browsable
toolbox, (b) differences in programming style and code represen-
tation [7] between the two environments, and (c) misconceptions
and difficulties that are solely associated with authoring code us-
ing a fully text-based programming language for beginners [34].
Furthermore, in theorizing about why this transition is difficult,
researchers have articulated several barriers including text-based
programming being more difficult to read/parse, the need for stu-
dents to memorize syntax, and challenges associated with typing in
commands [25] and interpreting errors [7, 14]. Finally, students are
exposed to a paradigm shift in programming. Many block-based
languages are event-based, allowing learners to rely on user-input
or on-screen interactions (e.g., collisions) to coordinate the execu-
tion of various parts of a program [43]. At the same time, there
are smaller, language-level differences, such as a repeat until
block that performs the opposite behavior of a while statement. In
summary, while BBPEs offer a good introduction to coding, there
are substantial differences between using blocks and syntax, and be-
tween the associated programming language paradigms, that make
the transition from block to text-based programming difficult.

Several designs have attempted to make the transition from
block-based to text-based programming easier [28]. For example,
dual-modality programming environments such as PencilCode [6]
and MakeCode [2] allow the user to switch between blocks and text-
based modalities with one click. Other environments seek to blend
block-based and text-based features into a single environment such
as the Frame-based editing approach [25] which retains some of the
error avoidance and discoverability of block-based environments
while attempting to support the flexibility, efficiency, keyboard
control and large-scale readability of text-based editors. Finally,
point-and-click editors such as TouchDevelop [1] and Grasshopper
[52] almost eliminate syntax errors but lack an efficient keyboard
control mechanism compared to Frame-based editing.

Although these environments can help reduce syntax errors and
create executable code [33], few were designed to help young learn-
ers with the eventual transition to conventional text-based editors.
At the same time, only a narrow slice of the design space of ways
to support youth in transitioning from block-based to text-based
programming has been explored [28, 45]. As such, there remains
opportunity to further explore design approaches for supporting
young learners in transitioning from block-based to text-based
programming.

In this paper we introduce CodeStruct, a novel intermediary
programming environment that aims to make it easier for K-12
learners and novices to transition from Scratch (blocks) to Python
(text) (Figure 1 Bottom). CodeStruct is a browser-based Python
programming environment and includes a series of design features
to support novices in their transition, including: (i) a dual mode code
editor that supports point-and-click insertion of code segments as
well as unconstrained text-based coding (ii) a context-aware toolbox

that includes basic code snippets with on-hover learning material,
(iii) a structured code editor with code completion, active type-
checking and fix suggestion providers, and (iv) various visual cues
drawn from BBPEs to help novices know how andwhere commands
can be used such as holes for arguments and highlighted code
blocks. Unlikemany other approaches for supporting this transition,
CodeStruct was designed to bring effective features of block-based
programming into a text-based environment designed to resemble
professional text-based editors in order to prepare learners for the
eventual transition to conventional and widely-used text-based
development environments [9].

We then present an evaluation study of 26 K-12 students (ages
12-16;M=14 years) with no prior programming experience learning
to program with CodeStruct. The study is unique in that it not only
evaluates our new intermediary programming environment, but
it also evaluates what impact this environment has when students
subsequently transition to full text-based programming. The evalu-
ation consisted of 11 90-minute sessions, with half of the students
exposed to CodeStruct prior to their transition to text-based pro-
gramming. Our results show that with CodeStruct, students spent
1.98x less time completing programming tasks in their initial en-
vironment transition and had 4.63x fewer help requests from an
instructor. In a final assessment using text-based programming, stu-
dents that were exposed to CodeStruct received consistently higher
scores on a series of programing questions, performing better in 10
out of 16 questions.

2 RELATEDWORK
2.1 Block-based Programming
While not a recent innovation (e.g., [8, 35]) block-based programing
is increasingly becoming the way that youth are being introduced
to the practice of programming and the field of computer science
more broadly. Visual metaphors, along with user interaction and
experimentation [28], are foundational elements of a BBPE. To-
gether they provide numerous features that enable BBPEs to make
programming more accessible and inviting [7, 28, 33, 47]. BBPEs
use a command-as-puzzle-piece metaphor to convey information
about how and where commands can be used and support a drag-
and-drop interaction to help novices in assembling valid programs.
Initially popularized by environments such as Scratch [36] and Al-
ice [12], BBPEs have become widespread, with a review from 2021
identifying over 100 unique BBPEs [28]. The capabilities of BBPEs
and the types of programs that can be authored with them have
also expanded in recent years. It is now possible to use BBPEs to
create video games [22], develop mobile apps [50], control indus-
trial robots [42] or drones [41], query databases [23], and engage
in data science [4].

Research comparing block-based programming to text-based
programming has found block-based programming to be an effec-
tive introduction to programming [e.g., 27,33,49]. A meta-review of
studies comparing block-based and text-based programming envi-
ronments found BBPEs to outperform text-based languages with
respect to cognitive learning outcomes (albeit with a small effect
size), but also concluded that many open questions remain, includ-
ing isolating which design features contribute to this result and
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understanding how these gains translate to text-based program-
ming [51].

Related studies have also identified drawbacks to these environ-
ments. Block-based tools fail to scale well with larger programs,
and they can become cumbersome when users attempt to define
commands with many components, such as mathematical formulae
or complex Boolean statements [1, 47]. As youth seek to move on
to create larger or more complex projects, the question of if and
how to transition to text-based programming languages emerges.

2.2 Transitioning from Block-based to
Text-based Programming

After studying the challenges novices face when transitioning from
BBPEs to text-based programming, past research suggests that some
of the features that facilitate learning also affect the difficulty of the
transition. These features include the readable block structure of
code, the limited need to memorize commands or syntax, and the
absence of typing using drag-and-drop commands [25, 47]. As such,
the challenges related to transitioning are twofold: there is both a
knowledge representation problem, in terms of understanding the
programming language paradigms, and an IDE problem, related
to understanding how to use and interpret the functionality of
the development environment and user interface. As part of their
review of BBPEs, Lin &Weintrop identify three distinct approaches
to supporting the block-to-text transition [28]: one-way transition,
dual-modality, and hybrid.

One-way transition environments describe BBPEs that support
novices in viewing their block-based programs in a text-based form
or allow learners to "export” their block-based program as a text-
based program for continued editing. Examples include the Blockly
library [18], and the VexVR environment. Dual-modality environ-
ments allow youth to author their programs in either block-based
or text-based forms and support them in moving back-and-forth
between the two. Examples of environments that support this type
of interaction include Pencil Code [6], BlockPy [5], MakeCode [2],
and Tiled Grace [21]. These types of programming environments
have been found to be productive in helping learners transition
from block-based to text-based programming [30, 44]. Hybrid en-
vironments blend features of block-based and text-based program-
ming into a single interface. A notable example is Frame-based
editing [24], which was designed to have the low-threshold char-
acteristics of block-based programming, while also retaining the
expressiveness, flexibility, and keyboard-driven authoring of text-
based programming languages. Pencil.cc is another example, which
presented users with a text-based coding editor alongside a blocks
palette, and supported learners in dragging-and-dropping block
commands into a text-based program [45]. Hybrid programming
tools have also been developed to allow learners to author short
snippets of text-based code and embed them within a block-based
program [10]. In conducting their review, Lin & Weintrop identify
only 3 fully hybrid environments and conclude that “there are still
fertile grounds yet to be tilled for finding new ways of supporting
learners in transitioning from block-based to text-based language”
[28:9]. CodeStruct was designed with this open research area in
mind and introduces novel features to ease the full blocks to text
transition.

2.3 Supporting Novice to Expert Transition in
Desktop Software

Our work is also inspired by broader HCI research that examines
the novice to expert transition in software. We refer the reader to
a thorough survey of such research by Cockburn et al. [11]. Early
HCI research proposed “training wheels” for user interfaces to limit
the functionality of complex user interfaces for novice users [3].
Multi-layered interfaces extend on this concept and slowly expose
users to more complex software functionality as their expertise
develops [17, 39]. Scarr et al. discuss in detail the performance
dip that occurs when transitioning from a novice to expert mode
of a user interface: “users are likely to suffer a performance dip
when switching to a new modality, even if it offers a higher ulti-
mate performance ceiling” [38]. They propose an interactive sys-
tem that minimizes the dip in performance when transitioning to
expert usage of desktop software. The Blocks-to-CAD program
[26] utilizes a similar concept to help users transition from novice
to expert 3D modelling skills but instead uses a series of smaller
interface transitions. CodeStruct follows a similar philosophy by
altering the blocks to text transition into a series of two smaller
transitions.

3 ITERATIVE DESIGN PROCESS
Our initial design consisted of a toolbox of insertable code snippets
that was informed by prior work that showed students benefit from
the browsable set of blocks used in BBPEs [47]. Afterwards, we
expanded the toolbox by including tooltip style documentation
and context-aware feedback (e.g., visually updating the toolbox
as the learner navigates through code). For editing code, we were
inspired by the syntax-error avoidance and visual affordances of
BBPEs as well as the freedom in editing and code suggestions in
text-based editors. Therefore, we developed a custom, structured
editor that allowed freely typing in the editor while eliminating
syntax errors and displaying block-shaped scopes and holes for
empty expressions like BBPEs. We hypothesized that incorporating
the toolbox and aforementioned visual supports inspired by BBPEs,
would ease the transition from these environments. Finally, we
refined the design of CodeStruct using an iterative, human-centered
design process that included interview and design probe sessions
with five CS educators and a pilot study with a prototype of the
CodeStruct system with the above features.

The interview included five CS educators (four high school
programming teachers and one after school coding instructor).
These interview sessions were conducted remotely and lasted
roughly 60 minutes. They included an introduction, questions about
curriculum, programming language and tools that were used to
teach programming, and a demonstration of the current Code-
Struct interface and features. Educators were generally positive
about the tool, particularly how the toolbox promoted exploration
and how the editor almost eliminated syntax errors. One educa-
tor said, “editing in this tool is similar to an actual text-editor, but
with some handles”. There were also many useful suggestions and
ideas including: (i) reducing the number of things that are auto-
matically done for the user and allowing them to make mistakes
and learn from them, (ii) adding a search box in the toolbox to
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Figure 2: Left: The CodeStruct interface. A) Code Toolbox. B) Variables Toolbox. C) Text editor. D) Executaion Console. E) Scope
Highlights. F) Variable Holes. Right: A sample programming sequence with CodeStruct.

improve code exploration, (iii) allow writing comments and doc-
strings to reduce re-textualization mental effort, (iv) including vi-
sualizations of conditions and Boolean expressions, and (v) allow
users to produce visual outputs in addition to textual input and
output.

In the pilot study, a 12-year-old student was taught the basics of
Scratch in three 90-minute sessions, followed by three sessions of
using an early version of CodeStruct to solve the same programming
problems with Python. Several recurring problems emerged: (i)
forgetting what each piece of code does and how to use them
correctly, (ii) failing to understand how to concatenate strings and
integers, (iii) missing double quotes for strings, and (iv) being unable
to easily modify already inserted code. Based on these observations
we iterated on the system design and added several real-time help
and syntax error identification features which will be described in
Section 4.

4 SYSTEM DESIGN OF CODESTRUCT
Informed by prior research and data collected as part of our in-
terviews and pilot study, we arrived at our final design for Code-
Struct. The system was designed to allow users to utilize the best
of block-based programming paradigms in a text-based editor and
allow the user to remove their “training wheels” as they advance.
CodeStruct is designed to support two transitions: transitioning
from a BBPE to CodeStruct and then transitioning from Code-
Struct to a fully featured text-based programming environment.
Specifically, CodeStruct was designed to serve as an intermediary
between Scratch (blocks) and Python (text)—the two most common
languages/environments in each modality.

4.1 CodeStruct Interface
CodeStruct is a browser-based Python code editor with built-in
code execution functionality and an interface like that of mod-
ern programming environments (Figure 2 Left). Analogous to
BBPE’s, CodeStruct includes a context-aware toolbox from which
code (A) and variables (B) can be inserted at the current cursor
location. Analogous to text-based programming environments,
users can also type code directly in the text editor (C) and a
code-execution console is shown below (D). Subtle highlighting
of scope is provided (E), as well as “holes” for inserting blocks of
code (F).

4.2 Context-Aware Toolbox
The toolbox allows users to insert code, and is split into two sec-
tions: Python statements, operators, and built-in functions above,
and a list of user-defined variables below. CodeStruct’s toolbox is
dynamic, and updates currently valid code insertions based on the
current caret location or cursor selection, and the current state of
the abstract syntax tree. Buttons for invalid code insertions are dis-
abled but are not removed from the toolbox. This provides novices
with opportunities to learn about syntax and general code structure
by referencing the valid and invalid code buttons in the toolbox. The
toolbox also allows code to be browsed by category and searched
by keyword. The toolbox provides tooltip style documentation for
each piece of code which is discussed further in Section 4.6. Finally,
the user defined variables section of the toolbox displays all vari-
ables that are available in the current scope (based on where the
cursor is located), their type, and a list of context-aware actions
associated with that variable.
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Figure 3: Structured editing in CodeStruct.

4.3 Context-Aware Code Completion
The code completion mechanism in CodeStruct is like the ones
found in conventional IDEs with some enhancements, such as in-
serting entire statements and hiding invalid code based on the
current position of the cursor. For example, if the user starts typing
in for at the beginning of a line, followed by a space, the editor will
insert a complete version of Python’s for statement that includes
two different types of holes: one with sharp edges and dashed for
defining the looping variable, and one with solid rounded edges
for inserting the sequence expression (Figure 3a). Similarly, the
user can still type in the for inside an empty hole that requires an
expression, but the context-aware code completion would not show
it as one of the possible insertions. This protected implementation
of the code completion tool lowers the barrier to entry for novices.

4.4 Structured Editing and Navigation:
CodeStruct is a structured editor and editing is mostly done on a
token level instead of the character level. Code inserted from the
toolbox is prefabricated and is inserted in its entirety. When typing,
the tool will complete entire pieces of code for the user as outlined
in the section above. Editing is completed on the character level for
numbers, string literals, and variable identifiers. Navigation is also
performed at a token level outside of these two situations. The user
can use the arrow keys or the mouse to navigate the cursor to the
closest valid location. In the cases where the cursor is attempted to
be placed at an invalid location (somewhere where nothing can be
inserted because it would violate syntax conventions), the cursor is
placed at the closest valid and editable location.

The context awareness enabled by the abstract syntax tree allows
CodeStruct to provide interactions that are typically not possible in
structured editors like Genie [31] and Grasshopper [52] or BBPEs.
One common example of this would be the creation of binary arith-
metic expressions. In a BBPE or other structured editors, the opera-
tor is inserted first and then the operands are filled. However, in
conventional editors, the most common sequence of steps is to fill
the first operand and then insert the operator. CodeStruct supports
both methods. The user can insert such expressions operator-first
(similar to BBPEs) by using the toolbox or by pressing the opera-
tor’s key (Figure 3b), or they can follow the conventional sequence
(Figure 3c). The same applies to data type casts, where the user
can perform the following sequence of steps to cast a string as an
integer (Figure 3d). Our structured editor is unique by creating an

experience like conventional editors, while also maintaining all the
supports that a structural editor offers to a novice programmer.

4.5 Automatic Hint Suggestion
CodeStruct provides automatic hints and warnings such as typemis-
match detection, undefined identifier detection, out-of-scope refer-
ences, and incomplete code detection. Despite such supports being
an integral part of conventional programming, it is not something
that is available in BBPEs or environments such as Grasshopper
[47]. Much like in a typical editor, if CodeStruct detects erroneous
code, it will highlight it and display a short warning message with
fix suggestions on hover. CodeStruct can identify the location of
these errors accurately as it has access to the complete AST and can
offer better and more personalized suggestions for fixing them. In
addition, the system keeps track of whether the code is runnable or
not (will it result in a compile or runtime error) and disallows the
user to run code that would result in such errors, instead pointing
them to where the error is and how to fix it if they try to run the
code. These hints enable students to learn from their mistakes and
provide much needed error resolution help to novices.

4.6 Visual Aids and Feedback
CodeStruct utilizes a combination of subtle visual aids that like
those used in BBPEs but are less rigid and at a reduced level of visual
prominence, to prepare users for the full transition to text editors
(Figure 4). Holes are differentiated by their shape to indicate if they
are for expressions or text. When selected, expression holes are
completely highlighted to indicate that they may contain complete
pieces of code, while the text holes show the cursor indicating
that insertions will be made in the form of a single character at
a time. When selecting a hole, identifiers of variables that could
be referenced in the selected hole are highlighted in the editor in
either green if they are valid, or pale yellow to indicate that this
insertion would be invalid but can be fixed. CodeStruct displays
scopes directly within the editor with a pale blue outline that gets
darker as the depth of the scope increases. In the toolbox, every type
of construct (statement, expression, empty placeholder/hole) has a
specific outline shape in the toolbox and within the editor window.
CodeStruct also draws the user’s attention to any newly created
variable, by highlighting it in green for a period after creation to
indicate to the user where that variable is found in the toolbox.

4.7 Accessible Learning Material
By hovering over code in the toolbox the user can see enhanced
tooltips that provide: a concise description of what clicking the code
will do, a short explanation on how the code works, whether it can
be inserted in the current context and the reason if not, and runnable
example code. In the variables section, tooltips show the variable
identifier and type, as well as the most common suggested actions
for a variable of this type. Three additional forms of assistance are
provided in the tooltips: (a) quick hints, (b) executable examples,
and (c) and step-by-step example code execution (Figure 4). Quick
hints have some common usages, executable examples allow the
user to test and modify the code inside them, and step-by-step
examples provide opportunity to learn about line-by-line execution
of sample code, similar to Python Tutor [20]. This allows students
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Figure 4: Visual aids of CodeStruct resemble those provided in BBPEs but are less prominent, to help with the transition.

Figure 5: Left: Enhanced tooltips for elements in the code toolbox include 3 additional forms of enhanced assistance. Middle:
Step by step walkthroughs allow users to move a slider to walkthrough code and see how the variables change. Right Top:
Quick hints include additional tips on using the code. Right-Bottom: Users can edit and run code examples.

to learn, explore, and search for tutorials easily and with no context-
switching.

4.8 Using CodeStruct: An Example
Figure 2 (right) shows how a user could utilize various features
of CodeStruct to write a program that would display a random
number joined with a text. The user starts typing in the editor and
the only piece of code they can insert using the code completion
is creating a new variable (Step 1). The user creates the variable
by pressing the Enter key (to select the item in the autocomplete)
or pressing the = key. The cursor immediately jumps to the right
of this assignment expression which is highlighted in blue (Step
2). The user decides to enter a random integer using the randint
function and can see that in the code completion menu (Step 3).
CodeStruct shows a warning message about the randint function
that requires an import (Step 4). After the user clicks on import
random or types the correct import statement, they decide to start
printing out the text "rolled: " concatenated with the random
number. However, the user forgot to include double quotes around
the text, so the tool immediately shows another warning message to
convert what they typed to a text (Step 5). The user then adds a plus
operator to the right of the string and inserts the die variable but is
confronted with another error message, this time a type mismatch
error with a suggestion to wrap the variable with the str function
that would cast the integer to a string (Step 6). The final code is
shown in Step 7.

4.9 Implementation
CodeStruct is written in TypeScript on top of theMonaco Editor [53]
and uses Pyodide [54] to execute Python code in the browser. In ad-
dition, CodeStruct uses a custom abstract syntax tree configured for
Python statements and keywords, however, it can easily be extended
or changed to support a different language if it is runnable inside the
browser. When navigating, CodeStruct checks the direction of the
navigation and the next available valid caret placement/selection in
that direction. Such a valid placement/selection is defined by being
able to have code inserted into it without structurally breaking the
AST. As a result, the navigation within CodeStruct is token-based
instead of character-based.

When the caret location is changed, CodeStruct runs a series of
validations on the AST to determine what code can be inserted at
the new caret position. There are two types of validation that run
at this point: a) structural and b) type (if the code is an expression).
Structural validation deals with the syntax and general location
of the code placement, while type validation looks for potential
type mismatches. For each piece of code there are three outcomes,
the insertion is either: valid, invalid, or draft. Invalid insertions
are completely disallowed and are subsequently disabled in the
toolbox and code completion. Draft insertions are updated with a
pale-yellow color inside of the code completion menu and have a
warning added to them in the toolbox until fixed or finished and
converted to a valid insertion which is indicated by a green flash.
The conversion from draft to valid is how CodeStruct allows to
freely type code like a conventional editor.
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Figure 6: The study consisted of 11 sessions across three phases. The top group used CodeStruct during the transition phase.

Operands of binary expressions is an exception and runs post-
insertion. This is done to make it more flexible. It is performed
through a recursive walk of the expression in the AST and cross-
checking operand types. In addition to this, CodeStruct performs
further checks during code deletion. When deleting user-defined
pieces of code such as variables, a traversal of the tree is performed
to identify invalid usages of the variable (if any). These are marked
with warnings and the user is suggested to delete them as they no
longer reference an existing variable. Finally, when code is to be
executed, a BFS traversal of the AST is performed to determine if
there are any unfilled holes or pieces of code with warnings on
them in the tree. If there are, the code does not run and instead
the user is provided further information on potential fixes. This
approach allows us to catch errors that otherwise would not be
caught until compilation is attempted, coinciding with our goal of
lowering the barrier of entry for text-based programming.

5 SYSTEM EVALUATION
To evaluate CodeStruct, we conducted a virtual, two-week long
study comprised of 11 90-minute sessions. The study was conducted
over the Google Meet platform, with the first author serving as the
primary instructor and the second author as an assistant. The study
was broken down into three phases: (i) a formal introduction to
Scratch programming for four sessions followed by an evaluation
of their Scratch learnings on the fifth session, (ii) an independent
transition of participants to either CodeStruct or Replit to write
Python code for four sessions, and (iii) a final evaluation of their
Python programming skills and knowledge for two sessions. In
splitting the participants during the second phase we can compare
the results of transitioning with CodeStruct to going directly from
Scratch to Replit.

5.1 Participants
Participants were recruited through a local school and an after-
school program in a North American city. The study consisted
of 26 students (14 female) ages 12-16 (M=14.1; SD=1.2). Students
were screened to have no prior programming experience other than
Scratch. Parent/guardian consent and child assent was obtained
before the first session of the course and each student was given a
$50 gift card at the end of the class.

5.2 Introduction with Scratch
To begin the study, all youth in the study went through the same
4-session Scratch sequence. Each session included 3-6 programming

activities and 3-7 comprehension questions. All programming activ-
ities were followed by a Likert scale that asked about the difficulty
of the problem. The event-driven and multi-thread programming
styles in Scratch were de-emphasized in our study to foreground on
core imperative programming concepts. Therefore, the first session
covered the basics of Scratch programming such as sequence of
code execution, how to display values, working with mathematic
operators, generating random numbers, and working with variables.
The second session started with a recap on the previous session by
answering all the activities in the previous session in detail follow-
ing with a lecture on Booleans and conditionals and new activities.
The third and fourth sessions followed a similar pattern to the
second session but with new topics on loops, lists, and important
patterns such as the accumulator pattern or traversing through a
list using a loop. Students were encouraged to ask questions if they
needed help as the goal of this phase was to teach them the basics
of Scratch and computational thinking.

5.3 Transitioning to Text
In the second phase of the study, participants transitioned to text
using either CodeStruct or Replit, a popular Monaco-based Python
editor with autocomplete and basic code analysis that flag pro-
gramming errors. We used participant performance on the Scratch
assessments to divide the students into two groups of 13 students
that were comparable in terms of knowledge and skill. The first
group used CodeStruct, while the second group used Replit. The
goal of this phase was to study how they initially transition from
Scratch to Python and compare their performance. Learners in both
conditions were given the same set of activities to complete: (i) con-
vert a given Scratch program to Python, (ii) the same programming
activities that they did in Scratch but this time in Python. Finally,
to provide additional assistance, all learners were given a documen-
tation that included all of the Python sections of W3Schools [55].
The group that used CodeStruct also had the ability to use any of
the embedded learning mechanisms inside CodeStruct.

5.4 Data Collection and Analysis
We collected a variety of measures and observations throughout
the study, including video recordings, online form data, content
assessments, and log data on student interactions with the program-
ming tools and documentation. At the end of the Scratch phase
(session 5) and Python phase (session 10), we administered content
assessments to evaluate student understanding. At the end of phase
1, we administered a Scratch content assessment that included 19
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Figure 7: Top: Correctness scores, Middle: competition time, and Bottom: help request during the transition phase.

multiple choice comprehension questions, and 7 programming chal-
lenges. The programming challenges and questions were inspired
from [48] and evaluated common programming misconceptions—
derived from [40].

For each of the programming challenges throughout sessions
6-11, we measured each student’s perceived difficulty, correctness,
and completion time. To measure perceived difficulty, learners were
given Google Forms that included all problems and the program-
ming challenges within the form accompanied a five-point Likert
scale on difficulty. Furthermore, all participants were asked to share
their entire screen so that we could record and analyze their per-
formance later, as well as to help them if they were struggling with
a program or had a question. The video recordings were used to
measure task completion time, number of help requests, number
of problems/errors (by type), learning material usage, and solution
correctness. To measure correctness fairly, the final solution for
each task was graded independently by the first two authors using
a rubrik (deducting 25% for every issue in their solutions).

At the conclusion of the second phase of the study (session 10
and 11), we administered a second assessment, this time asking
questions in Python. The assessment included Python versions of
the Scratch Evaluation questions, as well as additional Python pro-
gramming and conceptual understanding questions. The questions
were designed to evaluate (i) general Python programming ability,
(ii) python-specific concepts (e.g., for loops), and (iii) Scratch to
Python conceptual differences (e.g., while loop conditions and list
indexing). Both conditions in this phase used the Replit environ-
ment with no help from the instructors or the instrumented Python
documentation. At the end of the study all the 13 learners from
the CodeStruct condition answered a questionnaire that included
qualitative questions about CodeStruct and Replit. Our analysis
omits data for one student from the CodeStruct group who chose
not to complete the problems.

6 RESULTS
We discuss our results on a subset of the programming activities
that students worked on, focusing first on the transition phase

(Figure 6b) and then the final evaluation phase (figure 6c). The re-
sults are presented through visualizations of means, and confidence
intervals, as opposed to Null Hypothesis Statistical Testing—an ap-
proach that is favored by those in HCI that see benefit in switching
from statistical testing to reporting informative charts and offering
nuanced interpretations of results [15].

6.1 Transition Phase
The transition phase looks at the transition from Scratch to Code-
Struct for the CodeStruct group, and the direct transition from
Scratch to Replit for the Replit group. The transition phase consisted
of 33 programming activities (15 construction and 18 conversion
activities) across sessions 6, 7, 8, and 9.

6.1.1 Task Performance Measures. Task performance along three
dimensions (correctness, completion time, and help requests) is illus-
trated in Figure 7 for 4 sessions. The overall results show that both
conditions had similar performance in terms of correctness score
(CodeStruct: M=84.7%, SD=34.5%, Replit: M=84.5%, SD=34.8%),
with CodeStruct scoring higher than Replit in session 8 (CodeStruct:
M=86.8%, SD=31.9%, Replit: M=69.9%, SD=45.9%), and Replit per-
forming better in session 9 (CodeStruct:M=73.9%, SD=42.1%, Replit:
M=84.7%, SD=32.9%). Looking at completion time (the middle row
of tables) learners in the CodeStruct group were able to finish prob-
lems in the first three sessions of the transition phase roughly
two times faster (CodeStruct: M=340s, SD=330s, Replit: M=675s,
SD=767s). However, the CodeStruct group was 30% slower in the
last session of the transition phase. Furthermore, the total number
of help requests was 4.63 times less for the CodeStruct group which
requested help for only 19 times compared to 88 times for the Replit
group. Finally, the Python documentation was used 2.6 more times
in the Replit group (Replit: 156 times, CodeStruct: 60 times). These
show that the CodeStruct group went through the transition phase
more independently and with less context switching.

Moreover, analyzing the types of issues that learners encountered
during the transition phase and comparing them between each
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Figure 8: Left: Comparison of the number of problems encountered during the transition phase of the study, broken down by
type. Right: Toolbox vs. keyboard usage in CodeStruct, ordered by frequency of use.

condition, we found that syntax errors (which are shown in the left-
most pair of columns in Figure 8) were the most frequently observed
coding error learners encountered and occurred more frequently
in the Replit group (CodeStruct: 56 times, Replit: 244 times). The
difference in syntax errors was visible in both quantity and type
of error between condition. Learners from the Replit condition
encountered about 40 parenthesis mismatch problems, and almost
all learners (9 out of 13) forgot colons or had similar issues at the
first time they wrote an if statement in Python. For the CodeStruct
group, we did not see any type of issues related to missing colons
and parenthesis or incorrectly calling functions, as the tool was
built to ensure correct syntax. Indentation was another recurring
source of issue that caused about 23 errors for the Replit condition
(which could also be attributed as a semantic issue).

6.1.2 Usage of CodeStruct Features. By analyzing the log data from
CodeStruct we can identify how and when learners chose to type
code and when they used the toolbox to insert code segments
used the toolbox to insert code segments. The 10 most common
commands present in student projects were used a total of 6550
times. Of these code insertions, 9% were added to the program by
clicking on the toolbox, 59% were completely typed, and 32% were
partially typed and inserted using the autocomplete. Figure 8 (Right)
shows the breakdown of toolbox and keyboard usage for the 14
most inserted commands in CodeStruct. It can also be seen that the
autocomplete feature was used consistently across commands that
were longer than a single character. Looking at the proportions, we
can identify the while and for loops and the comparison operators
to be the most inserted commands from the toolbox.

Analyzing CodeStruct’s toolbox usage, we observed that 10 learn-
ers solely relied on the toolbox to find code, and four learners also
successfully used the search bar 24 times with queries such as “re-
peat” or “random” to filter the results. To learn about code, learners
mostly relied on non-interactive material in the tooltip menus such
as reading the hover descriptions more than 5 seconds (106 times)
or clicking on one of the executable examples (70 times), but the
step-by-step code examples were used much less (8 times). An-
alyzing the automatic hint suggestions, the most common hints
and warnings that were successfully used, was importing a module
needed for an inserted function (28 times), followed by fixing a type
mismatch error (26 times). Furthermore, analyzing the post-study
questionnaires where we asked learners about their preferences
between the Python Documentations and the embedded tooltips

in CodeStruct, 10 favored the CodeStruct’s embedded tooltips and
mentioned how it was easily accessible, reliable, and concise. For
example, one student wrote “CodeStruct tooltips was used more be-
cause it is more concise, and you can see first-hand how the commands
should be used”. Finally, the user-defined variables section in the
toolbox, which dynamically displayed variables and their types,
was not used to insert variables, and rarely used to learn about
type-specific actions.

6.2 Final Python Evaluation Phase
The final Python evaluation phase investigates the transition from
CodeStruct to Replit for the CodeStruct group, which is contrasted
to the Replit group, who already had exposure to Replit in ses-
sions 6-9. This was the first time that learners from the CodeStruct
group were authoring Python code in a fully text-based editor. Both
groups used Replit for the evaluation and did not have access to
any documentation. To understand the differences, we look at re-
sponses to the summative multiple-choice questions and final set
of programming exercises.

6.2.1 Programming Tasks Results. Overall, both groups had similar
performance in the final programming tasks, which is illustrated
in Figure 9. Overall, scores were higher for learners in the Code-
Struct condition on 10 of the 16 programming tasks. The average
score across all tasks was 75% compared to 68% for the Replit group.
The CodeStruct group had a slightly higher completion time the
first day of the evaluation (CodeStruct: M=471s, SD=512s, Replit:
M=360s, SD=409s) and a slightly lower completion time the sec-
ond day of the evaluation (CodeStruct: M=321s, SD=531s, Replit:
M=350s, SD=650s) but with almost no differences. The trend is
also similar for number of encountered issues with the CodeStruct
having slightly more issues in the first day (CodeStruct: M=1.55,
SD=1.32, Replit: M=1.31, SD=1.21), and slightly less on the second
day (CodeStruct: M=0.79, SD=1.02, Replit: M=1.01, SD=1.21).

Comparing completion time and the number of encountered
issues of the two conditions between the first and second days
of the evaluation phase, we can see that the CodeStruct group
noticeably progressed through a learning curve for the first few
problems. For example, comparing conceptually similar problems
from the first and second days, such as Q3 and Q5 (from session
10) where learners had to write a heads-or-tails program and a
program that would compare the sum of two random numbers, both
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Figure 9: Results from the programming tasks in the final python evaluation phase.

conditions had similar correctness scores. However, the average
number of issues per participant for the CodeStruct group was 1.68,
while being only 0.5 for the Replit group. Similarly, the completion
time for the CodeStruct group was more than two times higher
(CodeStruct: M=336s, SD=267s, Replit: M=149s, SD=113s). This
difference between the two conditions was substantially reduced as
the study progressed. For example, on Q12 asked learners to write a
program that would ask the user to enter two numbers and to print
“yes” if their sum is greater or equal to 10, otherwise print “no”.
The completion times were similar (CodeStruct M=195s, SD=227s,
Replit: M=177s, SD=117s), while the number of issues per student
was less (CodeStruct: 0.5, Replit: 1.15).

6.2.2 Comprehension Questions Results. Overall, results from the
comprehension questions were similar (CodeStruct: M=70.9%,
SD=17.8%, Replit: M=68.8%, SD=22.9%). Comparing across cate-
gories of questions, scores were CodeStruct 91%, Replit 88% for
variables, concatenation, and data types; CodeStruct 81%, Replit
85% for Boolean expressions; CodeStruct 61.5%, Replit 57.5% for
conditionals; CodeStruct 61.5%, Replit 63.5% for While loops and
nested loops with conditionals; CodeStruct 61.6%, Replit 64% for
lists; and CodeStruct 98%, Replit 94% for Python specific operators.
On two questions which asked to compare Python’s while loops
with the repeat until block from Scratch, learners in the CodeStruct
condition scored 83.5% while the Replit group scored 48.5%.

6.2.3 Qualitative Results - How was CodeStruct perceived: At the
end of the study, learners that experienced both Python pro-
gramming environments, generally felt that CodeStruct was user-
friendly. When learners were asked to tell what they like about
CodeStruct, they mostly mentioned the toolbox on the left which
shows the available commands and a good place to learn from, as
well as how CodeStruct helped with auto filling code. One student
wrote “CodeStruct shows you exactly what you did wrong, why, and a
solution to fix it” and another student mentioned “You could see ev-
erything that you could use, you could see how to use it, and you could
understand what went wrong very easily”. They were also asked to
rate the difficulty of programming with Replit and CodeStruct sepa-
rately. Comparing the results, eight learners felt that understanding

errors was much easier in CodeStruct, seven felt that memorizing
commands and their usages were easier, and five that typing and
spelling commands was easier in CodeStruct. However, six reported
that editing existing code was more difficult in CodeStruct.

7 DISCUSSION AND LIMITATIONS
Overall, our study showed promise for CodeStruct and the concept
of intermediary tools. The initial transition to CodeStruct resulted
in fewer programming issues than transitioning directly to Python,
but learners were still able to perform equally well (and better in
10/16 tasks) in the final Python evaluation. We now provide further
discussion of our results, limitations, and future considerations.

7.1 Design supports for Transitioning from
Block-based to Text-based Programming

CodeStruct was designed to support two important transitions:
transitioning from Scratch and transitioning to fully text-based
Python. The first transition (from Scratch to CodeStruct) demands
lowering the barriers to text-based programming to support novices
in writing Python code and helping them draw on their prior experi-
ences with a BBPE. This was mediated by: (i) incorporating familiar
concepts from block-based programming into CodeStruct (e.g., the
toolbox), familiar visual affordances (e.g., empty expression holes
and block-shaped scopes), and programming style (e.g., not requir-
ing to handle syntax, and being able to author expressions from
outside to inside), and (ii) developing various automatic help and
learning mechanisms into CodeStruct such as displaying immediate
hint suggestions and including accessible learning material in the
toolbox. Our results show that using CodeStruct successfully re-
duced the mental demand associated with syntax (e.g., indentations,
parenthesis) while also reducing issues related to data types.

The second transition (from CodeStruct to Python) requires de-
veloping a learner’s text-based programming skills and cultivating
their knowledge about syntax, semantic and data-type paradigms
in Python. This was mediated by incorporating familiar practices
from text-based programming into CodeStruct such as being able
to use the keyboard to author and edit code character-by-character,
providing code completion suggestions, and syntax-highlighting
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for Python. Our analysis found that CodeStruct enabled students
to mostly use the keyboard and the code completion suggestions
to insert code (Figure 8, Right) in a way that is almost indistin-
guishable from fully text-based programming environments. To
cultivate python-specific paradigms, CodeStruct passively develops
syntax knowledge by always displaying the correct syntax. Future
work could take a more active approach by using semi-transparent
punctuation that would require the learner to type over. Finally,
for datatype, which caused the second most recurring issue in the
transition phase (Figure 8, Left), CodeStruct relied on immediate
hint suggestions incorporated in the toolbox.

7.2 CodeStruct Design Innovations
One of the main principles used in designing CodeStruct that sepa-
rates it from existing environments such as Stride [25] (frame-based)
was including familiar concepts from both conventional block-based
and text-based programming environments. This can be seen in the
design of the main layout, toolbox components and categoriza-
tion, editing and navigation style, code completion, highlighting
errors, and displaying code, scope, and empty expressions. This
approach is distinct from other environments trying to accomplish
the same outcome. Frame-based editors [25] are designed to be
steppingstones between blocks and text. Inserting code is different
for frames, expressions, and method calls in Stride. Expressions
and method calls are totally text-based and mediated by maintain-
ing the structure of parenthesis and quotes, and code completion
for method calls. However, frames (high-level code blocks such as
variable assignments, conditionals, or loops) are inserted using a
cheat-sheet (like CodeStruct’s toolbox) either by clicking or press-
ing a hotkey and not by typing. Stride also uses a special frame
cursor to navigate between frames in addition to the simple text
caret used for navigation between characters. Although, these fea-
tures make the transition from blocks easier, they do not directly
transfer to text-based programming. In contrast, we designed Code-
Struct with visual elements, editing, and navigation styles that are
almost identical to either blocks or text to reduce the transition gaps
associated with the full blocks-to-text transition. Furthermore, dual-
modality environments such as MakeCode [2] use a conventional
text-based editor that include code completion and similar syntax
highlighting in addition to having the ability of dragging blocks of
textual code from a toolbox into the editor (with minimal valida-
tion). Furthermore, there are no paradigm shifts in dual-modality
programming environments (as both modalities are based on the
same programming language). However, these environments offer
no intermediate support between the two supported modalities and
no features that support the blocks-to-text transition (e.g., syntax or
data-types support) beyond rendering programs in both modalities.

7.3 Limitations and Future Work
CodeStruct’s approach to supporting learners showed promise,
however, there are some limitations of its design and the current
study the point the way towards future work on the environment.
For example, this study took place as a voluntary after school course
and while we tried to control as many aspects of the study as
possible, there were still several aspects of the study that may have
impacted the results, such as participants’ prior mathematics and

logic skills, and learners working at different paces given the fixed
90-minute time limit. Furthermore, the study was limited to the
basic concepts of programming as we did not implement defining
functions or classes in CodeStruct. Future iterations of our tool
will allow this. Another limitation comes from the fact that the
study included eleven 90-minute sessions and was conducted in two
weeks (a session for every workday of the week). We acknowledge
this is a lot of content in a short time, so this could have potentially
caused some learners to be overwhelmed with new topics and lose
motivation. Our results are also limited by the sample size which
could be scaled with future developments of the tool. Finally, an
in-depth analysis of learners’ progression, qualitative analysis, and
within-participant analysis is left for future work.
From a design perspective, there were also some limitations that
may have impacted the results. First, several previously unknown
bugs with CodeStruct forced participants to restart the editor (on
average 1.9 times per participant) during 6 hours of usage. Our
analysis revealed that some aspects of the environment were rarely
(if ever) used, such as the user-defined variables section and the
interactive tooltips in the toolbox (such as Figure 5 Middle). Future
iterations of CodeStruct could use gamification techniques to moti-
vate using the interactive learning material, dynamically display
user-defined variables in-line with user code and combine it with
live programming for better debugging support.

8 CONCLUSION
This paper contributes a new intermediary programming envi-
ronment that helps novice users transition from block-based pro-
gramming environments to fully text-based environments. Our
evaluation shows that learners with no prior programming experi-
ences were able to complete programs roughly two times faster in
three out of the four sessions and about 4.6 times less help requests
in the first two sessions of the transition phase. Although most
learners preferred to have more freedom in a programming editor,
our work proves that structured editors can be useful in easing
the blocks-to-text transition. To allow more freedom, we envision
building semi-structured programming environments with an ex-
tended set of immediate warnings to learn from mistakes. Finally,
we believe our system and evaluation results will help guide the
way to future research on intermediary programming tools to help
ease the blocks-to-text transition.

9 SELECTION AND PARTICIPATION OF
CHILDREN

Participants were recruited through a local school and an after-
school program in a North American city. The study consisted
of 26 learners (14 female) ages 12-16 (M=14.1; SD=1.2). Learners
were screened to have no prior programming experience other than
Scratch. Informed consent was obtained before the first session of
the course, including an assent form completed by the child and a
consent form completed by the parent/guardian. The assent form
explained the details and procedure to the child in a simple language
that the child would understand. The child was given the oppor-
tunity to ask any questions before confirming their participation.
Each student was given a $50 gift card at the end of the class. The
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study protocol was approved by our institution’s Research Ethics
Board.
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