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From One Language to the Next: Applications of Analogical
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The 1980s and 1990s saw a robust connection between computer science education and cognitive psychology
as researchers worked to understand how students learn to program. More recently, academic disciplines such
as science and engineering have begun drawing on cognitive psychology research and theories of learning to
create instructional materials and teacher professional development materials based on theories of learning,
to some success. In this paper, we follow a similar approach by highlighting common areas of interest between
computer science education and cognitive psychology–specifically theories of analogical transfer–and discuss
how cross-pollination of theoretical constructs between disciplines can support research on the teaching and
learning of multiple programming languages. We will also discuss areas where computing education research
can adapt the existing theories from cognitive psychology to develop domain-specific theories of knowledge
transfer in computing and feed back into cognitive psychology research to inform larger debates about the
nature of cognition and learning.
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1 INTRODUCTION

An increasing number of students are now taking computing courses in multiple grade bands and
are likely to be taught with multiple programming languages. Many students first learn a block-
based language, like Scratch, as their introduction to computer science and then learn conventional
text-based programming languages as they advance. How can we help students build on prior con-
ceptual knowledge as they progress through a multi-lingual course sequence? Understanding and
supporting students’ transitions to new programming languages is an area of active research in
computer science education [126]. Effective pedagogy should help students successfully transfer
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knowledge from one language to another to deepen their knowledge rather than treating each pro-
gramming language as unrelated. We have two major goals for this article. First, we aim at high-
lighting the substantial synergy between theoretical work on transfer from cognitive psychology
and recent work on transfer in computing education research and present an integrated overview
of these two literatures. Second, we suggest ways to build upon this prior work to support the
development of classroom interventions, multi-lingual assessments, and CS-specific theories of
transfer.

The last two and a half decades have seen the emergence of cognitive psychology as an impor-
tant driver of educational research in mathematics and the sciences [45]. There have been a large
number of review articles synthesizing basic research in cognitive psychology and generating rec-
ommendations for applying findings to practice (e.g., [27, 84]). In addition, numerous projects have
used theories developed from basic cognitive psychology research to engineer new educational in-
terventions [19, 23, 73]. Cognitive psychology offers a key bridge between the basic science of how
the brain learns new information and implications for designing instruction [15]. Other authors
have already reviewed the historical connections between cognitive psychology and computing
education and introduced key areas of cognitive psychology research to a computing education
research audience [68, 97]. Readers will note that some of the same cognitive psychology stud-
ies discussed by Robins and colleagues [97] are also summarized here. We extend this work by
presenting the cognitive psychology literature simultaneously with a discussion of the computing
education literature on transfer in order to facilitate comparison and integration. We conclude the
article with a discussion of developing CS-specific theories of transfer and how they can support
the creation of instructional materials and multi-lingual assessments.

2 THEORIES OF TRANSFER

Analogical transfer–the act of applying knowledge from one context to another based on shared
relations–is arguably one of the central goals of education. For instance, if a student accurately
solves multiplication problems on a homework assignment, we expect this skill to transfer to
solving multiplication problems on a standardized test, calculating costs while shopping, scaling
recipes while cooking, and so on. In other words, a central goal of instruction is to support stu-
dents in acquiring knowledge that they can extend to a range of situations within and beyond
the classroom. However, the analogical transfer is notoriously difficult to achieve. Furthermore,
the transfer can be counterproductive if erroneous inferences are made (referred to as negative

transfer).
A prominent theory of analogy is Structure Mapping [34, 35], which explains that knowledge

transfer involves aligning corresponding objects and their parts based on a shared relational struc-
ture. To demonstrate how Structure Mapping works, we present a simple “Hello, world”-typescript
that randomly decides which of two greetings to use. This script is implemented in Scratch
(Figure 1(a)), App Inventor (Figure 1(b)), the blocks-based Javascript used by Code.org’s Game Lab
(Figure 1(c)), and Java (Figure 1(d)). The scripts are structurally equivalent but differ substantially
in their surface features. There are obvious differences between languages in how the code looks
(i.e., whether blocks are used and what colors and shapes are used) and how functions are named.
To transfer knowledge from one of these programming languages to another, students must be
able to identify the underlying structure of the code and then align the equivalent segments of
code across the two languages.

2.1 The Problem of Transfer

In the analogical transfer literature, there is an important distinction between surface similarity
and structural similarity. As an illustration, “My butcher is a surgeon” has a completely different
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Fig. 1. An if-else statement is implemented in three block-based programming languages (a–c) and Java (d).

meaning than “My surgeon is a butcher”, despite using the same words. The ability to understand
these situations in terms of their structural relations forms the basis for our ability to engage in
analogical transfer [40]. Despite our incredible ability to understand new situations by mapping the
underlying relations, the spontaneous analogical transfer may be based on superficial relations or
fail to occur. In a classic study of spontaneous transfer, Gick and Holyoak provided undergraduates
with a short scenario [39, p. 3]:

A general wish to capture a fortress located in the center of a country. There are many
roads radiating outward from the fortress. All have been mined so that while small
groups of men can pass over the roads safely, any large force will detonate the mines.
A full-scale direct attack is therefore impossible. The general’s solution is to divide his
army into small groups, send each group to the head of a different road, and have the
groups converge simultaneously on the fortress.

After studying this scenario, students are presented with another problem that, unbeknownst
to them, can be solved in an analogous way (i.e., by using partitioning and convergence).

Suppose you are a doctor faced with a patient who has a malignant tumor in his stom-
ach. It is impossible to operate on the patient, but unless the tumor is destroyed the
patient will die. There is a kind of ray that can be used to destroy the tumor. If the rays
reach the tumor all at once at a sufficiently high intensity, the tumor will be destroyed.
Unfortunately, at this intensity, the healthy tissue that the rays pass through on the
way to the tumor will also be destroyed. At lower intensities, the rays are harmless to
healthy tissue, but they will not affect the tumor either. What type of procedure might
be used to destroy the tumor with the rays, and at the same time avoid destroying the
healthy tissue? [39, p. 3]

The solution is to set up several, lower-powered rays that encircle the tumor, thereby allowing
the rays to enter the healthy tissue at separate points, leaving the healthy tissue unharmed, while
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converging the full power of the ray at the site of the tumor (analogous to dividing up an army
encircled around a fortress and attacking simultaneously).

Despite the similarity in the structures of the two problems, Gick and Holyoak [39] found that
transfer to the ray-tumor problem was surprisingly low even though the problems were presented
in close succession. Only 20–40% of participants across several experiments transferred knowledge
to the new problem even when the researchers implemented strategies aimed at improving transfer,
such as providing diagrams or an abstract description of the principle. Though this example is from
research conducted decades ago, comparatively low rates of spontaneous analogical transfer have
been documented in many domains and educational contexts [14, 32].

2.2 Why Transfer is Hard: Surface vs. Structural Similarity

What underlies the difficulty in analogical transfer? One key source of students’ difficulty is failing
to recognize that two problems share analogous structures [91]. This is especially true for domain
novices that lack the expertise and experience to know which features are most relevant. Novices
often focus on the surface aspects of problems (i.e., the perceptual attributes). Surface features are
the most readily accessed by our perceptual system and are alluring in a context where the stimuli
are novel and cognitive resources are limited. However, this surface-level focus often comes at the
expense of attending to the underlying relational structure.

To use an example from physics education, Chi, Feltovich, and Glaser [17] asked novice physics
students and physics experts to sort problems based on their similarity to one another. Novices
sorted problems based on the surface features, such as sorting all problems containing inclined
planes into one group and sorting all the problems containing pulleys into another group. Ex-
perts, on the other hand, sorted problems based on their underlying structural principles, such as
grouping all problems involving conservation of energy. In another striking example, Perkins [87]
describes physics students who, after learning in class how to calculate the time it would take for
a ball to fall from the top of a tower to the ground, exhibited confusion on a test problem that
required them to calculate the time for an object to fall from the top to the bottom of a well. The
students lamented that they had not been given instruction on problems with wells.

In other words, whereas novices overlook the abstract relationships between problems of dif-
fering surface features, experts’ knowledge and experience allow them to readily perceive or “see”
the underlying similarity in structure, despite the lack of similarity in the literal presentation. This
expert-novice difference in categorization and problem-solving has been demonstrated in a great
variety of domains (e.g., [16, 99]), including in programming (e.g., [127]).

Paying too much attention to surface features has the potential to distract from the key rela-
tionships and results in over contextualization of knowledge, which inhibits transfer. This issue
is highlighted in Barrett and Ceci’s [7] taxonomy of transfer distance. Their framework describes
transfer in terms of two factors: (1) content, or what is transferred; and (2) context, or where and

when the content is transferred. Content that is practiced in a limited number of contexts is less
likely to transfer. For instance, poor transfer performance has resulted from studying repeatedly
in the same physical context [11] and repeatedly studying the same type of problem [98]. Fur-
thermore, though concrete or grounded representations provide familiarity that can aid in initial
learning, such representations studied in isolation are often insufficient to promote later transfer
[51].

2.3 A Review of Computing-specific Theories

The 1980s and 1990s saw a robust connection between CS education and cognitive psychology
as researchers worked to understand how students learn programming [2, 12, 109]. Since then,
the fields have largely worked in parallel. Computing education researchers have independently
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developed theoretical models of transfer in programming education. In this section, we review
three computing-specific theories that aim at predicting when the transfer will occur.

2.3.1 Theory of ACT-R and Programming Tutors. In the early 1990s, Anderson and colleagues
conducted a series of studies to investigate how knowledge of one programming language transfers
to another. This work is based on ACT-R, which is a cognitive architecture, i.e., a general theory of
human cognition instantiated as a computational model [2, 95]. ACT-R contains a series of modules
and buffers that enable the model to set and update goals, perceive stimuli and generate responses,
and store and update information in memory. The core of the architecture is the production system,
which selects and applies production rules. Production rules are condition-action, or if-then, pairs.
The production system determines which rule applies in any given circumstance, performs the
action, and then updates the system state. ACT-R learns new production rules through a process
of analogy. Existing production rules are strengthened through repeated use [3].

Anderson and colleagues created an intelligent programming tutor to teach Lisp, Pascal, and
Prolog that made use of the ACT-R theory. The tutor was organized around a model of an ideal stu-
dent: a set of production rules that enables students to program in each language effectively. When
human students interacted with the intelligent programming tutor, the tutor then used a model-

tracing paradigm to determine how to respond to student actions. That is the tutor attempted to
match, in real-time, the student’s actual actions with a sequence of productions based on the ideal
student model. When the student’s behavior could not be matched with the ideal model, the tutor
would provide corrective feedback.

The ideal student models for programming in Lisp, Pascal, and Prolog were quite different, re-
flecting the fact that these languages are quite different in character. The few production rules that
were common across languages related to more conceptual aspects of programming, such as eval-
uating conditional statements. As there were no common production rules for writing code due to
the differences in syntax and style for the three languages, researchers predicted that there may
be little knowledge transfer from one language to another, and any transfer should relate to under-
lying conceptual knowledge. Anderson and colleagues then tested these predictions in laboratory
and classroom studies in which students used the programming tutor to learn Lisp, Pascal, and
Prolog. Though students were not more accurate when programming in their second language
compared to their first, they learned the second language slightly more quickly. Another set of
studies found that conceptual understanding of algorithms transferred readily between languages,
but not procedural coding skills [95]. In explaining these results, Wu and Anderson [129] identified
three levels of similarity that can facilitate transfer: syntactic, algorithmic, and problem. A major
strength of the research with ACT-R is that the creation of the ideal student models necessitated a
very careful analysis of the knowledge and skills needed for programming, enabling very precise
predictions on what knowledge and skills might transfer across languages.

2.3.2 Mindshift Learning Theory. The Mindshift Learning Theory offers another theoretical
framework for explaining the transfer, or lack thereof when learning new programming languages
[5]. Rooted in the field of information systems, Mindshift Learning Theory (Figure 2) is based on
Louis and Sutton’s explanatory framework for shifting cognitive processes [66]. The theory posits
that the perceived level of novelty affects the ease of learning new concepts. The model proposed
three categories of transfer related to learning a new language (or paradigm): (1) carryover con-
cepts that have a similar meaning from the known context, (2) changed concepts that are similar to
the known context but have a different meaning, and (3) novel concepts that are new to the learner.
Armstrong and colleagues developed and tested this model through a series of empirical studies
of programmers familiar with procedural programming as they transitioned to programming with
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Fig. 2. Mindshift learning theory, as presented by Armstrong and Hardgrave [5, p. 459].

Fig. 3. Tshukudu and Cutts’ model of programming language transfer [116, p. 230].

object-oriented languages [5, 6, 78]. They found the high levels of transfer for carryover and novel
concepts and lower levels of transfer for changed concepts.

2.3.3 Tshukudu and Cutts. Tshukudu and Cutts’ model [116], builds on program comprehen-
sion models from computing education research [85, 105, 106, 119] and semantic transfer from
research on natural language learning [49, 50]. Their model of transfer involves knowledge of a
programming language at three levels: syntactic, semantic, and conceptual. When applying knowl-
edge from a prior programming language to the new programming language, Tshukudu and Cutts
propose three potential outcomes (shown in Figure 3): (1) the syntax and semantics can align across
languages, called a true carryover construct (TCC); (2) the semantics may differ but the syntax
is similar, called a false carryover construct (FCC); or (3) the semantics may be shared but the
syntax differs, called an abstract true carryover (ATC). In validating this model, Tshukudu and
Cutts ran a series of studies of learners moving from one language to another and found the most
transfer occurred with TCCs. Transfer was more difficult with both FCCs and ATC [114, 116].
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2.4 Synthesizing the Theoretical Work on Transfer

The theoretical work on transfer converges in several ways. First, it is clear that similarity promotes
transfer while dissimilarity impedes transfer. The CS-specific work generally identified several
levels of transfer that must be considered when teaching and learning programming languages:
syntax, concept (i.e., looping), and algorithm or paradigm.

There are a few predictions that emerge from synthesizing the theoretical work on transfer in
both cognitive psychology and computing education. First, transfer of knowledge from one pro-
gramming language to another cannot be assumed. In particular, raw coding skill in one language
likely does not transfer to a new language that uses a different paradigm. For example, students’
experience with drag-and-drop programming in Scratch will have limited transfer to text-based
programming in an integrated development environment (IDE). Second, the transfer comes
more easily when two programming languages are similar both in their surface features (i.e., syn-
tax) and their semantic structure, particularly for novices (i.e., moving from Scratch to Snap! or
Javascript to Java). However, surface similarity can also induce negative transfer and impede learn-
ing when the semantic structure is different. Third, experienced programmers are more able to
recognize conceptual similarities between languages and programming paradigms compared to
novices, particularly if the surface features are different.

3 EMPIRICAL STUDIES OF TRANSFER WHEN LEARNING TO PROGRAM

Having reviewed the theoretical literature on transfer, we now shift focus to empirical studies of
transfer when learning to program. The question of transfer has long been a focus in computer
science education research (e.g., [109]). Within this literature, the specific question of transfer be-
tween programming languages has a similarly long history given the centrality of programming
in the field of computer science (e.g., [102, 129]. Early work on this question sought to understand
expert/novice learning differences by focusing on how programmers who were familiar with one
professional language went about learning a second language (e.g., [104]). There is a renewed
focus on the question of transfer between programming languages due to the emergence of in-
troductory languages and programming environments designed for novices that are distinct from
professional programming languages (e.g., block-based programming) and the rise of CS instruc-
tion for younger learners (e.g., [42, 126]). We begin this section with a review of recent investiga-
tions of transfer from block-based to text-based languages before looking at research investigating
transfer between two text-based programming languages.

3.1 Transfer from Block-based to Text-based Programming

Driven by the success of platforms such as Scratch and libraries like Blockly, block-based program-
ming has increasingly become the way that novices are introduced to the practice of programming
and field of computer science more broadly [10, 93, 121]. This can be seen in the rapidly growing
ecosystem of block-based environments and the growing number of computer science curricula
designed for them [26, 65, 80]. Research on the use of block-based environments in introductory
contexts has found that these tools do support learning on their own [31, 53, 74] as well as in com-
parison to text-based languages [64, 90, 100, 123, 125]. In reviewing work focused on the transition
from block-based to text-based programming, a number of studies have been conducted across a
series of block-based tools.

Given Scratch’s prominence in the block-based programming space, it is not surprising that it
has been used as a source block-based language in transfer research. For example, Armoni and
colleagues followed a group of students who had taken Scratch programming courses in prior
years as they moved on to a high school programming course taught in a text-based programming
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language (either Java or C#) [4]. By looking at how students with prior Scratch experience per-
formed relative to their classmates who had no prior block-based experience, they sought to make
claims about the transfer of programming knowledge from Scratch to text-based languages. The au-
thors found relatively little quantitative difference in performance on assessments between those
who had prior Scratch experience and those who did not, but did find differences in their qualitative
analysis related to motivation and self-efficacy. Additionally, the authors identified programming
patterns from Scratch present in text-based programs of students who had prior Scratch experi-
ence, suggesting some transfer did occur [4]. A similar approach was used with younger learners
comparing students with prior Scratch experience to those without across two different schools,
finding similar positive results for those with the prior Scratch experience [41]. Another example
is the work of Grover and colleagues [43], who used preparation for future learning approach [14]
to help scaffold learners in moving from Scratch to text-based programming languages and found
significant positive gains for students on text-based programming questions.

Whereas Scratch was initially focused on learning in informal contexts, the Alice programming
environment has had a more explicit focus on classroom learning. Textbooks have been written
for Alice [20, 21]. This has resulted in numerous studies of students transitioning from Alice to
text-based languages with varying levels of success. Studies following undergraduate students
moving from an introductory course taught in Alice to a follow-on programming course taught
in a text-based language have reported students not transferring the knowledge gained in Alice
to the subsequent language [83] or documented struggles in moving from Alice to another lan-
guage within a single course [89]. Other research found students performed better when learning
pseudocode prior to a text-based language compared to Alice [33]. At the same time, other studies
have reported students self-reporting that Alice helped them in their subsequent courses [18] and
have documented successful transfer from Alice to text-based languages. For example, Dann and
colleagues report evidence of positive transfer from Alice to Java when the transition was accom-
panied with pedagogical strategies to help learners make the transition[22]. We will return to this
work later when we discuss strategies for supporting transfer (Section 4).

A third programming environment used for studying transfer from block-based to text-based
programming is Pencil Code [9]. One interesting feature of Pencil Code is that it supports both
block-based and text-based authoring, providing two different interfaces for the same underlying
programming language, thus, it becomes possible to set up comparative studies where students
use only the block-based or text-based versions of the environment. A strength of this approach is
that it controls for language and environmental factors–the runtime environment and underlying
programming language remain the same and only the modality (blocks vs. text) changes. This is
the study design used by Weintrop and Wilensky, who had one set of students go through an
introductory curriculum in a blocks-only version of Pencil code and the second group of students
uses a text-only version of Pencil Code before both groups transitioned to Java [126]. Students
in the block-based condition scored higher on a programming assessment after the introductory
portion of the study [125], but there was no difference in performance after transitioning to text-
based programming [126].

3.2 Transfer from One Text-based Language to Another

While the question of transfer from block-based to text-based languages is a relatively recent area
of study, there is a long history of research on transfer between text-based languages. This work
largely falls into two categories. The first is focused on studying transfer between languages with
largely similar semantics but differing syntax (e.g., moving from Python to Java). The second looks
at the transfer between differing programming paradigms. The term “paradigm” is meant to clas-
sify similar groups of languages based on common behaviors and features, such as imperative,
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procedural, object-oriented, functional, and logic programming, so transfer research across
paradigms may follow students as they move from procedural to object-oriented programming.

Early work on transfer between programming languages by Scholtz and colleagues found that
learning a second programming language was easier than learning a first language but that in-
terpretation of the second language was largely shaped by knowledge of the initial language
[102, 104]. There are also expert-novice differences in the way people approached solving prob-
lems in the new language. Researchers found novices tend to use bottom-up approaches to solving
problems in new languages [128], while experts tend to use a top-down approach, revising their
plans as their familiarity with the new language grows [103]. Other researchers found a failure
to productively transfer knowledge to a second language. For example, Walker and Schach iden-
tify instances where learners attempted to use knowledge of their first language (Pascal) to write
programs in a second language (Ada), often attempting to use Pascal (or Pascal-similar) constructs
unsuccessfully [120]. In a more recent study comparing Java to Scheme, the researchers concluded:
“that upper-level students do not readily transfer knowledge gained in one language to another,
even when that transfer is raised during lectures” [29, p. 128].

Researchers have also investigated the question of transfer between programming languages
when moving from one programming paradigm to another (e.g., [6, 78, 101]). Unlike differences
in languages within the same paradigm (i.e., transitioning from C++ to Java), a shift in paradigm
is perceived as more significant given the role paradigms play in shaping the approach to and
design of programs (i.e., transitioning from Lisp to Java) [28, 57, 86]. A number of studies have
focused on experienced programmers learning object-oriented programming, finding that prior
experience with non-object-oriented language was a barrier to learning to program in the new
paradigm [78, 79, 101].

3.3 Summary of Empirical Research on Transfer When Learning to Program

To date, the literature on learning a second programming language has developed a rather muddy
picture of knowledge transfer and it is unclear how well the predictions from Section 2.4 hold up
under empirical tests. There are documented instances of positive transfer (e.g., [22, 41, 43, 76])
as well as a lack of transfer (e.g., [83, 89, 108, 126]). These studies have collectively examined a
wide array of transfer situations, with participants in different age groups and varying degrees of
prior programming proficiency, using a large number of different programming language pairs,
with varying degrees of support for students in transferring knowledge. It is not clear if the range
of different findings is an artifact of this variation. A CS-specific theory of transfer could improve
our understanding of the pattern of results in these empirical studies by more precisely specifying
what content we would expect to transfer in what contexts, enabling the design of experiments to
empirically test these hypotheses. We will return to this idea in the discussion section.

4 STRATEGIES THAT IMPROVE TRANSFER DURING LEARNING

Theories of analogical transfer posit that students who understand the conceptual structure of
problems will be more likely to apply that structure to novel situations and contexts [24, 35].
How does one become expert-like? How do we learn to “see” the underlying relationships in
domains, such that we can recognize those relationships in new stimuli and settings? What in-
structional strategies will promote the understanding of conceptual structure? In this section, we
review research-based strategies for highlighting conceptual structure and helping students under-
stand what concepts transfer (see Table 1). First, we provide an overview of strategies to promote
comparison and identification of the key relationships and highlight studies that have used these
strategies in computing education. We conclude with recommendations for practitioners on how to
develop broader systems that will help students successfully navigate multi-lingual CS pathways.
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Table 1. Strategies to Promote Comparison and Improve Analogical Transfer

Category Specific pedagogical strategy

General strategies
for using
comparison

Present two or more problems simultaneously. Structure the compar-
ison process by:
–prompting students to identify what’s similar and different
–providing explicit feedback to support accurate relational inferences
Compare structurally similar problems to promote generalization
and structurally dissimilar problems to promote discrimination

Using perceptual
cues

Use progressive alignment by gradually fading the perceptual simi-
larity of compared problems as the student acquires expertise
Highlight relationally corresponding parts by:
–Gesturing between the corresponding parts
–Matching the colors of the corresponding parts
–Spatially arranging compared problems so that their corresponding
parts are most obvious (i.e., in direct alignment)

4.1 Using Comparison to Improve Transfer

Prompting students to compare contexts can draw attention to the common relationships. For ex-
ample, in the ray-tumor problem described in Section 2.1, typical hints and scaffolds (e.g., showing
a diagram of the convergence schema) failed to improve students’ knowledge transfer. However,
providing two problems with the same schema and prompting students to compare how they are
similar led to increased success on the transfer problem. Comparison is thought to engage stu-
dents in structure mapping, helping them notice commonalities in the relational structure as well
as important differences that are connected to the structure [36, 59]. A meta-analysis of 57 ex-
periments assessing comparison-based learning vs other instructional strategies (e.g., sequential
presentation, traditional instruction) concluded that comparison leads to better learning outcomes
at a medium effect size (d = 0.50) [1].

It is important to structure the comparison process, as guided instruction is more effective than
pure discovery in promoting learning and transfer [47, 70]. Perkins and Solomon [88] developed
“bridging” and “hugging” as strategies to encourage comparison and highlight the connections be-
tween different contexts. “Bridging” is a strategy where teachers “build a bridge” from the initial
context to the next context, explicitly linking the two as a means to help learners build connections
while “hugging” highlights the similarity between two contexts, making it easier for transfer to
occur. These strategies have been successfully employed to support programming language trans-
fer between a number of languages, including from Alice to Java [22], Alice to Python [112], and
MakeCode to Python [76]. Without proper scaffolding, the comparison may be ineffective, espe-
cially for novices in a domain [47, 96]. In the next sections, we discuss effective ways of structuring
comparison to promote transfer as predicted by theory and provide examples of these pedagogical
techniques from empirical computing education research.

4.1.1 Present Two or More Problems Simultaneously. Comparison is taxing on students’ atten-
tion and memory. Keeping the exemplars available visually allows students to compare problems
simultaneously, lessening the demands on memory and facilitating the Structure Mapping process.
For example, presenting two worked examples of math problems simultaneously results in better
understanding than presenting the same problems sequentially (e.g., [71, 96]).

Grover [42] and Dorling and White [25] used this strategy in their computing education research.
Grover’s computing curriculum shows learners analogous representations of the same program,
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often shown in language-agnostic pseudocode, block-based code, and text-based code. Presenting
these forms side by side is intended to help learners “draw analogies between different formalisms
to foster deep and abstract understanding of fundamental concepts and structures of algorithms”
[42, p. 260]. Dorling and White [25] used side-by-side comparison as a pedagogical approach to
help students identify differences and similarities between programming languages as a means to
support productive transfer. Specifically, they designed a sequence of programming activities that
moved learners from unplugged programming activities to block-based activities with Scratch, to
text-based activities with Python. All three programming activities ask the students to solve the
same type of problem (drawing geometrical shapes). By holding constant the programming chal-
lenges, and thus the conceptual and algorithmic parts of the programming task, students can focus
on differences in the language syntax and programming environment. This approach of shifting
languages while holding the programming task relatively constant led the authors to conclude
“the practice of using graphical languages in conjunction with, (in effect using a graphical tool
as a form of pseudo coding), not in place of, text-based programming languages, can improve the
confidence, independence, and resilience of pupils when learning to program using a text-based
language” [25, p. 196].

4.1.2 Compare Structurally Similar Problems to Promote Generalization and Structurally Dissim-

ilar Ones to Promote Discrimination. The type of comparison can affect what is learned. Expert
knowledge is characterized not only by the ability to see structural similarities but also by the
ability to differentiate between structural dissimilarities, particularly instances where surface sim-
ilarity is high. As described above, analogical comparisons are useful for supporting generalization
to instances with a common structure. However, this could also lead to overgeneralization in cases
where the structure does not apply. Such negative transfer is common when there are problems
that share surface similarities, but that have different underlying structures. In these cases, it is
helpful to provide contrasting examples and prompt students to point out how they are differ-
ent. It is particularly useful if the cases are “near misses”, varying minimally except for critical
structural aspects that differentiate them [36, 75].

Tshukudu and Jensen [117] used this technique and found that explicit instruction was particu-
larly useful at addressing errors related to FCCs, where semantics differ but the syntax is similar.
Specifically, the researchers asked students to take two short tests, one in Java and one in Python.
The researchers then analyzed student responses and identified errors that could be attributed to
FCCs. The researchers then spent 25 minutes of class time reviewing the test results, specifically
focusing on these errors and pointing out differences and similarities between the two languages.
In a follow-up test after the intervention, students made significantly fewer mistakes related to
FCCs.

4.2 Using Perceptual Cues to Improve Transfer

Perceptual features can be irrelevant and distracting to transfer, whereas attending to the rela-
tional structure is key for achieving expert-like reasoning. This may lead to the conclusion that
perception is irrelevant to the learning of complex domains. However, there is good evidence that
perceptual and higher-level reasoning processes closely interact during the course of learning.
Some have even argued that expert knowledge is inherently perceptual (e.g., [8, 54]).

As an illustration, most people with basic algebraic knowledge would claim fluency with the
order of operations. Despite this, spacing equations in ways that are consistent (e.g., 5 + 2 × 7) or
inconsistent (e.g., 5 + 2 × 7) with the order of operations has been shown to facilitate and impede
the ability to reason on such problems [63]. In addition, when asked to generate equations from
a word problem, people proficient in algebra often space equations in ways consistent with the
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order of operations [62]. These findings suggest that conceptual representations may have a basis
in perception even in what appear to be relatively abstract domains.

The notion that perceptual processes interact with learning also has implications for how to
best support learning to promote transfer. Earlier, our discussion focused on how novices gravitate
towards perceptual features, and that this can lead to the over contextualization of knowledge such
that it impedes transfer. At the same time, similarity in perceptual features can be used as a scaffold
for understanding abstract concepts and attending to critical relationships.

4.2.1 Use Progressive Alignment. Novices’ attention to surface features of problems can be used
to facilitate deeper processing. Kotovsky and Gentner [56] found that first presenting children
with close analogical comparisons (those that share both surface and structural similarities) helped
them to identify structural patterns in more difficult far analogical comparisons (those that share
structural but not surface similarities) presented later, whereas presenting only far comparisons
resulted in poor performance throughout. Analogies with common surface features can be used
as an initial hook to support students in engaging in deeper, structural comparison, later on, a
process coined “progressive alignment” [38, 56].

4.2.2 Highlight Relationally Corresponding Parts. Using surface cues to highlight correspond-
ing parts is particularly effective when problems are presented simultaneously [48]. Researchers
have found a variety of effective strategies for doing this, including using gestures or similar colors
to indicate corresponding parts [72, 94] or arranging examples such that the corresponding parts
are directly aligned in space (the math worked examples placed side by side, chemical formulas
placed top to bottom, etc. [69]).

4.3 Programming Environments for Supporting Transfer

It is clear from the theoretical and empirical research that transitioning students from one program-
ming language to another requires careful planning in order to maximize the positive transfer of
prior knowledge and minimize negative transfer. The previous section discussed ways of design-
ing lessons to support transfer between languages. Researchers have also developed a number of
programming environments to support transfer which implement the above strategies to varying
degrees. An early attempt was Fix and Wiedenbeck’s ADAPT environment, which used artificial
intelligence to help learners familiar with the C or Pascal programming languages learn the Ada
programming language [30]. To do so, ADAPT provides suggestions of potential commands and
templates of common programming actions to scaffold the learner.

Researchers have also developed multiple programming environments that combine features
of block-based and text-based programming. For example, Pencil Code [9] and Tiled Grace [46]
enable block-based and text-based programming in a single interface. Other environments bring
block-based features into text-based IDEs, thus situating block-based programming in the context
of conventional text-based editors [13, 58], or otherwise blending aspects of block-based and text-
based environments into a single hybrid interface [124]. Frame-based editing is a notable approach
in this space [61]. It retains the block-based characteristic of preventing syntax errors through
scaffolded and context-aware inputs, but commands are input via the keyboard and the resulting
program has a text-based appearance.

These types of hybrid environments create an intermediate step between block-based environ-
ments and text-based IDEs, but may not actively encourage students to engage in Structure Map-
ping or otherwise leverage insights from theory. Shrestha and colleagues’ Transfer Tutor does. The
Transfer Tutor helped users learn a new language (in this case R) by presenting the equivalent im-
plementation of programs in a language familiar to the user (Python). The Transfer Tutor stepped
students through examining predetermined code snippets, using highlighting and tooltips to draw
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students’ attention to similarities and differences between the languages. However, students could
not write or execute the code [107].

4.4 Recommendations for Future Development

As the research on supporting transfer acknowledges, “the nature and extent of instruction
needed to enable cross-language transfer in upper-level students is an interesting open question”
[29, p. 218]. We encourage teachers and curriculum developers to purposefully create lessons to
facilitate transitions from one language to the next using the strategies described above and to con-
sider how multiple strategies can be layered and/or further supported by students’ programming
environment.

For example, one lesson could ask students to compare a programming solution written in both
languages. Display both solutions side-by-side and ask students to identify and discuss similari-
ties and differences. As students discuss the code, support students in Structure Mapping by using
color-coding, arrows, or other cues to connect analogous sections of code. This type of exercise
could be used to help students understand similarities and differences in syntax as well as broader
programming strategies, especially if they are implemented in a dynamic programming environ-
ment that updates the cues in response to student actions. For example, Moors and colleagues
found that students who learned Scratch often developed a habit of “extreme fine-grained pro-
gramming” [77]. Students who program in this style take advantage of Scratch’s parallelism and the
forever loop to break up simple tasks into even smaller sub-tasks and avoid the use of control struc-
tures (Figure 4(a)). This style of programming does not transfer to text-based languages but a more
straightforward implementation (Figure 4(b)) would. In a similar vein, Repenning and Basawap-
atna discuss how the different affordances of the block-based languages Scratch and AgentCube led
students to implement different approaches to programming an hourglass simulation [92]. Explic-
itly discussing different ways of accomplishing the same task in different programming languages
will improve students’ understanding of the structure of both languages.

We also encourage primary and secondary school and district-level administrators to consider
issues of transfer when planning multi-grade computer science course pathways. Teaching too
many programming languages in too short of a time can lead to a fractured experience where
students re-learn the same concepts year after year instead of deepening their understanding of
core CS concepts over time [52]. We recommend minimizing the number of new programming
languages students encounter, particularly in their first few years of computer science instruction.
When students do transition to a new programming language, we recommend developing curricu-
lum pacing guides that include lessons designed to promote the transfer of core CS knowledge
from students’ prior programming language to the new one.

5 DISCUSSION

5.1 The Role of Theory in Computing Education Research

We see great potential in drawing on findings from the field of cognitive science in general, and
research on analogical transfer specifically, as a generative activity to advance our understanding
of how students learn to program. The framework presented by Malmi and colleagues on the four
roles that theory can play in computing education research [67] can help us think through what
form this may take. The first role Malmi et al. discuss is of using theory as a way to discuss results.
Given the significant amount of empirically-grounded research on students’ transfer (or failure
to transfer) (e.g., [22, 43, 125], there is an opportunity to incorporate theoretical constructs from
cognitive science, such as analogical reasoning or structure vs. surface similarity when discussing
the data. The second role of theory, to predict results, has similar potential. When designing a
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Fig. 4. Examples of different programming strategies from Moors et al. [77, p. 61–62].

new programming language, environment, or curriculum, cognitive science can be used to shape
expectations that can then be empirically tested. The third role of theory is to inform pedagogy.
As discussed above, there is research on pedagogical approaches to support students learning a
second programming language, some of which is grounded in theory (e.g., [117]), and there are
clear examples from cognitive science that can further advance the approaches used in computing
education research (e.g., [37]). Finally, we see great potential in theories from cognitive science
related to learning and transfer as a data analysis framework, especially given the computing
education field’s focus on classroom-based research. While some researchers are already using
theory to explain empirical results (e.g., [115]), the larger body of analogical transfer literature
presented above can provide a framework for reanalysis or meta-analysis of previous studies.

5.2 Towards CS-specific Theories of Transfer

Kölling and colleagues [60] identified 13 challenges when going from block-based to text-based lan-
guages. These challenges range from memorizing syntax and commands in text-based languages
to the organization (or lack thereof) of block-based commands and interpreting error messages in
text-based environments. Integrating work of this nature with psychological theories of analogical
transfer can lead to the development of CS-specific theories of transfer. A CS-specific theory could
move beyond general descriptions of how and when the transfer occurs to make more specific
predictions about what knowledge and skills will transfer easily between programming language
pairs. CS education researchers could draw from Barnett and Ceci’s [7] taxonomy of transfer dis-
tance which we described in Section 2.2. A CS-specific version of this taxonomy could include
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contextual dimensions such as programming modality (i.e., blocks vs. text), programming para-
digm, or learning context (i.e., formal education vs. informal learning environments) and describe
how different dimensions intersect to create situations where knowledge transfers more or less
easily. For example, due to the asymmetric nature of similarity [55, 81, 118], CS-specific theories
may predict that certain skills will transfer well from one language to another (e.g., block-based
to text-based), but transfer poorly in the reverse direction (e.g., text-based to block-based).

CS-specific theories could also make predictions about when and how to scaffold transfer
of specific content knowledge. For example, a CS-specific theory might predict that students
learning Scratch, which uses “repeat [number]” loops that iterate a pre-specified number of times,
and then Java, which uses for loops with an initializing statement and an incrementer/decrementer,
would benefit from explicit instruction on the similarities between the looping structures as well
as looping errors and strategies that are less easily implemented in Scratch (i.e., off-by-one errors
or alternatives to incrementing/decrementing by one). Work in developing and testing CS-specific
theories of transfer has begun (e.g., [115]), but much work remains in developing pedagogy, cur-
ricula, and tools explicitly based on these theories. Further, CS-specific theories can also inform
the design and implementation of multi-lingual course pathways by informing the selection of
languages and the timing of language transitions.

CS-specific theories of transfer would also inform the development of valid and reliable assess-
ments. Creating effective multi-lingual assessments requires assessment developers to understand
which skills and concepts transfer across languages and which are unique to a given language
and apply these understandings to design assessment items, scoring models, and score interpre-
tations. Research on pseudocode-based assessments like the Advanced Placement CS Principles
exam or the FCS1/SCS1 has found that the pseudocode is not truly language-neutral or language-
independent [44]. The way programs are presented (block-based or text-based) impacts student
performance even when the assessment is in pseudocode [122]. Students whose primary program-
ming language was more similar to the pseudocode tended to perform better on the assessment. In
addition, students’ error patterns on the pseudocode-based assessment differed depending on the
language they were taught [82, 113, 123]. In other words, students’ assessment performance was
dependent on how easily they were able to transfer knowledge from the programming language
they were taught to the pseudocode. Ideally, scoring models for pseudocode-based assessments
would account for this variation in difficulty; a well-developed CS-specific theory of transfer would
facilitate the development of such models.

6 CONCLUSION

In this article, we focused on the prior and potentially future links between research on transfer
in cognitive psychology and research on programming instruction in computing education. We re-
viewed two large bodies of literature with significant, but relatively untapped, synergy. Emerging
theories on knowledge transfer between programming languages are strongly grounded in empir-
ical findings but there is room for cognitive science to provide explanatory mechanisms for the
observed behavior. For example, drawing on the distinction of surface vs. structural similarity as
a means to explain successful and unsuccessful transfer as it relates to syntactic (i.e., surface) and
semantic (i.e., structural) similarities. In presenting reviews of these two literatures side-by-side,
our hope is to help the computing education research field see such opportunities for fruitful cross-
pollination of ideas based on contemporary cognitive science work on the analogical transfer.

We conclude with some more general thoughts about the utility of applying theory to practice.
Applying theory to practice is an iterative, rather than a linear, process. Creating instructional ma-
terials is an act of design or engineering–context and constraints both matter greatly. There are
likely multiple ways to instantiate any given theoretical recommendation into an actual lesson.
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Even theories supported by decades of research can turn out to be under-specified in important
ways when researchers try to translate those recommendations into instructional materials that
fit a specific context. Teaching and learning go far beyond what happens in a student’s brain–it
is a complex cultural activity. Creating theory-informed instructional materials–and then empiri-
cally testing which products were most effective–is a necessary feedback mechanism for refining
theories of learning [110, 111].
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