
42

From One Language to the Next: Applications of Analogical

Transfer for Programming Education

YVONNE KAO and BRYAN MATLEN, WestEd

DAVID WEINTROP, University of Maryland

The 1980s and 1990s saw a robust connection between computer science education and cognitive psychology
as researchers worked to understand how students learn to program. More recently, academic disciplines such
as science and engineering have begun drawing on cognitive psychology research and theories of learning to
create instructional materials and teacher professional development materials based on theories of learning,
to some success. In this paper, we follow a similar approach by highlighting common areas of interest between
computer science education and cognitive psychology–specifically theories of analogical transfer–and discuss
how cross-pollination of theoretical constructs between disciplines can support research on the teaching and
learning of multiple programming languages. We will also discuss areas where computing education research
can adapt the existing theories from cognitive psychology to develop domain-specific theories of knowledge
transfer in computing and feed back into cognitive psychology research to inform larger debates about the
nature of cognition and learning.

CCS Concepts: • Social and professional topics→ Computing education;

Additional Key Words and Phrases: Cognitive psychology, transfer, computer science education, program-
ming

ACM Reference format:

Yvonne Kao, Bryan Matlen, and David Weintrop. 2022. From One Language to the Next: Applications of
Analogical Transfer for Programming Education. ACM Trans. Comput. Educ. 22, 4, Article 42 (November 2022),
21 pages.
https://doi.org/10.1145/3487051

1 INTRODUCTION

An increasing number of students are now taking computing courses in multiple grade bands and
are likely to be taught with multiple programming languages. Many students first learn a block-
based language, like Scratch, as their introduction to computer science and then learn conventional
text-based programming languages as they advance. How can we help students build on prior con-
ceptual knowledge as they progress through a multi-lingual course sequence? Understanding and
supporting students’ transitions to new programming languages is an area of active research in
computer science education [126]. Effective pedagogy should help students successfully transfer

Authors’ addresses: Y. Kao (corresponding author) and B. Matlen, WestEd, 730 Harrison St, San Francisco, California 94107;
emails: {ykao, bmatlen}@wested.org; D. Weintrop, University of Maryland, 2226H Benjamin Building, 3942 Campus Drive,
College Park, MD 20742; email: weintrop@umd.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1946-6226/2022/11-ART42 $15.00
https://doi.org/10.1145/3487051

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

https://orcid.org/0000-0002-4116-3856
https://orcid.org/0000-0002-3009-3899
https://doi.org/10.1145/3487051
mailto:permissions@acm.org
https://doi.org/10.1145/3487051

42:2 Y. Kao et al.

knowledge from one language to another to deepen their knowledge rather than treating each pro-
gramming language as unrelated. We have two major goals for this article. First, we aim at high-
lighting the substantial synergy between theoretical work on transfer from cognitive psychology
and recent work on transfer in computing education research and present an integrated overview
of these two literatures. Second, we suggest ways to build upon this prior work to support the
development of classroom interventions, multi-lingual assessments, and CS-specific theories of
transfer.

The last two and a half decades have seen the emergence of cognitive psychology as an impor-
tant driver of educational research in mathematics and the sciences [45]. There have been a large
number of review articles synthesizing basic research in cognitive psychology and generating rec-
ommendations for applying findings to practice (e.g., [27, 84]). In addition, numerous projects have
used theories developed from basic cognitive psychology research to engineer new educational in-
terventions [19, 23, 73]. Cognitive psychology offers a key bridge between the basic science of how
the brain learns new information and implications for designing instruction [15]. Other authors
have already reviewed the historical connections between cognitive psychology and computing
education and introduced key areas of cognitive psychology research to a computing education
research audience [68, 97]. Readers will note that some of the same cognitive psychology stud-
ies discussed by Robins and colleagues [97] are also summarized here. We extend this work by
presenting the cognitive psychology literature simultaneously with a discussion of the computing
education literature on transfer in order to facilitate comparison and integration. We conclude the
article with a discussion of developing CS-specific theories of transfer and how they can support
the creation of instructional materials and multi-lingual assessments.

2 THEORIES OF TRANSFER

Analogical transfer–the act of applying knowledge from one context to another based on shared
relations–is arguably one of the central goals of education. For instance, if a student accurately
solves multiplication problems on a homework assignment, we expect this skill to transfer to
solving multiplication problems on a standardized test, calculating costs while shopping, scaling
recipes while cooking, and so on. In other words, a central goal of instruction is to support stu-
dents in acquiring knowledge that they can extend to a range of situations within and beyond
the classroom. However, the analogical transfer is notoriously difficult to achieve. Furthermore,
the transfer can be counterproductive if erroneous inferences are made (referred to as negative

transfer).
A prominent theory of analogy is Structure Mapping [34, 35], which explains that knowledge

transfer involves aligning corresponding objects and their parts based on a shared relational struc-
ture. To demonstrate how Structure Mapping works, we present a simple “Hello, world”-typescript
that randomly decides which of two greetings to use. This script is implemented in Scratch
(Figure 1(a)), App Inventor (Figure 1(b)), the blocks-based Javascript used by Code.org’s Game Lab
(Figure 1(c)), and Java (Figure 1(d)). The scripts are structurally equivalent but differ substantially
in their surface features. There are obvious differences between languages in how the code looks
(i.e., whether blocks are used and what colors and shapes are used) and how functions are named.
To transfer knowledge from one of these programming languages to another, students must be
able to identify the underlying structure of the code and then align the equivalent segments of
code across the two languages.

2.1 The Problem of Transfer

In the analogical transfer literature, there is an important distinction between surface similarity
and structural similarity. As an illustration, “My butcher is a surgeon” has a completely different

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

From One Language to the Next 42:3

Fig. 1. An if-else statement is implemented in three block-based programming languages (a–c) and Java (d).

meaning than “My surgeon is a butcher”, despite using the same words. The ability to understand
these situations in terms of their structural relations forms the basis for our ability to engage in
analogical transfer [40]. Despite our incredible ability to understand new situations by mapping the
underlying relations, the spontaneous analogical transfer may be based on superficial relations or
fail to occur. In a classic study of spontaneous transfer, Gick and Holyoak provided undergraduates
with a short scenario [39, p. 3]:

A general wish to capture a fortress located in the center of a country. There are many
roads radiating outward from the fortress. All have been mined so that while small
groups of men can pass over the roads safely, any large force will detonate the mines.
A full-scale direct attack is therefore impossible. The general’s solution is to divide his
army into small groups, send each group to the head of a different road, and have the
groups converge simultaneously on the fortress.

After studying this scenario, students are presented with another problem that, unbeknownst
to them, can be solved in an analogous way (i.e., by using partitioning and convergence).

Suppose you are a doctor faced with a patient who has a malignant tumor in his stom-
ach. It is impossible to operate on the patient, but unless the tumor is destroyed the
patient will die. There is a kind of ray that can be used to destroy the tumor. If the rays
reach the tumor all at once at a sufficiently high intensity, the tumor will be destroyed.
Unfortunately, at this intensity, the healthy tissue that the rays pass through on the
way to the tumor will also be destroyed. At lower intensities, the rays are harmless to
healthy tissue, but they will not affect the tumor either. What type of procedure might
be used to destroy the tumor with the rays, and at the same time avoid destroying the
healthy tissue? [39, p. 3]

The solution is to set up several, lower-powered rays that encircle the tumor, thereby allowing
the rays to enter the healthy tissue at separate points, leaving the healthy tissue unharmed, while

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

42:4 Y. Kao et al.

converging the full power of the ray at the site of the tumor (analogous to dividing up an army
encircled around a fortress and attacking simultaneously).

Despite the similarity in the structures of the two problems, Gick and Holyoak [39] found that
transfer to the ray-tumor problem was surprisingly low even though the problems were presented
in close succession. Only 20–40% of participants across several experiments transferred knowledge
to the new problem even when the researchers implemented strategies aimed at improving transfer,
such as providing diagrams or an abstract description of the principle. Though this example is from
research conducted decades ago, comparatively low rates of spontaneous analogical transfer have
been documented in many domains and educational contexts [14, 32].

2.2 Why Transfer is Hard: Surface vs. Structural Similarity

What underlies the difficulty in analogical transfer? One key source of students’ difficulty is failing
to recognize that two problems share analogous structures [91]. This is especially true for domain
novices that lack the expertise and experience to know which features are most relevant. Novices
often focus on the surface aspects of problems (i.e., the perceptual attributes). Surface features are
the most readily accessed by our perceptual system and are alluring in a context where the stimuli
are novel and cognitive resources are limited. However, this surface-level focus often comes at the
expense of attending to the underlying relational structure.

To use an example from physics education, Chi, Feltovich, and Glaser [17] asked novice physics
students and physics experts to sort problems based on their similarity to one another. Novices
sorted problems based on the surface features, such as sorting all problems containing inclined
planes into one group and sorting all the problems containing pulleys into another group. Ex-
perts, on the other hand, sorted problems based on their underlying structural principles, such as
grouping all problems involving conservation of energy. In another striking example, Perkins [87]
describes physics students who, after learning in class how to calculate the time it would take for
a ball to fall from the top of a tower to the ground, exhibited confusion on a test problem that
required them to calculate the time for an object to fall from the top to the bottom of a well. The
students lamented that they had not been given instruction on problems with wells.

In other words, whereas novices overlook the abstract relationships between problems of dif-
fering surface features, experts’ knowledge and experience allow them to readily perceive or “see”
the underlying similarity in structure, despite the lack of similarity in the literal presentation. This
expert-novice difference in categorization and problem-solving has been demonstrated in a great
variety of domains (e.g., [16, 99]), including in programming (e.g., [127]).

Paying too much attention to surface features has the potential to distract from the key rela-
tionships and results in over contextualization of knowledge, which inhibits transfer. This issue
is highlighted in Barrett and Ceci’s [7] taxonomy of transfer distance. Their framework describes
transfer in terms of two factors: (1) content, or what is transferred; and (2) context, or where and

when the content is transferred. Content that is practiced in a limited number of contexts is less
likely to transfer. For instance, poor transfer performance has resulted from studying repeatedly
in the same physical context [11] and repeatedly studying the same type of problem [98]. Fur-
thermore, though concrete or grounded representations provide familiarity that can aid in initial
learning, such representations studied in isolation are often insufficient to promote later transfer
[51].

2.3 A Review of Computing-specific Theories

The 1980s and 1990s saw a robust connection between CS education and cognitive psychology
as researchers worked to understand how students learn programming [2, 12, 109]. Since then,
the fields have largely worked in parallel. Computing education researchers have independently

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

From One Language to the Next 42:5

developed theoretical models of transfer in programming education. In this section, we review
three computing-specific theories that aim at predicting when the transfer will occur.

2.3.1 Theory of ACT-R and Programming Tutors. In the early 1990s, Anderson and colleagues
conducted a series of studies to investigate how knowledge of one programming language transfers
to another. This work is based on ACT-R, which is a cognitive architecture, i.e., a general theory of
human cognition instantiated as a computational model [2, 95]. ACT-R contains a series of modules
and buffers that enable the model to set and update goals, perceive stimuli and generate responses,
and store and update information in memory. The core of the architecture is the production system,
which selects and applies production rules. Production rules are condition-action, or if-then, pairs.
The production system determines which rule applies in any given circumstance, performs the
action, and then updates the system state. ACT-R learns new production rules through a process
of analogy. Existing production rules are strengthened through repeated use [3].

Anderson and colleagues created an intelligent programming tutor to teach Lisp, Pascal, and
Prolog that made use of the ACT-R theory. The tutor was organized around a model of an ideal stu-
dent: a set of production rules that enables students to program in each language effectively. When
human students interacted with the intelligent programming tutor, the tutor then used a model-

tracing paradigm to determine how to respond to student actions. That is the tutor attempted to
match, in real-time, the student’s actual actions with a sequence of productions based on the ideal
student model. When the student’s behavior could not be matched with the ideal model, the tutor
would provide corrective feedback.

The ideal student models for programming in Lisp, Pascal, and Prolog were quite different, re-
flecting the fact that these languages are quite different in character. The few production rules that
were common across languages related to more conceptual aspects of programming, such as eval-
uating conditional statements. As there were no common production rules for writing code due to
the differences in syntax and style for the three languages, researchers predicted that there may
be little knowledge transfer from one language to another, and any transfer should relate to under-
lying conceptual knowledge. Anderson and colleagues then tested these predictions in laboratory
and classroom studies in which students used the programming tutor to learn Lisp, Pascal, and
Prolog. Though students were not more accurate when programming in their second language
compared to their first, they learned the second language slightly more quickly. Another set of
studies found that conceptual understanding of algorithms transferred readily between languages,
but not procedural coding skills [95]. In explaining these results, Wu and Anderson [129] identified
three levels of similarity that can facilitate transfer: syntactic, algorithmic, and problem. A major
strength of the research with ACT-R is that the creation of the ideal student models necessitated a
very careful analysis of the knowledge and skills needed for programming, enabling very precise
predictions on what knowledge and skills might transfer across languages.

2.3.2 Mindshift Learning Theory. The Mindshift Learning Theory offers another theoretical
framework for explaining the transfer, or lack thereof when learning new programming languages
[5]. Rooted in the field of information systems, Mindshift Learning Theory (Figure 2) is based on
Louis and Sutton’s explanatory framework for shifting cognitive processes [66]. The theory posits
that the perceived level of novelty affects the ease of learning new concepts. The model proposed
three categories of transfer related to learning a new language (or paradigm): (1) carryover con-
cepts that have a similar meaning from the known context, (2) changed concepts that are similar to
the known context but have a different meaning, and (3) novel concepts that are new to the learner.
Armstrong and colleagues developed and tested this model through a series of empirical studies
of programmers familiar with procedural programming as they transitioned to programming with

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

42:6 Y. Kao et al.

Fig. 2. Mindshift learning theory, as presented by Armstrong and Hardgrave [5, p. 459].

Fig. 3. Tshukudu and Cutts’ model of programming language transfer [116, p. 230].

object-oriented languages [5, 6, 78]. They found the high levels of transfer for carryover and novel
concepts and lower levels of transfer for changed concepts.

2.3.3 Tshukudu and Cutts. Tshukudu and Cutts’ model [116], builds on program comprehen-
sion models from computing education research [85, 105, 106, 119] and semantic transfer from
research on natural language learning [49, 50]. Their model of transfer involves knowledge of a
programming language at three levels: syntactic, semantic, and conceptual. When applying knowl-
edge from a prior programming language to the new programming language, Tshukudu and Cutts
propose three potential outcomes (shown in Figure 3): (1) the syntax and semantics can align across
languages, called a true carryover construct (TCC); (2) the semantics may differ but the syntax
is similar, called a false carryover construct (FCC); or (3) the semantics may be shared but the
syntax differs, called an abstract true carryover (ATC). In validating this model, Tshukudu and
Cutts ran a series of studies of learners moving from one language to another and found the most
transfer occurred with TCCs. Transfer was more difficult with both FCCs and ATC [114, 116].

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

From One Language to the Next 42:7

2.4 Synthesizing the Theoretical Work on Transfer

The theoretical work on transfer converges in several ways. First, it is clear that similarity promotes
transfer while dissimilarity impedes transfer. The CS-specific work generally identified several
levels of transfer that must be considered when teaching and learning programming languages:
syntax, concept (i.e., looping), and algorithm or paradigm.

There are a few predictions that emerge from synthesizing the theoretical work on transfer in
both cognitive psychology and computing education. First, transfer of knowledge from one pro-
gramming language to another cannot be assumed. In particular, raw coding skill in one language
likely does not transfer to a new language that uses a different paradigm. For example, students’
experience with drag-and-drop programming in Scratch will have limited transfer to text-based
programming in an integrated development environment (IDE). Second, the transfer comes
more easily when two programming languages are similar both in their surface features (i.e., syn-
tax) and their semantic structure, particularly for novices (i.e., moving from Scratch to Snap! or
Javascript to Java). However, surface similarity can also induce negative transfer and impede learn-
ing when the semantic structure is different. Third, experienced programmers are more able to
recognize conceptual similarities between languages and programming paradigms compared to
novices, particularly if the surface features are different.

3 EMPIRICAL STUDIES OF TRANSFER WHEN LEARNING TO PROGRAM

Having reviewed the theoretical literature on transfer, we now shift focus to empirical studies of
transfer when learning to program. The question of transfer has long been a focus in computer
science education research (e.g., [109]). Within this literature, the specific question of transfer be-
tween programming languages has a similarly long history given the centrality of programming
in the field of computer science (e.g., [102, 129]. Early work on this question sought to understand
expert/novice learning differences by focusing on how programmers who were familiar with one
professional language went about learning a second language (e.g., [104]). There is a renewed
focus on the question of transfer between programming languages due to the emergence of in-
troductory languages and programming environments designed for novices that are distinct from
professional programming languages (e.g., block-based programming) and the rise of CS instruc-
tion for younger learners (e.g., [42, 126]). We begin this section with a review of recent investiga-
tions of transfer from block-based to text-based languages before looking at research investigating
transfer between two text-based programming languages.

3.1 Transfer from Block-based to Text-based Programming

Driven by the success of platforms such as Scratch and libraries like Blockly, block-based program-
ming has increasingly become the way that novices are introduced to the practice of programming
and field of computer science more broadly [10, 93, 121]. This can be seen in the rapidly growing
ecosystem of block-based environments and the growing number of computer science curricula
designed for them [26, 65, 80]. Research on the use of block-based environments in introductory
contexts has found that these tools do support learning on their own [31, 53, 74] as well as in com-
parison to text-based languages [64, 90, 100, 123, 125]. In reviewing work focused on the transition
from block-based to text-based programming, a number of studies have been conducted across a
series of block-based tools.

Given Scratch’s prominence in the block-based programming space, it is not surprising that it
has been used as a source block-based language in transfer research. For example, Armoni and
colleagues followed a group of students who had taken Scratch programming courses in prior
years as they moved on to a high school programming course taught in a text-based programming

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

42:8 Y. Kao et al.

language (either Java or C#) [4]. By looking at how students with prior Scratch experience per-
formed relative to their classmates who had no prior block-based experience, they sought to make
claims about the transfer of programming knowledge from Scratch to text-based languages. The au-
thors found relatively little quantitative difference in performance on assessments between those
who had prior Scratch experience and those who did not, but did find differences in their qualitative
analysis related to motivation and self-efficacy. Additionally, the authors identified programming
patterns from Scratch present in text-based programs of students who had prior Scratch experi-
ence, suggesting some transfer did occur [4]. A similar approach was used with younger learners
comparing students with prior Scratch experience to those without across two different schools,
finding similar positive results for those with the prior Scratch experience [41]. Another example
is the work of Grover and colleagues [43], who used preparation for future learning approach [14]
to help scaffold learners in moving from Scratch to text-based programming languages and found
significant positive gains for students on text-based programming questions.

Whereas Scratch was initially focused on learning in informal contexts, the Alice programming
environment has had a more explicit focus on classroom learning. Textbooks have been written
for Alice [20, 21]. This has resulted in numerous studies of students transitioning from Alice to
text-based languages with varying levels of success. Studies following undergraduate students
moving from an introductory course taught in Alice to a follow-on programming course taught
in a text-based language have reported students not transferring the knowledge gained in Alice
to the subsequent language [83] or documented struggles in moving from Alice to another lan-
guage within a single course [89]. Other research found students performed better when learning
pseudocode prior to a text-based language compared to Alice [33]. At the same time, other studies
have reported students self-reporting that Alice helped them in their subsequent courses [18] and
have documented successful transfer from Alice to text-based languages. For example, Dann and
colleagues report evidence of positive transfer from Alice to Java when the transition was accom-
panied with pedagogical strategies to help learners make the transition[22]. We will return to this
work later when we discuss strategies for supporting transfer (Section 4).

A third programming environment used for studying transfer from block-based to text-based
programming is Pencil Code [9]. One interesting feature of Pencil Code is that it supports both
block-based and text-based authoring, providing two different interfaces for the same underlying
programming language, thus, it becomes possible to set up comparative studies where students
use only the block-based or text-based versions of the environment. A strength of this approach is
that it controls for language and environmental factors–the runtime environment and underlying
programming language remain the same and only the modality (blocks vs. text) changes. This is
the study design used by Weintrop and Wilensky, who had one set of students go through an
introductory curriculum in a blocks-only version of Pencil code and the second group of students
uses a text-only version of Pencil Code before both groups transitioned to Java [126]. Students
in the block-based condition scored higher on a programming assessment after the introductory
portion of the study [125], but there was no difference in performance after transitioning to text-
based programming [126].

3.2 Transfer from One Text-based Language to Another

While the question of transfer from block-based to text-based languages is a relatively recent area
of study, there is a long history of research on transfer between text-based languages. This work
largely falls into two categories. The first is focused on studying transfer between languages with
largely similar semantics but differing syntax (e.g., moving from Python to Java). The second looks
at the transfer between differing programming paradigms. The term “paradigm” is meant to clas-
sify similar groups of languages based on common behaviors and features, such as imperative,

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

From One Language to the Next 42:9

procedural, object-oriented, functional, and logic programming, so transfer research across
paradigms may follow students as they move from procedural to object-oriented programming.

Early work on transfer between programming languages by Scholtz and colleagues found that
learning a second programming language was easier than learning a first language but that in-
terpretation of the second language was largely shaped by knowledge of the initial language
[102, 104]. There are also expert-novice differences in the way people approached solving prob-
lems in the new language. Researchers found novices tend to use bottom-up approaches to solving
problems in new languages [128], while experts tend to use a top-down approach, revising their
plans as their familiarity with the new language grows [103]. Other researchers found a failure
to productively transfer knowledge to a second language. For example, Walker and Schach iden-
tify instances where learners attempted to use knowledge of their first language (Pascal) to write
programs in a second language (Ada), often attempting to use Pascal (or Pascal-similar) constructs
unsuccessfully [120]. In a more recent study comparing Java to Scheme, the researchers concluded:
“that upper-level students do not readily transfer knowledge gained in one language to another,
even when that transfer is raised during lectures” [29, p. 128].

Researchers have also investigated the question of transfer between programming languages
when moving from one programming paradigm to another (e.g., [6, 78, 101]). Unlike differences
in languages within the same paradigm (i.e., transitioning from C++ to Java), a shift in paradigm
is perceived as more significant given the role paradigms play in shaping the approach to and
design of programs (i.e., transitioning from Lisp to Java) [28, 57, 86]. A number of studies have
focused on experienced programmers learning object-oriented programming, finding that prior
experience with non-object-oriented language was a barrier to learning to program in the new
paradigm [78, 79, 101].

3.3 Summary of Empirical Research on Transfer When Learning to Program

To date, the literature on learning a second programming language has developed a rather muddy
picture of knowledge transfer and it is unclear how well the predictions from Section 2.4 hold up
under empirical tests. There are documented instances of positive transfer (e.g., [22, 41, 43, 76])
as well as a lack of transfer (e.g., [83, 89, 108, 126]). These studies have collectively examined a
wide array of transfer situations, with participants in different age groups and varying degrees of
prior programming proficiency, using a large number of different programming language pairs,
with varying degrees of support for students in transferring knowledge. It is not clear if the range
of different findings is an artifact of this variation. A CS-specific theory of transfer could improve
our understanding of the pattern of results in these empirical studies by more precisely specifying
what content we would expect to transfer in what contexts, enabling the design of experiments to
empirically test these hypotheses. We will return to this idea in the discussion section.

4 STRATEGIES THAT IMPROVE TRANSFER DURING LEARNING

Theories of analogical transfer posit that students who understand the conceptual structure of
problems will be more likely to apply that structure to novel situations and contexts [24, 35].
How does one become expert-like? How do we learn to “see” the underlying relationships in
domains, such that we can recognize those relationships in new stimuli and settings? What in-
structional strategies will promote the understanding of conceptual structure? In this section, we
review research-based strategies for highlighting conceptual structure and helping students under-
stand what concepts transfer (see Table 1). First, we provide an overview of strategies to promote
comparison and identification of the key relationships and highlight studies that have used these
strategies in computing education. We conclude with recommendations for practitioners on how to
develop broader systems that will help students successfully navigate multi-lingual CS pathways.

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

42:10 Y. Kao et al.

Table 1. Strategies to Promote Comparison and Improve Analogical Transfer

Category Specific pedagogical strategy

General strategies
for using
comparison

Present two or more problems simultaneously. Structure the compar-
ison process by:
–prompting students to identify what’s similar and different
–providing explicit feedback to support accurate relational inferences
Compare structurally similar problems to promote generalization
and structurally dissimilar problems to promote discrimination

Using perceptual
cues

Use progressive alignment by gradually fading the perceptual simi-
larity of compared problems as the student acquires expertise
Highlight relationally corresponding parts by:
–Gesturing between the corresponding parts
–Matching the colors of the corresponding parts
–Spatially arranging compared problems so that their corresponding
parts are most obvious (i.e., in direct alignment)

4.1 Using Comparison to Improve Transfer

Prompting students to compare contexts can draw attention to the common relationships. For ex-
ample, in the ray-tumor problem described in Section 2.1, typical hints and scaffolds (e.g., showing
a diagram of the convergence schema) failed to improve students’ knowledge transfer. However,
providing two problems with the same schema and prompting students to compare how they are
similar led to increased success on the transfer problem. Comparison is thought to engage stu-
dents in structure mapping, helping them notice commonalities in the relational structure as well
as important differences that are connected to the structure [36, 59]. A meta-analysis of 57 ex-
periments assessing comparison-based learning vs other instructional strategies (e.g., sequential
presentation, traditional instruction) concluded that comparison leads to better learning outcomes
at a medium effect size (d = 0.50) [1].

It is important to structure the comparison process, as guided instruction is more effective than
pure discovery in promoting learning and transfer [47, 70]. Perkins and Solomon [88] developed
“bridging” and “hugging” as strategies to encourage comparison and highlight the connections be-
tween different contexts. “Bridging” is a strategy where teachers “build a bridge” from the initial
context to the next context, explicitly linking the two as a means to help learners build connections
while “hugging” highlights the similarity between two contexts, making it easier for transfer to
occur. These strategies have been successfully employed to support programming language trans-
fer between a number of languages, including from Alice to Java [22], Alice to Python [112], and
MakeCode to Python [76]. Without proper scaffolding, the comparison may be ineffective, espe-
cially for novices in a domain [47, 96]. In the next sections, we discuss effective ways of structuring
comparison to promote transfer as predicted by theory and provide examples of these pedagogical
techniques from empirical computing education research.

4.1.1 Present Two or More Problems Simultaneously. Comparison is taxing on students’ atten-
tion and memory. Keeping the exemplars available visually allows students to compare problems
simultaneously, lessening the demands on memory and facilitating the Structure Mapping process.
For example, presenting two worked examples of math problems simultaneously results in better
understanding than presenting the same problems sequentially (e.g., [71, 96]).

Grover [42] and Dorling and White [25] used this strategy in their computing education research.
Grover’s computing curriculum shows learners analogous representations of the same program,

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

From One Language to the Next 42:11

often shown in language-agnostic pseudocode, block-based code, and text-based code. Presenting
these forms side by side is intended to help learners “draw analogies between different formalisms
to foster deep and abstract understanding of fundamental concepts and structures of algorithms”
[42, p. 260]. Dorling and White [25] used side-by-side comparison as a pedagogical approach to
help students identify differences and similarities between programming languages as a means to
support productive transfer. Specifically, they designed a sequence of programming activities that
moved learners from unplugged programming activities to block-based activities with Scratch, to
text-based activities with Python. All three programming activities ask the students to solve the
same type of problem (drawing geometrical shapes). By holding constant the programming chal-
lenges, and thus the conceptual and algorithmic parts of the programming task, students can focus
on differences in the language syntax and programming environment. This approach of shifting
languages while holding the programming task relatively constant led the authors to conclude
“the practice of using graphical languages in conjunction with, (in effect using a graphical tool
as a form of pseudo coding), not in place of, text-based programming languages, can improve the
confidence, independence, and resilience of pupils when learning to program using a text-based
language” [25, p. 196].

4.1.2 Compare Structurally Similar Problems to Promote Generalization and Structurally Dissim-

ilar Ones to Promote Discrimination. The type of comparison can affect what is learned. Expert
knowledge is characterized not only by the ability to see structural similarities but also by the
ability to differentiate between structural dissimilarities, particularly instances where surface sim-
ilarity is high. As described above, analogical comparisons are useful for supporting generalization
to instances with a common structure. However, this could also lead to overgeneralization in cases
where the structure does not apply. Such negative transfer is common when there are problems
that share surface similarities, but that have different underlying structures. In these cases, it is
helpful to provide contrasting examples and prompt students to point out how they are differ-
ent. It is particularly useful if the cases are “near misses”, varying minimally except for critical
structural aspects that differentiate them [36, 75].

Tshukudu and Jensen [117] used this technique and found that explicit instruction was particu-
larly useful at addressing errors related to FCCs, where semantics differ but the syntax is similar.
Specifically, the researchers asked students to take two short tests, one in Java and one in Python.
The researchers then analyzed student responses and identified errors that could be attributed to
FCCs. The researchers then spent 25 minutes of class time reviewing the test results, specifically
focusing on these errors and pointing out differences and similarities between the two languages.
In a follow-up test after the intervention, students made significantly fewer mistakes related to
FCCs.

4.2 Using Perceptual Cues to Improve Transfer

Perceptual features can be irrelevant and distracting to transfer, whereas attending to the rela-
tional structure is key for achieving expert-like reasoning. This may lead to the conclusion that
perception is irrelevant to the learning of complex domains. However, there is good evidence that
perceptual and higher-level reasoning processes closely interact during the course of learning.
Some have even argued that expert knowledge is inherently perceptual (e.g., [8, 54]).

As an illustration, most people with basic algebraic knowledge would claim fluency with the
order of operations. Despite this, spacing equations in ways that are consistent (e.g., 5 + 2 × 7) or
inconsistent (e.g., 5 + 2 × 7) with the order of operations has been shown to facilitate and impede
the ability to reason on such problems [63]. In addition, when asked to generate equations from
a word problem, people proficient in algebra often space equations in ways consistent with the

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

42:12 Y. Kao et al.

order of operations [62]. These findings suggest that conceptual representations may have a basis
in perception even in what appear to be relatively abstract domains.

The notion that perceptual processes interact with learning also has implications for how to
best support learning to promote transfer. Earlier, our discussion focused on how novices gravitate
towards perceptual features, and that this can lead to the over contextualization of knowledge such
that it impedes transfer. At the same time, similarity in perceptual features can be used as a scaffold
for understanding abstract concepts and attending to critical relationships.

4.2.1 Use Progressive Alignment. Novices’ attention to surface features of problems can be used
to facilitate deeper processing. Kotovsky and Gentner [56] found that first presenting children
with close analogical comparisons (those that share both surface and structural similarities) helped
them to identify structural patterns in more difficult far analogical comparisons (those that share
structural but not surface similarities) presented later, whereas presenting only far comparisons
resulted in poor performance throughout. Analogies with common surface features can be used
as an initial hook to support students in engaging in deeper, structural comparison, later on, a
process coined “progressive alignment” [38, 56].

4.2.2 Highlight Relationally Corresponding Parts. Using surface cues to highlight correspond-
ing parts is particularly effective when problems are presented simultaneously [48]. Researchers
have found a variety of effective strategies for doing this, including using gestures or similar colors
to indicate corresponding parts [72, 94] or arranging examples such that the corresponding parts
are directly aligned in space (the math worked examples placed side by side, chemical formulas
placed top to bottom, etc. [69]).

4.3 Programming Environments for Supporting Transfer

It is clear from the theoretical and empirical research that transitioning students from one program-
ming language to another requires careful planning in order to maximize the positive transfer of
prior knowledge and minimize negative transfer. The previous section discussed ways of design-
ing lessons to support transfer between languages. Researchers have also developed a number of
programming environments to support transfer which implement the above strategies to varying
degrees. An early attempt was Fix and Wiedenbeck’s ADAPT environment, which used artificial
intelligence to help learners familiar with the C or Pascal programming languages learn the Ada
programming language [30]. To do so, ADAPT provides suggestions of potential commands and
templates of common programming actions to scaffold the learner.

Researchers have also developed multiple programming environments that combine features
of block-based and text-based programming. For example, Pencil Code [9] and Tiled Grace [46]
enable block-based and text-based programming in a single interface. Other environments bring
block-based features into text-based IDEs, thus situating block-based programming in the context
of conventional text-based editors [13, 58], or otherwise blending aspects of block-based and text-
based environments into a single hybrid interface [124]. Frame-based editing is a notable approach
in this space [61]. It retains the block-based characteristic of preventing syntax errors through
scaffolded and context-aware inputs, but commands are input via the keyboard and the resulting
program has a text-based appearance.

These types of hybrid environments create an intermediate step between block-based environ-
ments and text-based IDEs, but may not actively encourage students to engage in Structure Map-
ping or otherwise leverage insights from theory. Shrestha and colleagues’ Transfer Tutor does. The
Transfer Tutor helped users learn a new language (in this case R) by presenting the equivalent im-
plementation of programs in a language familiar to the user (Python). The Transfer Tutor stepped
students through examining predetermined code snippets, using highlighting and tooltips to draw

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

From One Language to the Next 42:13

students’ attention to similarities and differences between the languages. However, students could
not write or execute the code [107].

4.4 Recommendations for Future Development

As the research on supporting transfer acknowledges, “the nature and extent of instruction
needed to enable cross-language transfer in upper-level students is an interesting open question”
[29, p. 218]. We encourage teachers and curriculum developers to purposefully create lessons to
facilitate transitions from one language to the next using the strategies described above and to con-
sider how multiple strategies can be layered and/or further supported by students’ programming
environment.

For example, one lesson could ask students to compare a programming solution written in both
languages. Display both solutions side-by-side and ask students to identify and discuss similari-
ties and differences. As students discuss the code, support students in Structure Mapping by using
color-coding, arrows, or other cues to connect analogous sections of code. This type of exercise
could be used to help students understand similarities and differences in syntax as well as broader
programming strategies, especially if they are implemented in a dynamic programming environ-
ment that updates the cues in response to student actions. For example, Moors and colleagues
found that students who learned Scratch often developed a habit of “extreme fine-grained pro-
gramming” [77]. Students who program in this style take advantage of Scratch’s parallelism and the
forever loop to break up simple tasks into even smaller sub-tasks and avoid the use of control struc-
tures (Figure 4(a)). This style of programming does not transfer to text-based languages but a more
straightforward implementation (Figure 4(b)) would. In a similar vein, Repenning and Basawap-
atna discuss how the different affordances of the block-based languages Scratch and AgentCube led
students to implement different approaches to programming an hourglass simulation [92]. Explic-
itly discussing different ways of accomplishing the same task in different programming languages
will improve students’ understanding of the structure of both languages.

We also encourage primary and secondary school and district-level administrators to consider
issues of transfer when planning multi-grade computer science course pathways. Teaching too
many programming languages in too short of a time can lead to a fractured experience where
students re-learn the same concepts year after year instead of deepening their understanding of
core CS concepts over time [52]. We recommend minimizing the number of new programming
languages students encounter, particularly in their first few years of computer science instruction.
When students do transition to a new programming language, we recommend developing curricu-
lum pacing guides that include lessons designed to promote the transfer of core CS knowledge
from students’ prior programming language to the new one.

5 DISCUSSION

5.1 The Role of Theory in Computing Education Research

We see great potential in drawing on findings from the field of cognitive science in general, and
research on analogical transfer specifically, as a generative activity to advance our understanding
of how students learn to program. The framework presented by Malmi and colleagues on the four
roles that theory can play in computing education research [67] can help us think through what
form this may take. The first role Malmi et al. discuss is of using theory as a way to discuss results.
Given the significant amount of empirically-grounded research on students’ transfer (or failure
to transfer) (e.g., [22, 43, 125], there is an opportunity to incorporate theoretical constructs from
cognitive science, such as analogical reasoning or structure vs. surface similarity when discussing
the data. The second role of theory, to predict results, has similar potential. When designing a

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

42:14 Y. Kao et al.

Fig. 4. Examples of different programming strategies from Moors et al. [77, p. 61–62].

new programming language, environment, or curriculum, cognitive science can be used to shape
expectations that can then be empirically tested. The third role of theory is to inform pedagogy.
As discussed above, there is research on pedagogical approaches to support students learning a
second programming language, some of which is grounded in theory (e.g., [117]), and there are
clear examples from cognitive science that can further advance the approaches used in computing
education research (e.g., [37]). Finally, we see great potential in theories from cognitive science
related to learning and transfer as a data analysis framework, especially given the computing
education field’s focus on classroom-based research. While some researchers are already using
theory to explain empirical results (e.g., [115]), the larger body of analogical transfer literature
presented above can provide a framework for reanalysis or meta-analysis of previous studies.

5.2 Towards CS-specific Theories of Transfer

Kölling and colleagues [60] identified 13 challenges when going from block-based to text-based lan-
guages. These challenges range from memorizing syntax and commands in text-based languages
to the organization (or lack thereof) of block-based commands and interpreting error messages in
text-based environments. Integrating work of this nature with psychological theories of analogical
transfer can lead to the development of CS-specific theories of transfer. A CS-specific theory could
move beyond general descriptions of how and when the transfer occurs to make more specific
predictions about what knowledge and skills will transfer easily between programming language
pairs. CS education researchers could draw from Barnett and Ceci’s [7] taxonomy of transfer dis-
tance which we described in Section 2.2. A CS-specific version of this taxonomy could include

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

From One Language to the Next 42:15

contextual dimensions such as programming modality (i.e., blocks vs. text), programming para-
digm, or learning context (i.e., formal education vs. informal learning environments) and describe
how different dimensions intersect to create situations where knowledge transfers more or less
easily. For example, due to the asymmetric nature of similarity [55, 81, 118], CS-specific theories
may predict that certain skills will transfer well from one language to another (e.g., block-based
to text-based), but transfer poorly in the reverse direction (e.g., text-based to block-based).

CS-specific theories could also make predictions about when and how to scaffold transfer
of specific content knowledge. For example, a CS-specific theory might predict that students
learning Scratch, which uses “repeat [number]” loops that iterate a pre-specified number of times,
and then Java, which uses for loops with an initializing statement and an incrementer/decrementer,
would benefit from explicit instruction on the similarities between the looping structures as well
as looping errors and strategies that are less easily implemented in Scratch (i.e., off-by-one errors
or alternatives to incrementing/decrementing by one). Work in developing and testing CS-specific
theories of transfer has begun (e.g., [115]), but much work remains in developing pedagogy, cur-
ricula, and tools explicitly based on these theories. Further, CS-specific theories can also inform
the design and implementation of multi-lingual course pathways by informing the selection of
languages and the timing of language transitions.

CS-specific theories of transfer would also inform the development of valid and reliable assess-
ments. Creating effective multi-lingual assessments requires assessment developers to understand
which skills and concepts transfer across languages and which are unique to a given language
and apply these understandings to design assessment items, scoring models, and score interpre-
tations. Research on pseudocode-based assessments like the Advanced Placement CS Principles
exam or the FCS1/SCS1 has found that the pseudocode is not truly language-neutral or language-
independent [44]. The way programs are presented (block-based or text-based) impacts student
performance even when the assessment is in pseudocode [122]. Students whose primary program-
ming language was more similar to the pseudocode tended to perform better on the assessment. In
addition, students’ error patterns on the pseudocode-based assessment differed depending on the
language they were taught [82, 113, 123]. In other words, students’ assessment performance was
dependent on how easily they were able to transfer knowledge from the programming language
they were taught to the pseudocode. Ideally, scoring models for pseudocode-based assessments
would account for this variation in difficulty; a well-developed CS-specific theory of transfer would
facilitate the development of such models.

6 CONCLUSION

In this article, we focused on the prior and potentially future links between research on transfer
in cognitive psychology and research on programming instruction in computing education. We re-
viewed two large bodies of literature with significant, but relatively untapped, synergy. Emerging
theories on knowledge transfer between programming languages are strongly grounded in empir-
ical findings but there is room for cognitive science to provide explanatory mechanisms for the
observed behavior. For example, drawing on the distinction of surface vs. structural similarity as
a means to explain successful and unsuccessful transfer as it relates to syntactic (i.e., surface) and
semantic (i.e., structural) similarities. In presenting reviews of these two literatures side-by-side,
our hope is to help the computing education research field see such opportunities for fruitful cross-
pollination of ideas based on contemporary cognitive science work on the analogical transfer.

We conclude with some more general thoughts about the utility of applying theory to practice.
Applying theory to practice is an iterative, rather than a linear, process. Creating instructional ma-
terials is an act of design or engineering–context and constraints both matter greatly. There are
likely multiple ways to instantiate any given theoretical recommendation into an actual lesson.

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

42:16 Y. Kao et al.

Even theories supported by decades of research can turn out to be under-specified in important
ways when researchers try to translate those recommendations into instructional materials that
fit a specific context. Teaching and learning go far beyond what happens in a student’s brain–it
is a complex cultural activity. Creating theory-informed instructional materials–and then empiri-
cally testing which products were most effective–is a necessary feedback mechanism for refining
theories of learning [110, 111].

REFERENCES

[1] Louis Alfieri, Timothy J. Nokes-Malach, and Christian D. Schunn. 2013. Learning through case comparisons: A meta-
analytic review. Educational Psychologist 48, 2 (2013), 87–113.

[2] John R. Anderson. 1993. Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale, NJ.
[3] John R. Anderson and Christian D. Schunn. 2000. Implications of the ACT-R learning theory: No magic bullets. In

Proceedings of the Advances in Instructional Psychology: Educational Design and Cognitive Science. R. Glaser (Ed.).
Lawrence Erlbaum Associates, 1–33.

[4] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari. 2015. From scratch to “Real” programming. ACM Transactions on

Computing Education 14, 4 (2015), 25:1–15. Retrieved from http://dl.acm.org/citation.cfm?id=2677087.
[5] Armstrong and Hardgrave. 2007. Understanding mindshift learning: The transition to object-oriented development.

MIS Quarterly 31, 3 (2007), 453. DOI: https://doi.org/10.2307/25148803
[6] Deb Armstrong and H. James Nelson. 2000. Knowledge transfer between languages and paradigms. In Proceedings

of the Americas Conference on Information Systems. 8.
[7] Susan M. Barnett and Stephen J. Ceci. 2002. When and where do we apply what we learn?: A taxonomy for far

transfer. Psychological Bulletin 128, 4 (2002), 612.
[8] Lawrence W. Barsalou. 1999. Perceptual symbol systems. Behavioral and Brain Sciences 22, 4 (1999), 577–660.
[9] D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens. 2015. Pencil code: Block code for a text world. In Proceedings

of the 14th International Conference on Interaction Design and Children. ACM, New York, NY, 445–448. DOI: https:
//doi.org/10.1145/2771839.2771875

[10] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017. Learnable programming: Blocks and
beyond. Communications of the ACM 60, 6 (2017), 72–80. DOI: https://doi.org/10.1145/3015455

[11] Elizabeth L. Bjork and Robert A. Bjork. 2011. Making things hard on yourself, but in a good way: Creating desir-
able difficulties to enhance learning. Psychology and the Real World: Essays Illustrating Fundamental Contributions to

Society 2 (2011), 59–68.
[12] Alan F. Blackwell, Marian Petre, and Luke Church. 2019. Fifty years of the psychology of programming. International

Journal of Human-Computer Studies 131 (2019), 52–63.
[13] Jeremiah Blanchard, Chistina Gardner-McCune, and Lisa Anthony. 2019. Amphibian: Dual-modality representation

in integrated development environments. In Proceedings of the 2019 IEEE Blocks and Beyond Workshop. IEEE, Mem-
phis, TN, 83–85. DOI: https://doi.org/10.1109/BB48857.2019.8941213

[14] John D. Bransford and Daniel L. Schwartz. 1999. Rethinking Transfer: A Simple Proposal with Multiple Implications.
Review of Research in Education 24, 1 (Jan. 1999), 61–100. https://doi.org/10.2307/1167267

[15] John T. Bruer. 1997. Education and the brain: A bridge too far. Educational Researcher 26, 8 (1997), 4–16.
[16] William G. Chase and Herbert A. Simon. 1973. Perception in chess. Cognitive Psychology 4, 1 (1973), 55–81.
[17] Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser. 1981. Categorization and representation of physics problems

by experts and novices. Cognitive Science 5, 2 (1981), 121–152.
[18] Daniel C. Cliburn. 2008. Student opinions of Alice in CS1. In Proceedings of the 38th Annual Frontiers in Education

Conference. IEEE, T3B–1.
[19] Jennfer G. Cromley, Steven M. Weisberg, Ting Dai, Nora S. Newcombe, Christian D. Schunn, Christine Massey, and

F. Joseph Merlino. 2016. Improving middle school science learning using diagrammatic reasoning. Science Education

100, 6 (2016), 1184–1213. DOI: https://doi.org/10.1002/sce.21241
[20] W. Dann, S. Cooper, and B Ericson. 2009. Exploring Wonderland: Java Programming Using Alice and Media Computa-

tion. Prentice Hall Press.
[21] Wanda Dann, Stephen Cooper, and Randy Pausch. 2006. Learning to Program with Alice. Prentice-Hall, Inc.
[22] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and S. Cooper. 2012. Mediated transfer: Alice 3 to Java. In Proceedings of

the 43rd ACM Technical Symposium on Computer Science Education. ACM, 141–146.
[23] Jodi L. Davenport, Yvonne S. Kao, Bryan J. Matlen, and Steven A. Schneider. 2020. Cognition research in practice:

Engineering and evaluating a middle school math curriculum. The Journal of Experimental Education 88, 4 (2020),
516–535. DOI: https://doi.org/10.1080/00220973.2019.1619067

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

http://dl.acm.org/citation.cfm?id=2677087
https://doi.org/10.2307/25148803
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/3015455
https://doi.org/10.1109/BB48857.2019.8941213
https://doi.org/10.2307/1167267
https://doi.org/10.1002/sce.21241
https://doi.org/10.1080/00220973.2019.1619067

From One Language to the Next 42:17

[24] Samuel B. Day and Robert L. Goldstone. 2012. The import of knowledge export: Connecting findings and theories of
transfer of learning. Educational Psychologist 47, 3 (2012), 153–176.

[25] Mark Dorling and Dave White. 2015. Scratch: A way to logo and python. In Proceedings of the 46th ACM Techni-

cal Symposium on Computer Science Education. ACM, Kansas City Missouri, 191–196. DOI: https://doi.org/10.1145/
2676723.2677256

[26] C. Duncan, T. Bell, and S. Tanimoto. 2014. Should your 8-year-old learn coding?. In Proceedings of the 9th Workshop

in Primary and Secondary Computing Education. ACM, New York, NY, 60–69. DOI: https://doi.org/10.1145/2670757.
2670774

[27] John Dunlosky, Katherine A. Rawson, Elizabeth J. Marsh, Mitchell J. Nathan, and Daniel T. Willingham. 2013. Im-
proving students’ learning with effective learning techniques. Psychological Science in the Public Interest 14, 1 (2013),
4–58. DOI: https://doi.org/10.1177/1529100612453266

[28] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Modernizing plan-composition studies. In Proceed-

ings of the 47th ACM Technical Symposium on Computing Science Education. 6.
[29] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing and teaching scope, mutation, and

aliasing in upper-level undergraduates. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education. ACM, Seattle Washington, 213–218. DOI: https://doi.org/10.1145/3017680.3017777
[30] V. Fix and S. WIEDENBECK. 1996. An intelligent tool to aid students in learning second and subsequent programming

languages. Computers & Education 27, 2 (1996), 71–83. DOI: https://doi.org/10.1016/0360-1315(96)00022-X
[31] D. Franklin, G. Skifstad, R. Rolock, I. Mehrotra, V. Ding, A. Hansen, D. Weintrop, and D. Harlow. 2017. Using upper-

elementary student performance to understand conceptual sequencing in a blocks-based curriculum. In Proceedings

of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM, New York, NY, 231–236. DOI:
https://doi.org/10.1145/3017680.3017760

[32] Laura Fries, Ji Y. Son, Karen B. Givvin, and James W. Stigler. 2021. Practicing connections: A framework to guide
instructional design for developing understanding in complex domains. Educational Psychology Review 33, 2 (2021),
739–762.

[33] Ryan Garlick and Ebru Celikel Cankaya. 2010. Using alice in CS1: A quantitative experiment. In Proceedings of the

15th Annual Conference on Innovation and Technology in Computer Science Education. ACM, 165–168.
[34] Dedre Gentner. 1983. Structure-mapping: A theoretical framework for analogy. Cognitive Science 7, 2 (1983), 155–170.
[35] Dedre Gentner. 2010. Bootstrapping the mind: Analogical processes and symbol systems. Cognitive Science 34,

5 (2010), 752–775.
[36] Dedre Gentner, Susan C. Levine, Raedy Ping, Ashley Isaia, Sonica Dhillon, Claire Bradley, and Garrett Honke. 2016.

Rapid learning in a children’s museum via analogical comparison. Cognitive Science 40, 1 (2016), 224–240.
[37] Dedre Gentner, Jeffrey Loewenstein, and Leigh Thompson. 2003. Learning and transfer: A general role for analogical

encoding. Journal of Educational Psychology 95, 2 (2003), 393.
[38] Dedre Gentner, Mary Jo Rattermann, Arthur Markman, and Laura Kotovsky. 1995. Two forces in the development

of relational similarity. In Developing Cognitive Competence: New Approaches to Pocess Mdeling. Erlbaum, 263–313.
[39] Mary L. Gick and Keith J. Holyoak. 1983. Schema Induction and Analogical Transfer. Cognitive Psychology 15, 1

(1983), 1–38.
[40] Robert L. Goldstone and Samuel B. Day. 2012. Introduction to “new conceptualizations of transfer of learning”. Edu-

cational Psychologist 47, 3 (2012), 149–152.
[41] Marcos J. Gomez, Marco Moresi, and Luciana Benotti. 2019. Text-based programming in elementary school: A com-

parative study of programming abilities in children with and without block-based experience. In Proceedings of the

2019 ACM Conference on Innovation and Technology in Computer Science Education. ACM, Aberdeen Scotland UK,
402–408. DOI: https://doi.org/10.1145/3304221.3319734

[42] Shuchi Grover. 2021. Teaching and assessing for transfer from block-to-text programming in middle school computer
science. Transfer of Learning: Progressive Perspectives for Mathematics Education and Related Fields. Springer Nature.

[43] Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning in a blended computer science
course for middle school students. Computer Science Education 25, 2 (2015), 199–237. DOI: https://doi.org/10.1080/
08993408.2015.1033142

[44] Mark Guzdial. 2019. We should stop saying language independent. We don’t know how to do that. Blog @ The

Communications of the ACM (2019). Retrieved from https://cacm.acm.org/blogs/blog-cacm/238782-we-should-stop-
saying-language-independent-we-dont-know-how-to-do-that/fulltext.

[45] Erin J. Higgins, Amanda M. Dettmer, and Elizabeth R. Albro. 2019. Looking back to move forward: A retrospective
examination of research at the intersection of cognitive science and education and what it means for the future.
Journal of Cognition and Development 20, 2 (2019), 278–297. DOI: https://doi.org/10.1080/15248372.2019.1565537

[46] Michael Homer and James Noble. 2014. Combining tiled and textual views of code. In Proceedings of the IEEE Working

Conference on Software Visualisation. IEEE, Victoria, BC, 1–10. DOI: https://doi.org/10.1109/VISSOFT.2014.11

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

https://doi.org/10.1145/2676723.2677256
https://doi.org/10.1145/2670757.2670774
https://doi.org/10.1177/1529100612453266
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1016/0360-1315(96)00022-X
https://doi.org/10.1145/3017680.3017760
https://doi.org/10.1145/3304221.3319734
https://doi.org/10.1080/08993408.2015.1033142
https://cacm.acm.org/blogs/blog-cacm/238782-we-should-stop-saying-language-independent-we-dont-know-how-to-do-that/fulltext
https://doi.org/10.1080/15248372.2019.1565537
https://doi.org/10.1109/VISSOFT.2014.11

42:18 Y. Kao et al.

[47] Benjamin D. Jee and Florencia K. Anggoro. 2019. Relational scaffolding enhances children’s understanding of scien-
tific models. Psychological Science 30, 9 (2019), 1287–1302.

[48] Benjamin D. Jee, David H. Uttal, Dedre Gentner, Cathy Manduca, Thomas F. Shipley, and Bradley Sageman. 2013.
Finding faults: Analogical comparison supports spatial concept learning in geoscience. Cognitive Processing 14,
2 (2013), 175–187.

[49] N. Jiang. 2000. Lexical representation and development in a second language. Applied Linguistics 21, 1 (2000), 47–77.
DOI: https://doi.org/10.1093/applin/21.1.47

[50] Nan Jiang. 2004. Semantic transfer and its implications for vocabulary teaching in a second language. The Modern

Language Journal 88, 3 (2004), 416–432. DOI: https://doi.org/10.1111/j.0026-7902.2004.00238.x
[51] Jennifer A. Kaminski, Vladimir M. Sloutsky, and Andrew F. Heckler. 2013. The Cost of Concreteness: The Effect of

Nonessential Information on Analogical Transfer. Journal of Experimental Psychology: Applied 19, 1 (2013), 14–29.
[52] Yvonne Kao, Irene Nolan, and Andrew Rothman. 2020. Project scoring for program evaluation and teacher profes-

sional development. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education. Association
for Computing Machinery, New York, NY, 1133–1138. DOI: https://doi.org/10.1145/3328778.3366959

[53] C. Kelleher, R. Pausch, and S. Kiesler. 2007. Storytelling alice motivates middle school girls to learn computer pro-
gramming. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1455–1464.

[54] Philip J. Kellman and Christine M. Massey. 2013. Perceptual learning, cognition, and expertise. In Proceedings of the

Psychology of Learning and Motivation. Elsevier, 117–165.
[55] Alex Koch, Hans Alves, Tobias Krüger, and Christian Unkelbach. 2016. A general valence asymmetry in similarity:

Good is more alike than bad. Journal of Experimental Psychology: Learning, Memory, and Cognition 42, 8 (2016), 1171.
[56] Laura Kotovsky and Dedre Gentner. 1996. Comparison and categorization in the development of relational similarity.

Child Development 67, 6 (1996), 2797–2822.
[57] Shriram Krishnamurthi and Kathi Fisler. 2019. Programming paradigms and beyond. In Proceedings of the Cambridge

Handbook of Computing Education Research. Sally A. Fincher and Anthony V. Robins (Eds.). Cambridge University,
377–413. DOI: https://doi.org/10.1017/9781108654555.014

[58] D. Krpan, S. Mladenovic, and G. Zaharija. 2017. Mediated transfer from visual to high-level programming language.
In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics

and Microelectronics. IEEE, Opatija, Croatia, 800–805. DOI: https://doi.org/10.23919/MIPRO.2017.7973531
[59] Kenneth J. Kurtz, Chun-Hui Miao, and Dedre Gentner. 2001. Learning by analogical bootstrapping. The Journal of

the Learning Sciences 10, 4 (2001), 417–446.
[60] Michael Kölling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-based editing: Easing the transition from blocks

to text-based programming. In Proceedings of the Workshop in Primary and Secondary Computing Education. ACM,
New York, NY, 29–38. DOI: https://doi.org/10.1145/2818314.2818331

[61] M. Kölling, N. C. C. Brown, and A. Altadmri. 2017. Frame-based editing. Journal of Visual Languages and Sentient

Systems 3 (2017), 40–67. DOI: https://doi.org/10.18293/VLSS2017
[62] David Landy and Robert L. Goldstone. 2007. Formal notations are diagrams: Evidence from a production task. Memory

& Cognition 35, 8 (2007), 2033–2040.
[63] David Landy and Robert L. Goldstone. 2007. How abstract is symbolic thought? Journal of Experimental Psychology:

Learning, Memory, and Cognition 33, 4 (2007), 720.
[64] C. M. Lewis. 2010. How programming environment shapes perception, learning and goals: Logo vs. Scratch. In Pro-

ceedings of the 41st ACM Technical Symposium on Computer Science Education. New York, NY, 346–350.
[65] Yuhan Lin and David Weintrop. 2021. The Landscape of Block-based Programming: Characteristics of block-based

environments and how they support the transition to text-based programming. Journal of Computer Languages 67
(2021), 101075.

[66] Meryl Reis Louis and Robert I. Sutton. 1991. Switching cognitive gears: From habits of mind to active thinking.
Human Relations 44, 1 (1991), 55–76. DOI: https://doi.org/10.1177/001872679104400104

[67] Lauri Malmi, Judy Sheard, Päivi Kinnunen, Simon, and Jane Sinclair. 2019. Computing education theories: What are
they and how are they used?. In Proceedings of the 2019 ACM Conference on International Computing Education Re-

search. Association for Computing Machinery, New York, NY, 187–197. DOI: https://doi.org/10.1145/3291279.3339409
[68] Lauren Margulieux, Brian Dorn, and Kristin Searle. 2019. Learning sciences for computing education. In Proceed-

ings of the Cambridge Handbook of Computing Education Research. Sally A. Fincher and Anthony V. Robins (Eds.).
Cambridge University, Cambridge, UK, 208–230.

[69] Bryan J. Matlen, Dedre Gentner, and Steven L. Franconeri. 2020. Spatial alignment facilitates visual comparison.
Journal of Experimental Psychology: Human Perception and Performance 46, 5 (2020), 443.

[70] Bryan J. Matlen and David Klahr. 2013. Sequential effects of high and low instructional guidance on children’s ac-
quisition of experimentation skills: Is it all in the timing? Instructional Science 41, 3 (2013), 621–634.

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

https://doi.org/10.1093/applin/21.1.47
https://doi.org/10.1111/j.0026-7902.2004.00238.x
https://doi.org/10.1145/3328778.3366959
https://doi.org/10.1017/9781108654555.014
https://doi.org/10.23919/MIPRO.2017.7973531
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.18293/VLSS2017
https://doi.org/10.1177/001872679104400104
https://doi.org/10.1145/3291279.3339409

From One Language to the Next 42:19

[71] Bryan J. Matlen, Lindsey E. Richland, Ellen C. Klostermann, and Emily Lyons. 2018. Impact and prevalence of diagram-
matic supports in mathematics classrooms. In Proceedings of the International Conference on Theory and Application

of Diagrams. Springer, 148–163.
[72] Bryan J. Matlen, Stella Vosniadou, Benjamin Jee, and Maria Ptouchkina. 2011. Enhancing the comprehension of

science text through visual analogies. In Proceedings of the Annual Meeting of the Cognitive Science Society.
[73] Nicole M. McNeil, Caroline Byrd Hornburg, Heather Brletic-Shipley, and Julia M. Matthews. 2019. Improving chil-

dren’s understanding of mathematical equivalence via an intervention that goes beyond nontraditional arithmetic
practice. Journal of Educational Psychology 111, 6 (2019), 1023–1044. DOI: https://doi.org/10.1037/edu0000337

[74] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari. 2010. Learning computer science concepts with Scratch. In
Proceedings of the 6th International Workshop on Computing Education Research. 69–76.

[75] Norma Ming. 2015. Analogies vs. Contrasts: A comparison of their learning benefits. In Proceedings of the 2nd Inter-

national Conference on Analogy. NBU, Sofia, Bulgaria, 338–347.
[76] Monika Mladenović, Žana Žanko, and Andrina Granić. 2021. Mediated transfer: From text to blocks and back. Inter-

national Journal of Child-Computer Interaction 29 (2021), 100279. DOI: https://doi.org/10.1016/j.ijcci.2021.100279
[77] Luke Moors, Andrew Luxton-Reilly, and Paul Denny. 2018. Transitioning from block-based to text-based program-

ming languages. In Proceedings of the 2018 International Conference on Learning and Teaching in Computing and

Engineering. IEEE, Auckland, New Zealand, 57–64. DOI: https://doi.org/10.1109/LaTICE.2018.000-5
[78] H. James Nelson, Deborah J. Armstrong, and Mehdi Ghods. 2002. Old dogs and new tricks. Communications of the

ACM 45, 10 (2002), 132–137. DOI: https://doi.org/10.1145/570907.570910
[79] H. J. Nelson, G. Irwin, and D. Monarchi. 1997. Journeys up the mountain: Different paths to learning object-oriented

programming. Accounting, Management and Information Technologies 7, 2 (1997), 53–85. DOI: https://doi.org/10.1016/
S0959-8022(96)00024-0

[80] Mark Noone and Aidan Mooney. 2018. Visual and textual programming languages: A systematic review of the liter-
ature. Journal of Computers in Education 5, 2 (2018), 149–174. DOI: https://doi.org/10.1007/s40692-018-0101-5

[81] Andrew Ortony, Richard J. Vondruska, Mark A. Foss, and Lawrence E. Jones. 1985. Salience, similes, and the asym-
metry of similarity. Journal of Memory and Language 24, 5 (1985), 569–594.

[82] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, validation, and use of a language indepen-
dent CS1 knowledge assessment. In Proceedings of the 2016 ACM Conference on International Computing Education Re-

search. Association for Computing Machinery, New York, NY, 93–101. DOI: https://doi.org/10.1145/2960310.2960316
[83] D. Parsons and P. Haden. 2007. Programming osmosis: Knowledge transfer from imperative to visual programming

environments. In Procedings of the 20th Annual NACCQ Conference. S. Mann and N. Bridgeman (Eds.). Hamilton, New
Zealand, 209–215.

[84] Harold Pashler, Patrice M. Bain, Brian A. Bottge, A. Graesser, Kenneth Koedinger, Mark McDaniel, and Janet Metcalfe.
2007. Organizing Instruction and Study to Improve Student Learning (NCER 2007-2004). Technical Report. National
Center for Education Research, Institute of Education Sciences, U.S. Department of Education., Washington, D. C.
Retrieved from https://ies.ed.gov/ncee/wwc/PracticeGuide/1.

[85] Nancy Pennington. 1987. Stimulus structures and mental representations in expert comprehension of computer pro-
grams. Cognitive Psychology 19, 3 (1987), 295–341. DOI: https://doi.org/10.1016/0010-0285(87)90007-7

[86] N. Pennington, A. Y. Lee, and B. Rehder. 1995. Cognitive activities and levels of abstraction in procedural and object-
oriented design. Human-Computer Interaction 10, 2 (1995), 171–226.

[87] David Perkins. 2010. Making Learning Whole: How Seven Principles of Teaching Can Transform Education. John Wiley
& Sons.

[88] David N. Perkins and Gavriel Salomon. 1988. Teaching for transfer. Educational Leadership 46, 1 (1988), 22–32.
[89] K. Powers, S. Ecott, and L. M. Hirshfield. 2007. Through the looking glass: Teaching CS0 with Alice. ACM SIGCSE

Bulletin 39, 1 (2007), 213–217.
[90] Thomas W. Price and Tiffany Barnes. 2015. Comparing textual and block interfaces in a novice programming envi-

ronment. In Proceedings of the 11th Annual International Conference on International Computing Education Research.

ACM , 91–99. DOI: https://doi.org/10.1145/2787622.2787712
[91] Stephen K. Reed, George W. Ernst, and Ranan Banerji. 1974. The role of analogy in transfer between similar problem

states. Cognitive Psychology 6, 3 (1974), 436–450.
[92] Alexander Repenning and Ashok Basawapatna. 2021. Smacking Screws with Hammers: Experiencing Affordances of

Block-Based Programming through the Hourglass Challenge. In Proceedings of the 52nd ACM Technical Symposium

on Computer Science Education. Association for Computing Machinery, New York, NY, 267–273. DOI: https://doi.org/
10.1145/3408877.3432444

[93] M. Resnick, Brian Silverman, Yasmin Kafai, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn East-
mond, Karen Brennan, Amon Millner, Eric Rosenbaum, and Jay Silver. 2009. Scratch: Programming for all. Commu-

nications of the ACM 52, 11 (2009), 60. Retrieved from http://portal.acm.org.turing.library.northwestern.edu/citation.
cfm?id=1592761.1592779.

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

https://doi.org/10.1037/edu0000337
https://doi.org/10.1016/j.ijcci.2021.100279
https://doi.org/10.1109/LaTICE.2018.000-5
https://doi.org/10.1145/570907.570910
https://doi.org/10.1016/S0959-8022(96)00024-0
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1145/2960310.2960316
https://ies.ed.gov/ncee/wwc/PracticeGuide/1
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/3408877.3432444
http://portal.acm.org.turing.library.northwestern.edu/citation.cfm?id=1592761.1592779

42:20 Y. Kao et al.

[94] Lindsey E. Richland and Ian M. McDonough. 2010. Learning by analogy: Discriminating between potential analogs.
Contemporary Educational Psychology 35, 1 (2010), 28–43.

[95] Frank E. Ritter, Farnaz Tehranchi, and Jacob D. Oury. 2018. ACT-R: A cognitive architecture for modeling cognition.
Wiley Interdisciplinary Reviews: Cognitive Science 10, 3 (2018), e1488. https://doi.org/10.1002/wcs.1488

[96] Bethany Rittle-Johnson, Jon R. Star, and Kelley Durkin. 2009. The importance of prior knowledge when comparing
examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology

101, 4 (2009), 836.
[97] Anthony V. Robins, Lauren Margulieux, and Briana B. Morrison. 2019. Cognitive sciences for computing education.

In Proceedings of the Cambridge Handbook of Computing Education Research. Sally A. Fincher and Anthony V. Robins
(Eds.). Cambridge University Press, Cambridge, UK, 231–275.

[98] Doug Rohrer, Robert F. Dedrick, and Sandra Stershic. 2015. Interleaved practice improves mathematics learning.
Journal of Educational Psychology 107, 3 (2015), 900.

[99] Benjamin M. Rottman, Dedre Gentner, and Micah B. Goldwater. 2012. Causal systems categories: Differences in
novice and expert categorization of causal phenomena. Cognitive Science 36, 5 (2012), 919–932.

[100] D. Saito, H. Washizaki, and Y. Fukazawa. 2016. Analysis of the learning effects between text-based and visual-based
beginner programming environments. In Proceedings of the 2016 IEEE 8th International Conference on Engineering

Education. 208–213. DOI: https://doi.org/10.1109/ICEED.2016.7856073
[101] Igor Moreno Santos, Matthias Hauswirth, and Nathaniel Nystrom. 2019. Experiences in bridging from functional to

object-oriented programming. In Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E - SPLASH-E 2019.
ACM, Athens, Greece, 36–40. DOI: https://doi.org/10.1145/3358711.3361628

[102] Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and subsequent programming languages: A problem
of transfer. International Journal of Human-Computer Interaction 2, 1 (1990), 51–72. Retrieved from http://www.
tandfonline.com/doi/abs/10.1080/10447319009525970.

[103] J. Scholtz and S. Wiedenbeck. 1991. Learning a new programming language: A model of the planning process. In
Proceedings of the 24th Annual Hawaii International Conference on System Sciences. 3–12. DOI: https://doi.org/10.
1109/HICSS.1991.183956

[104] Jean Scholtz and Susan Wiedenbeck. 1993. Using unfamiliar programming languages: The effects on expertise. Inter-

acting with Computers 5, 1 (1993), 13–30. DOI: https://doi.org/10.1016/0953-5438(93)90023-M
[105] Carsten Schulte. 2008. Block Model: An educational model of program comprehension as a tool for a scholarly

approach to teaching. In Proceeding of the 4th International Workshop on Computing Education Research - ICER’08.
ACM, Sydney, Australia, 149–160. DOI: https://doi.org/10.1145/1404520.1404535

[106] Ben Shneiderman and Richard Mayer. 1979. Syntactic/semantic interactions in programmer behavior: A model and
experimental results. International Journal of Computer & Information Sciences 8, 3 (1979), 219–238. DOI: https://doi.
org/10.1007/BF00977789

[107] Nischal Shrestha, Titus Barik, and Chris Parnin. 2018. It’s like python but: Towards supporting transfer of program-
ming language knowledge. In Proceeding of the 2018 IEEE Symposium on Visual Languages and Human-Centric Com-

puting. IEEE, Lisbon, 177–185. DOI: https://doi.org/10.1109/VLHCC.2018.8506508
[108] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here we go again: Why is it difficult for de-

velopers to learn another programming language?. In Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering. ACM, Seoul South Korea, 691–701. DOI: https://doi.org/10.1145/3377811.3380352
[109] Elliot Soloway and James C. Spohrer. 1988. Studying the Novice Programmer. Taylor & Francis Group.
[110] James W. Stigler and Karen B. Givven. 2017. Online learning as a wind tunnel for improving teaching. In Proceeding

of the Improvement Science in Evaluation: Methods and Uses. New Directions for Evaluation, C. A. Christie, M. Inkelas,
and S. Lemire (Eds.), Vol. 153. 79–91. Retrieved from https://uclatall.com/.

[111] James W. Stigler, Ji Y. Son, Karen B. Givvin, Adam B. Blake, Laura Fries, Stacy T. Shaw, and Mary C. Tucker. 2020.
The better book approach for education research and development. Teachers College Record 122 (2020), 32 pages.
Retrieved from https://uclatall.com/.

[112] Nour Tabet, Huda Gedawy, Hanan Alshikhabobakr, and Saquib Razak. 2016. From alice to python. introducing text-
based programming in middle schools. In Proceedings of the 2016 ACM Conference on Innovation and Technology

in Computer Science Education - ITiCSE’16. ACM, Arequipa, Peru, 124–129. DOI: https://doi.org/10.1145/2899415.
2899462

[113] Allison E. Tew. 2010. Assessing Fundamental Introductory Computing Concept Knowledge in a Language Independent

Manner. Ph.D. Dissertation. Atlanta, GA. Retrieved from http://hdl.handle.net/1853/37090.
[114] Ethel Tshukudu and Quintin Cutts. 2020. Semantic transfer in programming languages: Exploratory study of relative

novices. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education. ACM,
Trondheim Norway, 307–313. DOI: https://doi.org/10.1145/3341525.3387406

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

https://doi.org/10.1002/wcs.1488
https://doi.org/10.1109/ICEED.2016.7856073
https://doi.org/10.1145/3358711.3361628
http://www.tandfonline.com/doi/abs/10.1080/10447319009525970
https://doi.org/10.1109/HICSS.1991.183956
https://doi.org/10.1016/0953-5438(93)90023-M
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1007/BF00977789
https://doi.org/10.1109/VLHCC.2018.8506508
https://doi.org/10.1145/3377811.3380352
https://uclatall.com/
https://uclatall.com/
https://doi.org/10.1145/2899415.2899462
http://hdl.handle.net/1853/37090
https://doi.org/10.1145/3341525.3387406

From One Language to the Next 42:21

[115] Ethel Tshukudu and Quintin Cutts. 2020. Semantic transfer in programming languages: Exploratory study of relative
novices. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education.

Association for Computing Machinery, New York, NY, 307–313. DOI: https://doi.org/10.1145/3341525.3387406
[116] Ethel Tshukudu and Quintin Cutts. 2020. Understanding conceptual transfer for students learning new programming

languages. In Proceedings of the 2020 ACM Conference on International Computing Education Research. 227–237.
[117] Ethel Tshukudu and Siri Annethe Moe Jensen. 2020. The role of explicit instruction on students learning their second

programming language. In Proceedings of the United Kingdom & Ireland Computing Education Research Conference.

ACM, Glasgow United Kingdom, 10–16. DOI: https://doi.org/10.1145/3416465.3416475
[118] Amos Tversky. 1977. Features of similarity. Psychological Review 84, 4 (1977), 327.
[119] A. Von Mayrhauser and A. M. Vans. 1995. Program comprehension during software maintenance and evolution.

Computer 28, 8 (1995), 44–55. DOI: https://doi.org/10.1109/2.402076
[120] Karen P. Walker and Stephen R. Schach. 1996. Obstacles to learning a second programming language: An empirical

study. Computer Science Education 7, 1 (1996), 1–20. DOI: https://doi.org/10.1080/0899340960070101
[121] David Weintrop. 2019. Block-based programming in computer science education. Communications of the ACM

62, 8 (2019), 22–25. DOI: https://doi.org/10.1145/3341221
[122] David Weintrop, Heather Killen, and Baker E. Franke. 2018. Blocks or Text? How Programming Language Modal-

ity Makes a Difference in Assessing Underrepresented Populations. International Society of the Learning Sciences,
Inc.[ISLS].

[123] D. Weintrop and U. Wilensky. 2015. Using commutative assessments to compare conceptual understanding in blocks-
based and text-based programs. In Proceedings of the 11th Annual International Conference on International Computing

Education Research. ACM, New York, NY, 101–110. DOI: https://doi.org/10.1145/2787622.2787721
[124] D. Weintrop and U. Wilensky. 2017. Between a block and a typeface: Designing and evaluating hybrid programming

environments. In Proceedings of the 2017 Conference on Interaction Design and Children. ACM, New York, NY, 183–192.
DOI: https://doi.org/10.1145/3078072.3079715

[125] David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based programming in high school com-
puter science classrooms. ACM Transactions on Computing Education 18, 1 (2017), 3. DOI: https://doi.org/10.1145/
3089799

[126] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-based and text-based environ-
ments to professional programming languages in high school computer science classrooms. Computers & Education

142 (2019), 103646. DOI: https://doi.org/10.1016/j.compedu.2019.103646
[127] Mark Weiser and Joan Shertz. 1983. Programming problem representation in novice and expert programmers. Inter-

national Journal of Man-Machine Studies 19, 4 (1983), 391–398.
[128] Susan Wiedenbeck. 1993. An analysis of novice programmers learning a second language. In Proceeding of the Empir-

ical Studies of Programmers: 5th Workshop: Papers Presented at the 5th Workshop on Empirical Studies of Programmers,

December 3-5, 1993, Palo Alto, CA. Intellect Books, 187.
[129] Quanfeng Wu and John R. Anderson. 1990. Problem-solving Transfer among Programming Languages. Technical Re-

port. Carnegie Mellon University. Retrieved from https://apps.dtic.mil/sti/citations/ADA225798.

Received 14 January 2021; revised 16 November 2021; accepted 17 December 2021

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 42. Publication date: November 2022.

https://doi.org/10.1145/3341525.3387406
https://doi.org/10.1145/3416465.3416475
https://doi.org/10.1109/2.402076
https://doi.org/10.1080/0899340960070101
https://doi.org/10.1145/3341221
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/3078072.3079715
https://doi.org/10.1145/3089799
https://doi.org/10.1016/j.compedu.2019.103646
https://apps.dtic.mil/sti/citations/ADA225798

