TOWARD A DYNAMIC FEEDBACK THEORY OF

OPEN ONLINE COLLABORATION COMMUNITIES

by

Vedat G. Diker

A Dissertation
Submitted to the University at Albany, State University of New Y ork
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

School of Information Science and Policy
Information Science
2003

Toward a Dynamic Feedback Theory of

Open Online Collaboration Communities

by

Vedat G. Diker

COPYRIGHT 2003

ABSTRACT

This study posits a theory of open online collaboration communities in the form
of a dynamic feedback framework and provides implications about the potential
consequences of policy interventions for improving the performance of such
communities. The study was carried out in three phases. During the first phase, severa
theoretical approaches were integrated to build a dynamic feedback model of a
hypothetical open source software development community. The second phase involved
the administration and analysis of a series of interviews with the members of an actual
instructional material development community, in order to test the applicability of a
generalized version of the open source software development model and its implications
to that specific community. In the third phase, the implications of te initial model and
the findings of the interviews were integrated to posit a theory of open online
collaboration communities, in the form of a dynamic feedback framework. The study
provided theoretica and practical implications about open online collaboration
communities, and thus, contributed to several streams of literature, generated critical
insights for managing open online collaboration communities, and laid a foundation for a

variety of potential future research studies.

TABLE OF CONTENTS

N S N AN O RS iii
ACKNOWLEDGMENTS ...ttt st nne e iX
CHAPTER 1-- INTRODUCTION AND RESEARCH PURPOSE.........c.ccccvviiveecen, 1
CHAPTER 2 -- PROBLEM BACKGROUND AND LITERATURE REVIEW......... 9
2.1, ONliNE COMIMUNITIEScueiviiiirieieie ettt sttt sb e b ens 9
2.2. Defining Open Online Collaboration COMMUNItIESc.ccvevevieereece e 13
2.2.1. A Working Definition of Open Online Collaboration Communities.............. 13
2.2.2. Positioning Open Online Collaboration Communities...........cccoceeveeeeneeneene 13
2.2.3. Characteristics of Open Online Collaboration Communities............cccuen..... 14
2.3. Theoretical Approaches to the Study of Online Communities..........cccocevververnnene. 16
2.3.1. GIft ECONOIMIES ..ottt sttt st sne et e sre e 16
PG I o ¥ o] o €To oo S J SRR 20
2.3.3. SOCIAl NEIWOIKS ..ottt b 25
2.3.4. SOCIAl INFOIMELICSveveteriesiieiieeeee ettt bbb 28
2.4. System Dynammics Approaches to Software Project Management...........cccceeeee. 32
2.5. System Dynamics Approaches to Instructional Material Development 36
2.6. Problem Statement and Dynamic Hypothesis.........c.cocvveveece e 38
CHAPTER 3-- METHODOL OGY ...ccooiiiriirieieiesieneeesie e 61
G I O Y o= SRR 61
3.2. SYSIEM DYNAIMICS......eeiiieiiiitieie et sttt st sae e s neenbeeneesnee e 62
3.3, SHUCTUIEO INEEIVIEWS......eevirierieeie ettt b e b nreas 66
R (=S s ot T D L= ' o 1 67
3.4.1. Analysis and Modeling of Open Source Software Development 68
3.4.2. Interviews with the Members of an Instructional Material Development
(@0 1010 011 11 Y S 69
T Ny I o o U = 1 o o OSSPSR 69
3.4.2.2. Sample Method and Rationale.............ccooeriieinenieneeseeee e 72
3.4.2.3. Data COlBCHION ..ottt ne s 74
3.4.2.4. Interview Dala ANalYSIS......ccceiieieeesieste et eee e ste e nnens 80

3.4.3. Development of a Genera Dynamic Feedback Framework for Open Online

Collaboration COMMUNITIES........coiiiierierieeie ettt reeee e se e 80
CHAPTER 4 -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL 82
4.1. Process of Building the OSSD MOdEL...........ccceoveeiieniceseee e 82
4.2. Iteration |2 FUNCHIONAIITYcoveeiieie e e 82
4.3. Iteration 11: Adding TIME PrESSUIEccueeiueiiirieeieeee et 123
4.4, Iteration [1: Adding QUAIITYocveeiieeieciee e 153
4.5, Iteration 1V: Adding Developer Talent..........ccooveveeeeeveeneceseere e 198
4.6. Iteration V: Adding Barriers to Entry and Contribution.............cccoceveiininnennee. 220
CHAPTER 5-- MODEL TESTING AND ANALYSIS......oo oo 249
5.1. Model Testing and ANalySiS OVEIVIEW...........ccveieeeereerieseesieesee e sieeeesseesseseens 249
5.2. BASE-CASE RUN ..ot 250
5.3. Extreme Condition RUNS..........c.ooeiiiiiiieie et sae e 254
5.3.1. NO DEVEIOPEIS.....coiiiiiiieiieeie sttt sttt 255
5.3.2. NO LEAOENS.cueeteeeeeiesiee sttt sttt neas 258
5.3.3. NO PartiCIPantS........ccceiieieeieseeseeis et e ee et sae e neeee e nns 261
5.3.4. NO Developer PartiCipalion...........cocuieerieriieneeseeiee e ses e 264
R oI N\ (ol == ot o= 1 o o PSP 266
5.3.6. Extremely High PartiCipation...........cccevveieieeseeie e 269
SRCI A= (o = (00 [UTox 1AV, 1 YU 272
5.3.8. Extremely High ProduCHIVILYccccoeeeiiriiiieieeeseeeeee e 275
5.3.9. Zero BUgQ GENEIAiON......coiueiiiiiierieeie sttt st 278
5.3.10. Extremely High Bug Generation.............ccceveereeieesieeneeieseesee e seesee e e 283
5.3.11. Implications of the Extreme Condition RUNS...........ccccceeeveereeieseereceeee 286
5.4, SENSILIVITY RUNS ..ottt sttt sneenae e 286
5.4.1. Average Developer PartiCipation............cooeveerenieeseeniesie e sie e 287
5.4.2. Average Developer ProdUCHIVITY........cceiveeeieeseeie e 294
5.4.3. Bug Generating Rate NOrmMalccccoeevireieieereeie e 300
5.4.4. Normal Time to Attract DeVElOPErS.......ccoovveeierereree e 305
5.4.5. Normal Time for Developersto LEaVveccoveeereenienie e 308
5.4.6. Normal Time t0 AttraCt USENS.......ccoiiiiririireninerereeee e 313

S5.4.7. REFUSAl RELIO.........ceiieiiiitiiieeiee et 316

5.4.8. RGECHON RANO.....cueiiiieieiieie ettt et 321
5.4.9. Implications of the Sensitivity RUNS...........cccccevirienieeseee e 325
5.5, POIICY RUNS ..ottt sttt e et e e sneennennneas 327
5.5.1. Higher Barriersto ENtrY.......ccooeoreiineeieee e 327
5.5.2. Higher Barriersto Contribution............cccooeveiiniineneee e 332
5.5.3. Higher Barriers to Entry and Contributioncccccevveceveenesceseene e 338
5.5.4. Higher Debugging EMPNaSsiS........ccccuvieiieieiiere e 342
5.5.5. Higher Coaching EMPhasiS........cocveiriiiiniinieree e s 346
5.5.6. Higher Debugging and Coaching EmMphases..........ccccoveeeneenenieneenieseee 350
5.5.7. Higher Barriers to Entry, and Higher Debugging and Coaching Emphases. 354
5.5.8. Higher Barriers to Contribution and Higher Debugging Emphasis.............. 359
5.5.9. Implications of the POlICY RUNScccieiiiieiieeeeee e 363
5.6. Analysis of Bifurcation BENAVIONcocireireriienieneese e 366
CHAPTER 6 -- INSTRUCTIONAL MATERIAL DEVELOPMENT - THE CASE
OF SYSTEM DYNAMICSK THROUGH 12 COMMUNITY ..ot 395
6.1. ANalySIS Of the INtEIVIEWS........ooiiiieeee e 395
6.2. ANAIYSIS Of tNE LOOPSuveiveeieeiesiiesiee ettt sttt nne e 397
6.2.1. Reinforcing Loop 3 (“More Functionality Attracts More Authors’)............ 397
6.2.2. Reinforcing Loop 2 (“More Functionality Attracts More New Users, and That
Attracts More New DeVEIOPENS™)oouiiieriee e 400
6.2.3. Balancing Loop 1 (* Fewer Opportunities for Contribution Bring Fewer
U110 PSS 403
6.2.4. Balancing Loop 4 (“More Errors Bring Fewer Authors’)cccoveveveeeennen. 406
6.2.5. Balancing Loop 5 (*More Errors Bring Fewer Users, and Fewer Authors’)409
6.3. Analysis Of the POlICY OPLIONS.........ccoueiiiiieeieeesee e s 412
6.3.1. Tension between Building Functionality and Maintaining Quality as the
Underlying POliCY ProblemML...........cooiii e 412
6.3.2. Policy Option 1: Filtering New Materialcccoceveeienenenienee e 415
6.3.3. Policy Option 2: Reviewing and Editing Existing Materialcccc...... 420
6.3.4. Policy Option 3: Selecting New Inexperienced AUthOrs..........ccccveveveeeeenen. 424

Vi

6.3.5. Policy Option 4: Coaching Existing Inexperienced Authors..........c.cccceeuue. 428

6.3.6. Comparing the POlICY OPLiONS.........ccccoiiriiiieeree e 432
6.4. Implications for the General Dynamic Feedback Framework...........c..cccccevuenen. 435
CHAPTER 7 -- A GENERAL DYNAMIC FEEDBACK FRAMEWORK FOR
OPEN ONLINE COLLABORATION COMMUNITIES......cccceiieeeiee e 437
7.1 ThE FrAMEWOIK ..ottt sttt sre e e 437
7.2. Strengths and Limitations of the Study..........ccccveeerierieiie e 454
7.2.1. Strengths of the SEUAYc.eceeciee e 454
7.2.2. Limitations Of the SEUAY........ccceiiriiiieieeereeie e 456
7.3. Contributions of the StUAYcociiir e 462
7.3.1. Contribution to Related LIteratures..........coovvererenereneeeesiesie s 462
7.3.2. IMplicationS fOr PraCtiCe.........cceoveeeeieere e s se e 468
7.3.3. Topicsfor Future Research StUdIES..........ccoveeieieeneeeeeeee e 471
T4, CONCIUSION ...ttt et s b et et e b e et e eneesaeenaesneeas 474
APPENDIX A -- INTERVIEW PROTOCOL AND RELATED DOCUMENTS....475
AL Initial E-mail REQUESLecieceee ettt e 475
A.2. FOllOW UP E-Mail MESSAgES.......oiueiiiiiiiiieieeie et 476
A.3. Interview Packet COVEr LEENcccooiiiieiieie e 478
A.4. Participation in Research Consent FOrM...........ccovveiiiieenecie e 479
A.5. Reference Mode WOrKShEEL..........ccoiiiiiiriceee e 481
ALB. MOOEl SKEICNES ..o e 482
A.T7. INErVIEW ProtoCOl (SCIPL)....eeeeereeereereeeieerie et 509
APPENDIX B -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL
(ITERATION V VERSION) EQUATIONS AND SECTOR VIEWS.........ccccvnuneee. 520
B.1. Model Equations (Iteration V VErSION)coceeeererrieneeneesie e 520
B.2. Model Sector Views (Iteration V Version) Developers and Production Sector537
LS S o (o PP 538
QUEIITY SECLONeeuveeeiesieesieeee st ettt te e st e e e e esaeeeesreesseeneesseesseensesneessennenns 539
S gL gTo TS o (o TSR 540
Developer Talent and Coaching SECLONccoiiriiiieieeee e 541
Developer Time AllOCaLioN SECLONccvevieiiereee et 542

vii

(IS0 < GRS < ¢ (0] (TR

REFERENCES

viii

ACKNOWLEDGMENTS

Many individuals contributed to this study directly and indirectly. Most important
of al, | am grateful to my advisors David F. Andersen, George P. Richardson, Deborah
L. Andersen and R. Karl Rethemeyer for guiding me through the many stages of my
dissertation and enabling me to earn my degree. David has been a very significant figure
in my life since | started my doctoral study in Albany. He helped me with all sorts of
problems, big and small, be it academic, personal or financial. George is the most skilful
modeler and teacher | have ever met. | believe | had the privilege of being taught by
excellent teachers throughout my life, and George was an excellent final note, who has
become one of my role models as an educator. Deborah taught me a lot about empirical
research and helped me build slid socia research skills. She was an extremely patient
reviewer of the numerous drafts of this dissertation, and taught me how to “see one, do
one and teach one.” Karl helped me with finding my way in the academic job market, as
well as guiding me through the literature review and the model-based interview
development stages of this study. His guidance has had tremendous impact on my career

choices.

| am grateful to Roberta L. Spencer, my former boss and my friend, for helping
me tremendously with all the aspects of my life since | met her more than six year’s ago
in Istanbul. She was the best boss ever, and will stay a very special friend. | also would
like to thank Jennifer I. Rowe, Robin S. Langer and Joan M. Yanni of the System

Dynamics Society for their friendship and support throughout the years.

Many fellow students and graduates of the Information Science and Public

Administration doctoral programs have contributed to this dissertation. | am thankful to

Michael A. Deegan, Hassan S. Dibadj, Luis F. Luna-Reyes, Roderick H. MacDonald,
Ignacio J. Martinez-Moyano, Mohammad T. Mojtahedzadeh, Nandhini Rangarajan, Eliot
H. Rich, Hans J. Scholl, Silvia Ulli-Beer, Aldo A. Zagonel-Dos Santos and many others
for their ideas, suggestions and personal support during my study. They made Albany a
fun place to stay. A very specia thanks goes to Luis F. Luna-Reyes for helping me with
the technical details of submitting my dissertation, anong many other things. Not many
friends would do the things he did for me. Also, a specia thanks to Hans J. Scholl for
“initiating” me with the open source idea, which finaly gave way to my dissertation

topic.

| also would like to thank the members of the system dynamics K-12 community
who kindly agreed to participate in the interviews and helped me in gathering crucial

information about their community.

| am also grateful to my father Omer Diker and my mother Ozden Diker for
raising me to be the person | am. | am particularly thankful to my father for flying
thousands of milesto be with me and help me during the final stages of my study and my
trangition -- and | am thankful to my mother for agreeing to send him over for three
months. | am aso thankful to my sister Nur O. Eruzel for being one of the best friendsin

my life.

Last, but definitely not the least, | am forever thankful to my dear wife Zeynep
Diker and my precious little son Omer F. Diker. They helped me through the frustrations
and the occasional gloom that necessarily accompany working on a dissertation. They

had to sacrifice a lot so that daddy could work. Zeynep, here is another step in our

journey together; let’s hope it takes us to the place we want to be. And Omer, | hope my

accomplishment becomes a foundation for many more by you.

Xi

CHAPTER 1-- INTRODUCTION AND RESEARCH PURPOSE

The foundation of this dissertation was laid in early 1999, when | started working
on a term project with Jochen Scholl, a fellow graduate of the University at Albany’s
Interdisciplinary Doctoral Program in Information Science. Jochen and | were first year
students in the doctoral program and we were looking for an interesting problem to model
as our term project for an intermediate level system dynamics course taught by George
Richardson. 1999 was the year of “DOJ vs. Microsoft”, arguably the most critical
monopoly case in the history of software industry. It did not take us too long to pick the
cutthroat competition in PC operating systems market as our project topic. After some
preliminary research, we concluded that we should build the model around the
competition between Microsoft’s Windows operating system and the competitor product
that poses the greatest threat to Windows market share: Linux. In our project report and
the two conference papers that followed it we argued that Linux was the only imminent
rival to Windows that could break Microsoft’'s vicious market cycle that could be
summarized as “|leverage applications with operating system -- leverage operating system
with applications.” We argued that Linux had the potential to break that cycle due to
being an open source software project, which was not driven by market share or revenue

(Diker and Scholl 1999, Diker and Scholl 2001).

| loved the experience of working on the operating systems market model. The
dynamics in the operating systems market were quite interesting. However, | soon
concluded that the dynamics of open source software development itself were even more
interesting. In less than a year, | knew that my dissertation would involve open source

software development phenomenon in one way or another. What fascinated me most

about open source software development was the idea that there were thousands of
people ready and willing to write software for free -- an activity which brought some
other people six-digit salaries. As | continued to read cases in open source software
development, | began to identify certain dynamics, which | believed were responsible for
making open source software projects succeed or fail. | concluded that | could make a
contribution to the theory and practice of open source software development by
identifying those dynamics and the ways to leverage them in order to increase the

performance of open source software communities.

While my interest in open source software development was growing deeper, my
advisor David Andersen suggested to me that | study as a potential dissertation topic a
community of teachers and researchers working on developing instructional materials to
introduce systems thinking and system dynamics concepts to K through 12 students. The
community was making efforts to use the Internet for engaging a wider audience in its
instructional material development and dissemination activities. Because | have interests
in both educational issues and Internet applications, | liked David’sidea quite alot. When
| started my preliminary study about the community, | thought that what they were doing
was in many ways similar to what open source software developing communities were
doing. Here was a group of people using the Internet to work collaboratively on
developing and disseminating a freely available information product without direct

financial compensation, and with the option of building on one another’ s work.

| started looking for a conceptual basis that would let me study open source
software development and collaborative instructional development through a single lens.

My search yielded two important findings. First, | found that there were many other

communities using the open source model to develop and disseminate a variety of
information products. | heard and read about concepts like Internet-based collaborative
authoring and collaborative music making. These were basicaly newly emerging
concepts that had not become academic research topics, and in al honesty, not all of
them looked promising and convincing at first sight. However, some of them, such as
collaborative instructional development seemed to hold a potential for shaping the way
we will build, disseminate and access content in the near future. In particular, open
source software development and collaborative instructional material development
approaches seem to hold a considerable potential for combining the voluntary
contributions of thousands of people and putting the outcome to the use of al the people
on the world. If this vision becomes a redlity, it can make a tremendous difference for all

mankind.

My second finding was the concept of online communities, which seemed fit to
define both open source software communities and instructional development
communities. In the general sense, an online community is a somewhat structured group
of people sharing work, ideas, or other aspects of life in Internet-based environments,
such as newsgroups, mailing lists, and message boards. An online community may
consist of employees of a corporation, customers of a company, members of a society, or
any group of people that shares a common interest in collaborating on the Internet around
a certain aspect of their lives (Williams and Cothrel 2000). Online communities have
recently attracted attention from both the academic and the corporate world (Preece 2000
pp.6-8). Online communities appeared soon after the Internet came into mainstream use

and have spread together with the Internet.

As | studied online communities, | concluded that both open source software
communities and instructional development communities could be defined as online
communities, which are formed by loosely connected groups of people using the Internet
as a medium for carrying out collaborative projects for developing and disseminating a
variety of information products such as software, instructional materials, reports,
presentations and multimedia files. This type of online community generally involves
little or no barriers to entry and contribution. The information products produced by the
members of the community are generally open for use and modification by anybody. |
refer to such communities as “open online collaboration communities’” throughout this

dissertation.
Research Purpose

The open source model and open online collaboration communities may
dramatically change the way we developed, disseminate and access digital content in the
near future. However, the dynamic interactions between the determinants of success in
open online collaboration communities such as barriers to entry, motivation,
participation, collaboration and the quality of products, have not been fully explored and
theorized. The stakeholders in such projects do not have the means to test policies to
improve performance. Instead, they rely on a combination of personal experience,

intuition and anecdotal guidelines derived from the experiences of other, similar projects.

As an example, the nature and level of motivation of contributors in an open
online collaboration community appears to be an important driving factor behind the
community’s growth and overall success. Accordingly, the leaders of an open online

collaboration community might be able to steer their community to success by managing

the motivations of the contributors in an educated manner. However, it is not al that
obvious what would motivate or turn off contributors in an open online collaboration
community setting. Theoretical approaches provide vague or contradicting implications
about motivations factors in online communities, which makes it hard to develop
hypotheses about this factor. For example, based on the literature, we can argue that as
the collection or the product that is developed by an open online collaboration
community matures, contributors would be more motivated to participate in development.
We can also argue, again based on the literature, that as the collection or the product
matures, contributors would be less motivated due to decreasing opportunities for making
contributions. In fact, both of these arguments may hold for some open online
collaboration communities. The relationship between the quality of the collection or the
product, and the motivation level of the contributorsis not clear either. We can argue that
contributors would be more motivated to work on a product that they considered to be of
high quality, since they would want to be among the developers of areputable product.
On the other hand, contributors may be motivated more to contribute when they observe
that the quality of the product is low and their help is needed to make it better. Obvioudly,
more theoretical and empirical research is needed to learn about open online

collaboration communities, and how they can be made more successful.

One important reason for the existing void in the literature about open online
collaboration communities is that such communities have not been studied as a distinct
type of online communities. The general approach in the literature, as will be seen in the
literature review section, is either to study online communities as a homogenous group,

or to study just alimited group of communities that would fall into the definition of open

online collaboration communities, as in the case of open source software development

communities.

As a consequence of all these considerations, this study has two main research

purposes:

1) to develop and establish a definition of open online collaboration
communities, supported by a dynamic feedback framework that is
applicable to arange of open online collaboration communities,

2) to outline and analyze severa policy options for improving the
performance of open online collaboration communities.

Structure of the Sudy

This study analyzed and modeled a hypothetical case within the definition of open
online collaboration communities, and tested the applicability of the model to an
instructional material development community case, in order to posit a theory of open
online collaboration communities in the form of a dynamic feedback framework. The
study integrated several theoretical approaches to the study of online communities. A
review of online communities and open source software development literatures provided
implications for building an initial dynamic feedback simulation (system dynamics)
model of a hypothetical open source software development community. Implications of
severa studies that had applied system dynamics to software project management were

also used in developing the initial model.

The initial open source software development (OSSD) model was simulated under

different external conditions and policy options in order to test whether it exhibited

plausible behavior for a wide range of parametric conditions, and to observe the potential
consequences of different approaches to improving the system performance. The model
and its implications were also tested for applicability to a wider range of open online
collaboration communities through a series of interviews with the members of an actual

instructional material devel opment community.

The implications of the initial model and the findings of the interviews were
integrated to build a dynamic feedback framework, which serves as a theoretica
foundation for studying phenomena related to open online collaboration communities.
The dynamic feedback framework has the potential for being further developed into a
dynamic feedback simulation model, which would serve as a platform for testing the
consequences of different external conditions and policy optionsin awider range of open
online collaboration communities. The framework can also be used as a theoretical basis
for developing and articulating hypotheses for empirical studies on open online

collaboration communities.

The study contributed to online communities, open source software development
and system dynamics literatures. It also provided critical implications for practice,
including the potential consequences of severa policy options for improving the
performance of open online collaboration communities in terms of product quality,
product functionality, community growth and participant talent. The study aso laid out a
variety of topics for potential future research studies, including both theoretical and

empirical ones.

This dissertation is organized as follows: This chapter introduces the study and

sets forth the research purposes. Chapter 2 defines open online collaboration communities

as aspecial type of online communities, summarizes the findings of the literature review,
and introduces a dynamic hypothesis based on these findings. Chapter 3 introduces the
methods used in this study and discusses the research design. Chapter 4 introduces a
system dynamics model of a hypothetical open source software devel opment community.
Chapter 5 summarizes the tests and analyses done on the open source software
development model. Chapter 6 discusses the findings of a series interviews done with the
members of an instructional material development community in order to test the
applicability of the initial system dynamics model and its implications to other open
online collaboration communities. Chapter 7 introduces a dynamic feedback framework
for studying open online collaboration communities, which was based on the implications
of the initial system dynamics model and the interviews, and discusses the contributions

of this study, together with potential future research opportunities.

The next chapter introduces the concept of open online collaboration communities
and summarizes the findings of the literature review. The dynamic hypothesis that led to

the initial open source software development model is also introduced in the next chapter.

CHAPTER 2 -- PROBLEM BACKGROUND AND LITERATURE

REVIEW
2.1. Online Communities

The emergence of online communities is a phenomenon that has attracted
attention from both the academic and the corporate world over the last ten years. Online
communities appeared soon after the Internet came into mainstream use, and have spread
together with the Internet. There are many definitions of an “online community,” and
each of these definitions draws a conceptual boundary that includes certain online
communities and excludes others (Preece 2000 pp.8-17). In the general sense, an online
community is a somewhat structured group of people sharing work, ideas, or other
aspects of life in Internet-based environments, such as newsgroups, mailing lists or
message boards. An online community may consist of employees of a corporation,
customers of a company, members of a society, or any group of people that shares a
common interest in collaborating on the Internet around a certain aspect of their lives

(Williams and Cothrel 2000).

There have been severa attempts to classify online communities. Hagel and
Armstrong (1997 pp.18-23) suggested a classification based on the needs of the

community members:

(1) Communities of interest: These are online communities whose members are
gathered around a topic of shared interest or expertise that they discuss, such as Usenet

groups.

(2) Communities of relationship: These communities bring together people with
similar experiences and personal agendas to build relationship and share their experiences

about the relevant topic.

(3) Communities of fantasy. These are communities where people come together

to play and entertain within a virtual world, such as multi- user dungeons.

(4) Communities of transaction: These are communities of people that come
together to perform economic exchange and produce economic value, such as business-

to-business market communities.

Hagel and Armstrong’'s need-based criteria approach is a very broad way of
classifying online communities. Although it can be useful for classifying online
communities for certain purposes, it is not the only possible classification approach.
Other researchers suggested more detailed classification schema, using multiple criteria

asthe basis for classification.

Lazar and Preece (1998) suggested a list of four classification criteria for online

communities. The authors argue that online communities can be classified based on:

(1) Attributes: This classification criterion is somewhat similar to Hagel and
Armstrong’s (1997) need-based classification. Some of the attributes Lazar and Preece
(1998 pp.84-85) suggested are existence of a shared goa or interest among the members,
intense interaction and emotional ties between members, existence of shared activities,
and support between members. Lazar and Preece suggested two other important
attributes, namely the population size of the community, and existence of socia

conventions, language and protocols. They quoted Gates, arguing that the value of an

10

online community for its members increases as the population size increases (Gates
1995). They aso quoted Reid’'s (1996) argument that an online community should have

social conventions so that the members can communicate as they intend.

(2) Supporting Software: This criterion is based on the premise that the software
used to facilitate interaction between the members affects the community to the point of
shaping it. Lazar and Preece mentioned listservs, newsgroup software, bulletin boards,
Internet Relay Chat (IRC) and multi-user dungeon software (MUD) as examples for
community supporting software; however, they did not give an explicit classification of

communities based on supporting software (1998 pp.85).

(3) Relationship to Physical Communities: Online communities can be classified
into three subsets based on this criterion. (i) Those based on physical communities, such
as online communities that serve the people of specific towns or counties; (ii) those
somewhat based on physical communities, such as the members of a professional society
who meet infrequently in a physica manner at conventions, and conferences; and (iii)

those not related to any physical community (1998 pp.85-86).

(4) Boundedness: This criterion is based on the proportion of socia relationships
exclusively between the community members, and social relationships with people from
outside the community. According to this criterion, in atightly bounded community most
of the socia relationships take place anong the members of the community as opposed to
a loosely bounded community, in which most of the social relationships take place

between the members and the outsiders (1998 pp.86).

11

An aternative classification based on the purpose of the community and the types
of transactions required to realize that purpose was suggested by Stanoevska-Slabeva and

Schmid (2001):

(1) Discussion communities: These online communities are formed in order to
facilitate information exchange on a specific topic (2001 pp.5). Discussion communities

can be further divided into four sub-classes (2001 pp.5-6):

() Person-to-person discussion communities bring people together to

build direct relationships with other members.

(b) Topic-oriented discussion communities are formed to let members
discuss openly about a specific topic.

(c) Communities of practice emerge from within a specific organization in

order to facilitate know-how exchange.

(d) Indirect discusson communities provide more indirect discussion
among members, such as book or movie review sites, (e.g., amazon.com,

imdb.com.)

(2) Task-and-goal -oriented communities: These are online communities which are
formed in order to achieve a common goal of the members (2001 pp.5). They can be

grouped into three within themselves (2001 pp.6-8):

(a) Transaction communities let members get together in order to carry out

economic transactions, such as auction sites.

(b) Design communities are formed in order to carry out a specific design

and production task collaboratively.

12

(c) Online learning communities are used for facilitating collaborative

online learning.

(3) Virtual worlds These communities provide a virtua environment for

interaction between members, such as online gaming communities (2001 pp.5).

(4) Hybrid communities: These communities combine several functions that fall in
different online community classes. An example would be an online auction site where
members buy and sell baseball memorabilia among themselves, and also discuss the
recent baseball matches on a bulletin board. This would be a hybrid transaction

discussion community (2001 pp.5).
2.2. Defining Open Online Collabor ation Communities
2.2.1. A Working Definition of Open Online Collaboration Communities

We now can develop a working definition of open online collaboration
communities that is appropriate for this study. The definition is developed in two stages.
First, open online collaboration communities are positioned within the overall body of
online communities according to the classifications discussed in the literature review.
Then the characteristics of open online collaboration communities are outlined in contrast

to other online communities and traditional collaboration communities.
2.2.2. Positioning Open Online Collaboration Communities

Open online collaboration communities fit in the definition of transaction
communities, based on Hagel and Armstrong’s classification. From Stanoevska-Slabeva
and Schmid's classification’s standpoint, they fall in the design communities sub-class

within the task-and-goal-oriented class. In fact, Stanoevska-Slabeva and Schmid

13

mentioned open source software development communities as an example for design
communities (2001). For the purposes of this study open online collaboration
communities are defined as “online communities that are formed by loosely connected
groups of people, who use the Internet as a medium for carrying out collaborative

projects for producing and improving awide range of information products.”

Probably the most widely known example that fits into the definition of open
online collaboration communities is the open source software movement. The open
source software movement is a collaborative software development model, which
involves online communities of computer programmers dispersed around the world.
These voluntary progammers use the Internet to collaboratively develop software
(O'Rellly 1999). Only a small fraction of these programmers gain direct tangible benefits
in return for their contributions. Most of the participating programmers are motivated by
indirect or intangible benefits, such as reputation among peers or a credential they can
add to their resumes (Raymond 2001). Despite the lack of monetary incentives, the open
source software movement has produced high quality free software that can compete with

leading proprietary software. An exampleisthe Linux operating system (Torvalds 1999).
2.2.3. Characteristics of Open Online Collaboration Communities

There are several characteristics that distinguish open online collaboration

communities from other online communities, and traditional collaboration communities;

Internet-aided: The most obvious characteristic of these communities is that they
are Internet-aided. The members of the community may use other media or face-to-face
meetings to communicate and collaborate. However, the main medium of interaction is

the Internet.

14

High number of participants These communities involve a higher number of
participants compared to those of their traditional, face-to-face counterparts. The number

of participants may vary substantially between open online collaboration communities.

Spatially (geographically) dispersed participants. A certain portion of the
participants may have face-to-face interactions, however the overall community is

gpatially dispersed.

High variation between expertise levels of participants. The expertise levels of

participants within a community may differ substantially.

Non-compensated participants Participants are amost never directly
compensated. However, in many communities, the maority of the participants have
paying jobs related to the topic of the community (Bezroukov 1999, Markus, Manville

and Agres 2000, Raymond 2001).

Very low barriers to entry and contribution: Most of these communities accept
contributions from anyone interested in participating in community activities. People can

join the community and submit their contributions quickly and easily.

Digital end products: The end products produced by the members of the
community are digital, and thus can be stored on digital media and can be dispersed via

the Internet.

Self-contained end products The end products are self-contained entities that can
be used outside of the context of the community, such as a computer program or areport.
This characteristic distinguishes open online collaboration communities from several

other kinds of online communities, such as discussion groups, chat groups or online game

15

groups. The “products’ of these communities, such as discussion threads, chat sessions,

and game sessions are useful only within the context of the community.

Open and free end products: The end products are “open” in the sense that their
sources are accessible; in certain cases to the point that they can be altered by other
participants and outsiders. They are generally free to use, at least for specific uses, such
as educational and non-profit applications. Project and product-specific licenses

determine the conditions and limits for end use and alterations.

Non-final end products The end products are ailmost never totally final, since
they can be altered, improved, extended, and integrated with other products by other

parties in the future.
2.3. Theoretical Approachesto the Study of Online Communities

The literature on online communities includes several theoretical perspectives.
Most of the attention seems to be focused on the motivational elements that drive people
to participate in online communities. Many authors have tried to explain the phenomena
of voluntary participation in online community-related activities as opposed to
conventional economic activity, where participation is compensated by tangible benefits.

This section summarizes those different theoretical approaches.
2.3.1. Gift Economies

Several authors suggested studying online communities through the concept of
“gift economies’ (Barbrook 1998, Ghosh 1998, Kollock 1999, Bays and Mowbray 2001).
Raymond (2001) argued that open source software development communities are gift

economies. Gift economies are based on “gift exchange” as opposed to “commodity

16

exchange.” (Gregory 1982, Bell 1991, Carrier 1991) Commodity exchange takes place as
an instantaneous exchange of products or services of equivalent value (Bourdieu 1997).
In modern economies, this generally occurs in the form of transferring products or
services in return for money. The parties that are involved in a commodity exchange do
not necessarily have a previous or future relationship other than the specific transaction
that takes place. On the other hand, gift exchange takes place between parties who have
an existing relationship, or are aming to build an ongoing relationship (Bell 1991,
Carrier 1991). Furthermore, a gift exchange is not instantaneous, in the sense that the gift
is not necessarily reciprocated by the giving of a “counter-gift” right away (Bourdieu
1997). However, the giving of a gift generally implies an unstated expectation of a

reciprocation at an indefinite time on the part of the giver (Carrier 1991).

Some authors argued that an inherent property of a gift isthat it istied to the giver
in an inalienable way, while “commodity” products or services exist and have a fixed
value for the buyer irrespective of who the seller was (Mauss 1990, Carrier 1991). Asan
example for inalienability, a watch presented by someone to his/her spouse as an
anniversary gift becomes “the watch which is a gift from my spouse”, instead of just “a
watch”, and thus would have a value beyond the value of an ordinary watch. However,
others argued that alienation is not a fundamental difference between gifts and
commodities (Bell 1991). Bell defined barter exchange as a form of gift exchange, and
argues that alienation is a distinguishing factor between “ceremonia gifts’ and “bartered
gifts,” rather than a distinguishing factor between gifts and commodities. From this
perspective, the watch in the previous example would still be linked to the giver in an

inalienable way, sinceit is a“ceremonial gift.” Bays and Mowbray (2001) drew parallels

17

between online communities and the example of a cookie barter between women, where
each woman bakes a different type of cookie and trades them with others so that each
woman has a variety of cookies. In this example the maker of each cookie would not be
an essential characteristic of the cookies, thus they would be “impersonal”; however, they
are till giftsin the sense that they are not commaodities that can be bought by anyone, but
instead exchanged between individuals who have on-going relationships. The argument
about the possibility of “impersonal gifts’ is important for using gift exchange as a
theoretical framework for online communities, since the “products’ or “services’
exchanged via online communities are generally of impersonal nature (Kollock 1999).
Including “inalienability” as an essential aspect of any gift would restrict the applicability

of the gift economies concept to online communities.

The impersonal characteristic is not the only intricacy encountered while applying
the gift concept to online communities. Most online communities are platforms for the
exchange of digital goods, e.g. textua information or information products such as
software, digital sounds and pictures. Digital goods can be reproduced rapidly in infinite
numbers without any loss in quality and with very low costs. In that sense, when a
“digital gift” is given, it can be given to a group of people instead of a single individual,
with no or avery small additional cost (Barbrook 1998, Ghosh 1998, Kollock 1999). This
sets “digital gifts’ apart from “physical gifts.” Ghosh (1995) called this fact the “infinity

of information.”

A digital gift can be given to a predetermined group of people, e.g. members of a
membership-based online community which is closed to outsiders, as well as an

indefinite number of people, by placing the gift on a publicly open website. Considering

18

that a digital gift can be given to an indefinite number of people, most of whom are
unknown to the giver, the issue of reciprocity poses yet another intricacy in defining
online communities as gift economies. If the takers of the gift are unknown to the giver,
they would be under no obligation to reciprocate the gift, and this would discourage the
giver from giving the gift in the first place. Kollock (1999) suggested the concept of
“generalized exchange” to overcome this problem. In a system of generalized exchange, a
gift or a favor is not necessarily reciprocated by the beneficiary, but by someone else
within the group that takes part in the generalized exchange. When people help a
complete stranger by giving directions or telling the time, they do not expect to get a
similar favor in return from the exact same person they help; however, they expect to get

similar help from some other person, should they need it.

When “infinity of information” comes together with “generalized exchange,” the
giver is better off by giving away more copies of the “gift” rather than fewer, because the
real cost associated with the digital product is the cost of producing the master copy, not
copying it. Once the product is produced, giving away many copies of it would not add to
the burden of the giver. On the other hand, generalized exchange would increase the
likelihood of reciprocation, since people would give away more copies with the

expectation of impersonal reciprocation from others (Ghosh 1998).

An important implication of the concept of gift economies applied to online
communities is that a larger community would motivate contributors to a greater extent,
since the probability of generalized reciprocation increases as the number of contributors
in the community increases. Thisis due to the fact that digital products are consumed in a

nortrival manner, which brings us to the concept of “public goods.”

19

2.3.2. Public Goods

The concept of public goods is another theoretical framework suggested for
explaining phenomena related to online communities (Kollock 1999, Millen 2000, Wasko
and Teigland 2002). Several authors used the concept of public goods as a framework for
studying open source software development communities (Hawkins 2001, Bessen 2002).
Public goods (or collective goods, as they are sometimes called) have two aspects that
distinguish them from private goods. First, public goods are “non-excludable’; that is, it
would be too hard or too costly, if not impossible, to exclude the non-payers from
benefiting from a public good. Second, the consumption of public goodsison “nonriva”
basis; that is, the consumption of a public good by an individual does not hinder other
individuals consumption of the same good. Most public goods show these two
characteristics to different extents, rather than in an absolute manner. “Pure public
goods,” on the other hand, are totally non-excludable and non-rival (Cowen 1993). Widely
used examples of public goods are firework shows, lighthouses, public libraries, parks,

and traffic lights.

The provision of public goods is sometimes problematic. Since it is infeasible to
exclude nonpayers from benefiting from public goods, it is also not feasible to charge for
their use. This brings about the problem of lack of interest in producing and distributing
public goods. Certain public goods, such as public education, national defense, and
highways are provided by the government, and paid for through taxes. Another array of
public goods is tied to private goods. These public goods are paid for through payments
for the private goods they are tied to, such as public services in a shopping mall, which

are paid for indirectly through private goods sold in the mall (Cowen 1993).

20

The basic socia dilemma about public goods is that the rationa thing for each
individual is to “free ride’; that is, to benefit from public goods without participating in
their production or without even paying for them. Nonetheless, someone must produce
them or pay for them, just like private goods. Even if the members of a community know
that they would benefit from the production of public goods, their rational choice would
be not taking part in that production. This follows from the argument that the rational
members of a group would not act in favor of their common group interests, but their
own personal interests (Olson 1965). Take the example of a society with a high number
of members, where dues are not compulsory, but voluntary. A rational member would
choose not to pay dues, since that would not affect the overall revenue of the society
substantialy, but the member would be better off financially by not paying dues. What
follows is that any rational member would choose not to pay dues for the same reason,
and the overall revenue of the society would be adversely affected. This problem can be
overcome when there is some form of coercion or incentive that would motivate
members of the group to act in favor of the common group interests (Olson 1965).
Another condition that would overcome this problem is the existence of altruistic
motivation; however, the body of literature discussed above is mostly from the field of
economics, and altruism is not generally treated as a viable motivation factor from the
mainstream economics standpoint, unless it is defined with respect to the utility it would
provide to the person acting upon altruism. The sociological perspective seems to be less

rigid in terms of accepting altruism as a motivation factor.

In the same vein as Olson and others, Kollock (1999) pointed out two challenges

for the provision of public goods. The first challenge is motivating individuals to

21

participate in the production of, or to pay for public goods. The second is the issue of
coordinating motivated individuals in their efforts to produce public goods. Kollock
outlined the possible motivation factors for participation in the production of public
goods which are digital in nature. It isimportant for this research to examine how digital

products fit the definition of public goods.

Digital products are non-rival in consumption, since they are easy and cheap to
duplicate, and duplication does not reduce their quality. Especialy, in the case of web-
based diffusion through FTP and HTTP, the marginal cost of each download on the
procurer’s part is amost zero. However, digital products are not necessarily non
excludable. It is possible to restrict access to digital products, even though it is not always
simple and feasible to prevent circumvention by means like illegal copying. In that sense,
digital products are not pure public goods. Proprietary software or copyrighted musical
recordings are examples of digital products that are not public goods. However, thereisa
wide variety of digital products which are public goods, such as free software, and web
pages open to public access. In this sense, if a digital product is available to the public

free of charge, it isapublic good.

Kollock (1999) suggested four possible motivation factors for participating in the

production of digital public goods:

1) Individuals may contribute to the production of digital products with the
expectation that their efforts will be reciprocated in the form of contribution from other
individuals in the group or community. This factor is similar to the idea of a generalized
exchange within the group, as discussed above under the heading of “Gift Economies.”

Kollock argued that a system that identifies contributors and measures their contributions,

22

at least in a rough manner, would increase the effect of this factor, since individuals will
feel obliged to contribute in order not to be shunned in the long run. Again, as discussed
within the context of gift economies, the probability of reciprocation would increase as
the audience grows larger, giving way to a higher level of motivation towards
contributing. This motivation factor has a direct implication for the open source software
development (OSSD) model, which was build in the first phase of this study: Participants
would be attracted to contribute to communities that offer a high level of utility in terms
of the products they are developing. Consequently, an open source software community
becomes more attractive to participants as the level of functionality and quality of its
product increases. An important component of the overall utility of a software product is
the number of its users. Several authors have argued that a software product would
become more attractive to users as its market share increases (Katz and Shapiro 1985,
Gallaugher and Wang 1999). This is called the positive network externalities effect. The
implication of this effect for the OSSD mode is that a higher number of users would

make the community’ s product more attractive for potential users.

2) Individuals may aso be motivated by the expectation that their contributions
will earn them recognition and reputation among the members of the group or the
community. Reputation can be a motivating factor through two mechanisms. 1) ego
satisfaction due to being respected by the community, 2) professional and financial
opportunities that come with recognition. Programming skills proven through norn
compensated work may open doors into a compensated position in the area of one's
expertise. Kollock argued that the effect of this factor would be directly correlated with

the vigbility of contributions and the availability of some sort of a recognition

23

mechanism. It can be argued that the existence of opportunities for material
compensation related to the voluntary work would increase the motivational effect of the
reputation factor. An important condition for this motivation factor to have an effect is
that programmers should be able to find adequate opportunities for contributing to a
project, which would demonstrate their skills. A mature project may fail to offer enough
opportunities for contribution. Raymond (2001) introduced the concept of
“homesteading” an open source software project. He argued that participants would claim
portions of a software project and build their reputations within and beyond the
community based on the functionality and quality of the portions that they work on, or in
other words, that they “own.” This argument has a direct implication for the open source
software development (OSSD) model: If an open source software product is in its
maturity stage and most of the potential functionality is already added, the product would
become less attractive for the contributors, since there would not be enough unachieved

functionality to be homesteaded.

3) Another motivation factor may be the feeling of self-efficacy that comes with
the perception that the individual has an effect on the community or the larger world by
his/her contributions. Kollock argued that the effect of this factor would increase as the
size of the community increases, since contributors will have the opportunity to affect the
lives of alarger audience by their contributions. However, it can also be argued that the
increasing community size would diminish the relative impact of the contributions of a
given individual, since there would be more contributions from a larger contributor base.
Distinguishing the contributors and the users who do not contribute as two separate

audiences can make it easier to theorize about the effect of this factor. A larger user

24

audience given a fixed number of contributors would increase the effect of this factor,
while a greater number of contributors given a fixed user audience would decrease the
effect. A direct implication of this motivation factor for the OSSD model is that a larger
user pool would make the community more attractive for contributing participants.
Another implication of this factor is in parallel with the implications of the reputation
factor discussed above. Based on this motivation factor, an open source software
development community would become less attractive as its product reaches a very high

level of maturity, and thus fails to offer ample opportunities for contribution.

4) Finaly, Kollock argued that contributors might be motivated in a purely
altruistic manner by the potential benefit to other members or the community as a whole.
Here again, alarger audience may mean a higher effect on motivation, due to the increase
in the cumulative benefit. It can also be argued that the existence of feedback channels,
which would inform the contributor about the realization of potential benefits to others,
would have a positive effect on this factor’s contribution in the level of motivation. This
motivation factor supported the implication that a larger user pool would increase the

attractiveness of the community for contributors.
2.3.3. Social Networks

Another theoretical framework suggested for studying online communities is
socia network analysis (Garton, Haythornthwaite and Wellman 1997, Wellman 1997,
Wellman and Gulia 1999, Jones 2000). Social network analysis is a methodology widely
used for studying patterns of relationships among agents, which in many cases are
people. However agents can also be other social entities such as families, companies, or

states (Garton, Haythornthwaite and Wellman 1997).

25

Socia network analysis defines a given group of people (or other agents) as a
network, which is formed by the members of the group and the relationships between
these members. The members of the group are represented as nodes, and the rel ationships
as the links of the network. Social network analysis has been widely used study the
exchange of resources among the members of socia groups (Wellman and Berkowitz
1988, Wasserman and Faust 1994, Scott 2000, Rethemeyer 2002). It is possible to
approach information sharing from a social network analysis point of view by defining it
as aresource that is shared among people (Garton, Haythornthwaite and Wellman 1997,

Rethemeyer 2002).

The unit of analysis in social network analysis is a “relation.” Relations have
different characteristics. For instance, a relation can be directed or undirected (Garton,
Haythornthwaite and Wellman 1997). Friendship is an example of undirected relations,
since both agents are friends from each other’s point of view. On the other hand,
parenthood is a directed relation. Another characteristic that distinguishes relations is
their strengths. Relations may be strong or weak. Different types of relations would have
different operationalizations for defining their strengths (Garton, Haythornthwaite and
Wellman 1997). For example, the strength of friendships can be operationalized in terms
of the frequency and length of meetings among the friends, or the amount of self-sacrifice

they claim they would make for their friend.

One or more relations connecting two agents form a “tie.” A tie that involves
more than one relation is a “multiplex tie” Ties also differ based on their strengths:
“strong ties’ and “weak ties.” Strong ties are ties among agents that share many

resources, and in a more frequent, intimate and dependent manner, while weak ties are

26

those between agents that share fewer resources, infrequently, and not in a dependent
manner. While strong ties are more crucia for an agent’s social existence and well being,
weak ties nevertheless may also play acrucial role in an agent’s social life, especiadly if
they are many in number and used efficiently. The concept of “networking” between

colleagues is an example of an effort to maintain and increase one’' s weak ties.

A substantial portion of the social network studies done on online communities
focuses on the nature and usefulness of Internet based weak ties, and whether strong ties
are possible in online relationships (Wellman and Gulia 1999, Preece 2000 pp.177-178).
Another important question related to online communities, which several researchers
have tried to answer, is whether online communities support or hinder physical
communities (Wellman and Gulia 1999, Preece 2000 pp.182). Several authors have
suggested that online relationships and online communities may hinder relationships and
communities in the physical domain of everyday life (Fox 1995, Slouka 1995 pp.95-100).
A strong argument made by such authors is that online relations distance people from
noncrucia social interaction in the physical domain, and thus decrease the social capital
within the society. Social capital is defined as “ capital captured through socia relations”
(Lin 2001 pp.19). In that sense, social capital refers to the quantity and quality of social
ties within a community or a society. According to Putnam (1995) social capital “refers
to features of social organization such as networks, norms, and social trust that facilitate
coordination and cooperation for mutual benefit.” While some authors argue that online
life reduces the amount of time people spend building and maintaining socia ties in their

physical life, some others suggest that online relationships and online communities may

27

foster trust and cooperation between those who engage in online socialization and thus

help increase and improve social capital (Preece 2000 pp.22-24 and 182).

Socia network analysis focuses on the relationships between individuals, and thus
differs from most other social science approaches that focus on individuals (Garton,
Haythornthwaite and Wellman 1997). This alternative way of looking at groups gives
way to critical findings, which might not revea themselves through other approaches.
However, socia network analysis provides only one part of the picture with respect to the
development of open online collaboration communities. The implications provided by
social network analysis do not lend themselves readily for trandation into a dynamic
feedback model. Thus, the implications that this theoretical approach provides about
phenomena related to online communities were not as useful in conceptualizing the initial
system dynamics model as those provided with the other approaches discussed in this

literature review.
2.3.4. Social Informatics

Severa authors approach the study of online communities from a perspective
which isinterchangeably called “social informatics’ or “social impacts’ (Turoff and Hiltz
1982, Hiltz 1986 pp.151, 165, 191, Preece 2000 pp.194-196). Social informatics research
focuses on the social impacts of information systems (Preece 2000 pp.194-196). The
basic argument of the social informatics approach is that the design and use of
information systems have an impact on the social processes that govern the context in
which those information systems operate. Furthermore, information systems, together
with socia processes, have an impact on socia structures and relationships. Based on

these premises, several authors argue that while designing an information system, the

28

effects on the socia processes, structures and relationships should be taken into account,
and the information system should be designed as a part of the social process it will be

“embedded in” (Turoff 1997, Preece 2000 pp.194-196).

A certain array of research focusing on the organizationa issues within the
Human-Computer Interaction field have roots in the social informatics approach (Eason
1997, Grudin and Markus 1997, Smith and Conway 1997). The socia informatics
approach is also among the theoretical foundations upon which computer supported
cooperative work, and computer mediated communication fields are based (Applegate,
Ellis, Holsapple, Radermacher and Whinston 1991, Turoff 1991, Eason 1997, Grudinand

Markus 1997, Olson and Olson 1997, Smith and Conway 1997).

Preece explained the implications of the social informatics perspective through
examples of electronic journals (2000 pp.194-195). The first example, taken from Kling
(1999), is an electronic journa whose submission process is designed to let authors and
readers discuss online about submitted articles, before the articles are finalized and go
into the peer review stage. The submission process of the electronic journal discussed as
the counter example is designed more or less like a traditional peer reviewed journal,
which operated through an editorial board, without the opportunity of wide discussion.
Preece argued that the social process design and the related software (technological)

design of the first journal would generate more community involvement (2000 pp.195).

This argument brings about the general implication that the design of the social
processes and the software used for the operation of an online community may have
considerable impact on participation. The first example set forth by Preece is arguably

more “democratic,” or has a “flatter” hierarchy structure compared to the second

29

example. Thus it can be argued as an implication that a more democratic or a
hierarchically flatter socio-technical design may increase participation, by decreasing the

barriers to contribution.

In reality, both journals in Preece’'s examples use a peer review process as the
final stage, where the decision about whether a given article should be published, and in
what final form is made. However, the discussion stage in the case of the first journal
provides an opportunity to incorporate suggestions and other input from a wider body of
participants, which definitely would yield a different “final submission,” if not a better
one. A “final submission” shaped by a wide scope of contribution may be expected to
have a better chance of being accepted in the peer review process with alower number of
revision suggestions for two reasons: First, it would probably have a higher quality since
it would incorporate suggestions and corrections from a wider audience. Also, since it
would reflect the consensus of a much wider portion of the community in question, it
may have an impact on the decision of the reviewers through the power of being a
socialy negotiated and accepted “reality.” Clearly, this second effect, if present, is not a
necessarily positive one, since it may impose socially accepted errors, or mistakes on the

reviewers part.

The above outlined implications can also be drawn from the open source software
development literature. Raymond argued that the participation of a wider audience in an
open source software development project, especialy in the testing and debugging
phases, has a positive effect on the overall quality of the software being devel oped.

Raymond argued that “[g]iven a large enough beta-tester and co-developer base, amost

30

every problem will be characterized quickly and the fix obvious to someone” (2001
pp.30).

With respect to the relationship between barriers to contribution and participation,
Raymond implied that as barriers to contribution decrease, participation would increase.
Raymond argued that there is an inverse relationship between “the number of hoops’ a
user needs to go through in order to contribute to a project and the number of
contributors. Raymond argued that the barriers to contribution may be “political” as well
as “mechanical” (Raymond 2001 pp.109). The “mechanical” component is mostly related
to the software, and partialy to the technica dimension of the social processes that
govern the community, while the “ political” component is related to the policy dimension
of the socia processes, or in other words, the set of rules and policies with which
contributions are handled. Here, Raymond compared Linux and various BSD projects
from an organizational point of view. According to Raymond, the mechanical and
political components of barriers to contribution may explain why an “amorphous’ open
source software development community such as the Linux community attracted far more
contributors than tightly organized and controlled BSD communities (Raymond 2001

pp.109).

Fogel and Barr set forth arguments along the same lines (2001 pp.10-11). They
argued that the convenience provided by an efficient system that makes contribution easy
is not a mere luxury, but a necessity for projects that run on volunteer efforts. The level
of convenience for making contributions may be the ultimate determinant of the number

of contributors, and the amount of their contributions to a project (Fogel and Bar 2001

pp.11).

31

Fogel and Bar set forth another argument that is important with respect to the
concept of open online collaboration communities in general. They positioned the
problems posed by the physical and temporal separation between open source software
devel opers within the context of Computer Supported Collaborative [Cooperative] Work*
and argued that problem assessments and suggested solutions to these problems should
apply to other open source-style content development (Fogel and Bar 2001 pp.10). This
argument suggests that the implications of a socia informatics approach that hold for
open source software development projects should also hold for other open online
collaboration projects. Clearly, Fogel and Bar viewed open source software devel opment
and other digital content development efforts as examples of the same phenomenon,

which we define as open online collaboration in this study.
2.4. System Dynamics Appr oaches to Softwar e Project M anagement

There is a substantial body of research that focuses on applying a system
dynamics modeling approach to software development-related problems (Abdel-Hamid
and Madnick 1991, Barlas and Bayraktutar 1992, Madachy 1994, Rodrigues and
Williams 1997, Bell and Jenkins 1998, Barros, Werner and Travassos 2000, Williams
2001, Rai and Mahanty 2002). Most prominent of these to date is aline of studies carried
out by Abdel-Hamid and other researchers who joined him during different stages of the
overall research project (Abdel-Hamid and Madnick 1983, Abdel-Hamid and Morecroft
1983, Abdel-Hamid 1984, Abdel-Hamid 1989, Abdel-Hamid and Madnick 1989, Abdel-

Hamid and Madnick 1991). The model Abdel-Hamid and Madnick (1991) discussed

! The established name for that field is Computer Supported Cooperative Work. However, Fogel and Bar
preferred to use the term Computer Supported Collaborative Work in their book.

32

throughout their book Software Project Dynamics is a good summary of the overall

research that was carried out over several years.

Abdel-Hamid’s model was based on software engineering literature, and 27
interviews held in 5 software development organizations to supplement the literature
wherever needed. The model and its managerial implications were tested through a series

of case studies.

Abdel-Hamid divided the software project model into four sub-models, or
“sectors’ as they are called in system dynamics literature: human resource management,
software production, project control, and project planning (Abdel-Hamid and Madnick
1991 pp.13). The human resource management sector addresses the aspects related to the
hiring and turnover of the workforce, as well as the change in the experience level of the
workforce. A critical issue that this sector addresses is the rate at which an inexperienced
workforce is “assimilated,” or becomes experienced through training (Abdel-Hamid and
Madnick 1991 pp.63-68). The software production sector focuses on manpower
alocation, quality assurance and rework, and system testing, as well as the actual
software development itself (Abdel-Hamid and Madnick 1991 pp.69). This is the sector
that provided most of the implication for the open source software development model
built for the first phase of this dissertation study. Parameters such as productivity, error
generation rate, error detection rate, error fixing rate are based on assumptions derived
from this sector of Abdel-Hamid's model. The project control sector represents
managerial functions related to measurement, evaluation and communication in an effort

to improve project performance (Abdel-Hamid and Madnick 1991 pp.117). The project

33

planning sector is where decisions about key determinants such as scheduled completion

date and workforce level are made (Abdel-Hamid and Madnick 1991 pp.129).

Abdel-Hamid used the software project model to test various arguments that have
dominated the field of software project management, as well as alternative policy options
that were hypothesized to improve project performance. One such example is Brooks
Law. According to Brooks, adding more people to the group working on a late project
would make it finish even later. In other words, the net impact of assigning more people
to alate project is negative (Brooks 1995). Abdel-Hamid argued that the behavior of his
software project model indicates that this does not hold at least for a certain range of
projects. He argued, based on findings from his simulations, that although assigning more
people to a late project always causes it to become more costly, it does not necessarily
push the completion date even later. He argued that Brooks Law would hold for cases
where the new workforce acquisition is made extremely close to the projected completion

date (Abdel-Hamid 1989).

Abdel-Hamid’'s work remains the most comprehensive look at software project
management from a system dynamics perspective, and has been heavily cited throughout
software project management literature. The model and the overall study provide insights
into all aspects of software development phenomena in terms of policy implications. For
the purposes of this study however, the most useful implications were not the policy
implications, but rather the method of incorporating the mechanics and parameter of
software development into the model. This can be attributed to the fact that Abdel-
Hamid’'s study focuses on “proprietary” software projects, while the software

development model built within the scope of study looks at a generic open source

software project.” Some key differences between proprietary and open source software
projects force the open source software development model to differ substantially from a
model of proprietary software projects such as Abdel-Hamid's. Arguably the most
important difference is that proprietary software projects are run by a paid workforce,
while open source software projects are run by volunteers. It is possible to add new
people to the workforce in a proprietary software project at any given time, aslong as the
budget provides the financial means. Open source software projects are not as flexible in
terms of recruiting a new qualified workforce, since they are run through motivation
factors other than direct financial compensation. Another important difference is that
proprietary software projects need to follow a more or less preset schedule with a
declared completion date. Open source software projects are more flexible in terms of
schedule and compl etion dates, as long as they do not fall too far behind their competition

in terms of delivering the product in atimely fashion.

Another notable application of system dynamics to software development issues
is a line of research by Madachy (Madachy 1994, Madachy 1996, Madachy 2000,
Madachy 2002, Madachy and Boehm 2003). Madachy’ s study and his “inspection-based”
process model differ from Abdel-Hamid’'s in certain aspects. Madachy focused on
ingpection and rework related activities. In order to simplify the model he excluded
productivity determinants such as schedule pressure and manpower mix. For example,
instead of using two pools for workforce -- one experienced and another inexperienced,
Madachy used only one aggregate workforce pool. On the other hand Madachy’s model

is much more detailed with respect to inspection and rework related activities than Abdel-

2 Abdel-Hamid' s work predates the mass diffusion of the Internet, and consequently the conception and
application of open source software development as we know it today.

35

Hamid's model. For example, unlike Abdel-Hamid' s model, in Madachy’s model quality
assurance activities are not postponed or accelerated when schedule pressure sets in

(Madachy 1996).

Madachy advanced Abdel-Hamid’'s work in certain aspects by applying a
contemporary look at the issue. There is about a decade between the span of Abdel-
Hamid's and Madachy’s studies, and a decade is a considerably long time when it comes
to evolving practices like software project management. Having said that, Madachy’s
work did not provide further implications for the model built with this study beyond those
provided by Abdel-Hamid's study for the same reasons discussed with respect to Abdel-
Hamid's work. Just like Abdel-Hamid’'s, Madachy’s model essentially represents

proprietary software project management.>
2.5. System Dynamics Approachesto Instructional Material Development

Application of system dynamics to the domain of instructiona material
development has been piecemeal at best, and in the small number of cases where the
methodology is applied to related issues, instructional material development activities per
se is not the main focus of the study. One example of using system dynamics for studying
instructional material development was carried out by the “Grimstad Group.” Grimstad
Group is an international group of researchers who have studied the application of

contemporary technology to instructional design. The objective of the Grimstad Group’s

% There have been other studies focusing on applying system dynamics to software development
phenomena (Barlas and Bayraktutar 1992; Rodrigues and Williams 1997; Barros, Werner and Travassos
2000; Donzelli and lazeolla 2001; Kahen, Lehman, Ramil and Wernick 2001; Martin and Raffo 2001;
Pfahl, Klemm and Ruhe 2001; Ruiz, Ramos and Toro 2001; Stallinger and Gruenbacher 2001; Williams
2001; Rai and Mahanty 2002 .) However, these are not discussed in this literature review in depth, since
they add littleto Abdel-Hamid' s and Madachy’ s studies. These studies did not provide any additional
implications for the purposes of building the open source software development model.

36

study was “to extend and validate system dynamics technologies for use in managing the
complexities and risks of large-scale courseware development projects’ (Spector 1995).
While the main theme of the study was to introduce system dynamics and systems
thinking tools into instructional design, the researchers also worked on a system
dynamics model of the process of instructional planning and production. Though initial
steps of model devel opment were reported (Spector 1995), the literature does not indicate
that the model was eventually completed. Asfar as the initial report goes, the researchers
aimed to build a model that would be used to test policies to improve courseware

devel opment projects (Spector 1995).

A system dynamics model of the growth of the community of teachers and
researchers applying system dynamics concepts to K through 12 education is still in the
development phase. The model was initiated by a group of teachers and researchers
working within the said community, through a process facilitated by Dr. James Lyneis.
At the time this dissertation was written the model was still in development stage, and

thus had not been published.

Another study, which is rather tangential to the topic of this dissertation, focused
on the growth of the field of system dynamics (Andersen, Radzicki, Spencer and Trees
1997). This model has not been published in detail. However, one very brief conference
paper about it does exist (Andersen, Radzicki, Spencer and Trees 1997). The main focus
of the moddl is the process through which people are attracted to work in the field of
system dynamics. The model suggests that as more system dynamics based projects are
completed and published more people will become aware of system dynamics, and a

certain portion of those will chose to join the field and carry out more system dynamics-

37

based projects. Word-of-mouth through newcomers will aso increase the number of
people aware of system dynamics. The conception of new system dynamics projects is
not only contingent upon the existence of many people working on system dynamics
(namely the supply side), but also the quality of the existing projects, since the existing
quality would determine the level of demand for further system dynamics projects.
Growing too fast might bring about a problem of decreasing quality, since most of the
people working in the field would be newcomers. One way to overcome this, according
to the model, is to provide mentoring for newcomers by experienced system

dynamicsists.

The “growth of the field” model was not developed further by the origina
authors, however the System Dynamics Society recently started an initiative to update
and extend the nodel with the participation of the executive director of the society and
several volunteer system dynamicists. As the updated version of the mode is still in

devel opment phase, no publications about it have been made so far.
2.6. Problem Statement and Dynamic Hypothesis

This section integrates the implications of the literature review in order to
introduce the problem statement and develop a dynamic hypothesis that will be the basis

for the open source software devel opment model.

The level of success open online collaboration communities achieve varies
substantially. While some communities reach a wide audience and achieve considerable
success, others fail to reach critical threshold in terms of number of contributors, end
users, and product functionality (Bezroukov 1999, Preece 2000 pp.25-27, Raymond

2001, Sandred 2001 pp.81-92). Figure 2.1 and Figure 2.2 portray generic behaviors of

38

successful and unsuccessful open online collaboration communities with respect to

product functionality, number of contributors, and users.

As seen in Figure 2.1 this research posits that the quantity of products devel oped
by a successful open online collaboration community keeps growing until it reaches a
point where it attract a sustainable audience of contributors and end users. After the
threshold is passed, a project may keep growing exponentialy or linearly, or it may reach
amore or less fixed size. Generally, convergent products, such as software, tend to reach

afixed size after a certain period, while the size of divergent products keep growing.

Figure 2.1 shows that the number of contributors and number of end users of
successful communities either continue to grow, exhibit a logarithmic growth and reach

an equilibrium, or overshoot and then decline to a sustainable equilibrium.

Product Functionality
Contributors
Users

Time Time Time

Figure 2.1. Generic Behavior of Successful Open Online Collaboration

Communities

On the other hand, Figure 2.2 shows that unsuccessful communities can never
reach the level of product functionality or number of contributors needed to reach a wide
audience and sustain the community. Product functionality grows too slowly and never

reaches a level where it could attract more active contributors and end users.

39

Consequently, the contributor and end user audiences either vanish, or stay at extremely

low figures, turning the community into a“cult,” which cannot grow.

>
=
(2]
e 5 ;
c 2
z = =
e c
% o
2 @)
o
i (N7 (N7
Time Time Time
Figure 2.2. Generic Behavior of Unsuccessful Open Online Collaboration
Communities

This study hypothesizes that success indicators of open online collaboration
communities with respect to product functionality, product quality, number of
contributors, and number of end users are determined by a complex system of
interactions between determinant factors such as participation, production, barriers to
entry and contribution, motivation, level of collaboration, and technology. Consequently,
this study addresses the problem of identifying the underlying dynamic feedback
structure among these elements and analyzing a set of policy option to improve the
overall performances of open online collaboration communities. The dynamic hypothesis
discussed below was the first step in identifying that dynamic feedback structure. The
dynamic hypothesis was used as a candidate to replicate and explain the phenomena
observed in open online collaboration communities. The open source software
development community model introduced in Chapter 4 was based on this dynamic

hypothesis.

40

The two reinforcing feedback loops shown in Figure 2.3 are the drivers behind the
growth of an open online collaboration community. Here, developers participate in
production, and add functionality and quality to the product. Product functionality and
product quality positively affect perceived success in achieving functionality and quality
respectively, which in turn affect attractiveness of the product positively. Finaly,
attractiveness of the product has a positive effect on the number of developers, since it
attracts more developers into the community. This loop reflects the implication that an
open source software community becomes more attractive to participants as the level of
functionality and quality of its product increases, as discussed in the literature review

within the context of gift economies and public goods concepts.

41

Average

Productivity\i_

Productio
/
Participation N Product
A Quality Quality
Added
tR) tR)
- + Product
i -+, |Functionality|
+ New Functionality
Developers= X =0 Added +
Neé |nglrease In Perceived Successin
evelopers Y Achieving Quality
+ Perceived Successin

Achieving Functionality

Attractiveness of /

Product

Figure 2.3. Two Reinforcing Feedback Loops Driving the Growth of an Open Online Collaboration Community.

42

There are two additional positive loops that reinforce the effect of the main
driving loops, as shown in Figure 2.4. Attractiveness of the product has a positive effect
on the motivation of developers to participate, which in turn positively affects the number
of hours each developer spends on the project in a given time period; or in other words,
average participation. Average participation has a positive effect on total participation,
since a higher level of average participation would mean a higher level of total
participation given the same number of developers. It is important to understand that
while these four reinforcing loops have the potentia of driving the growth of the
community, they also have the undesirable potential of shrinking the community in a self-

reinforcing manner, if the related variables show a decreasing behavior.

43

Average

Productivity\i

Production
+

Participation N 4| Product
f Quality Quality

Added

Average
Participation R ®
o ! 1| Product
i nality |FUNCtionality
Developers| < 5 - New I}Qgggna“ty .
Net Inglrease n + Perceived Successin
bev + N Achieving Quality
Perceived Successin
Motivation for Achieving Functionality
Participation
Y Attractiveness of
Product

Figure 2.4. Two Reinforcing Feedback Loops, which work through Motivation for Participation.

A hypothesis of this research is that while the above discussed reinforcing loops
drive the community toward growth, two important balancing loops restrict that growth,
as portrayed in Figure 2.5. Production adds to cumulative production, which represents
the accumulation of production efforts over time. As the cumulative production increases,
the developers expect more from the product in terms of both functionality and quality.
Thus, cumulative production has a positive effect on expected functionality and quality,
which in turn have a negative effect on perceived success in achieving functionality and
quality respectively. The two paths running from perceived success in achieving
functionality and quality to production complete the two balancing loops. These two
loops have the potential of restricting, and even reversing the reinforcing effects of the

four positive loops discussed above.

Figure 2.5 aso shows a reinforcing loop that works through the size of the end
user audience. The attractiveness of the product has a positive effect on the number of
end users, which in turn has a positive effect on the attractiveness of the product. This
loop is based on the implications of the positive network externalities concept, as

discussed in the literature review.

45

Avera_ge_ - £ o 1] Cumulative
Productivity i Production

+ Production
\B)

4+ Participation .\
+ + PrOdl.JCt +
Quality Quality Expected
Average Added Functionality
Participation .
+
- + 4. Product @ Eéﬁgﬁtt?d
tionality LEUnctionali
Developers New 'Xiggte'gna“ty ty
Net Increase in
Developers +
¥ Perceived Success in _ + .
Motivation for Achieving Functionality Perceived Successin
Participation Achieving Quality
\ Attractiveness of /
Product

End Users

Net Increasein
End Users

Figure 2.5. Two Balancing Feedback Loops which Restrict the Growth of the Community and the Reinforcing Loop which
Works through End Users.

46

Many open online collaboration communities have mechanisms for checking and
approving the proposed contributions from developers, in order to maintain a desirable
quality level for the products (Browne 1998, O'Reilly 1999, Dempsey, Weiss, Jones and
Greenberg 2002). Figure 2.6 shows the hypothesized feedback structure under the
condition of incluson of such a mechanism. Here production adds to the backlog of
contributed items to be checked, which implies a need for quality checking activity. The
need for quality checking would cause pressure on the system after a certain point and
decrease the quality of the quality checking activities, thus, having a negative effect on it.
Quality checking activities have a positive effect on product quality, which in turn has a
positive effect on the perceived success in achieving quality. Perceived success in
achieving quality affects quality standard for contributions positively. Quality standard
for contribution affects barriers to contribution positively, as well. Barriers to entry have
a positive effect on rejections, and negative effect on acceptances. Both rejections and

acceptances subtract from the backlog.

The structure in Figure 2.6 is based on three additional feedback loops, two of
which are balancing, and one reinforcing. An increase in the attractiveness of the product
will bring more developers, and consequently increase participation, and thus production.
More production generates more need for quality checking, which decreases the quality
of quality checking and consequently the quality of the product. Decreased product
quality means decreased perceived success in achieving quality, and therefore a decrease

in the attractiveness of the product.

The other balancing loop in this structure implies that acceptance decreases the

probability of future acceptances. Each acceptance subtracts from the backlog of items to

a7

be checked, and therefore decreases the need for quality checking. This increases the
quality of quality checking, since it removes pressure from the system, and consequently
increases product quality and the perception of quality achievement. Increased perception
of quality achievement causes an increase in quality standards for contributions, and thus
increases the barriers to contribution, which decreases the likelihood of acceptances.
Through the same mechanism, rejections increase the probability of further rejections,
since they increase the quality of the product, and consequently the barriers to
contribution by removing pressure from the system. That is the reinforcing loop in this

structure.

48

Need for Quality

Checking)
@ Quality of Quality
Backlog of Checkin
. ltemstobe |ld—=— A(\j/era_ge J
Checked Checked New ltemsto Productivity
ltems be Checked
A + "+ [Product
+ . ;
. Qudi Quality
/_rProduction + 2ddetg
Participation
+
+ + | Product
Accepted New Functionality LEunctionality
Items Added +
) Devd opers<+=X=@ + Percei_ve_d Success in
Net Increasein Achieving Quality
@ Developers Perceived Successin

4 Achieving Functionality
Rejected
Items
R ;

Attractiveness of

Product
Barriersto 1
Contribution_+ Quality Standard for =+
N~ Contributions

Figure 2.6. Feedback Loops Related to Product Quality Checking Mechanism.

49

The two feedback loops shown in Figure 2.7 have baancing effects on the
product quality checking mechanism. Backlog of items to be checked generates need for
quality checking, which in turn causes leading developers to spend more time on quality
checking. More quality checking increases both acceptances and rejections, since more
items are checked, and increased acceptance and rejection rates subtract relatively more

from the backlog.

50

+ Need for Qualit
/ Checking y__\

'N
Quality of Quality

Backlog of Checking
- Average
e—z— Itemstobe |ld— 2~ Je
Checked New ltemsto Productivity
be Checked
+ + _ + [Product
t _ ————— aQuality Quality
Leader Timefor /:Productlon * Added
Quality Checking Participation
+
+ Product
New Functionality LFunctionality
Added +
B Accepted Developers d sz - N Perceived Successin
Items Net Increasein Achieving Quality
) Developers Perceived Successin
+ n Achieving Functionality
Quality Rejected
Checking .
4 +

Attractiveness of
Product +

Barriersto 4

Contri bution;\— Quality Standard for “+
Contributions

Figure 2.7. Two Feedback Loops Balancing the Product Quality Checking Mechanism.

51

In addition to its effect through the product quality checking mechanism, barriers
to contribution have a balancing effect on the overall framework through motivation for
participation. Figure 2.8 shows the two balancing loops that are driven by the negative
effect of barriers to contribution on motivation for participation. As discussed in the
literature review within the context of social informatics, motivation for participation
would decrease as barriers to contribution increase. (This follows from the arguments
made by Raymond (2001) and Fogel and Bar (2001). See section 2.3.4 for a detailed

discussion.)

52

Productio
+

4 Participation Product

Added
Average @
Parti cipation @

- 1 Product
o - Functionality
New Functionalit
Developersi<- = Added Y +
Net Inglrease In N Perceived Successin
Dev+ opers Achieving Quality

Perceived Successin
Achieving Functionality

Motivation for

Participation
A 7 Attractiveness of +
Product

Barriersto
Contribution

\ Quality Standard for
+ Contributions ~+

Figure 2.8. Two Balancing Feedback Loops that are Driven by the Negative Effect of Barriers to Contribution on Motivation
for Participation

53

An extension of the arguments made by Raymond (2001) and Fogel and Bar
(2001) within the context of barriers to contribution is the concept of barriers to entry,
which represents the difficulty of getting accepted to the community as a new developer.
Barriersto entry have a balancing effect on the overall structure through the two negative
loops shown in Figure 2.9. An increase in the number of developers means more
participation, and thus more production, which in turn increases the product functionality
and quality. Product functionality and quality increase perceived success in achieving
functionality and quality respectively, and those in turn increase the barriers to entry,

which has a negative effect on the number of developers.

Participation gﬁg?@t
+
tB)
" + | Product
48 = - . .
+ New Functionality [Functionality
Developersi=

% o)
X Added *
NeDtglglrga;e Sln / Perceived Successin
b Achieving Quality

[l - Perceived Successin
Achieving Functionality

Attractiveness of /
Product

Barriersto
Entry

Figure 2.9. Two Baancing Feedback Loops which Work through Barriers to Entry.

55

Several authors argued that coaching of inexperienced contributors helps increase
both the productivity of the inexperienced contributors and the quality of the work they
doin the long run (Cox 1998, Fogel and Bar 2001). Accordingly, coaching probably has
a positive effect on average developer skill level, and therefore on average productivity.
However, in the short run coaching has a negative effect on productivity, since time
dedicated to coaching decreases participation dedicated to production. Figure 2.10 shows

the changes after adding coaching to the preliminary framework in bold.

56

Average

/+' Productivity\ir

Developer .
Skill Lgvel _—T Productio

A Participation in
2 Production
/ & Product
Quality Quality
Total Added

Coaching Participation
+
+ + Product
: i+, |[Functionality
Devel opers< % & New ijggggnahty *
Net Increase in | .
Perceived Success in
Developers b

Achieving Quality
+ Perceived Successin

Achieving Functionality

Attractiveness ofjr/

Product

Figure 2.10. Changes in Structure after Adding Coaching to the Preliminary Framework.

57

According to several authors, technology is the most important driving force
behind open online collaboration (Fogel and Bar 2001, Raymond 2001). Here
“technology” means a combination of a communication channel, and a collaboration
platform. The main and most important communication channel in the context of open
online collaboration is the Internet. The Internet makes open online collaboration
between project contributors, and dissemination to end-users a truly open and global
undertaking. In order to involve and manage mass participation by a high number of
contributors, a structured collaboration platform is needed in addition to the
communication channel. Fogel and Bar (2001) argue that it is crucia to implement a
system which makes collaboration and contribution ssmple and convenient in order to be
able to attract and retain contributors. Raymond (2001) argues that the number of
contributors, and consequently the success of the project, is inversely correlated with the
difficulty of making contributions. Thus, technology has a positive influence on
participation, coaching, and the size of both developer and end user audiences. Figure

2.11 shows the changes after adding technology to the preliminary framework.

58

Average

_—F Productivity\t
Developer T Productio
Sk| Il Level

Participation in

Productlon
< Product
Quality Quality
Total Added
Coachi ng/y Partici patl on
/ e + + Pro_duct_

i ity LEunctionality|
Participation Developers New Functionality

+ Net Increasein Added : + .
Developers + Perceived Successin

Achieving Quality

Technology + Perceived Successin
Motivation for Achieving Functionality
Participation /
\ Attractiveness of £
Product
+ +

End Users|<— st)
Net Increasein
End Users

Figure 2.11. Changes in Structure after Adding Technology to the Preliminary Framework.

59

The dynamic hypothesis discussed in this chapter acted as the basis for the initial
system dynamics model of a hypothetical open source software development community.
Some other feedback loops and variables, which were not conceptualized as part of the
dynamic hypothesis, were aso added to the structure of the open source software
development (OSSD) model as needed. In the end, the OSSD model successfully
replicated the reference behavior patterns of both successful and unsuccessful open
online collaboration communities. The detailed structure of the OSSD model, and its
behavior under a variety of conditions are discussed in Chapter 4 and Chapter 5,
respectively. However, before those, Chapter 3 introduces the methods and the research

design used in this study.

60

CHAPTER 3-- METHODOLOGY
3.1. Overview

The ultimate goa of this study was to posit a theory of open online collaboration
communities in the form of a dynamic feedback framework. A multi-method approach
combining qualitative social research methods and system dynamics modeling method
was used to achieve this goal. The study began with the building of a system dynamics
model of a hypothetical open source software development community. The model was
based on three streams of literature: literature on theoretical approaches to the study of
online communities, literature on open source software development, and literature on
application of system dynamics method to software project management. The second
stage of the study involved a series of interviews with the members of a specific
community that focused on building instructiona materials for introducing system
dynamics concepts to K through 12 students. The interviews were used as an instrument
to test the applicability of the dynamics that govern the open source software
development model to the instructional material development community. The final stage
of the study involved the outlining of a theoretical framework that can be applied to

studying arange of open online collaboration communities.

Brewer and Hunter (1989 pp.17) define multi-method research strategy as
“attack[ing] a research problem with an arsenal of methods that have non-overlapping
weaknesses in addition to their complementary strengths.” In this study, system dynamics
modeling and structured interviews complement each other. The initial system dynamics

model acted as an overarching hypothesis for representing open online collaboration

61

communities. The interviews tested the applicability of the model to an actual community

that fits the definition of an open online collaboration community.
3.2. System Dynamics

System dynamics is a methodology for building causal feedback models of
complex, large-scale, non-linear, dynamic socio-economic and natural systems. A group
of researchers led by Jay W. Forrester introduced the methodology in the early 1960s.
Forrester (1961) outlined the methodology and the underlying philosophy behind it in his

book Industrial Dynamics. The two man assumptions of the system dynamics

methodology are:
(1) direct causal relationships between variables that form the model, and
(2) interdependence of causal factors through feedback loops.

Feedback refers to a two-way causa relationship between variables, where
variable X influences variable Y, and after a delay, and perhaps through a series of other
variables, Y influences X. This mutual causal influence structure is called a feedback
loop. The most basic feedback loop structure consists of two variables. Multiplying the
polarities of the causal relationships that form a feedback loop gives the polarity of the
overall feedback loop. Positive feedback loops are also called “reinforcing loops,” since
thereisamutual reinforcing effect between the variables of a positive loop as it operates.
Negative feedback loops are also called “balancing loops,” since the opposite polarities

of the causal relationships that form a negative loop force it toward a balance.

Most system dynamics models include a number of both negative and positive

feedback loops, which interact and operate simultaneously. Large-scale models include

62

large numbers of variables, and as a result of that a large number of feedback loops. The
lengths of feedback loops vary from two variables to tens of variables within large-scale

models; but generally, as the length of the feedback loop increases, its impact decreases.

A complete system dynamic model consists of a diagram that depicts the variables
of the model and the causal relationships between them, and the underlying mathematical
equations, which represent the algebraic relationships among the variables. Since a
system dynamic model is built with the ultimate aim of carrying out dynamics analyses
by using computer simulations, a model without a complete set of equations would be
incomplete. As stated earlier in this text, system dynamics methodology is used to
analyze dynamic systems, in which the variables change through time. Thus, difference

equations are the main mathematical structures underlying system dynamics models.

A system dynamics model may be represented by causal loop diagrams, which
show the causal relationships between variables without making any distinctions based
on their mathematical characteristics. Another way of representing a system dynamics
model is using structure diagrams, which depict both the causal relationships and the

mathematical characteristics of the variables.
The variables are grouped into three, based on their mathematical characteristics:
(1) Stock (level) variables,
(2) Flow (rate) variables, and

(3) Converters (auxiliaries).

63

Stock variables represent values that accumulate or decay through time. The value
of a stock variable, at a given time, depends on its initial value, and the sum of inflows

and outflows over time until the given period.

Flow variables represent the changes in stock variables through time, and they are
connected directly to stocks that they change. Stock-flow relationships correspond to

differential equations whereby the flows represent the derivatives of stock variables.

Converters represent quantities that are determined at every time increment only
by the variables that affect them and not by their previous values. In that sense, a
converter simply represents the values of a variable at a given point in time, based on the

value of the variables that influenceit.

Several authors outlined different procedure to carry out a system dynamics
modeling study. Although they are different articulations, most of these approaches map
onto the same general procedura outline (Luna and Andersen 2002). Furthermore, each
modeler brings personal nuances to system dynamics model building; however, there are
general procedures or “best practices’ that most modelers follow (MartinezMoyano and
Richardson 2002). System dynamics modeling can be done by a group of people as well
as by individual modelers. The last decade witnessed the development of procedures for
system dynamics modeling in group settings (Andersen and Richardson 1997, Andersen,

Richardson and Vennix 1997).

The system dynamics modeling procedure begins with the problem identification
and model conceptualization phase. This stage involves the representation of the key
variables of the problem in terms of their behaviors over time. The overall collection of

the behaviors of key variables over ime is referred to as the “reference mode.” The time

64

horizon over which the problem playsitself out is also defined in this phase. The problem
identification and model conceptualization phase also involves the articulation of the
system boundary to be modeled. System boundary is drawn by defining the variables that

will be included in the model (Richardson and Pugh 1981, Sterman 2000).

Next comes the model formulation phase, where the structure diagram is built and
the equations for variables are defined. In most cases, the modeler needs to go back and
forth between the problem identification and model conceptualization phase, and the
model formulation phase in an iterative fashion in order to revise the problem definition,

and the system boundary (Richardson and Pugh 1981, Sterman 2000).

The following phase is model testing, which aims to determine the validity of the
model. “All models are wrong” is an axiomatic statement that can be heard frequently in
the context of system dynamics modeling. The statement means that any given model isa
limited representation of a given portion of the real world, and is prone to be inaccurate.
Nonetheless, some models are “more wrong” than the others. The modeler strives to
make the model at hand “less wrong.” In that sense, testing involves finding out how
wrong the model is, and iteratively making it less wrong. It can be argued that no model
can be totally “validated,” and thus “confidence building” is a better phrase to call the

testing stage of a system dynamics study.

Validity (or confidence building) tests can be grouped according to their purpose,

and their focus. The purpose of a given test may be to assess.
(2) the suitability of the model to the modeling purpose,

(2) the consistency of the model with reality, or

65

(3) the usefulness and effectiveness of the model in terms of achieving its

purpose.

The focus of the test can be either the structure or the behavior of the system
(Richardson and Pugh 1981 pp.314). The modeler frequently goes back to the previous
stages of the modeling process in order to refine and reformulate the model. The overall

modeling procedure is carried out in an iterative fashion.

The final phase of the system dynamics modeling procedure is the policy analysis
and model use phase. Thisisthe stage where alternative policies that address the problem
at hand are tested by making use of simulations. The policies that stand out as adequate

solutions to the problem are communicated and implemented.
3.3. Structured Interviews

Interviews are an alternative data collection method within the general class of
surveys (Babbie 1998 pp.264). Interviews provide an interactive, synchronous data
collection process between the data collectors and the subjects. Structured interviews are
a variety of the interview method, which involve asking the same set of predetermined

guestions to all subjects that take part in the research.

Kvale (1996 pp.88) defines seven stages for administering an interview study.

The stages are:

Thematizing: Thisis the stage where the purpose and the topic of the interview are

determined.

66

Designing: This stage involves planning how the interview will be carried out,
analyzed and reported. The interview questions are determined and the interview protocol

is developed in this stage.
Interviewing: Thisis the stage where the actual interviews are carried out.

Transcribing: This stage involves preparing the interview data for anaysis,
generally by typing the notes and the recordings of the interviews in a format that is

suitable for analysis.

Analyzing: Thisis the stage where the interview data are analyzed with the chosen

method.

Verifying: This is where the findings of the analyses are verified in terms of
generalizability, reliability and validity. Generalizability refers to whether the findings of
the study can be used to explain the research phenomena about a wider population, and a
wider variety of cases than just those used in the research. Reliability refers to whether
the results are consistent, while validity refers to whether the study investigates what is

intended to be investigated.

Reporting: This is the stage where the findings are communicated, mostly in

written form.
3.4. Research Design
This study was carried out in three phases:
(1) Modeling of a hypothetical open source software development community.
(2) Administration and analysis of interviews with the members of a specific

instructional material development community in order to test the applicability of a

67

generalized version of the open source software development model as a representation

of the general dynamics that govern open online collaboration communities.

(3) Positing a theory of open online collaboration communities in the form of a
dynamic feedback framework, based on the open source software development (OSSD)

model and the findings of the interviews.
3.4.1. Analysisand Modeling of Open Sour ce Softwar e Development

The case of open source software development was analyzed and modeled based
on three streams of literature. The analysis of these literature streams roughly maps to the
problem identification and model conceptualization stages of the system dynamics
modeling process. The literature on the theoretical approaches to the study of online
communities and the literature on the theory and practice of open source software
development were used as bases for conceptualizing the portions of the model that
pertain to the socia and psychological aspects of the open source software development
phenomenon. Parallels were drawn between the two literature bodies in order to
conceptualize variables and the causal relationships between those variables. The
literature on application of system dynamics method to software project management,
together with the practitioner segment of the literature on open source software
development was used in conceptualizing the technical and project management related

aspects of the model.

The open source software development (OSSD) model was built through several
iterations. Each iteration produced a self-contained, running dynamic feedback
simulation model, which is referred to here as a “version” of the model. Each version

involves more structure than the previous version, and can explain more about the system

68

of the hypothetical open source software development community when compared to
previous versions. The structure of the model, and the versions are discussed in detail in

Chapter 4.

The OSSD model has the potential to test policies that would improve overall
system performance, including success factors such as product functionality, product
quality, developer talent, and community size in terms of developers and end users.
Policy implications of the model, along with the findings of a set of confidence building

tests are discussed in Chapter 5.

34.2. Interviews with the Membes of an Instructional Material

Development Community

The second stage of the research involved the development, administration and
analysis of a series of structured interviews with the members of a specific instructional
material development community, in order to test the applicability of the OSSD model
and its policy implications to other open online collaboration communities. The specific
community in question is a group of teachers and researchers who develop and
disseminate instructional materials for introducing system dynamics concept to K through

12 students.
3.4.2.1. Population

The system dynamics K through 12 instructional materials development
community has gathered around four main organizations or groups. Two of these are non
profit organizations propagating systems thinking and system dynamics in K through 12

education. The other two are research and practice groups working on developing

69

instructional materials for introducing system dynamics concept to K through 12
students. The interviewees were affiliated with the two organizations and one of the
research and practice groups. Namely, the Creative Learning Exchange, the Waters
Foundation, and CC-STADUS. No subjects affiliated with the System Dynamics in

Education Project could be recruited for the interviews.

The Creative Learning Exchange (CLE) is a non-profit organization that
propagates systems thinking and system dynamics approaches in K through 12 education.
The CLE has two main functions that are aimed at fulfilling its mission. The first is a
biannual conference that brings together teachers, mentors, researchers and activists who
work on applying systems thinking and system dynamics concept to K through 12
education. The other main function of the CLE is to act as a clearinghouse and outlet for
K through 12 instructional materials that use systems thinking and system dynamics as
teaching tools. The CLE has an active website (clexchange.org) for gathering and
disseminating such materials. Submissions are open to all. The website includes materials
submitted by the affiliates of other K through 12 education organizations focusing on
systems thinking/system dynamics, such as the Waters Foundation, CC-STADUS and
MIT System Dynamics in Education Project, as well as individual authors who are not
affiliated with such organizations. Consequently, the CLE website is the main repository
of instructional materials for introducing system dynamics concepts to K through 12
education. The materials go through a volunteer-based review process before being

posted on the website.

The Waters Foundation is non-profit organization that maintains a network of

educators who do research and develop instructional materials related to systems

70

thinking/system dynamics for application in K through 12 education. The Waters
Foundation network consists of “sites,” which actualy are school districts. Currently,
there are 12 dites in the network: Carlise Public Schools (Carlisle, MA), Catalina
Foothills School District (Tucson, AZ), Chittenden South Supervisory Union (Chittenden
County, VT), College Community School District (Cedar Rapids, 1A), Glynn County
Schools (Brunswick, GA), Greater Tucson Area (Tucson, AZ), Harvard Public Schools
(Harvard, MA), James Bennett High School (Salisbury, MD), LaSalle College
Preparatory High School (Milwaukie, OR), Murdoch Middle School (Chelmsford, MA),
Portland Public Schools (Portland, OR.), Salvadori Education Center (New York City,
NY). Every site has one or more mentors who assist educators in developing systems
thinking/system dynamics based instructional materials, and apply these concepts to their
classes. The mentors aso train administrators and other staff in several sites. Instructional

material develop at the sites are disseminated through the Waters Foundation website.

CC-STADUS (Cross-Curricular Systems Thinking and Dynamics Using
STELLA) was a project supported by a National Science Foundation (NSF) grant, which
had the purpose of training high school teachers for applying systems thinking/system
dynamics concepts in the classroom. CC-STADUS had a website for disseminating
instructional materials that were built as part of the project; however, the website went
off-line after the project was completed. Most of the CC-STADUS materials now reside

on the CLE website.

MIT System Dynamics in Education Project (SDEP) is a project aimed at
developing a collection of self-study materials that introduce system dynamics. The

collection is called Road Maps, and is developed by a group of MIT students under the

71

guidance of Professor Jay W. Forrester. The Road Maps collection was disseminated

through SDEP s own website, until it was moved to the CLE website.

The rationale for choosing this specific community for study was twofold. First,
the community was highly accessible for the researcher due to personal links between the
members of the dissertation advisement committee and the members of the community.
This fact made the selection and recruitment of the interviewees considerably easier.
Also, since the members of the community were knowledgeable about system dynamics
method, assessment of their opinions about the applicability of the model to their
community was substantially easier than it would be with subjects who were not
knowledgeable about system dynamics. These subjects could comprehend system
dynamics diagrams fast and accurately, as well as being able to articulate their views
using system dynamics terminology, making use of graphs over time, feedback loops,

and stock-and-flow diagrams.
3.4.2.2. Sample Method and Rationale

A purposive, snowball sample of 10 experts from the overall population of system
dynamics K through 12 teachers and researchers were used for the interviews. Kvale
(1996 pp.102) found that the number of interviews in current qualitative interview studies
tend to be between 5 and 25, with an average of roughly 15. Kvale attributed this to two
factors. One is the fact that the time and resources available for carrying out the
interviews are limited. The second factor is the law of diminished returns, which suggests
that each additiona interview will add less to the findings, and the contribution of an

additional interview will be negligible once a certain number is reached.

72

The snowball sampling process was initiated with a list of 21 individuals that
were involved in the system dynamics K through 12 community. The initial list was
compiled with the help of George Richardson, who was very knowledgeable about the
said community and its members. Based on George Richardson’s suggestion, two key
individuals on the list, who have ample connections within the community, were also
contacted to ask for additional names to be added to the list of potential subjects. The
suggestions of those two individuals did not add any more names to the list, since al the
individuals they suggested as potential subjects were already on the list. Furthermore, the
interviewees were asked at the end of the interviews for additional names to be contacted
as potential subjects. However, the answers to that question did not add any names to the
list either, since al the suggested individuals were aready on the list. In summary, the
snowballing process started and ended with the same list of individuals as potential

subjects.

An important limitation of the specific community studied was the low number of
potential interview subjects for a research of this detail. Although the numbers of
contributors and end users within the community were reasonably high, the number of
individuals who could provide the level of information asked through the interviews was
quite low. The list of 21 potential subjects was a very optimistic list in terms of
accessibility and knowledge level about the detailed working of the community. The
initial assessment of the list of potential subjects suggested that their level of familiarity
with the detailed workings of the community was highly variable. Also, it became clear
that not all of the potential subjects were accessible, and willing to participate. In the end,

the group of interviewees included most of the key people from the main centers

73

described above, who have considerably long experience in the field, and a good
understanding of how the community works. Five of the interviewees were mentors, three
were educational researchers, and two were community leaderg/activists. One of the
mentors was retired, while all other interviewees were active. One of the mentors focused
mostly on kindergarten through elementary education, while the others worked in middie
and high school settings. One of the researchers had worked as a principal at one time.
Four interviewees were male, and six were female. Nine interviewees worked in the
United States -- four in the northeast, three in the northwest, one in the southeast, and one
in the southwest -- while one interviewee worked outside of U.S, in a predominantly
English-speaking country. Consequently, all interviewees were from English-speaking

countries.
3.4.2.3. Data Collection

The potential subjects were initially contacted by email (See Appendix A.1 --
Initial E-mail Request) to ask whether they would participate in the interviews. Follow-
up e-mail messages (See Appendix A.2 -- Follow-up E-mail Messages) were sent to
potential subjects according to whether they agreed to participate or not. Potential
subjects who agreed to participate received a packet containing a cover letter (See
Appendix A.3 -- Interview Packet Cover Letter), a consent form (See Appendix A.4 --
Particiaption in Research Consent Form), reference mode worksheets to be used during
the uninformed portion (See Appendix A.5 -- Reference Mode Worksheets), model
sketches to be used during the informed portion (See Appendix A.6 -- Model Sketches),
and return envelopes for the consent form and the reference mode worksheets. The

interviews were administered over the telephone, and the conversations were recorded on

74

audiotape, with the approval of the interviewees. One interview was administered face-
to-face at the request of one of the subjects, and that interview, too, was recorded on
audiotape. The phore interviews lasted an average of 119.3 minutes, with a maximum of
137 minutes and a minimum of 101 minutes. The standard deviation was 11.1 minutes.

The face-to-face interview lasted 135 minutes.

The interview consisted of two parts. (See Appendix A.7 -- Interview Protocol.)
The first, uninformed part was aimed at obtaining information about the specific
community before exposing the subjects to the generalized OSSD model. The second,
informed part involved exposing the subjects to diagrams from a generalized version of
the OSSD model and obtaining their opinions about the applicability of the generalized

model and its policy implications to their community.

The uninformed portion of the interview was developed based on a list of
variables derived form the dynamic hypothesis. Each variable corresponded to one or
more questions that aimed to measure it. A list of the variables used for the devel opment
of the uninformed part of the interview is given in Table 3.1. The first two question of the
uninformed part were designed to ask how the interviewees got involved in the
community and their roles within the community. The third question was about the
interviewees general observation about the efforts within the community to develop and
disseminate instructional materials. The first three questions also served the purpose of
“warming up” the interviewees and focusing their attention on the topic to be discussed.
The following 12 questions, Questions 4 through 15 were designed to measures the
variables derived from the dynamic hypothesis, as listed in Table 3.1. The uninformed

portion of the interview protocol included four more questions aimed at assessing the

75

views of the interviewees about the policy problems within the community, and possible
scenarios about the future of the community. These questions also involved assessing the
interviewees observations and expectations about the existing and future behaviors of
key performance measures and determinants of success within the community. The
guestions in the uninformed portion were refined through several iterations based on

discussion with my advisors Deborah Andersen and Karl Rethemeyer.

76

Table 3.1. List of Variables and Corresponding Measures for the Uninformed

Portion of the Interview

Variable Name

Definition

I nterview Question for

M easur ement of Variable

Motivation Thelevel of motivation Questions 4c¢-7b.
developersfeel to participatein
the project.

Coaching Thelevel of coaching among Questions 8a-8c-8e.
developers.

Participation The amount of time spent by Question 4b.
devel opers on the project.

Barriersto Entry | Scrutiny level for accepting new | Questions 5-6
developers.

Barriersto Scrutiny level for approving Question 10.

Contribution

proposed contributions.

Product Quality

The quality of products produced.

Questions 9-10-11.

Product The functionality of products Question 14

Functionality produced.

Attractivenessof | The attractiveness of productsfor | Questions 7a-15.

Product developers and end users.

Production The amount of production effort | Question 12.
per time period.

Technology Availability of effective mass Questions 8b-8d.
digital communication.

End Users The number of users of the Question 13.
products.

Developers The number and skill levels of Question 4a.

developers.

77

The informed portion of the interview was developed based on the Iteration V
version of the OSSD model. The focus of the informed part was on the main loops that
reinforce and limit the growth and the overall success of the community, as well as a
series of policy interventions. The maor reinforcing and limiting loops in the OSSD
model were represented in a series of simplified stock-and-flow diagrams in order to be
shown to the interviews and ask whether they observed similar dynamics at work in their
community. The sketches included only the variables that are crucial for understanding
the basic structure of the model and revealed each loop gradually. Many converter type
variables were hidden in the diagrams in order not to complicate communicating the
model to the interviewees. Furthermore, certain outflows and loops were omitted from
the diagrams in order to ssmplify communication and comprehension of the model. The
variable names used in the sketches were different than those in the OSSD model in order
to represent concepts that would fit the case of the instructional materials development
community. For example, the variable name “developers’ became “authors,” “bugs’
became “errors,” and “product functionality” became “ functionality of materials.”
Printed diagrams were sent to interviewees in sealed envelopes. Interviewees opened the
sealed envelopes at the beginning of the second, informed portion of the interviews upon
a prompt from the interviewer. A narrative was also developed to accompany the

sketches. The narrative was read to the subjects while they studied the sketches.

Four possible policy intervention options were also discussed with the

interviewees. These were:
- Filtering materials produced by inexperienced authors,

- Reviewing and editing existing materials in the collection,

78

- Selecting new inexperienced authors based on their talent level, and
- Coaching inexperienced authors.

These policy options were represented as “pure” interventions in the sense that
they were represented singly and in a totally separate fashion. For example, the filtering
option was represented as a pure, flat “accept or reject” policy without rework or review.
On the other hand, the reviewing and editing option involved solely rework on existing
material, without elimination of poor material. The rationale behind this approach was to
expose the interviewees to simple policy options that are easier to communicate and
comprehend. Another important reason for this approach was to €licit the observations
and mental models of the interviewees in an indirect manner, with the least amount of

interference by exposing them to existing model structure.

The four policy options were also represented in four series of sketches and
supporting narratives. These sketches and narratives were developed to explain the four
policy options with their potential positive and negative consegquences to the interviewees
and ask whether they observed any of those policies being implemented in their
community. The informed portion concluded with four additional questions that asked
whether the interviewees had anything to add to the discussion at the end of the
interviews, additional potential subjects, and the interviewees suggestion for additional
guestions for future interviews. The questions in the informed portion were refined
through several iterations based on discussion with my advisors Karl Rethemeyer and

George Richardson.

The interview protocol was piloted with a Ph.D. student from the University at

Albany’s Information Science doctoral program The Ph.D. student was knowledgeable

79

about system dynamics in general and the topic of this study in particular. The pilot
interview was done face-to-face. Due to the small number of potential subjects no

piloting was done with individuals from the subject pool.
3.4.2.4. Interview Data Analysis

The interview data were analyzed in a qualitative and exploratory fashion. This
approach was mostly driven by the nature of the interview protocol. (See Appendix A.7
for the complete interview protocol, and Appendix A.5 and Appendix A.6 for the
worksheets and the sketches used during the interview.) The interview protocol was
designed in order to foster wider interaction between the interviewer and the interviewee.
This provided deeper information about the interviewee's observations and mental
models with limited interference from the interviewer. The interviewees were encouraged
to talk freely about their experiences, and to explore and discover their own mental
models. This approach provided thick, rich qualitative data, which was much more
adequate for a qualitative analysis approach than a quantitative one. Another important
reason for using a qualitative approach to the anaysis of the interview data was the
limited sample size, which did not alow for plausible quantitative analysis. Further

details about the analysis stage are given in Chapter 6.

3.4.3. Development of a General Dynamic Feedback Framework for Open

Online Collaboration Communities

The final phase of the study involved the development of a theory of open online
collaboration communities in the form of a dynamic feedback framework. The findings

of the interviews were used to refine the generalized OSSD model to reach a general

80

dynamic feedback framework that is applicable to a wider range of open online

collaboration cases.

The main approach was to review the reinforcing and limiting loops and policy
intervention options based on information gathered from the interviewees. If many
interviewees argued strongly against a loop, that loop was removed or changed based on
interviewees suggestions. If afew interviewees argued against aloop, and not forcefully,
the loop was marked suspicious, and revised. Changes might or might not be made on
such loops. Loops that were confirmed or at least not challenged by interviewees were
kept as they were, unless a causal link on them was challenged. If a specific causal link

was challenged on aloop, only that link was revised.

The final dynamic feedback framework is a simplified causal |oop/stock-and-flow
diagram that represents the basic dynamic feedback structure of an open online
collaboration community in terms of causal relationships and loops. The framework is

further discussed in Chapter 7.

The first step toward developing the framework was the open source software
development model. The next chapter discusses in detail the structure of the model and

how it was built.

81

CHAPTER 4 -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL
4.1. Process of Building the OSSD M odel

The open source software development (OSSD) model was based on the dynamic
hypothesis introduced in Section 2.6, which, in turn, was based on the implication of the
literature review summarized in Sections 2.3 through 2.5. Additional structures, which
were conceptualized after the dynamic hypothesis development phase, were also
integrated to the OSSD model. The OSSD model evolved through several iterations. Each
iteration produced a self-contained system dynamics model, and each iteration added
more explanatory power to the overall model. Structurally, each version was built by
adding more structure to the version that preceded it. In that sense, each version contains
the previous version, and some additiona structure. Versions were finalized as self-
contained units at critical stages of development; such as adding the notion of product
quality or adding the concept of coaching and its effect on average developer talent. The

following sections describe the five versions of the model in the order of devel opment.
4.2. Iteration |: Functionality

Thisinitial iteration is focused on the dynamics of building product functionality,
and developer and user pools. Here, the functionality of the product is a construct that
reflects the general usefulness of the product for the intended tasks. The functionality of a
given software product can be defined in numerous ways. One way is to define it as al
the tasks that can be done using the software. There can be different definitions for
different kinds of software products, and even for the same kind of product, depending on
the type of the users in question. For example, in the case of a spreadsheet program, the

functionality can be defined as the editing and formatting features for one group of users,

82

while for another group of users it might be defined as the number of built-in functions.
Another way is to define the functionality as the combination of these two definitions.
For the purposes of this study product functionality is defined as the genera level of

usefulness of a software product for awide array of users.

The Iteration | version of the OSSD model consists of two sectors. Developers
Sector and Users Sector. These two sectors are explained below, followed by how they

arerelated in order to form the overall model.

The Developers Sector of the model represents the casual relationships between
the developers' production effort and the product functionality level. Developers produce
code, adding functionality to the product, and in turn the level of product functionality

affects the developer population.

83

Average
Participation

\ N Average
+ Productivity

Productiond —

Developers

Product + ¢

Functionality

New Product
Functionality Added

+

Achieved
Functionality Ratio

Limit on Product
Functionality

Figure 4.1. OSSD Model (Iteration 1) Developers Sector

As demonstrated in Figure 4.1, an initial group of developers participate in code
production and add functionality to the product. As new functionality is added to the
product the overall product functionality increases, and so does Achieved Functionality
Ratio, which is defined as the ratio between the actual Product Functionality and Limit on
Product Functionality. Limit on Product Functionality is the maximum possible level of
functionality that can be expected from a software product comparable to the product in
guestion. Limit on Product Functionality is not a fixed ceiling since technology changes
over time, and the level of functionality for a given kind of software product increases

over the years (See Figure 4.2).

85

Developers

+
Achieved

Average

Functionality Ratio

C’_\ Z
.Q - -
Increase in Limit on

> Limit on Product

Functionality

Product Functionality ,_—
N +

Increase in Limit on Product
Functionality Coefficient

Figure 4.2. OSSD Model (Iteration) Developers Sector

86

Participation
\ . Average
_ Productivi
PJrroductlonJ_/ Hety
Product + y
Functionality New Product

Functionality Added

There are two potential mechanisms that may slow the process of adding
functionality to the product (See Figure 4.3). First is the potential decline in average
productivity of the developers as the developer population increases. As the number of
developers increases and approaches the Productive Developer Population Limit, the
average productivity of the developers would decline, due to the diminishing returns on
marginal addition of contributors. Average Production is defined as the average number
of lines of code written per hour by a developer. As such, this first mechanism limits the
basic code writing productivity. The second potentia limiting mechanism works through
the achieved functionality ratio. As the product functionality approaches the limit on
product functionality, it becomes more difficult to add marginal functionality to the

product. Thus each unit of code adds less functionality to the product.

87

Developers

+

Achieved
Functiondity Ratio

A > <Productive

* Developer Developer Population
Average Population Intensity Limit>
Participation
i <Average Productivity
Average:AJ’/ Normal>
+ P}
_ Product
P"r'oductlonj_/ oductivity
Product +
Functiondlity |~ New Product
Functionality Added
+
_ / Product Functionality
Product Functionality Adding Efficiency
Adding Efficiency Normal

C:\ Aw4

AN
Increasein Limit on

Limit on Product
Functionality

Product Functionality ,_—
+

+
Increase in Limit on Product
Functionality Coefficient

Figure 4.3. OSSD Model (Iteration I) Developers Sector

88

As Figure 4.4 shows, the number of developers increases as new developers join
the community. New developers come from the pool of potential developers as a normal
fraction of that pool at any given time period. This fraction is an ideal number, which is

limited by the relative attractiveness of the product for devel opers (See Figure 4.5).

89

Norma Timeto Attract ———a > <Productive

All Potential Developers * Developer Developer Population
— Average Population Intensity Limit>
ent - y + Participation
Developers 22 »Developers P
ew <Average Productivity
Developers)
P?oductionj_/PrOdUC“VIty
Product +
Functionality New Product
Functionality Added
+ +
: Product Functionalit
Achieved Product Functionality Adding Effici encyy
Functlonahty_Ratuddi ng Efficiency Normal

4 < Limit on Product

Increase in Limit on Functionality
Product Functionality
fo
Increase in Limit on Product
Functionality Coefficient

Figure 4.4. OSSD Model (Iteration) Developers Sector

90

Norma Timeto Attract ———a > <Productive

All Potential Developers * Developer Developer Population
Poterial] Pa,?t?,?aagt?on Population Intensity Limit>
Developers = T\GN * s Developers ap N
7 Devdopars Av-erage + <Averal\?§rm§guwwty
P-'r-odu-ci-tionj_/PrOdUCﬁVity

Overdl Attractiveness
of Product for
Developers

"\

Attractiveness of Product

for Developers Due to Product +
Functionality Functionality New Product
} Functionality Added
+ +
. Product Functionalit
Achm;ved _ Product Functionality Adding Effici encyy
FunCtlondlty_R&Uddi ng Effici ecy Normal
4 - Limit on Product

Increase in Limit on Functionality
Product Functionality
fo
Increase in Limit on Product
Functionality Coefficient

Figure 4.5. OSSD Model (Iteration) Developers Sector

91

An important component of the attractiveness of a product for developers is the
amount of unachieved functionality. This follows from Raymond's (2001) concept of
“homesteading” as discussed in the literature review section. (See Section 2.3.3)
Raymond suggested that among other things, developers are attracted to participate in an
open source software project if they can “homestead” and claim a certain segment of the
project to themselves. If an open source software product is in its maturity stage and most
of the potential functionality is already added, the product would become less attractive
for the developers, because there would not be enough unachieved functionality to be
homesteaded. Accordingly in the model, attractiveness of the project for developers
decreases as the product functionality approaches the limit on product functionality. This
is also in accord with the motivation factors discussed under the public goods section of
the literature review. We can argue that developers would be attracted to projects that
provide substantial opportunities for contributions whether they are motivated by
reputation, self-efficacy or even altruism. If the opportunities for contribution are scarce,

they would not be attracted.

Just as there are new developers that join the community, there are devel opers that
leave the community (See Figure 4.6). Developers leave the community at a normal rate,
which accelerates as the opportunities for contribution decrease (See Figure 4.7).
Towards the end of the project, product functionality approaches the limit on product
functionality. This means that most of the potential functionality is already added to the
product, and most of the developers have completed their parts within the project. These
devel opers would want to move on to other software projects or alternative activities, and

that would accelerate the rate of developer departure substantialy. At the end of the

92

project, only a small number of developers would stay for maintenance purposes to keep
the product up-to-date as the general level of technology develops and the limit on

product functionality increases sowly over time.

93

Norma Time to Attract T T A/—\ <Productive

AII Potential Developers * Developer Developer Population
_ tal Average Population Intensity Limit>
enti Participation
Developers »Developers P
. <Average Productivity
Developers el
“ / / . Average * Normal>
_ Productivi
m - P"r'oductlonj_/ ocuctivity
Leaw ng Normal Time for
Overall Attracnveness Developers Developers to Leave
of Product for
Developers
+
Attractiveness of Product
for Developers Due to Product +
Functionality Functionality New Product
} Functionality Added
+ / +
. Product Functionalit
Achieved Product Functionality Adding Effici encyy
Functlondlty_Ratuddi ng Efficiency, Normal
4 - Limit on Product

Increase in Limit on Functionality
Product Functionality
fo
Increase in Limit on Product
Functionality Coefficient

Figure 4.6. OSSD Model (Iteration) Developers Sector

94

Norma Time to Attract T T A/—\ <Productive

AII Potential Developers * Developer Developer Population
—— a| Average Population Intensity Limit>
ent Participation
Developers »-Developers ’
. <Average Productivity
Develo ers el
. Productivi
n - P"r'oductlonj_/ ocuctivity
Leaw ng Normal Time for
Overall Attractweness Devel opers Deve opers to Leave
of Product for +
Developers
+
Leaving Acceleration
Attractiveness of Product Due to Functionality
for Developers Due to + Product +
Functionality Functionality New Product
} Functionality Added
N Vai
: Product Functionalit
Achieved Product Functionality Adding Effici encyy
Functlondlty_Ratuddi ng Effici ecy Norma
4 o Limit on Product

Increase in Limit on Functionality
Product Functionality
fo
Increase in Limit on Product
Functionality Coefficient

Figure 4.7. OSSD Model (Iteration) Developers Sector

95

The Users Sector is the other main part of the Iteration | version of the model.
This sector represents the causal relationships between the level of achieved product
functionality and the growth of the product’s user pool. The Users Sector also represents
the effects of the number of users of the product on attracting potential users and

developers.

New users are added to the product’s user pool as potential users adopt the
product. New users are attracted at a normal rate, which is a fraction of the potential user
pool. This fraction is an ideal number, which is limited by the relative attractiveness of
the product for users. The attractiveness of the product for users is influenced positively

by the level of achieved product functionality (See Figure 4.8).

96

Potential’\{z » Usars
Users + New Users

Achieved
Functionality Ratio

Attractiveness of Norma Timeto

Product for Users Attract All Potential
A Users

Figure 4.8. OSSD Modd (Iteration 1) Users Sector

97

The flow of new users into the product’s user pool acelerates as the level of
success in attracting users increases. The success in attracting users is based on the
relative number of users of the product, with respect to the total user population (See

Figure 4.9).

98

Total User
+ Population

> Successin
Attracting Users

- +
Potential g > Users

Users

y Achieved
Users Acceleration Due Functionality Retio
Attractivenessof Norma Timeto [© Successin Attracting

Product for Users Attract All Potentid
A Users

Figure 4.9. OSSD Model (Iteration I) Users Sector

99

Success in attracting users influences the attractiveness of the product for
developers positively, as well. Attractiveness of Product for Developers Due to Users and
Attractiveness of Product for Developers Due to Functionality together determine the
Overall Attractiveness of Product for Developers (Figure 4.10), which in turn influences

the number of new developers.

100

. Overdl Attractiveness
of Product for
Deveopers
Attractiveness of
Product for Devel opers

Dueto Users Functionality
Total User
+ Populatlon

Success in
" Attracti ng Users

- +
Potentia g > Users

Users

+

Users Acceleration Due
Attractivenessof Norma Timeto [© Successin Attracting

Product for Users Attract All Potentid
A Users

Attractiveness of Product
for Developers Due to

Achieved
Functiondity Ratio

Figure 4.10. OSSD Model (Iteration I) Users Sector

101

The main feedback loops governing the Iteration | version of the model can be
analyzed by putting the two sectors together, as shown in Figure 4.11. Besides several
minor (two-variable) loops, the Iteration | version has five major loops that determine the
overall model behavior. Three of these loops are balancing (negative) loops, while the

other two are reinforcing (positive) loops.

102

Potential ~_% L
Developers Developers
ﬂ /'Developers N
- - Production

Leaw ng “+
Overdl Attractiveness Devel opers

+ of Product for
Developers Q
+
Attractiveness of Product

for Developers Due to Leaving Acceleration
Users Attractiveness of Product Dueto Functlonality +
n for Developers Due to PerUCt. - D
\ Functlonallty Functionality New Product
Suceess in Functionality Added
Attracting Users / @ / +
* Achieved Product Functionality

Functionality Ratio A‘_jd' ng Efficiency

Potential - + o Users -
Users | New Users +
A UsersAcoeleratlon Due
to Success in Attracting “ = £ [Limit on Product
Increase in Limit on Functionality
Attractiveness of Product Functionality
Product for Users /+ 2

Increase in Limit on Product
Functionality Coefficient

Figure 4.11. OSSD Model (Iteration 1) Overview

103

The first balancing loop, as portrayed in Figure 4.12, limits the number of new
developers that join the community, as product functionality increases and approaches the
l[imit on product functionality. This is due to the decrease in the opportunities to
contribute to the project, as discussed earlier in this section. As product functionality
approaches the saturation point, potential developer see that there are not enough
opportunities to claim a certain portion of the project. Thus, they refrain from joining the
community, diverting their attention to alternative open source communities, where they
can find more opportunities to “homestead” portiors of the project. As the number of
new developers decline, the developer pool first starts to grow at a slower rate, and after a
point starts to decline. That tipping point is when the number of leaving developers

becomes larger than the number of new devel opers.

104

Developerg
ﬁ / Devel opers +
L eavmg 4+/ - Production
Overall Attractiveness Devel opers
+ of Product for
/ Developers Q
+
Attractiveness of Product
for Developers Due to Leaving Acceleration
Users Attractiveness of Product Dueto Functlonallty +
4 for Developers Due to Product | g + % O
Functionality Functionality New Product
Suceessin Functionality Added
Attracting Users /+
Product Functionality
Achieved
\ Functionality Ratio______—w Adding Efficiency

Potential -~ + Users

Users | New Users +
o+ Users Acceleration Due
to Succeas in Attracting - 2 3. Limit on Product
Increase in Limit on Functionality

Attractiveness of
Product for Users

Product Functionality
/+ +

Increase in Limit on Product
Functionality Coefficient

Figure 4.12. OSSD Model (Iteration 1) Balancing Loop 1: “Fewer Opportunities for Contribution Attract Fewer New

Developers.”

105

The second negative feedback loop limits the growth of the developer pool due to
the increase in product functionality. (See Figure 4.13). However, it works through
leaving developers, rather than new developers. When developers finish their portions of
the project they tend to leave and move on to other projects, unless they stay within the
community to maintain the product. Towards the end of the project, when product
functionality approaches the limit on product functionality, many developers have done
their share, so the number of leaving developers increases substantially. The increase in
leaving developers, coupled with the decrease in the number of new developers, causes
the developer pool first to grow more slowly and then to decline, as the tipping point

discussed above isreached.

106

Potential —_¥¢ L.

Developers Developers
v /' Devel opers
Leavi ng - - Production
Overall Attractiveness Developers
+ of Product for
Developers @
+
Attractiveness of Product
for Developers Due to Leaving Acceleration
Users Attractiveness of Product Due to Functionality +

+ for Developers Due to Product -« “
Functlonallty Functionality New Product

recing Us Functionality Added
Attracting Users /+
\ Achieved Product Functionality

Functionality Ratio A‘_jd' ng Efficiency

Users | New Users 4

N+ Users Acceleration Due
to Success in Attracting

I, i 3| Limit on Product

AN

Increase in Limit on Functionality

Product Func@/
/+ +

Increase in Limit on Product
Functionality Coefficient

Attractiveness of
Product for Users

Figure 4.13. OSSD Model (Iteration 1) Balancing Loop 2: “Fewer Opportunities for Gntribution Retain Fewer Existing

Developers.”

107

The third balancing loop is the one that limits the new product functionality added
per line of code produced. As the product functionality approaches the limit on product
functionality, it becomes harder to add a marginal unit of functionality to the product.
Accordingly, the same number of lines of code yields less functionality, as the achieved

functionality ratio increases (See Figure 4.14).

108

Potential —_w t

Developers Developers
ﬁ /' Devel opers +
L eavmg { - Production
Overall Attractiveness Developers
+ of Product for +
Developers
+
Attractiveness of Product
for Developers Due to Leaving Acceleration
Users Attractiveness of Product Dueto Functlonallty +
f for Developers Due to Product | @ + ¥ -
Functlonallty Functlonallty New Product
Success in Functionality Added
Attracting Users /(4.
Product Functionality
\ Fun cﬁggé\ﬁvtf;dR aio___Ad Adding Efficiency

Potential |- &+ | jgers

Users | New Users +

N+ Users Acceleration Due
to Success in Attracting

o ivd 3| Limit on Product

AN

Increase in Limit on Functionality

Product Func@/
/+ +

Increase in Limit on Product
Functionality Coefficient

Attractiveness of
Product for Users

Figure 4.14. OSSD Model (Iteration) Balancing Loop 3: “More Functionality Makes It Harder to Add Further Functionality.”

109

The first magjor reinforcing loop islocal to the users sector (See Figure 4.15). This
loop works according to the positive network externalities principle. As new users join
the community by starting to use the product, the number of users increases. A higher
number of users is perceived as a higher success in attracting users, and the higher

success accel erates the rate of new users joining the community.

110

Potential T ¥ L
Developers Developers
ﬁ /' Devel opers +
Leaw ng { - Production
Overall Attractiveness Developers
+ of Product for +
Developers
+
Attractiveness of Product
for Developers Due to Leaving Acceleration
Users Attractiveness of Product Due to Functlonallty +
4 for Developers Due to Product | o + & O
Functlonallty Functionality New Product
Success in Functionality Added
Attracting Users / +
Product Functionality
\ Func/tAf gﬂ;le:vtsd Ratio_ _—» Adding Efficiency

Potential |- & +g | |jgers

Users | New Users +

N+ Users Acceleration Due
to Success in Attracting

o ivd 3| Limit on Product

AN

Increase in Limit on Functionality

Product Func@/
/+ +

Increase in Limit on Product
Functionality Coefficient

Attractiveness of
Product for Users

Figure 4.15. OSSD Mode (Iteration 1) Reinforcing Loop 1: “Positive Network Externalities Effect Attracts More Users.”

111

The second reinforcing loop is a model-wide one within the boundary of the
Iteration | version. (See Figure 4.16.) This loop ultimately explains how a given
community succeeds or fails in terms of overall growth. As developers participate in
production and build product functionality, the achieved functionality ratio increases. A
high functionality achievement attracts a higher number of new users, thus increasing the
user pool rapidly. This is percelved as a success in attracting users. A considerable
success in attracting users attracts more new developers, who in turn generate more
production which helps build functionality faster. On the other hand, if existing
developers fail to build functionality comparable with the increase in the limit on product
functionality, the product fails to attract the critical level of users. That in turn decreases
the attractiveness of the product for developers, decreasing the number of new
developers, which would further decelerate the progress of the project. Thisloop is not as
dominant in the Iteration | version as it is in the subsequent versions of the model. The
reason for that is the exclusion of the time pressure factor in the Iteration | version. Time
pressure is added to the model in the Iteration 11 version, which increases the effect of

this reinforcing loop on the model behavior.

112

Developers
v / Devel opers
L eavmg { - Production
Overall Attractiveness Developers
+ of Product for +
Developers
+
Attractiveness of Product
for Developers Due to Leaving Acceleration
Users Attractiveness of Product Dueto Functlonallty +
) for Developers Due to Product | @ + % -
Functlonallty Functionality New Product
Success in Functionality Added
Attracting Users / +
Product Functionality
\ Fun cﬁggé\ﬁvt;ldR a0 Ad Adding Efficiency

Potential - +

Users
Users

New Users +

+ Users Acceleration Due
to Success in Attracting

o ivd 3| Limit on Product

AN

Increase in Limit on Functionality

Product Func@/
/+ +

Increase in Limit on Product
Functionality Coefficient

Attractiveness of
Product for Users

Figure 4.16. OSSD Modd (Iteration 1) Reinforcing Loop 2: “More Functionality Attracts More New Users, and That Attracts

More New Developers.”

113

The base run of the Iteration | version involves a project with an initial product

functionality limit of 400 Units of Functionality (UF). Figure 4.17 shows the behavior of

product functionality for this base run. Product functionality increases aimost in a linear

fashion, seeking to reach the functionality limit after about month 55. After that point the

rate of increase in product functionality drops since most of the potential functionality

has been added to the product. Functionality limit, too, increases, as the genera level of

technology grows. However the increase in functionality limit is slower than that in

product functionality.

Product Functionality

600
——1

450 [//r—r-"ﬂ
300 //
150

0 Lk /

0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functiondity : iter_1 base . T T T T T T B UF

Figure 4.17. OSSD Model (Iteration I) Base Run - Product Functionality

Figure 4.18 displays the behavior of achieved functionality ratio, which in fact is

the ratio between actual product functionality achieved and functionality limit. Here,

achieved product functionality increases in alinear fashion until it reaches an equilibrium

value a little below 1. After that point, achieved product functionality does not increase

114

any further due to the lag between the increase in the general level of technology and the

actual maintenance improvements in the product in question.

Achieved Functionality Ratio

B
|

yd

0.75 /

0.5 f//
0.25 /,
O s
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Achieved Functiondity Ratio: iter 1 base +—t—+t—+t—+t—+t—t—+t—t—t—1t Dmnl

Figure 4.18. OSSD Model (Iteration I) Base Run - Achieved Functionality Ratio

The behavior of the number of developers in the base run for the Iteration |
version is shown in Figure 4.19. The number of developers increases as the project
unfolds because the overall attractiveness of the product keeps the rate of new developers
above the rate of leaving developers. At around month 43, the rate of leaving developers
surpasses the number new developers. This is caused by (a) decreases in attractiveness
due to decreasing opportunities for making contributions and (b) the acceleration of
developer departures due to the fact that many developers have completed their
contribution to the product at that stage of the project. After that point the number of

developers continues to decline until an equilibrium just below 10 is reached. These are

115

the developers that stay in the community for maintenance and updating purposes, in an

effort to keep the product current with respect to the general level of technology.

Developers

20

] \\

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers: iter_1 base T+ttt t—t—t 1t 1t 1 people

Figure 4.19. OSSD Modd (lteration I) Base Run - Number of Developers

The number of users of the product exhibits an S-shaped growth pattern as shown
in Figure 4.20. The growth of the number of usersis driven by the achieved functionality
ratio through the attracti veness of the product for users, and the success in attracting users
through positive network externalities. As the achieved functionality ratio and success in
attracting users increase, the rate of new users increases faster and the number of users
exhibit an exponential growth pattern until around month 33. After that point, the
increase changes shape and becomes sub-linear because the pool of potential users
becomes too small. Finaly, the number of users converges to the absolute number of

potential users at 20,000 people. This, of course, is based on the assumption that there are

116

afixed number of potential users that would be interested in a given product and that that

number would not increase over time.

Users

20,000 /
15,000 /

10,000 /

5,000

0 /|

" 10 20 30 4 50 6 70 8 90 100
Time (Month)

OH

Users:iter_1 base e 1 A A T T e 1 A A 1 people

Figure 4.20. OSSD Model (Iteration 1) Base Run - Number of Users

Another ssimulation is run with the initial limit on product functionality set to
4000 UF, and the potential user population set to 200,000 people. As Figure 4.21 shows,
product functionality exhibits a behavior that is very close to linear. This behavior covers
roughly 80% of the development period of the product. As Figure 4.22 shows, achieved
productivity ratio reaches alittle higher than 0.8 by the end of month 100. The number of
developers increases until month 80, since there is still a considerable amount of
functionality to be added until that stage in the project. After month 80, the number of
developers starts to decrease (See Figure 4.23). The number of users reaches the

saturation point around month 95 (See Figure 4.24).

117

Product Functionality

6,000
4,500
L] s
/I/
3,000]
1 (
’I_/-’
{/
redl |
T,/"
L
1,500
"
| il
1/-/'
1,_/
1/
0 "] r-f
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity :iter 1 hi pot &+ttt t—t—t—t ¢ UF

Figure 4.21. OSSD Model (Iteration I) High Functionality Potential Run - Product
Functionality

Achieved Functiondlity Ratio

1
0.75 [//t"
| 4
[’/
0.5 - |
f//
|
[’/
| -
0.25
r
[,/’
| |
0 | ['/
6 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_1 hi_pot t+—t—t—t—t+t—t—t+—t—t—1t Dml

Figure 4.22. OSSD Model (Iteration 1) High Functionality Potential Run -
Achieved Functionality Ratio

118

Developers

100
L1 I T e SN
— 1] il
=]

75 /(

50 (/

25 /

0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers:iter 1 hi pot +—+t—+t—+t—+—+t +t +t +t—+t 1t —t—1 people

Figure 4.23. OSSD Model (Iteration 1) High Functionality Potential Run -

Developers

Users

200,000 1

150,000 /’

100,000 2
7

/

50,000 / /f/
]

40 50 60 70 80 90 100
Time (Month)

OH
[N
o
N
o
w
o

Users:iter_1_hi_pot r—t—t—t—t 1t —1 people

Figure 4.24. OSSD Modd (Iteration 1) High Functionality Potential Run - Users

119

A range of simulation runs with the Iteration | version under different initial
conditions and parameter settings points out the importance of time pressure, which is
addressed by the Iteration |1 version of the model. An example is a group of simulations
run by setting average participation to lower values than the original value of 20 hours
per person per month. Figure 4.25 through Figure 4.28 shows the behavior of the
Iteration | version with Average Participation set arbitrarily to seven hours per person per
month, as a lower participation level. While the growth of product functionality and the
number of users sow down considerably, the community still succeeds in terms of
retaining a critical mass of developers that continue to work on the product. Eventually,
both product functionality and the number of users reach healthy levels. When average
participation is decreased even further, the growth slows down even more; however,
given enough time, product functionality and the number of users always reach healthy
levels. Thisis a critical problem about the Iteration | version. The Iteration | version can
replicate the behavior of successful communities, but not those of unsuccessful
communities. Changing other parameters that have a decreasing effect on the overall
production triggers the same problems. For example, decreasing average productivity,
decreasing the normal (base) rate of new developers, or increasing the normal rate of
leaving developers all directly or indirectly decrease overall production. As production
decreases, the growth of the product and the community slow down, however the
community never fails to reach a healthy level in terms of product functionality and the
number of users, given enough time. This problem is addressed by the Iteration |1 version
of the model, which includes the time pressure factor and replicates a wider range of

situations more accurately.

120

Product Functionality

600
450
300
7
’_,,-4
. —1
L+
150 sl
] r,fr”’
[_/./t’/
— T |
0 |
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity :iter 1 lo pat +—+t—+t—+t—+t+t +t—t—t—t—t ¢ UF

Figure 4.25. OSSD Mode (Iteration 1) Low Participation Run - Product
Functionality

Achieved Functiondlity Ratio

1
0.75
L’/_H"
r./-"
r,-/'
0.5]
T
/
[,/
0.25 r,/l,/
1/‘/
|
t,./"
0 |
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Achieved Functionality Ratio : iter_1 lo_part t+—t—t—t—t+t—t—t+—t—t—1t Dml

Figure 4.26. OSSD Model (lteration I) Low Participation Run - Achieved
Functionality Ratio

121

Developers

20
| _——1 T T T
| ———1 1] u R

15 / ,/_/ﬂ,.-r'—
10

5

0

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers:iter 1 lopat +—+t—t+t—+t—+t+t +t t +t—+t 1t —t—1 people

Figure 4.27. OSSD Modd (lteration I) Low Participation Run - Developers

Usars
20,000 =
A -
15,000 /’/
10,000 /
5,000 /]
/I/ g
0 1 1 L L L - f_ﬂff
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users:iter 1 lo pat —+—t—t—t—t ¢ T T e 1 A A 1 people

Figure 4.28. OSSD Model (Iteration I) Low Participation Run - Users

122

4.3. Iteration 11: Adding Time Pressure

The aim of the second iteration of the model-building phase is to capture the time
pressure factor on the community while developing a product. The Iteration | version of
the model cannot explain cases where a community ceases to grow and eventualy
declines because the product is not delivered in a timely fashion. Under the assumption
that there are other proprietary and open source aternatives for the product being
developed by the community, it is crucial to deliver the product within the time frame

expected by the users.

As portrayed in Figure 4.29, the Iteration 11 model assumes the existence of a
general level of patience on the part of the potential members of the community, both
developers and users. The initia limit on product functionality determines the speed with
which that patience will run out, and how fast the community will expect the product to
mature.. It is assumed that a larger product in terms of the limit on product functionality
will bring about a slower rate at which patience runs out. In other words, the community
will expect a bigger project to mature over a longer period of time, so they will lose

patience more slowly.

123

+Deve| opr +— - Productive Developer
Developers Population Intensity Population Limit
Average Average Productivity
Participation Normal
/. 1
(VY o~ Average
Production Productivity
Product
Functiondity New Product
Functiondity Added
+ Product Functionality
ot A e ™
Functiondlity Ratio Product Funct|onal|ty
) Adding Efficiency +
N\ Norma Timeto
Limit on Product Lose Patience
Functionality Ry (\
o Timeto Lose
Increase in Limit on Increasein Limit Patience
Product Functionality on Product
Coefficient | Functionality -
Pati >
ence Petience Lost
+

Figure 4.29. OSSD Modé (Iteration 11) Developers Sector

124

The level of patience at a given time determines the functionality expectation of
the community (See Figure 4.30). The expected functionality ratio would constitute a
mental benchmark for community members when they assess the success of the project in
terms of delivering functionality in a timely manner. It is assumed that during the initial
phases of a project, community members would not focus too much on the actual level of
achieved functionality, and give the project a chance even if the achieved functionality
ratio is very low. Rather, they would focus on their expectations for a period of time in
the hope that the achieved functionality level would approach those expectations in time.
As the project unfolds, their focus would shift toward achieved functionality ratio. This
shift in the focus for assessment is represented by the operative functionality ratio.
Operative functionality ratio is a weighted average of achieved and expected
functionality ratios (See Figure 4.30). The weights are determined by the expected
functionality ratio. As expectation builds, the weight shifts to the achieved functionality
ratio. It is assumed that at the beginning of the project the weight on expected
functionality ratio is 1, and it remains 1 until the expected functionality ratio reaches 0.1.
From that point on the weight on expected functionality ratio declines, the weight on
expected functionality ratio grows, and they both become 0.5 when expected
functionality ratio reaches 0.2. By the time expected functionality ratio reaches 0.3, the

weight on achieved functionality ratio reaches 1.

125

— 4+~ - Productive Deve oper

Developer i
Developers Population Intensity Population Limit

Average Average Productivity
Participation Normal
/. 1
(VY o~ Average
Production Productivity

Product
Functiondity New Product

Operative/Expected Funct|ond|ty Added
Fundlondlty Retio
Product Functionality
Adding Efficiency

Achi eved

Normal
Funcxlondlty Ratio Product Funct|onal|ty
Adding Efficiency +
— Norma Timeto
Expected * Operative L|m|t on Product Lose Patience

Funtiondity Retio Functiondlity Retio Funcionaity | T a
| o Limit Timeto Lose
ncrease in Limit on Increasein Limit Patience
Product Functionality i on Product
Coefficient * Functiondlity -
Patience -]
Patience Lost
¥

Figure 4.30. OSSD Model (Iteration Il) Developers Sector

126

The success of the community in terms of accommodating the functionality
expectation is represented as a ratio between the operative and expected functionality
ratios. On the part of the developers, operative vs. expected functionality ratio has two
motivational effects. On the positive side, a high operative vs. expected functionality
ratio would increase the overall attractiveness of the product for developers, and thus
increase the number of new developers joining the community (See Figure 4.31). On the
negative side, a low operative vs. expected functionality ratio would discourage the

existing devel opers, and increase the rate of leaving developers (See Figure 4.32).

127

Normd Timeto Attract - 'y
ormal Time to Attract - —- ;
X Developers Productive Devel oper
Al Potentia Developers - Developer Population Limi
T Developers polation Intensity fetion Limit
Average Average Productivity
Participation Normal
Potential / +/
Developers (VY o~ Average
Production Productivity
Overdl Attractiveness of
4+ Product for Developers
+
+ Product
Attractiveness of Product for Functiondity New Product
Devel Opgusng%i;f’ Achieved Operative/Expected Functiondity Added
Attractiveness of Product ol g Pupdiondity Retio /
for Developers Dueto
U ggs Attractiveness of Product S Pr,g\ddlé?;g lijzrm:? g?clyty
¥ for Developers Due to Achieved Normal
Potentidl Functionality Funciondlity Retio. 5y 4 ¢ Functiondlity
+ Adding Efficiency +
<Successin ; Norma Timeto
Attracting Users> Expected * Funq?%?tlvgaio Limit on Product Lose Patience
Funtiondlity Retio ty Functiondity Ry +
o Timeto Lose
Increasein Limit on Increasein Limit Patience
Product Functiondity
A on Product
Coefficient *] Functonaly - °
ence Patience Lost
¥

Figure 4.31. OSSD Mode (Iteration I1) Developers Sector

128

Norma TimetoAftract - Dev’\é%Npers — X ~— - Productive Devel oper
. _ 3 do . e .
Al Potential Developers - Developers Developer Population Limit
Norma Time +1 + Population Intensity
for Developers
to Leave Average Average Productivity
Participation Normal
Potential | _ v . / +r/
Developers = - ~— Average
Leaving Production Vi
_Pevdlopers Productivity
+
Leaving Accelaration
Dueto Low Achieved
Functiondity Leaving Acceleration
. A Due to Potentid
Ovedl Attractiveness of Functionality
4+ Product for Developers +
A +
Product
Attractiveness of Product for Functiondlity New Product
Deve'"p,?uig%‘;‘i,;" Achieved Operative/Expected Functiondity Added
Attractiveness of Product ol g Pupdiondity Retio /
for Developers Dueto
U ggs Attractiveness of Product . Pr,g\ddlé?;g lijz?ﬁ::? g?c'yty
¥ for Developers Due to Achieved Normal
Potentidl Functionality Funciondity Raio 5y Functiondlity
.) Adding Efficiency +
<Successin — : Norma Timeto
Attracting Users> Expected * Fund?%?tlvgaio Limit on Product Lose Patience
Funtionality Retio ty Functiondlity _\1

Increasein Limit on
Product Functiondity
Codfficient

Figure 4.32. OSSD Mode (Iteration I1) Developers Sector

129

Timeto Lose *

Increasein Limit Patience
on Product
+| Functiondity Pt - -
ience -
Patience Lost
¥

Another concept that is introduced with the Iteration Il version is the pool of
developers working on similar projects. These projects are rivals to the community in the
sense that they focus on developing similar, aternative products. As shown in Figure
4.33 developers would join and leave the other projects with certain rates, thus adding to
and taking from the pool of potentia developers. This is a more accurate representation
of the competition for developer resources as it happens in open source software

development.

130

. — = New
El?r;’no?erygq%to g\ttract " Developers /\iDev loper +— - Productive Developer
i Devdopers - - _ _ ion Limi
Normal Time +h+ Developers Population Intensity Popuiation Limit
for Developers
to Leave \ Average Average Productivity
Leaving Developers Participation Normal
from Othg Projects [Potentia - + . / +/
T Developers = - ~— Average
Leaving Production Vi
_ Pevelopers T Productivity
+
Developerson ‘__+/
Other Projects e Leaving Accelaration
) Potential Developers Dueto Low Achieved
Choosing Other Projects Functiondlity Leaving Acceleration
+ Al) of A Dueto _Pote_nti d
Normd Timeto Lose Al %ng CtAfttralgtN:w&ss Functionality
Potential Developersto + uct tor Developers +
Other Project +
e HToecs * Product
Attractiveness of Product for Functiondity New Product
Developers Due o Adieved Operative/Expected Functiondity Added
Attractiveness of Product ol g Pupdiondity Retio /
for Developers Due to
U ggs Attractiveness of Product . Pr,g\ddlé?;g lijz?ﬁ::? g?c'yty
+ for Developers Due to Achieved Normal
Potential Functionality Runctiondlity Ratio 5y 4y Funct|onal|ty
.) Adding Efficiency +
<Successin — : Norma Timeto
Attracting Users> Expected i mm?%?tlvgai o Limit on Product L ose Patience
Funtionality Retio ty Functiondlity _\1

Figure 4.33. OSSD Model (Iteration 11) Developers Sector

131

Increasein Limit on
Product Functiondity
Codfficient

Timeto Lose *

Increasein Limit Patience
on Product
+| Functiondity Pt - -
ience -
Patience Lost
¥

Leaving users is another concept that is added to the Iteration Il version.
Operative/Expected Functionality Ratio affects the rate of leaving users. It is assumed
that the users would leave the users pool at a certain rate, which is accelerated by low
levels of operative/expected functionality ratio. (See Figure 4.34.) It is important to note
that while new users are attracted to the product based on the absolute level of achieved
functionality ratio, leaving users are influenced by the achieved/expected functionality
ratio. The assumption here is new users do not pay attention to how the functionality of
the product has increased over time while they are deciding whether to shift to the
product. They only look at the absolute functionality level at the time they are making

their decision, and base their decision on that.

132

Norma Timeto
Attract All Potentia
Users

Users

Figure 4.34. OSSD Model (Iteration I1) Users Sector

133

Users <Achieved
Functiondity
Ratio>
L Attractiveness of /
Product for Users _
<Opertive
Functionality Retio>
< AN
Leaving +
- Users+ Operative/Expected
Functiondity Raig\
i i - <Expected
Norma Timeto Leaving Users Acceleration Funtiondpi)t?/dRatio>
Lose All Users Dueto Low Achieved <47

Functionality

Norma Timeto
Attract All Potentia
Users

Users <Achieved
Functiondity

/ Ratio>
L Attractiveness of
Product for Users

. <Operative
Leaving Users from Functionality Ratio>

Competitor Products
v

+
Operative/Expected
Functiondity Ratio
T~ <Expected
Funtiondity Ratio>

L Normd Timeto Leaving Users Acceleration

Lose All Users Dueto Low Achieved .
Users Using Functiondity
Competitor 2
Products Potential Users
Choosing Competitor
Products Norma Timeto Lose All

\ Potential Usersto
Competitor Products

Figure 4.35. OSSD Model (Iteration I1) Users Sector

134

On the other hand, existing users expectations for functionality grow as the
project unfolds, and if achieved functionality does not match their expectations at a given
time, they may become impatient and quit using the product. The option of users
switching to competing products is also added to the model with the Iteration 11 version.
Potential users may choose to adopt competing products and existing users of competing

products may adopt the open source option at certain rates, as shown in Figure 4.35.

As shown in Figure 4.36, success in attracting usersis still determined by the ratio
between the number of users of the product and the number of total users. Number of
total users includes the number of users of the product, number of users of competing
products, and number of potential users, in Iteration Il model. Success in attracting users
influences the number of new users and the attractiveness of the product for developers

positively, asin the Iteration | version (See Figure 4.36.)

135

Attractiveness of

Product for Developers
/ Dueto Users
Successin
New Users’ Attracting Usgrs
Acceleration Due to
Successin Attracting
Norma Timeto
Attract All Potential
Users
+ Total User “+
Population .
+ Users <Achieved
Functiondity
Ratio>

Leaving Users from
Competitor Products
v

/

L Attractiveness of
Product for Users

<Operaive
Functiondlity Ratio>

+
Operative/Expected
Functiondity Ratio
T~ <Expected

Leaving Users Acceleration Funtiondlity Retio>

Norma Timeto
T DuetoLow Achieved — <4/

Lose All Users

Users Using Functiondity
Competitor 2
Products Potential Users
Choosing Competitor
Products Normd Timeto Lose All

\

Potential Usersto
Competitor Products

Figure 4.36. OSSD Model (Iteration I1) Users Sector

136

Including time pressure in the model introduces three more major reinforcing
loops. The first of the new reinforcing loops (Reinforcing Loop 3) works through the
overal attractiveness of the product for developers. As developers participate in
production and add functionality to the product operative/expected functionality ratio
increases. A higher operative/expected functionality ratio increases the attractiveness of
the product for the developers, thus the rate of new developers joining the project

increases. (See Figure 4.37.)

137

New +

Normal Timeto Attract - — . P '
. Developers Productive Devel oper
All Potentia Developers - - - Developers Developer Population Limit
Norma Time +1‘+ Population Intensity
for Devel
T oLeave ™~ Average Average Productivity
Leaving Developers Participation Norma
from Othg Projects .| Potentia ») \ +
" Developers = - 4 Aveage
) Iéveg‘gggrs Production Productivity
7 J}\Jr
Developers on / | coving Acodarat
Other Pro'a:ts K ~ eavl ng aralion
: Potential Developers Dueto Low Achieved
Choosing Other Projects Functiondlity Leaving Acceleration
A Due to Potential
Normal Timeto Lose All C;rvgrddl:ﬁttr%tlvgless of Functiondlity
Potential Developersto % uct tor Developers Q +
Other Projects A \ Product +
Attractiveness of Product for Functiondity New Product
Devel Opgusng%iéo Achieved Operative/Expected Funcnonahty Added
Attractiveness of Product tonlty ~— FUnctiondity Retio
for Developers Dueto) - Product Functiondlity
Users Attractiveness of Product Achioved Adding Efficiency
+ for De_velopers_; Dueto Fundtionality Ratio Normal
Potentid Functiondlity ty Product Functlondlty
/ \ \— Adding Efficiency +
<Successin — : Normd Timeto
Attracting Users> Expected " Functci)gn.r;i?nv;ai o Limit on Product Lose Patience
Funtiondlity Ratio ty Functiondlity T~

Increasein Limit on
Product Functiondity
Codfficient

Increase in Limit
> on Product
+| Functiondity

TimetoLose *
Patience

L

Patience

Patiuence
™ Lod¢

Figure 4.37. OSSD Model (Iteration I1) Reinforcing Loop 3: “More Functionality Attracts More New Developers.”

138

The second newly introduce loop (Reinforcing Loop 4) works through the
acceleration of leaving developers due to low achieved functionality. As the
operativelexpected functionality ratio decreases more developers are inclined to leave the
project. This would slow down the growth of the developer pool if the rate of new
developersis higher than the rate of leaving developers. If the rate of leaving developers
is faster than the rate of new developers it would decrease the number of developers
faster. This in turn would affect the production and functionality growth negatively. (See

Figure 4.38.)

139

New +

Norma Time to Attract - — . P '
Developers Productive Develo
All Potential Developers - o Developerg Developer Populaion it
Norma Time + Ry Population Intensity
for Deve
o to?/eaegers \ Average Average Productivity
Leaving Developers Participation Normal
from Othg Projects .| Potentia » o/ +
Developers| Z Average
Z Leavi ng Production Productﬁl ty
I eveloperir
A
Developerson / L eavina A ocdlarai
Other Pro'a:ts K ~ eavl ng aralion
: Potential Developers Dueto Low Achieved
Choosing Other Projects Functiondlity Leaving Acceleration
/’+) Due to Potential
Normal Timeto Lose All C;rvgrddl:ﬁttr%tlvgless of) Functiondlity
Potential Developersto % uct tor Developers +
Other Projects A \+ ‘_D Product . N
Attractiveness of Product for Functiondity New Product
Devel Opgusng:éi;c: t’;‘Ch' eved Operative/Expected Funcnonahty Added
Attractiveness of Product - Rundiondlity Ratio
for Developers Dueto) - Product Functiondlity
Users Afttragtlv?ess of;’roduct Achieved Adding Efficiency
+ or Developers Due to e . Normal
Potential Functionality Funciondity Ratio iy ot Functlondlty
/ \ \— Adding Efficiency +
<Successin — : Norma Timeto
Attracting Users> Expected * Functc')(?r:ianv;a' Limit on Product L ose Patience
Funtionality Ratio lorelity Refio Functionality T

TimetoLose *

Increasein Limit on Increase in Limit Patience
Product Functionality 3 on Product
Coefficient +| Functiondity
Patience % 0
Patience
™ Lo

Figure 4.38. OSSD Model (Iteration|l) Reinforcing Loop 4: “More Functionality Retains More Existing Devel opers.”

140

Reinforcing Loop 5 is the third one of the newly introduced reinforcing loops.
(See Figure 4.39.) This loop works through the accelerating effect of low
operativelexpected ratio values on the leaving users. If operative/expected ratio falls
below a certain level, more users would quit using the product in favor of a competing
product. This would either decrease the number of users -- or at least keep it from
increasing faster -- and ultimately have a negative effect on the rate of user adoption and
consequently on the attractiveness of the product for developers, thus slowing down the

rate of new developers.

141

New +

Norma Time to Attract - — . P '
Developers Productive Develo
All Potential Developers - > ik B> Developers Developer Population Limitper
Normd Time qu Population Intensity
for Devel
T oLeave ™~ Average Average Productivity
Leaving Developers Participation Normal
from Othg Projects _ [Potentia - X \ +
" |Developers = - ~— Average
Z Leavi ng Production Productﬁl ty
- Pevelopers
/ -\
Developers on / | covino Aocelara
Other Projects S eving aation
: Potential Developers Dueto Low Achieved
Choosing Other Projects Functiondlity Leaving Acceleration
/’+ .) Due to Potential
Normd Timeto Lose Alll %ngallﬂm%tlvgl% of Functionality
Potential Developers to 4 uct tor Deveiopers
Other Projects A \+ Product + Y
Attractiveness of Product for Functiondity New Product
Devel Opgusng%iéo Achieved Operative/Expected Funcnonahty Added
Attractiveness of Product tondlity -— ~— Functiondlity Retio
for Developers Dueto) + Product Functiondlity
Users Attractiveness of Product) Adding Efficiency
for Developers Dueto Achieved Normal
7 Potential Functionality Functiondlity Ratio by ot Functioreliy
Successin n \ Adding Efficiency + .
Attracting Users Operdtive — Normal Timeto
. _ Functiondlity Retio Limit on Product . Lose Patience
Leaving Users Acceleration f Functiondity g 4,
Dueto Low Achieved Incresse in Limit on Timeto Lose
Functiondity Expected SR Increase in Limit Petience
U / Funtiondlity Ratio Product Functiondlity > on Product
Sers Coefficient + FUnCtlondlty .)
Sector, Patience % -
Patience

™ Lo

Figure 4.39. OSSD Model (Iteration I1) Reinforcing Loop 5: “More Functionality Retains More Existing Users.”

142

The Iteration Il version displayed a behavior that is very similarly to that of the
Iteration | version in terms of the main indicators under the base run conditions. The base
run is again based on a project with an initial product functionality limit of 400 Units of
Functionality (UF). Here again product functionality increases almost linearly until it
reaches about 97% of the limit on product functionality (See Figures 6.40 and 6.41).
From there on, the rate of increase in product functionality drops, since a healthy level of
achieved functionality ratio is reached. As can be observed in Figure 4.41, achieved

functionality begins to decrease after reaching a peak around month 65.

Product Functionality

600
450 4
AT

300 <

/L/

-

150 g —
Npd

10 20 30 40 50 60 70 80 90 100
Time (Month)

OH

Product Functiondity : iter_2 base . T T T T T T B UF

Figure 4.40. OSSD Model (Iteration I1) Base Run - Product Functionality

143

Achieved Functionality Ratio

I‘f 1
[//

pd

0.75 /
e

-

0.25 i

/

10 20 30 40 50 60 70 80 90 100
Time (Month)

O H

Achieved Functiondlity Ratio: iter 2 base +—t—+t—+t—t—+t—+—t—t—t—1t Dmnl

Figure 4.41. OSSD Model (Iteration I1) Base Run - Achieved Functionality Ratio

When the model is run for 200 months instead of 100, achieved functionality ratio
decreases for a while and than increases again to reach an equilibrium, which is lower
than its peak value. (See Figure 4.42.) This again is attributable to the fact that the
maintenance efforts within the community in order to keep the product up-to-date have to
follow the improvement of the general level of technology with a certain delay, as was
discussed within the context of the Iteration | version. In fact, looking closely at the
behavior of achieved functionality ratio under the base run of the Iteration | version
revealsthat it decreases dightly after its peak at around month 75 due to the same reason.

(Refer to Figure 4.18.)

144

Achieved Functionality Ratio

1 i
/ i - i ft I
0.75 /L
05 /

0.25 (/

0 I

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Achieved Functionality Retio : iter 2 base 200 +—t 1 Dmnl

Figure 4.42. OSSD Modd (Iteration I1) Base Run - Achieved Functionality Ratio
- Time Horizon Doubled

The number of developers under the base run conditions exhibits a behavior that
issimilar to that under Iteration | version in general terms. The number of developersfirst
increases in a sub-linear fashion, reaches a peak level, and then exhibits a reversed-S-
shaped decline. The major difference of the two behavior patterns is that the number of
developers reaches it s peak earlier under the Iteration Il version conditions. (See Figure

4.43)

145

Developers

20

15

m N

T T I

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers: iter_2 base T+ttt t—t—t 1t 1t 1 people

Figure 4.43. OSSD Model (Iteration I1) Base Run - Number of Developers

As Figure 4.44 shows, the number of users exhibit an S-shaped growth pattern in
general terms; however, that pattern is different than that under the Iteration | conditions.
(See Figure 4.20.) Under Iteration 11 conditions, the growth in number of users does not
reach the level of full potential user population by the end of the simulation horizon. ,
Instead, it continues to grow in a sub-linear fashion. This is due to the existence of
competing products, which constitutes another user pool into which potential users may
flow. Being successful in terms of operative/expected functionality ratio, the product
continues to attract more users; however, the process is slower compared to the Iteration |
case, since some potential users are currently using competing products. They have to
decide giving up those products before they shift to the open source option. Another
important point is that the users pool of the product in question will never reach the full

number of potential users, as in the case of the Iteration | version, because there will

146

always be a portion of users who will chose to use competing products, ho matter how

successful the open source option is.

Users
20,000
15,000
=17
sl
=l
1]
10,000 £
e
rd i
5,000
/ i
O 1 1 L L L "'—/-’{/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: iter_2 base Tttt —t—1t—1 people

Figure 4.44. OSSD Model (Iteration I1) Base Run - Number of Users

Running the Iteration Il version for a bigger project yields behaviors similar to
those observed under Iteration | version, in general terms (see Figures 6.45 through
6.48.). The initial limit on product functionality is set to 4000 UF for that run. The
behaviors of the number of developers and the number of users are somewhat different in
terms of the details, and that is attributable to the inclusion of other products competing

for developers and users as discussed above about the base case run.

147

Product Functionality

6,000
4,500 »
/I///
L]
/
3,000 Catl
i rel
redd
il
paal ll
1,500
rad
el |
f/
vl
ol | 1,_,,_/1//“
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity :iter 2 hi pot —+——+t—+—+—+—++t—t—t—t—t ¢ UF

Figure 4.45. OSSD Model (Iteration 11) High Potential Functionality Run -
Product Functionality

Achieved Functiondlity Ratio

1
il
1
0.75 /
ps
>
0.5
'
//
0.25 /
| —
I/I'/
0 L+ /
6 10 20 30 40 50 60 70 80 0 100

Time (Month)

Achieved Functionality Ratio : iter_2 hi_pot t+—t—t—t—t+t—t—t+—t—t—1t Dml

Figure 4.46. OSSD Mode (lteration 11) High Potential Functionality Run -
Achieved Functionality Ratio

148

Developers

200
150
100
=
) d
50 /]
/|
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers:iter 2 hi pot +——+t—+t—+t—+—+t +t +t +t—+t 1t —t—1 people

Figure 4.47. OSSD Mode (Iteration 11) High Potential Functionality Run -

Number of Developer

Usars
200,000
150,000

T
100,000 =
/f //r
50,000 //
v
1] =l
O L L L L L L L + ‘_'_‘_H‘_F—’_rﬂ
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users: iter_2_hi_pot r—t—t—t—t 1t —1 people

Figure 4.48. OSSD Model (Iteration I1) High Potential Functionality Run -
Number of Users

149

The critical runsfor Iteration |1 version are those that are based on conditions that
would slow the functionality growth substantially. The working dynamic hypothesis in
this new version is that criticaly lower levels of average participation, or average
production, as well as critically slower recruitment of new developers would generate too
dow a functionality growth, and that would limit the community’s growth in terms of
both developers and users. To explore this case, a simulation was run with average
participation set to seven hours per month per person, instead of the original value of 20
hours per month per person. As Figures 6.49 and 6.50 show, product functionality does
not grow beyond a very low level, and the achieved functionality ratio barely reaches

13%, and then starts to decline.

Product Functionality

600

450

300

150

0 — T 1 |

]
1
0

10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity :iter 2 lo pat +—+t—+t—+t—t—+t +t—t—t—t—t ¢ UF

Figure 4.49. OSSD Mode (Iteration IlI) Low Participation Run - Product
Functionality

150

Achieved Functionality Ratio

1
0.75
0.5
0.25
r_’__,_l_,—'— [i i 18 1N i [
r/
0 1]
L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_2 |o_part —tr—t—t—t—t—t—t—t—1 Dml

Figure 4.50. OSSD Model (Iteration II) Low Participation Run - Achieved
Functionality Ratio

The number of developers increases for the first 10 months, driven by the
expectations of the existing and incoming developers. However, as it becomes obvious
that the achieved functionality ratio is far from the expected level the developer pool
starts to decline. (See Figure 4.51.) The number of users increases dightly for a while,
but does not go beyond the level of that of a “cult product,” used only by an extremely
small number of users for non-mainstream reasons. (See Figure 4.52.) The lack of

success in attracting users is another reason that causes the developer pool to decline.

151

Developers

20
15
10 \
5 S
0 e e S
- XL L 1 1 L L L L 1
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers:iter 2 lopat +—+t—+t—t+t—+t+t +t t +t—+t 1t —t—1 people

Figure 451. OSSD Model (Iteration Il) Low Participation Run - Number of
Developers

Usars
20
15
A T
el
5 /
/ |
0 LA
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users:iter 2 lopat +——+t—t—+—+t—+t—+ —+t 1t 1 people

Figure 4.52. OSSD Modd (Iteration 1) Low Participation Run - Number of Users

152

This second iteration of the model building process provided a version that can
explain failed communities and projects as well as those that succeed. As such, it has
more explanatory power than the previous version. However, the Iteration Il version does
not include product quality, which is an important factor in terms of attracting and
retaining developers and users. Quality control and maintenance is also important for the
purposes of the model, since it occupies a certain portion of developers' time spent on the

project. The Iteration |11 version is devel oped to address these concerns,
4.4. Iteration I11: Adding Quality

The Iteration I11 version of the model involves major changes over the previous
version, including the addition of three new sectors (Quality, Developer Time Allocation,
Leader Time Allocation), and the separation of the developer population into two
conceptual groups. The developer population is grouped under regular developers and
leaders. Regular developers are called “Developers’ for the puposes of the model.
“Developers’ are conceptualized as participants who have more moderate levels of talent
and participation compared to those of the leaders. While each |eader spends 30 hours per
month on the project, developers spend 20 hours per month per person. Though the talent
factor is taken into account while conceptualizing the two participant populations, it is
not addressed with this version of the model. For the purposes of the Iteration 111 version,
there is no difference between the talent levels of developers and leaders. The talent
factor is addressed with the Iteration IV version. Developer and leader populations

together form the “Participants’ population.

Figure 4.53 shows the changes in the developers sector due to adding the concept

of Leadersto the model. Total production is divided into two -- production by developers

153

and production by leaders. Another change in the developers sector, which is caused by
adding quality control and maintenance functions to the model, is that production by
developers is not based on the total time developers spend on the project, but on the

number of total developers hours allocated to production.

154

Developers Productive Participant
\i + / Population Limit

Total Developer Participant

Hours Available F;?]Ft)grlgiton <L eaders>
y N y Average Developer
Average Developer Developer Hours _‘ Prodl._I'_CtIVIty Normal
Participation Allocated to Average Devel oper ¥
Production Productivity
A ; <Production b
Production by Lead y
Developers ers>

A / Product

Totd Functionality Adding

Production Efficiency Normal
o+

Product %ﬁ)
Functionality, New Product
Functionality Added
+ }+ +
Achieved
Functionality Rati‘ci

—» Product Functionality
Adding Efficiency

Limit on Product
Functionality

Increasein Limit
on Product
Functionality

Increasein Limit on
Product Functionality 4

Coefficient
9]

Figure 4.53. OSSD Modd (Iteration 111) Changes in the Devel opers Sector due to Adding Leaders to the Model

155

One of the three sectors added to the model with thisiteration is the quality sector.
As shown in Figure 4.54, production by developers and leaders add to the size of the
product, which is defined as lines of code. Production generates new functionality, which
adds to product functionality and new bugs in the code. This, in turn, adds to the pool of
unknown bugs in the code. Developers and leaders work on detecting the unknown bugs
in the code and move the ones they detect to the pool of known bugs inthe code. (See

Figure 4.54.)

156

+
=R Project Size
Total Productiol

el

<Production by
L eaders>

<Product
Functionality
ing Efficiency>

N Product
= S ! Functionality
New Product
<Production by, Functionality Added
Developers>
New Bugs Added
by Ijr OS“C“T Unknown v Known Bugs
“ > Bugsin Code = ™ inCode
+ 9 Bugs Found +
+
Developer Bug
Generating Rate
Leader Bug
Generating Rate Developer Bug <Developer Hours
Discovery Rate Allocatedto Bug ~ <Leader Hours
Leader Bug Detection> Allocated to Bug
Discovery Rate Detection>

Figure 4.54. OSSD Model (Iteration I11) Quality Sector

157

+
= Project Size
Total Productiol

el

<Production by
Leaders>

<Product
Functionality
ing Efficiency>

N Product
- = ® Functionality|
New Product
<Production by, Functionality Added
Developers>
New Bugs Added
by f’“’g“c“) Unknown i Known Bugs
“ ™ Bugsin Code - ™ inCode
+ 9 Bugs Found,,
<Project Size> M
DeveloperBug .
eveloper Bug ;
: Unknown Bugs Bug Discovery
Generating Rate per Code Rate Normal
L eader Bug + / A
Generating Rate ¥ Developer Bug <Developer Hours
Unknown Bug Discovery Rate AllocatedtoBug ~ <Leader Hours

Bug Generating _ Density Leader Bug petection> ~ Allocated to Bug
RateNorma — Discovery Rate Detection>

Figure 4.55. OSSD Model (Iteration I11) Quality Sector

158

Several factors affect the number of unknown bugs developers and leaders
discover in agiven month. The main factor isthe time developers and leaders spend on
detecting bugs. The other factor that determines the rate of bug discovery isthe density of
unknown bugs in the code (Abdel-Hamid and Madnick 1991 pp.105). It is assumed that
as the unknown bug density increases, it becomes easier, and consequently faster to
discover unknown bugs. Unknown bug density is defined as a normalized ratio of relative
number of unknown bugs per line of code. The benchmark used for normalization is the

normal rate of bugs generated by participants. (See Figure 4.55.)

159

+
S Project Size
Total Productiol

el

<Production by
L eaders>

<Product
Functionality
ing Efficiency>

N Product
& = ™ Functionality]
New Product
Functionality Added

<Production by,

Developers> | g5 Added o BugsAdded per
perl\Bl 19 erd ol Bug Fixed <Developer Hours
orm
New Bugs Added < AIIOtl::ath tg Bug
by Bug Fixes 1Xing
New Bugs Added +
I oy Ijr ogucngrn > Unknown v - Kn_ovvgozugs
+ Bugsin Code Bugs Found " © Bugs Fixed \
<Project Size> X * \ B
S e oug Developer B
N y per Bug
: Fixing Rate -
ge?wle?'l;tlior? gg[?e Unknown Bugs Bug Discovery 1Xing Fixing Rate
9 per Code Rate Normal <Leader Hours
Leader Bug +/ A Allocated to Bug
Generating Rate | B ¥ Developer Bug <Developer Hours Fixing>
AKOoWN 5Ug Discovery Rate Allocatedto Bug <Leader Hours
i Density y Leader Bu :
Bug Generating . g Detection> Allocated to Bug
RateNormal — Discovery Rate Detection>

Figure 4.56. OSSD Model (Iteration I11) Quality Sector

160

Developers and leaders also spend time on fixing the known bugs in the code. The
number of known bugs developers and leaders fix in a given month is a function of
allocated time developers and leaders spend on the specific activity of bug fixing. The
other factor that determines the number of bugs fixed per month is the base rates at which
developers and leaders fix bugs. These are defined as constants for the purposes of the
Iteration 11 version of the model. Bug fixing is an activity that is known to generate bugs
itself (Abdel-Hamid and Madnick 1991 pp.108). Developers and leaders add new bugs to
the pool of unknown bugs as they fix known bugs. (See Figure 4.56.) The rate at which
new bugs are added during bug fixing is determined by the quality of the bug fixing
activity. Quality of bug fixing is defined as a constant for the purposes of the Iteration 111

version. (See Figure 4.57.)

161

o—F—" Project Size
Total Productio Code Added
el + 7/ per Bug Fixed ~
<Production by Patched Bug Fixing
L eaders> 1, Code Quality

<Product

oy

Functionality
ing Efficiency>

Product

s 7ay
New Product

<Production by
Developers>

® Functionality|

Functionality Added

+
BugsAdded _— » BugsAdded per

Functionality
Lost per Bug

per E] (L)JrngZiixed ol Bug Fixed Fixed <Developer Hours
New Bugs Added 4 A”‘)?fted tg Bug
by Bug Fixes 1XIing
New Bugs Added +
- by Ijr ogucngrn o Unknown > KUO\NQOEUQS
+ Bugsin Code Bugs Found 'n~-ode Bugs Fixed \
<Project Size> X M \ B
Nt e oug Developer B
A o per Bug
; Fixing Rate .
ggﬁ;ﬁﬁr glajt?e Unknown Bugs Bug Discovery 1Xing Fixing Rate
9 per Code Rate Normal <L eader Hours
Leader Bug +/ A Allocated to Bug
Generating Rate + Developer Bug <Developer Hours Fixing>
, Unlgwgévsrithug Discovery Rate Allocatedto Bug <Leader Hours
Bug Generating y L eader Bug Detection> Allocated to Bug
Rate Normal Discovery Rate Detection>

Figure 4.57. OSSD Model (Iteration I11) Quality Sector

162

Figure 4.57 shows two more adverse effects of bug fixing. As developers and
leaders fix bugs they add extra code, and thus increase the project size without adding
any functionality. Furthermore, they inadvertently lose existing functionality as they fix
bugs. Both the amount of code added and the amount of functionality lost per bug fix

depends on the bug fixing quality.

163

+ .
C’#’ Project Size - Bugsper Percewed.
Total Productio CodeAdded = "Coge ProductQuality <acceptableLevel
/ Du; N per Bug Fixed ~ A of Tota Bugs per
<Production b o Patched . Severity of Total Functionality>
o y Functionality Code Bug Fixing Bugs Problem «——
ers> per Code & Quality
3}) <Acceptable Level of

<Product ¥ Total Bugs per K nown Bugs per

Functionality Y Functionality Functionaity>
ing Efficiency> 'A N ¥

N . Product Z—! Se\éerity F?: Iélnown
e ionali ugs Problem
New Qoduct Functionality| Fuk?cg onaljpyost ‘r o g
<Production by Functiondlity Added Ve ggm v Known Bugs per
Developers> BugsAdded . BugsAdded per Functionality Functionality

Lost per Bug

ber NB(L)JrngZiixed ol Bug Fixed N * <Developer Hours
New Bugs Added < ‘ Allocated to Bug
by Bug Fixes _ 1Xing
New Bugs Added +
by Production Known Bugs
& y/ 2+ | Unknown % - KfﬂNgozggs { = per Code
+ BugsinCode| gy 45 Found N Bugs Fixed " !
<Project Size> X N | coder B
Nt ; e oug Developer Bu
< . Total Bugsin Fixing Rate veloper bug
ge?wle?'l;tlior? gg[?e Unknown Bugs | Bug Discovery c odeg ixing Fixing Rate
9 per Code Rate Normal <Leader Hours
L eader Bug +/ . A Allocated to Bug
GeneratingRete | . o ~+ Developer Bug <Developer Hours Fixing>
. Densit g Discovery Rate Allocatedto Bug <Leader Hours
Bug Generating ensity !_eeder Bug Detection> Allocated to Bug
RateNormal — Discovery Rate Detection>

Figure 4.58. OSSD Model (Iteration I11) Quality Sector

164

Brooks (1995 pp.121) argues that the longer users use a software product, the
further they push the product to the limits of its capabilities. Thus they increase the
probability of bugs manifesting themselves through use. Consequently, this study
assumes that the bugs in the code would manifest themselves as the product is used and
pushed toward its limits of functionality. Under this assumption, the probability of bugs
manifesting themselves becomes greater as the number of bugs per unit of functionality
increases, and this ultimetely decreases the perceived quality of the product. As shown in
Figure 4.58 the number of total bugs per functionality induces a relative severity level,
with respect to an acceptable level of bugs per functionality. The severity of the total
bugs problem determines the perceived quality of the product. Severity of the level of
known bugs in the code is another manifestation of the bugs problems, which is assessed
by the participants. This ratio affects the level of concern about fixing bugs, and

ultimately determines the participant time allocated to bug fixing activity.

Figure 4.59 shows how the perceived quality level of the product affects the
developer sector. Perceived quality level has a negative effect on the rate of leaving
developers. Everything else being equal, as the quality increases fewer developers will be

inclined to leave the community.

165

Normal Timeto Attract 4—— <Perceived

All Potential Devel opers\-‘De.\l/\lele'\é\llo s L eaving Accelaration Product Quality>
Normal Timefor) Developers Dueto Low Quality . .
Developersto L eave\ Productwg Part|_0| pant
- Population Limit
Leaving Developers Partici
: Total Developer icipant
from Otisr Projects Potential Hours Availagle Population <L eaders>
> Intensit
4 Developers :) Y, N Y Average Developer
/ Lea;/l ng Average Developer Developer Hours \‘ Productivity Normal
Developerst i cipati Allocated to Ny ¥
Participation
Developerson + Xt P Production AveFr)agg D?\/qtopa
Other Projects/* vas \ roductivity
Potential Developers Leaving Accelaration Dueto Production b <Production by
Choosing Other Projects Low Achieved Functionality Devel opersy Leaders>
: % Overall Attractiveness of -\ Leaving Acceleration Due N Product
Normal Timeto Lose Product for Developers to Potential Functionality Total Functiondity Adding
All Potential Developers Production Efficiency Normal
to Other Projects v A+ + + ¢
Attrracti f Product Operative/Expected Product '%:
rractiveness of Produc ionali
. for Developers Dueto Functionality Ratio Functionality New Product
Attrractiveness of Product : pers bue Functionality Added
for Developers Due to Users Achieved Functionality % + + }+ A
Achieved

—» Product Functionality Normal Timeto
Adding Efficiency L ose Patience

Attrractiveness of Product for

_ Functionality Ratio
Developers Due to Potential AN

Functionality Y Limit on Product . v
<Successin Operative Functionality Functiondity [~ Ti gﬁ;_to Lose
' Ratio ience
Attracting Users> _r o
Expected Funtionality Increasein Limit on Increasein Limit
Ratio Product Functionality 4 F?J';glrgg;ﬁ —
Coefficient y .
& Patience Lost

Figure 4.59. OSSD Model (Iteration 111) Changes in the Developers Sector due to Adding Quality Factor to the Model

166

Attrractiveness of Product

/ for Developers Dueto Users
‘-'-/\

Successin

New Users Attracting Users

Acceleration Dueto
Success in Attracting

Norma Timeto Attract

All Potential Users Attrractiveness of

Total User * Product for Users
Population \
+

» Users <Achieved

o + Functionality Ratio>
Leaving Users from) o
o <QOperative Functionality

Competitor Products .
yay Ratio>
Users L eaving

Leaving Users
U_/ier S+~+\ Acceleration Dueto Low '/

l(J:sers Using Achieved Functionality I(zpe@i vzlapgqed
ompetitor unctionality Ratio
Products | % ~ v

Normal Timeto L eaving Users
Potential Users Choosing Lose All Users Accel t'g Duet \
Competitor Products cceleration Dueto

Low Quality
Normal Timeto Lose All <Perceived

Potential Users to Competitor Product Quality>
Products

<Expected Funtionality
Ratio>

Figure 4.60. OSSD Model (Iterationlll) Changesin the Users Sector due to Adding Quality Factor to the Model

167

Perceived quality level has asimilar effect on the users sector, as shown in Figure
4.60. As the quality level increases fewer users will want to quit using the product. The
addition of these effects introduces two important balancing loops to the model. (See
Figure 4.61.) In balancing loop 4, as devel opers participate in the production and produce
functionality they add new bugs to the product. Everything else being equal, new bugs
increase the number of total bugs and this decreases the perceived quality, which in turn
accelerate the rate of leaving developers. In balancing loop 5, as perceived quality
decreases, more users quit using the product, and that negatively affects success in
attracting users. This, in turn, decreases the attractiveness of the product for developers

(because the number of usersislower), and decreases the number of new developers.

168

o X - Developerg
New
Developers
+
Attrractiveness of Total
Product for Developers C % X Production
Dueto Usars eving
_ Developers
Successin
Attracting Users
Prqduc; + + -
Functiondity New Product
Users) y/ Functionality Added
Achieved
‘\—D Functiondity Ratio
Perceived
< < Product Quality
Leaving - Bugs < -’
Users New Bugs

Figure 4.61. OSSD Modé (Iteration 111) Balancing Loop 4 and Balancing Loop 5: “More Production Causes More Bugs, and
That Retains Fewer Existing Developers,” and “More Production Causes More Bugs, That Retains Fewer Existing Users, and Attracts

Fewer New Developers.”

169

The second sector added to the model in Iteration Il is the developer time
alocation. Here, the total developer hours available are allocated to production, bug
detection, and bug fixing. The severity levels of the total bugs problem, and the known
bugs problem indicate certain levels of pressure for bug detection and bug fixing
respectively. These pressures in turn determine the developer hours needed for bug
detection and bug fixing. Developer hours needed for these two activities constitute the
total developer hours needed for nonproduction tasks, which together with developer

hours planned for production constitute total developer hours needed. (See Figure 4.62.)

170

Average Devel oper <Developers> <Total Bugs per Acceptable Level of Total
Participation FUHCUOEBI ity> Bugs per Functionality

% Severity of Total

Total Developer Bugs Problem

Hours Available
HISAV " <Developer Bug

& Developer Hours Discovery Rate>
Planned for Production

<Unknown
Bugsin Code>

Desired Timeto
Perceived Discover All Bugs

Product Quality

! \ <K nown Bugs per
Total Developer Pressure for Bug y/ Functionality>
Hours Needed Detection Severity of
Known Bugs
\\ Problem \
Developer Hours l Acceptable Level

Needed for Bug pressure for

Detection of Known Bugs

Bug Fixing per Functionality

/

Developer Hours
Needed for Bug <Developer Bug

Fixing \ Fixing Rate>
/ <Known Bugs

Total Developer in Code>
Hours Needed for
Non-Production Tasks pagired Timeto

Fix All Known
Bugs

Figure 4.62. OSSD Model (Iteration I11) Developer Time Allocation Sector

171

Average Developer
Participation

4

Total Devel oper
Hours Available

\

<Developers>

Developer Hours
Planned for Production

{

Total Developer
Hours Needed

N

Developer Hours
Coverage Ratio

\

Developer Hours
Allocation Factor
|
Indicated Devel oper
Hours Revised -
Allocation Factor - peveloper Hours Revised

Allocation Factor
Adjustment Discrepancy

<Total Bugs per
Functionality>

4

Acceptable Level of Tota
Bugs per Functionality

i <Unknown
Severity of Total .
Bugs Problem Bugsin Code>
¢ SDeveI opelr?lgtug Desired Timeto
Perceived ISCovery Ral€> /" biscover All Bugs

Product Quality

\ <Known Bugs per
Pressure for Bug y/ Functionality>
Detection Severity of
Known Bugs
\\ Problem \
Developer Hours l
Acceptable Level
Needed for Bug pressure for >

re of Known Bugs
BugFixXing per Functionality

/

Developer Hours

Detection

Needed for Bug <I|D:9(el OpRe;tBUQ
Fixing \ IXing Rate>
/ <Known Bugs
in Code>

Total Devel oper

PreSSUI’efOI‘ r/ De\/el Oper Hours Hours Needaj fOI’
Production P v > Rgvi sed Non-Production Tasks pagired Timeto
f Developer Hours Revised LAllocation Factor Fix AE|3| Known
i i . ugs
<Operative/Expected Allocation Factor Adjustment Developer Hours Revised

Functionality Ratio>

.~

Allocation Factor Adjustment Time

Figure 4.63. OSSD Model (Iteration I11) Developer Time Allocation Sector

172

The ratio of developer hours available and developer hours needed indicates the
developer hours allocation factor, which determines what percentage of the needed time
is actually allocated to non-production tasks. If the operative/expected functionality ratio
is too low, this allocation factor decreases further. This revised factor is assumed to
change gradually over time, and is consequently represented as a smooth, or in other

words a historical average of the indicated revised allocation factor. (See Figure 4.63.)

As Figure 4.64 shows, the revised alocation factor determines the actual hours
allocated to each non-production task. The difference between the total developer hours
available and the total developer hours alocated to non-production tasks is the number of

actual developer hours allocated to production.

173

Average Devel oper <Developers> <Total Bugs per Acceptable Level of Total

S Total Developer Hours Functionality> Bugs per Functionality
Participation — Allocated for ¥
Non-Production Tasks

¥ Developer Hours Severity of Tota <Unkn0wn

Total Developer —» Allocated to Bugsin Code>
. : Bugs Problem
Hours Available Production J Dev 5
SUEVEIOPEr BUY 7 pegired Timeto

& Developer Hours Discovery Rate>

. Developer Hours Perceived Discover All Bugs
Planned for Production AllocatedtoBug Product Quality
{ > aevel ofper Detection \ / <K nown Bugs per
Total Developer ProdScl:Jtri?) nOCrBap Pressure for Bug _ Functionality>
Hours Needed Detection Severity of

N / Developer Hours \\ Knlgw BIBUQS
Allocated to Bu roblem
Developer Hours Fixing g Developer Hours l \
Coverage Ratio for Bug Developer Hours Acceptable Level

Detection Gap . Neededfor Bug pressurefor of Known Bugs
Detection Bug Fixing per Functionality

/

\

Developer Hours
Allocation Factor

i . Developer Hours
Indicated Developer Developer Needed for Bug <Developer Bug
Hours Revised - Hoursfor Bug Fixing Fixing Rate>
/‘ Allocation Factor / <Known Bugs
Adjustment Discrepancy Total Developer in Code>
Pressure fOI‘ r/ Devel Oper Hours Hours Needed for
Production o % > Revised Non-Production Tasks - pegired Timeto
f Developer Hours Revised LAllocation Factor Fix AE|3| Known
i i . ugs
<Operative/Expected Allocation Factor Adjustment Developer Hours Revised

.~

Functionality Ratio> Allocation Factor Adjustment Time

Figure 4.64. OSSD Model (Iteration I11) Developer Time Allocation Sector

174

The leader time allocation sector is the third sector added to the model in Iteration
I11. Here, the total leader hours available are allocated to production and non-production
tasks in more or less the same way as in the developer time alocation sector. Leader
hours needed for bug detection and bug fixing are determined by the respective gaps
between the needed and allocated developer hours for each task. Leader hours needed for
bug detection, leader hours needed for bug fixing and leader hours planned for production

together congtitute the total leader hours needed. (See Figure 4.65.)

175

e
<Operative/Expected Totdl <Developers>
Functionality Ratio> / Participants Average Leader
re———— | eaders T Participation
Leaving = Totd Leader <Unknown Bug
/ L eaders - HoursAvailable Density>
,)
Leaving Leaders Leader Hours
Coefficient Coverage Ratio leaadnerne';?g?
N ¥ Production el 4~ <Bug Discovery
Total Leader <Developer Hours for Di scov?arry LIJQ%I e Rate Normal>
Hours Needed Bug Detection Gap> /
Total Leader Hours <———— ’/ -
Needed for Leader Hours Needed < Leader/Developer <Developer Bug
Non-Production Tasks for Bug Detection Bug Discovery Discovery Rate>
Efficiency Ratio

<Developer Hoursfor
Leader Hours Bug Fixing Gap>
Needed for Bug
Fixing
AN T
L eader/Devel oper Bug Leader Bug
Fixing Efficiency Ratio Fixing Rate

N

<Developer Bug
Fixing Rate>

Figure 4.65. OSSD Mode (Iteration 111) Leaders Time Allocation Sector

176

Leader hours coverage ratio, which is the ratio of leader hours available and
leader hours needed, indicates the leader hours allocation factor. Under production
pressure conditions, this factor decreases further, and indicates a revised allocation factor

just like the one in the devel oper time all ocation sector. (See Figure 4.66.)

177

<Operative/Expected Totd ~“ <Developers>
' i i Participants

Functionality Ratio> / Average Leader

re———— | eaders T Participation
Leaving = Totd Leader <Unknown Bug
/ L eaders - HoursAvailable Density>
:)
Leaving Leaders Leader Hours
Coefficient Coverage Ratio L eader Hours
Planned for)
/ N ¥ Production ol Vel <£ug BISCO\élery
Total Leader er bug ate Normal>
< .

L eader Hours Hours Needed Developer Hours for Discovery Rate

Allocation Factor Bug Detection Gap> /
- / -

TotaI Leader Hours Leader Hours Needed < Leader/Developer <Developer Bug

<Achieved/Expected Non- Productlon Tasks Bug Discovery Discovery Rate>

for Bug Detection
Functlonallty Ratio> \ Efficiency Ratio
Pressure for |ndicated Leader . ——— <Developer Hours for

Production N Hours Revised L eader Hours Bug Fixing Gap>
ers —_ Allocation Factor Needed for Bug
J Fixing
L eader Hours Revised AN T~
Allocation Factor Adjustment L eader/Developer Bug L eader Bug
Discrepancy Fixing Efficiency Ratio Fixing Rate
“ \51 Lgader Hours' <Developer Bug
] Revised Allocation g
L eader Hours Revised Factor Fixing Rate>
Allocation Factor
Adjustment

<« Leader Hours Revised Allocation
Factor Adjustment Time

Figure 4.66. OSSD Model (Iteration I11) Leaders Time Allocation Sector

178

Leader hours revised allocation factor determines what percentage of the needed
hours for nonproduction tasks will be allocated. Actual leader hours allocated to
production is determined by the difference between the total leader hours available and

the total leader hours allocated to non-production tasks. (See Figure 4.67.)

179

e
<Ope(ativq/Expegted P ar-tlggtzants <Developers> Average Leader <Participant Population
Functionality Retio> / Average L eader Productivity Normal Intensity>
re———— | eaders T Participation \ y'e
Leaving > Total Leader Leader Hours ~ Average L eader <Unknown Bug
/ Leaders Hours Available AIIocateq to Productivity Density>
s \ Production /
Leaving Leaders Leader Hours L eader Hours N .
Coefficient Coverage Ratio Production by
Planned for Leaders _
/ N ¥ Production ol Vel <£ug BISCO\élery
Total Leader er Bug ate Normal>
L eader Hours Hours Needed <Developer Hours for Discovery Rate

Allocation Factor Bug Detection Gap> /

4

-
Total Leader Hours L eader Hours Needed L eader/Developer <Developer Bug

. Needed for . ;
<Achieved/Expected Non-Production Tasks for Bug Detection Bug Discovery Discovery Rate>
Functionality Ratio> Efficiency Ratio

A Total Leader Hours
Pressurefor |ndicated L eader Allocated for <
. _ : Developer Hours for
Prolijggélon on Hours Revised Non-Production Tasks L eader Hours Bug Fixing Gap>
ers —_ Allocation Factor /‘ Needed for Bug
J | coder b1 Fixing
er Hours
. L
L eadler Hours Revised Allocated to Bug ™
Allocation Factor Adjustment Fixin L eader/Developer Bug L eader Bug
Discrepancy 9 Leader Hours Fixing Efficiency Ratio Fixing Rate
\)‘ Allocated to Bug \
& | Leader Hours Detection <Developer Bug
= Revised Allocation g
L eader Hours Revised Factor —/ Fixing Rate>
Allocation Factor
Adjustment

<« Leader Hours Revised Allocation
Factor Adjustment Time

Figure 4.67. OSSD Model (Iteration I11) Leaders Time Allocation Sector

180

Under the base case conditions, Iteration 111 version displays behaviors similar to
those of the previous versions in terms of the main indicators such as product

functionality, number of developers, and number of users. (See Figures 4.68 through

4.71.)
Product Functionality
600
L1 3
450 /r*r“ p——
300 /
150 /
0 L
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Product Functiondlity : iter_3 base . T T T T T T B UF

Figure 4.68. OSSD Modd (Iteration 111) Base Run - Product Functionality

181

Achieved Functionality Ratio

//

i i i

0.75 4

0.5 //

0.25 4

/

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functiondlity Ratio: iter 3 base +—t—+t—+t—+t—t—+t—t—t—t—+t Dmnl

Figure 4.69. OSSD Modd (Iteration I11) Base Run - Achieved Functionality Ratio

Developers

20

15

10 1/ .

\\

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers: iter_3 base T+ttt +t—t—t—t 1t 1t 1 people

Figure 4.70. OSSD Modé (lIteration I11) Base Run - Developers

182

Users

20,000
15,000
i
LT
L]
-1 |
10,000 — =
v d
5,000 //
0 1 1 L L -1’_/-’,/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: iter_3 base 1t —t—1 people

Figure 4.71. OSSD Modd (Iteration I11) Base Run - Users

As discussed before, maintaining plausible behaviors with respect to those
indicators is considered critical while adding more structure to the model. This way,
confidence in the model is maintained while adding more explanatory power to it. An
important indicator added to the model is the number of total participants, which is the
total of number of developers and number of leaders. The behavior of this indicator under
the base conditions is shown in Figure 4.72. Here, the number of participants increase
during the initial stages of the project, reaching its peak around month 20, and start to

decrease from there on, to reach an equilibrium around month 85.

183

Total Participants

20
15
10

5 \

~H
™y
\-_r_‘_r . .
0
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Participants: iter 3 base —+—t—t—+t—+t—+t—+t—+t 1t 1 people

Figure 4.72. OSSD Modd (Iteration 111) Base Run - Total Participants

Figure 4.73 shows the behavior of total bugs per functionality. This variable
increases during the very early stages of the project when alot of bugs are introduced to
the code along with the functionality added to the product. At around month 10, total
bugs per functionality starts to decrease, as the developers and leaders start to find and fix
many of the bugs, thus bringing the speed of the increase in the number of bugs below the
speed of the increase in functionality. That way, even though the total number of bugs
continues to increase as shown in Figure 4.74, bugs per functionality decreases,
approaching the acceptable level of bugs per functionality. (See Figure 4.73.)
Consequently, the severity of the total bugs problem starts to decrease and the perceived
quality of the product starts to increase around month 10. (See Figure 4.75 and Figure

4.76.)

184

Total Bugs per Functionality

1 bugsUF
1 buggUF

0.75 bugsUF
0.75 bugsUF

0.5 buggUF |
0.5 buggUF Ea

0.25 bugsUF
0.25 bugsUF

0 bugsUF
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugs per Functiondity : iter 3 base —+—1t—¢ t—t—t—t—t—t bugsUF
Acceptable Level of Total Bugs per Functionality : |ter3base >——2—2—2—2—2 bugdUF

Figure 4.73. OSSD Modd (Iteration I11) Base Run - Total Bugs per Functionality

Total Bugsin Code

400
300
———
200 <
/ // T +—
100 //
A1
0 £
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total BugsinCode:iter 3 base +—t—t—+t—+—+t—+t—+t 1 hugs

Figure 4.74. OSSD Modd (Iteration I11) Base Run - Total Bugsin Code

185

Severity of Total Bugs Problem

"t
\1"‘%\1__
Mt
R A
1
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Totd Bugs Problem : iter_3 base r— Tttt t—t—t—t—t—1 Dml

Figure 4.75. OSSD Mode (Iteration 111) Base Run - Severity of Total Bugs
Problem

Perceived Product Quality

1
—
— T |
rﬂ“f"r’ﬂrﬂf
t‘\ T i
0.75 Nl r—”i/
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_3 base +—t—t+t—t—t+t—t—t—t+t—t—t—t Dml

Figure 4.76. OSSD Modd (Iteration 111) Base Run - Perceived Product Quality

186

The behavior of the Iteration Il version when the initial limit on product
functionality is set high is not different than was found in the previous versions, except
that the changes happen much more slowly, and thus the general behavior pattern are
“stretched” in time. The main reason for that is that the contributors (developers and
leaders) spend a considerable portion of their project time on non-production tasks,
namely bug discovery and bug fixing, while the average participation stays the same
among versions of the model. This causes the total time allocated to production to
decrease in this version of the model, and as a result the functionality growth slows down
considerably. Figure 4.77 through Figure 4.80 show the behaviors of product
functionality, achieved functionality ratio, number of developers and number of users,
respectively, when initia limit on product functionality is set to 4000 UF. By comparing
these figures with those of the previous versions, it can be seen that the general behavior
patterns stay the same between versions of the model. Figure 4.81 displays the behavior
of the number of users under high initia limit on product functionality condition when
the simulation horizon is increased to 200 months. It can be seen that the growth pattern

is“stretched” over time.

187

Product Functionality

6,000
4,500
3,000
L
1—"'1’" fﬁ—r"
1,500 S sl
1 |
I_/‘I—/
- rfr"
0 et
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity :iter 3 hi pot —+——+—t—+—t—+t+t—t—t—t—t ¢ UF

Figure 4.77. OSSD Model (Iteration I11) High Potentidl Run - Product
Functionality

Achieved Functiondlity Ratio

1
0.75
0.5

—t |
|
T
r_/'
t_/_H'
0.25
f/ff
L/.r"‘
r_/--’
r,,rf
r/-/
0 J.__,/-'I.'/-/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_3 hi_pot t+—t—t—t—t+t—t—t+—t—t—1t Dml

Figure 4.78. OSSD Mode (lteration 1) High Potential Run - Achieved
Functionality Ratio

188

Developers

200

150

100 —

1
r_/-/
|
50 =
(./L/'r'
e
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers:iter 3 hi pot +——+t—+t—+t—+—+t +t +t +t—+t 1t —t—1 people

Figure 4.79. OSSD Model (Iteration I11) High Potential Run - Developers

Usars

200,000

150,000

100,000

50,000

L —1
11
0 1 L L L L 1 1 1 L L T = * __?__TF-'_I_-F—I-—'_FI-
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users: iter_3 hi_pot Tttt 1t —t—1 people

Figure 4.80. OSSD Modd (lIteration I11) High Potential Run - Users

189

Users

200,000

150,000

100,000] =1

o]
v
50,000 i
/1//1/
L1
II/A:”
0 1 L L L L L - _i-—F
0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Users:iter 3 hi_pot 200 —+—+—+—+t—t—t t t +—+t—t 1t —t—1 people

Figure 4.81. OSSD Modd (lteration 11l1) High Potential Run - Users - Time
Horizon Doubled

Figure 4.82 shows that total bugs per functionality increases faster and reaches a
higher peak under high initial limit on product functionality conditions than it does under
the base condition. Also, under this condition total bugs per functionality does not
decrease as much as it does under the base case condition, though it decreases faster so
the equilibrium it reaches in the long run is higher than that under the base case

condition.

190

Total Bugs per Functionality

1 bugsUF
1 bugsUF

0.75 bugsUF
0.75 bugs'UF f \\E

0.5 bugs/UF Ty |
0.5 bugs/UF]

ik

0.25 bugsUF
0.25 bugsUF

0 bugsUF
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondlity : iter 3 base +—r—+t—+—+t—t+—t— Tttt bugs/UF
Tota Bugs per Functiondity :iter 3 hi pot 2222222222 bugdUF

Figure 4.82. OSSD Model (Iteration 111) High Potential Run - Total Bugs per
Functionality

The severity of total bugs problem too, increases faster, reaches a higher peak,
and settles on a higher equilibrium than that under the base case condition. (See Figure
4.83.) Consequently, perceived quality decreases faster, reaches a lower minimum, and
converges to a lower equilibrium value than that under the base case condition. (See
Figure 4.84.) The main reason for this is the higher developers per leader ratio under the
high initial limit on product functionality condition than that under the base case
condition. The number of leaders stays the same (three people, in both cases), though the
number of developers reaches much higher levels in the high initial limit on product

functionality condition.

191

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl Lo~

2 Dmnl
2 Dmnl

AT
7/
i
f
4
i

1 Dmnl T
1 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_3 base t+—t—t—t—t+t—t—t+—t—t—1t Dml
Severity of Total Bugs Problem : iter_3 hi_pot r——2——2—72——2——2—2—2—2—=2 Dml

Figure 4.83. OSSD Model (Iteration 111) High Potential Run - Severity of Total
Bugs Problem

Perceived Product Quality

1 Dmnl)
1 Dmnl Lt N

=1
0.75 Dmnl f\i\\ = 2
0.75 Dmnl L1

0.5 Dmnl /{
0.5 Dmnl ‘\ /

0.25 Dmnl ~27]
0.25 Dmnl

\

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality:iter_3_basc T T T T T T T T T T + Dmnl
Perceived Product Quality : iter_3 hi_pot—2——2——2——2—>2—>—>——>——>——>——>2 Dmnl

Figure 4.84. OSSD Model (Iteration I11) High Potential Run - Perceived Product
Quality

192

A low participation simulation is also run with the Iteration Il version of the
model. Once again average developer participation is set to 7 hours per month, and the
average leader participation is set to 10 hours per month. As observed in Figure 4.85
through Figure 4.90, the community fails to grow under this condition in the Iteration I11
version, as well. The newly introduced stock of leaders also decline during this run, as the
leaders decide to leave the community due to the low achieved functionality ratio. (See

Figure 4.90.)

Product Functionality

600

450

300

150

—
r/rf’

10 20 30 40 50 60 70 80 90 100
Time (Month)

OH

Product Functiondity : iter 3 lo pat +—+t—t—+t—t—+t +t—t—t—t—t ¢t UF

Figure 4.85. OSSD Model (Iteration 1I1) Low Participation Run - Product
Functionality

193

Achieved Functionality Ratio

1
0.75

0.5
0.25

I,_,-—i—'—'_l._ In in - i in In 8
]
0 L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_3 lo_part r—t—t—t—t—t—t—t—t—1 Dml

Figure 4.86. OSSD Model (Iteration I11) Low Participation Run - Achieved
Functionality Ratio

Developers
20
15
10 /I/t\\
5 \
O \1\1 L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers:iter 3 lopat +—tt—t+t—t+t 1t —1 people

Figure 4.87. OSSD Modé (Iteration 111) Low Participation Run - Developers

194

Users

20
|1
AT

15 rd \1

/ T

"
s
\1"%
10 A S =
e
5 /
0 /
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Usars:@iter 3 lo pat —+—t—+—+t—t+t—+—t t t +—+t 1t —t—1 people

Figure 4. 88. OSSD Model (Iteration I11) Low Participation Run - Users

Total Participants

20
15
10 K\}
5
0 \j
L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Participants : iter_3_lo_part Tttt t t t t t t t 1 people

Figure 4.89. OSSD Model (Iteration I11) Low Participation Run - Tota
Participants

195

Leaders

LN

0

\

0 10 20

30

40

ey

Time (Month)

L
50

L

L

60

L

70

80

L

90

L L

100

Leaders: iter_3 lo_part

T

I

1 people

Figure 4. 90. OSSD Model (Iteration I11) Low Participation Run - Leaders

Quality-related variables like total bugs per functionality, severity of the total
bugs problem and perceived product quality exhibit behaviors very close to those under
the base case conditions during the initial stages of the project. However, as developers
and leaders start to leave the community in greater numbers, quality related functions
suffer just like production, and this causes the quality related variables to reach premature

equilibriums which are worse than those under the base case conditions. (See Figure 4.91

through Figure 4.93.)

196

Total Bugs per Functionality

1 bugsUF
1 buggUF

0.75 bugsUF
0.75 bugsUF

T" i 2 4 1< Z Z Z Z 4 4 74 Z Z 4
0.5 buggUF C N
0.5 buggUF

0.25 bugsUF
0.25 bugsUF

0 bugsUF
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondlity : iter 3 base +—r—+t—+—+t—t+—t— Tttt bugsUF
Tota Bugs per Functiondity :iter 3 lo pat 2——2—=2——2—=2—=2—2—2 22 bugdUF

Figure 4.91. OSSD Mode (Iteration I11) Low Participation Run - Total Bugs per
Functionality

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
I
2 Dmnl / 22— v. _ r 121212

1 Dmnl L
1 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Tota Bugs Problem : iter_3 base r— Tttt t—t—t—t—t—1 Dml
Severity of Total Bugs Problem :iter_ 3 lo pat —2——2——2——2——2——2—2—2—2—2 Dmnl

Figure 4.92. OSSD Model (Iteration Ill) Low Participation Run - Severity of
Total Bugs Problem

197

Perceived Product Quality

1 Dmnl
1 Dmnl

0.75 Dmnl =
0.75 Dmnl e 7]

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_3 base r—t—t—t—t—t—t—t—t—t—1t Dml
Perceived Product Quality :iter 3 lo pat —2——2——2——2——2—2—2 2222 Dml

Figure 4.93. OSSD Moded (Iteration I1I) Low Participation Run - Perceived
Product Quality

45. Iteration 1V: Adding Developer Talent

The main change the Iteration 1V version of the nodel introduces is the addition
of the Developer Talent sector. Average developer talent is a relative indicator of the
overall talent level of the developers with respect to the overall talent level of the leaders,
which is defined as an absolute ceiling of talent for the purposes of the model. Average
developer talent is conceptualized as a variable that varies between zero and one, zero
being the lowest, and one being the highest possible talent level for a developer. The
arbitrary name Relative Talent Units is used as the unit for this variable. One RTU
represent a talent level that is equal to that of an average leader, thus representing the
ceiling for developer talent. As shown in Figure 4.94, average developer talent isin fact

an average of the total developer talent pool with respect to the number of developers.

198

Initial

Developers
oy v » Developers %= >
<New <Leaving
Developers> Developers>
Average
Average Incoming Developer Talent
Developer Talent
Developer
Talent Pool
4
Initial Developer.
Taent Pool

Figure 4.94. OSSD Model (Iteration 1V) Developer Talent Sector

199

As developers join the community their relative talents are added to the devel oper
talent pool through the developer talent gained inflow. It is assumed that each new
developer has arelative talent level of 0.5 RTU, at the time of joining. A certain amount
of developer talent islost as devel opers leave the community. It is assumed that aleaving
developer will take away an amount of talent that is equal to the average developer talent
a the time of leaving. That is represented with the developer talent lost outflow. (See

Figure 4.95.)

200

Initial

Developers
oy v » Developers %= >
<New <Leaving
Developers> Developers>
Average
Average Incoming Developer Talent
Developer Talent
Developer
& = > Talent Pool
Developer Talent Developer
Gained Talent Lost
4
Initial Developer.
Taent Pool

Figure 4.95. OSSD Model (Iteration 1V) Developer Talent Sector

201

It is also possible to build developer talent by coaching developers, which is
added to the developer talent pool through the developer talent built inflow. Coaching
takes place as leaders train developers. As Figure 4.96 shows, the difference between the
actual average developer talent and the maximum developer talent level indicates an
average developer talent building opportunity. Here the maximum developer talent is
assumed to be equal to average leader talent, which is 1 RTU. So in effect, average
developer talent building opportunity is equal to the difference between the actual
average developer talent and the average leader talent. Average developer talent building
opportunity indicates a pressure for talent building. A higher developer talent building
opportunity indicates a higher pressure for talent building, and that in turn indicates a
certain number of coaching hours per developer, which is the basis for the total number

of developer hours needed for coaching. (See Figure 4.96.)

202

Initial

Developers
oy e » Developers 2 >
<New <Leavi ng
Developers> \ Developers>
Average
Average Incoming Developer DeVeI oper Talent
Developer Talent Talent Built
Devel oper
& = > Talent Pool
Developer Talent Developer
Gained Talent Lost
Y
Initial Devel oper.
Taent Pool Average Developer
Tdent Building
Average Developer Opportunity

Talent Built <_//4 \—'

Maximum Maximum Talent
Developer Talent Building Opportunity

Figure 4.96. OSSD Model (Iteration IV) Developer Talent Sector

203

Developer Hours
Needed for Coaching

Coaching Hours

Needed per
Developer
Maximum Coaching _—~
Hours Needed per
Developer
Pressure for
Taent Building

Relative Average
Taent Building
Opportunity

Leader hours allocated to coaching sets an upper limit for available coaching
hours. Developer hours needed for coaching tranglates into developer hours planned for
coaching as much as the coaching hours availability ratio permits. Developer hours
alocation factor indicates what percentage of coaching hours planned is actually
allocated for coaching. Allocated coaching hours per developer indicates the amount of
talent built per developer, which when multiplied by the number of developers gives the

total developer talent built in agiven period. (See Figure 4.97.)

204

Initial

Developer Hours <Total Coaching

Developers <Developer Hours Planned for Coachin Hours Available>
Revised Allocation
) i~ »| Developers = Factor> Coaching Hours
<New <Leav|ng Availability Ratio
Developers> Developers>
Developer Hours
Average Allocated to Developer Hours
D ol Talent Coaching Needed for Coaching
Average Incoming Developer eveloper Taen
Developer Talent ,/
Talent Built)
Coaching Hours Coaching Hours
per Devel oper Needed per
Devel oper Developer
% >
Developer Taent |+ L1 2e PO [o goper Maxmum Coaching_—~
Gained Talent Lost , »— Hours per
Coaching Hours Developer
Average Devel oper Coverage
Taent Building Ratio Maxi Devel
aximum Developer
Initial Developer. Talent Building Ratio Tzreﬁsg[ﬁ;?;g
Taent Pool Average Developer
Average Developer Taent Building
- Opportunity Relati
Talent Built Ive Average
~— T~ _ TaentBuilding
Opportunity
Maximum Maximum Talent
Developer Talent Building Opportunit

Figure 4.97. OSSD Model (Iteration 1V) Developer Taent Sector

205

The behavior of the Iteration IV model under base case conditions is mostly
similar to the behavior of the previous version. Once again, more explanatory power is
added to the model with new structure, without losing plausible behavior. As Figures
4.98 through 4.104 demonstrate, the behaviors of the main indicators have stayed roughly

the same from lIteration |11 to lteration 1V.

Product Functionality

600

450

300 /
d

//

10 20 30 40 50 60 70 80 90 100
Time (Month)

OH

Product Functiondlity : iter_4 base . T T T T T T B UF

Figure 4.98. OSSD Modd (Iteration V) Base Run - Product Functionality

206

Achieved Functionality Ratio
1 D N Tt

//

0.75 7

/|

0.5 //
0.25 /

/|

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functiondlity Ratio: iter 4 base +—t—+t—+t—+t—+—+—t—t—t—1t Dmnl

Figure 4.99. OSSD Model (Iteration V) Base Run - Achieved Functionality Ratio

Developers
20
15
T

10 /r’/ ~

5

i\
0 \1-_1‘ B L L L 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers: iter_4 base T+ttt t—t—t 1t 1t 1 people

Figure 4.100. OSSD Model (Iteration 1V) Base Run - Developers

207

Users

20,000
15,000
1]
1]
- _T/ﬂf
=
LT
10,000 -
L1
rd d
5,000
0 1 1 L L = -r/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: iter_4 base e 1 A A T T e 1 A A 1 people

Figure 4.101. OSSD Model (Iteration 1V) Base Run - Users

Total Bugs per Functionality

1
0.75
h
/ \MF
M
0.5 it |
i Hh
|
hi—“r%r%r_
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugsper Functiondlity :iter 4 base +——t+—+t—+—t ¢ bugs/UF

Figure 4.102. OSSD Model (Iteration V) Base Run - Tota Bugs per
Functionality

208

Severity of Total Bugs Problem

Iﬁ—tﬂh_r
T _‘T_l—-—]_—-ﬁ_r_
AR
1
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Tota Bugs Problem : iter_4 base r— Tttt t—t—t—t—t—1 Dml

Figure 4.103. OSSD Model (Iteration 1V) Base Run - Severity of Total Bugs
Problem

Perceived Product Quality

1
|
T | |
|
0.75 i
N

0.5
0.25

0

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_4 base t+—t—t—t—t+t—t—t—t+t—t—t—t Dml

Figure 4.104. OSSD Modd (Iteration V) Base Run - Perceived Product Quality

209

The behavior of the newly introduced variable Average Developer Talent is
portrayed in Figure 4.105. The average talent of the developers starts at .5 RTU, since
that is the default talent for incoming developers, and all the developers are considered
newcomers at the beginning of the project. The average talent gradually increases
throughout the project as the leaders coach developers thus adding new talent to the
overal talent pool. Average Developer Taent reaches .75 RTU by the end of the

simulation horizon of 100 months.

Average Developer Talent
1
0.75
— T T
" |
T |
— |
05 [
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4 base E N S T T S S S S RTU/people

Figure 4.105. OSSD Model (Iteration 1V) Base Run - Average Developer Talent

The behavior of the Iteration 1V model is similar to that of the previous version
under the two alternative conditions, high initial limit on product functionality, and low
participation. Figures 4.106 through 4. 113 portray the model behavior under high initial
limit on product functionality condition, while Figures 4.114 through 4.123 show the

behavior of the model under low participation condition. The behavior of the newly

210

introduced variable Average Developer Taent is different under the two alternative
conditions then that under the base condition. (See Figures 4.113 and 4.123.) In both
cases, average developer talent remains amost flat throughout the simulation horizon of
100 months, but due to different reason in each case. In the high initial limit on product
functionality case, the number of developers becomes too many for the available number
of leaders for effective coaching. Therefore each developer gets an almost negligible
amount of coaching, and that does not produce considerable improvement in developer
talent. On the other hand, under low participation condition, the available developer
hours are so low that they can only cover the basic development needs, leaving
developers a negligible amount of time for coaching, which results in practically no

improvement in the average devel oper talent.

Product Functionality

6,000
4,500
3,000
_’T..:——
{rf
I,/
1,500 _r_,_f-/
_r—/
|
(—r
1 |
1_,_74"
0 r— 1 l/_fr’d—
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity : iter 4 hi pot &+ttt t—t—t—t ¢ UF

Figure 4.106. OSSD Mode (Iteration 1V) High Potential Run - Product
Functionality

211

Achieved Functionality Ratio

1
0.75
05 —

] =il
| o
r_,.-/
I_/-’i"f
0.25
r_,—r’
|
r_/—’
r/a:'/
0 |+ r|
6 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_4 hi_pot r—t—t—t—t—t—t—t—t—1 Dml

Figure 4.107. OSSD Model (lteration 1V) High Potential Run - Achieved
Functionality Ratio

Developers
200
150
100
+—]
L,_/r"ﬁ
r_/J
1
50
/| T
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers:iter 4 hi pot +—+t—t+t—+t 1t —1 people

Figure 4.108. OSSD Model (Iteration 1V) High Potential Run - Developers

212

Users

200,000
150,000
100,000
50,000
A
-
0 —'—1——”1_"1_#’1’
1 L L L L 1 1 1 L L L o -
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users:iter_4 hi_pot e 1 A A T T e 1 A A 1 people

Figure 4.109. OSSD Model (Iteration 1V) High Potential Run - Users

Total Bugs per Functionality

1 bugsUF
1 buggUF

0.75 bugsUF =
0.75 bugs/UF Ny

0.5 bugs/UF i e e i
0.5 bugsUF I .

0.25 bugsUF
0.25 bugsUF

0 bugsUF
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondity : iter 4 base —+—+—+t—+—t+t—+—t Tttt bugsUF
Tota Bugs per Functiondity : iter 4 hi pot 2222222222 bugsdUF

Figure 4.110. OSSD Mode (lteration 1V) High Potential Run - Tota Bugs per
Functionality

213

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl =y

3 Dmnl RN

2 Dl | T
2 Dmnl 7 ™

/

1 Dmnl 1
1 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_4 base t+—t—t—t—t+t—t—t+—t—t—1t Dml
Severity of Total Bugs Problem : iter_4 hi_pot r——2——2—72——2——2—2—2—2—=2 Dml

Figure 4.111. OSSD Model (Iteration 1V) High Potential Run - Severity of Total
Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl d_'_jﬂ_’_—l_,_,_—I—'—"i_l £ S

0.75 Dmnl — T2 = <
0.75 Dmnl -

0.5 Dmnl /]
0.5 Dmnl

0.25 Dmnl /2/

0.25 Dmnl]

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Qudlity : iter_4 base —t—+t—+t—+t—t—+t—+t—+t—t—+ Dmnl
Perceived Product Qudlity : iter_4 _hi_pot 222 2 222 —2—2—2 Dmnl

Figure 4.112. OSSD Model (Iteration IV) High Potential Run - Perceived Product
Quality

214

Average Developer Taent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people

16

0.5 RTU/people | 1]
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4 base t—tr—t—t —t—t—t—t—¢t RTU/people
Average Developer Tdent : iter_4 hi_pot r——2—2—2—2—2—2—2—2— RTU/people

Figure 4.113. OSSD Model (lteration IV) High Potential Run - Average
Developer Talent

Product Functionality

600
450
300
150
0L 2l
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Product Functionality : iter 4 lo pat +—t—+t—+—+t 1t ¢ UF

Figure 4.114. OSSD Model (Iteration V) Low Participation Run - Product
Functionality

215

Achieved Functionality Ratio

1
0.75
0.5
0.25
r/r-"'_‘ | i i in in in i Iy
0 wll
L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_4 lo_part r— Tttt t—t—t—t—t—1 Dml

Figure 4.115. OSSD Model (Iteration 1V) Low Participation Run - Achieved
Functionality Ratio

Developers
20
15
10 -
5 \
O \j — L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 1y 100
Time (Month)

Developers:iter 4 lopat +—+t—t—+tt+t—+t+t t—+ —t —t—t 1t 1 people

Figure 4.116. OSSD Model (Iteration 1V) Low Participation Run - Developers

216

Total Participants

20

15

I\
10

0 \-] - L L L L L L L L L L

0 10 20 30 40 50 60 70 80 9 100
Time (Month)

Total Participants: iter_4 lo_part —tr—t—+t—t—t—t 1t 1t 1 people

Figure 4.117. OSSD Modd (Iteration 1V) Low Participation Run - Tota
Participants

Leaders
4
3 n
2 \
1
\\
0 |
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders: iter_4 lo_part Tttt —t—t—t—t —t—t —t 1t 1 people

Figure 4.118. OSSD Model (Iteration V) Low Participation Run - Leaders

217

Users

20
15
10
]
/ Wﬂ_ﬂﬂﬁ_‘r
|
5 I Y e
/ |
0 I
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users:iter 4 lo pat —+—t—t—t—t ¢ T T e 1 A A 1 people

Figure 4.119. OSSD Model (Iteration IV) Low Participation Run - Users

Total Bugs per Functionality

1 bugsUF
1 buggUF

0.75 bugsUF
0.75 bugsUF

i
IN
N
N
N
N
N
N
A
N
N
N
N

0.5 bugsUF Ry
0.5 bugsUF I .

0.25 bugsUF
0.25 bugsUF

0 bugsUF
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondity : iter 4 base —+—+—+t—+—t+t—+—t Tttt bugsUF
Tota Bugs per Functiondity :iter 4 lopat 2——2—=2——2 222222 bugdUF

Figure 4.120. OSSD Modé (Iteration 1V) Low Participation Run - Total Bugs per
Functionality

218

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

>
2 Dmnl 2
(

2 Dmnl i N\ﬁ—‘z‘ [4 P4 2 2 2 2] 2 P 2 2 2 2
Th‘-1___1__“'1-—
R
hi_ﬁ_l_ﬁhr___r
1 Dmnl t 1
1 Dmnl
0 Dmnl
0 Dmnl
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_4 base r—t—t—t—t—t—t—t—t—1t Dml
Severity of Total BugsProblem :iter 4 lo pat —2——2——2——2——2—=2—2—=2—2—=2 Dmnl

Figure 4.121. OSSD Model (Iteration 1V) Low Participation Run - Severity of
Total Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl -—1"‘1‘-1__'1_ e O RO

R

1]

0.75 Dmnl
]
0.75 Dmnl i

£\'
A\

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Qudlity : iter_4 base —t—+t—+t—+t—t—+t—+t—+t—t—+ Dmnl
Perceived Product Quality :iter 4 lo pat —2——2—=2—=2—=2—2 22222 Dml

Figure 4.122. OSSD Model (Iteration 1V) Low Participation Run - Perceived
Product Quality

219

Average Developer Talent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people

05 RTU/people | trs 1™] P D Pl S e 2
0.5 RTU/people [|

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4 base t—tr—t—t —t—t—t—t—¢t RTU/people
Average Developer Tdent:iter 4 lo pat —2——2——2——2 222 22— RTU/people

Figure 4.123. OSSD Model (Iteration 1V) Low Participation Run - Average
Developer Talent

4.6. Iteration V: Adding Barriersto Entry and Contribution

With the Iteration V version, barriers to entry to the community and barriers to
making contributions are added to the model. Barriers to entry are realized through a
process of selecting new developers that will join the community. (See Figure 4.124.) In
this version of the model the incoming developers are not added directly to the developer
pool. Instead they are selected from a pool of candidates. The selection is carried out with
a selecting rate. A refusal ratio determines the percentage of the candidates that are
denied entry to the community. The rest of the candidates are selected as new developers.
Refusal ratio also determines the average talent of the incoming developers. A higher

refusal ratio would mean a higher level of scrutiny while selecting new developers.

220

Consequently, as the refusal ratio increases, so does the average incoming developer

talent.
Normal Timeto Attract
- All Potential Developers
Refusal Ratio
Selecting +
Rate = % »Developers
N Candidates Selected
£ 1 ¥+ + v as New Developers
Candidates Candidates

Refused I Applying

Average Incoming :

Developer Taent nggegggrs

Figure 4.124. OSSD Model (Iteration V) Changes in the Devel opers Sector due to
Adding Barriers to Entry to the Model

A filtering process provides the mechanism for barriers to making contributions.
Production effort is divided between developers and leaders, as discussed earlier in this
chapter. The leaders review the code produced by the developers. Reviewed code is
accepted or rejected based on its quality. The quality of the code in this context means the
number of bugs per unit functionality, as discussed earlier in this chapter. Code produced
by developersis added to a backlog to be filtered, and the leaders filter the backlog with a
filtering rate. Code is accepted or rejected based on a rejection ratio. The reection ratio
has a negative effect on average developer participation. As a greater portion of
production is rejected, the developers would be less motivated to produce further code,

thus their participation level would decrease. (See Figure 4.125.)

221

Total Developer
Hours Availabl e\i

+ Developer Hours
Allocated to Average Developer
Production Productivity
Average Developer
Participation
- Filtering +y rt
Rate Production by
Rejection Developers
Ratlo
Production tg Production b
: <Production by
Re ected be Fi Itered | eaders>
Production
Accepted
Productlon\
Total
© Production

Figure 4.125. OSSD Model (Iteration V) Changes in the Devel opers Sector due to
Adding Barriers to Contribution to the Model

A new Filtering Sector is also added to the model with the Iteration V version. As
developers produce code they also generate bugs, and these bugs are added to a “backlog
of bugs’ just as production is added to the backlog of production. (See Figure 4.126.)
When the backlog of production is reviewed and some of the code is accepted and added
to the overall product, a certain number of the bugs are also introduced to the product.
This is represented by the outflow Bugs in Accepted Code. Another group of bugs,
represented by the outflow Bugs in Rejected Code, also flow out of the “backlog of bugs”

with the rejected code. (See Figure 4.127.)

222

I a— > Bugsin
New Bugsin Production to be
Production to be Filtered
Filtered
+

<Developer Bug
Generating Rate>

& % p Production to be
Productionby ¥ Filtered
Developers

Figure 4.126. OSSD Model (Iteration V) Filtering Sector

223

o — > Bugsin B x— -0
New Bugsin Production to be _bugsin
Production to be Filtered Rejected Code
Filtered +
+ + -
Bugsin
Accepted Code
O
<Developer Bug
Generating Rate>
o8 = p» Productionto b =x)
Productionby % Filtered - / Rejected

Developers Production

\ 5

- \+
4 Accepted Rejection
Productio Ratio
+
Y Filtering
“ Rate

Figure 4.127. OSSD Model (Iteration V) Filtering Sector

224

The filtering process aims to decrease the number of bugs in new code that is
added to the product. Thus, it is expected that the bug density of the accepted portion of
the code will be less than that of the production backlog. The assumption here is that the
worst case of filtering would yield the same number of bugs per functionality as the
original production. Any case better than the worst case would bring a quality
improvement, which will yield a lower bug density for the accepted code and a higher
bug density for the rejected code. The level of quality improvement is determined by the

quality of filtering. (See Figure 4.128.)

225

o — > Bugsin B x— -0
New Bugsin Production to be _bugsin
Production to be Filtered Rejected Code _+
N Filtered
+ _

Bugsin
Accepted Code

<Developer Bug

Generating Rate> + :
neraing Bugs per Codein

Production to be

Filtered
+
ot 3 » Productionto b % =0
Productionby % Filtered - / Rejected
Developers Production
\ %
- \+
J; Accepted Rejection
Productio Ratio
+
Y Filtering
~ Rate

Figure 4.128. OSSD Model (Iteration V) Filtering Sector

226

Quality

Improvement by
Filtering

)
Quality of
Filtering

The quality of filtering depends on the relative rate at which the leaders filter the
production backlog. The model assumes afixed filtering rate, which is set to .5 for the
base case. This means that the leaders would filter .5 of the backlog at a given month,
regardless of the size of the backlog. However, there would be an optimal filtering rate
for a given amount of code filtered by a given number of leaders, and as the actual
filtering rate goes above that optimal rate the quality of filtering decreases. The optimal
filtering rate depends on the optimal filtering horizon, which is the amount of time the
leaders can filter the existing backlog without compromising the quality of filtering. (See

Figure 4.129.)

227

o — > Bugsin B x— -0
New Bugsin Production to be _Bugsin
Production to be Filtered Rejected Code _+
Filtered
+. + _ -
Bugsin Quality
Accepted Code Improvement by
+ Filtering
o +\
<Developer Bug A Quality of
Generating Rate> _ e
enerating Bugs per Codein Filtering
Production to be)
Filtered
* Relative
Filtering Rate - Optimal

<~—Filtering Rate

& % p» Productionto b %
Productionby * Filtered Rejected
Developers Production + Leaders
i \+ + ‘i Optimal Filtering
4 Acceptaj] Rej ection Horizon s
Productio Ratio \ ¥
n Optimal Filtering

Amount

Y Filterin Optimal Filtering __—%

~ Rate Amount per Leader

Figure 4.129. OSSD Model (Iteration V) Filtering Sector

228

Once again, the genera behavior of the model is mostly preserved from the
Iteration 1V version to the lteration V version, while adding new structure and
consequently more explanatory power to the model. Figures 4.130 through 4.134

demonstrate the behaviors of the main indicators under base case conditions.

Product Functionality

600
L ——
300 /f
150 /|
%
0 py
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Product Functiondity : iter_5 base . T T T T T T B UF

Figure 4.130. OSSD Model (Iteration V) Base Run - Product Functionality

229

Achieved Functionality Ratio

1 i i I in in

%8

0.75 /

/
4

0.25 /

/|

10 20 30 40 50 60 70 80 90 100
Time (Month)

O H

Achieved Functiondlity Ratio: iter 5 base +—t—+t—+t—+t—+—t—+t—t—t—1t Dmnl

Figure 4.131. OSSD Model (lteration V) Base Run - Achieved Functionality

Ratio
Developers
20
15
— 1

10 / ~

i N

O \1‘_‘\—1— 2 1 L L L L L

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers: iter 5 base Tttt t—t—t—t—t 1t 1 people

Figure 4.132. OSSD Model (Iteration V) Base Run - Developers

230

Users

20,000
15,000
=i
=l]
10,000 P
L1
e i
5,000 /]
/ i
0 1 1 L L = T/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: iter 5 base e 1 A A T T e 1 A A 1 people

Figure 4.133. OSSD Model (Iteration V) Base Run - Users

Average Relative Developer Talent

1

0.75 —Tt
I,_,-:-'-‘
]
r_/_/r”JI

05 [
0.25

0

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Relative Developer Tadent : iter 5 base —t—t—t—t—t—t—t—1 Dml

Figure 4.134. OSSD Model (Iteration V) Base Run - Average Relative Devel oper
Taent

231

One important behavior difference between the Iteration V version and the
previous versions is observed in the behavior of Total Bugs per Functionality and other
variables that are affected by it, namely Severity of Total Bugs Problem and Perceived
Product Quality. In the Iteration V version, Total Bugs per Functionality starts at a lower
level than it does in the previous versions of the model. Also it does not reach as high a
peak as in the previous versions. (See Figure 4.135.) Severity of Total Bugs Problem, too,
starts lower, and reaches a lower peak than in the previous versions. (See Figure 4.136.)
Consequently, Perceived Product Quality starts at a higher level, and does not reach as

low alevel asit doesin the previous versions. (See Figure 4.137.)

Total Bugs per Functionality

1

0.75
0.5 et
/r’ |
HWIEI—E

0.25 {

0

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Bugsper Functiondlity :iter 5 base +—+—+—+—+t—+t ¢ bugs/UF

Figure 4.135. OSSD Model (Iteration V) Base Run - Total Bugs per Functionality

232

Severity of Total Bugs Problem

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Tota Bugs Problem : iter 5 base r—t—t—t—t—t—t—t—t—1 Dml

Figure 4.136. OSSD Model (Iteration V) Base Run - Severity of Total Bugs
Problem

Perceived Product Quality

1
[—'—'— 1N
N A
t\i__ I 1—-—"" | IH_FF
0.75
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Qudlity : iter_5 base t+—t—t—t—t+t—t—t—t+t—t—t—t Dml

Figure 4.137. OSSD Modéd (Iteration V) Base Run - Perceived Product Quality

233

However, a closer comparison of the behaviors of these variables in the Iteration
IV and Iteration V models show that they demonstrate almost the same behaviors after

about month 25 in both versions. (See Figure 4.138 through Figure 4.140.)

Total Bugs per Functionality

1 bugsUF
1 bugsUF

0.75 bugsUF
0.75 bugs'UF

0.5 bugsUF
05 bugsUF [| - i Fe—fad

0.25 bugsUF /
0.25 bugsUF

0 bugsUF
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondity : iter 4 base +—+—+t—+—+t—+—t— 1t ¢ bugs/UF
Tota Bugs per Functiondlity : iter 5 base 2222222222 bugdUF

Figure 4.138. OSSD Model (Iteration V compared with Iteration V) Base Run -
Total Bugs per Functionality

234

Severity of Total Bugs Problem

4
3
2

="

,2/’ 2t —F T g4]
- 4 4

) /é/
0

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Severity of Total Bugs Problem : iter_4 base r—t—t—t—t—t—t—t—t—1t Dml
Severity of Tota Bugs Problem : iter 5 base r——2——2—72——2——2—2—2—2—=2 Dml

Figure 4.139. OSSD Model (Iteration V compared with Iteration V) Base Run -
Severity of Total Bugs Problem

Perceived Product Quality

1 Dmnl \2\

1 Dmnl x\ ___:,,,p-fz-"l'rr?‘ﬁ o T2 T2 I

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Qudlity : iter_4 base —t—+t—+t—+t—t—+t—+t—+t—t—+ Dmnl
Perceived Product Qudlity : iter 5 base 222 2 222 —2—2—2 Dmnl

Figure 4.140. OSSD Model (Iteration V compared with Iteration V) Base Run -
Perceived Product Quality

235

The initial differences between the behaviors are attributabl e to the addition of the
filtering process to the model. Production by developers involves a higher number of
bugs per functionality compared to production by leaders. The filtering process delays the
inclusion of production by developers in the overal product pool. So, in the Iteration V
version most of the early production comes from the leaders, and thus has a lower bugs
per functionality ratio. As more production by developers is added to the product the
bugs per functionality ratio increases. Though the leaders eliminate a portion of the bugs
through the filtering process, there are till bugs from production by developers that go
into the product. The number of bugs in the later stages of the project depends on the rate
of debugging rather than filtering, because debugging is driven by the assessment of the
severity of the total bugs problem. As a consequence, the number of bugs does not
decrease in the Iteration V version, more than it does in the Iteration IV version, because
the pressure for debugging is the same in both versions. However, since there are fewer
bugs to fix throughout the entire project in the Iteration V version, a certain amount of
time is saved. That time is used for production and coaching, and consequently the
achieved functionality ratio and average devel oper talent increase faster in the Iteration V

version. (See Figure 4.141. and Figure 4.142.)

236

Achieved Functionality Ratio
1 Dmnl z.ﬂ-'Jgj,_I—f— o T A A A I
1 Dmnl //r

0.75 Dmnl

0.75 Dmnl 5{

05 Dmnl £

0.5 Dmnl %f/

0.25 Dmnl /
0.25 Dmnl 7

A

10 20 30 40 50 60 70 80 90 100
Time (Month)

0 Dmnl
0 Dmnl

OH

Achieved Functiondlity Ratio: iter 4 base +—t—t—t——t—+t—t—t—t—t—t Dmnl
Achieved Functiondity Ratio : iter 5 base —2——2——2——2——2——2—2—2—2—2—2 Dmnl

Figure 4.141. OSSD Model (Iteration V compared with Iteration V) Base Run -
Achieved Functionality Ratio

Average Developer Taent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people s v

0.5 RTUI/people | =77
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4 base E N S T T S S S S RTU/people
Average Developer Talent : iter_5_base r——2——2—2—2—2—2z—2—2— RTU/people

Figure 4.142. OSSD Model (Iteration V compared with Iteration V) Base Run -
Average Developer Talent

237

The behaviors of the Iteration V model under the two alternative conditions do
not exhibit substantial differences than those found in previous versions with the
exception of the behaviors of Total Bugs per Functionality and the variables affected by
it. These differences are attributable to the inclusion of the filtering process as discussed
above. Figures 4.143 through 4.150 portray the behavior of the Iteration V version under
high initial limit on product functionality condition, while Figures 4.151 through 4.160

show the behavior of the model under low participation condition.

Product Functionality

6,000
4,500
_1/‘
3,000]
L~]
| o
1_/
’1/
1,500 .
i,,-'r’
r/-’
'I-/
1,_/"
I_/--’
o |4t
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity :iter 5 hi pot &+ttt t—t—t—t ¢ UF

Figure 4.143. OSSD Mode (lteration V) High Potentid Run - Product
Functionality

238

Achieved Functionality Ratio

1

0.75
r/_/"
1/"
0.5
T
7
L
0.25
T
[,,/r/
el e
0 ol
6 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_5 hi_pot r—t—t—t—t—t—t—t—t—1 Dml

Figure 4.144. OSSD Mode (Iteration V) High Potential Run - Achieved
Functionality Ratio

Developers
200
150

- ——1—1

100 B

— |

[,fr/
r/r”
50
48
0 /
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers:iter 5 hi pot +—t—t—t+t—+ 1t —1 people

Figure 4.145. OSSD Modé (lteration V) High Potential Run - Developers

239

Users

200,000
150,000
100,000
50,000 /
/’.[
//1’
ey
/f/f
0 1 L L L L 1 1 L Y e -:'_’-_'_1_‘_’1_’-#-1"
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users:iter_5 hi_pot e 1 A A T T e 1 A A 1 people

Figure 4.146. OSSD Model (Iteration V) High Potential Run - Users

Total Bugs per Functionality

1 bugsUF
1 buggUF

0.75 bugs/UF
0.75 bugsUF 2]

0.5 bugsUF
0.5 buggUF

N

0.25 bugsUF
0.25 bugsUF

0 bugsUF }
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondity : iter 5 base +—t—+t—+—+t—+—t— Tttt bugsUF
Tota Bugs per Functiondity :iter 5 hi pot =——2—=2——2—=2—=2—=2—2—2—2- bugsdUF

Figure 4.147. OSSD Mode (Iteration V) High Potential Run - Total Bugs per
Functionality

240

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl /] [~
2 Dmnl “ 22 >)

1 Dmnl
1 Dmnl
0 Dmnl /

0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter 5 base t+—t—t—t—t+t—t—t+—t—t—1t Dml
Severity of Total Bugs Problem : iter_5 hi_pot r——2——2—72——2——2—2—2—2—=2 Dml

Figure 4.148. OSSD Mode (Iteration V) High Potential Run - Severity of Total
Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl 1\ _;,,j,-;r—”“l'”_’T L
P I

ol

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl A
0.5 Dmnl]

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Qudlity : iter 5 base —t—+t—+t—+t—t—+t—+t—+t—t—+ Dmnl
Perceived Product Qudlity : iter_5_hi_pot 222 2 222 —2—2—2 Dmnl

Figure 4.149. OSSD Modé (Iteration V) High Potential Run - Perceived Product
Quality

241

Average Developer Taent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people I e

0.5 RTU/people | P PN PN L |,
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_5_base t—tr—t—t —t—t—t—t—¢t RTU/people
Average Developer Tdent : iter_5 hi_pot r——2—2—2—2—2—2—2—2— RTU/people

Figure 4.150. OSSD Model (Iteration V) High Potential Run - Average Developer
Talent

Product Functionality

600
450
300
150
0 |t 1|
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Product Functionality : iter 5 lo pat +—t—+t—+—+t 1t ¢ UF

Figure 4.151. OSSD Mode (Iteration V) Low Participation Run - Product
Functionality

242

Achieved Functionality Ratio

1
0.75

0.5
0.25

r/_/l-—"'_ | [[i i I 1N -
0 l/t/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_5 lo_part r—t—t—t—t—t—t—t—t—1 Dml

Figure 4.152. OSSD Mode (Iteration V) Low Participation Run - Achieved
Functionality Ratio

Developers

20

15

10 / \

5 \

0 \\1‘“—1

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers:iter 5 lopat +—+t—t+t—t+t 1t —1 people

Figure 4.153. OSSD Model (Iteration V) Low Participation Run - Developers

243

Total Participants

20

15

o

I L L L L L L L L L

0 10 20 30 40 50 60 70 80 9 100
Time (Month)

Total Participants : iter_5_lo_part Tttt t t t t t t t 1 people

Figure 4.154. OSSD Mode (Iteration V) Low Participation Run - Tota
Participants

Leaders
4
3 n
2 \
1
‘1\
O \T‘\—-“__:- L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders: iter 5 lo_part Tttt —t—t—t—t —t—t —t 1t 1 people

Figure 4.155. OSSD Model (Iteration V) Low Participation Run - Leaders

244

Users

20
15
T
AT
10 /] \i\‘\r
/ R

/ T
5
0//

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users:iter 5 lo pat —+—t—t—t—t ¢ T T e 1 A A 1 people

Figure 4.156. OSSD Model (Iteration V) Low Participation Run - Users

Total Bugs per Functionality

1 bugsUF
1 buggUF

0.75 bugsUF
0.75 bugsUF

0.5 bugsUF | -
0.5 bugs/UF %4’],

0.25 bugsUF /%
0.25 bugsUF

1A

p—

0 bugsUF
0 bugsUF

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondity : iter 5 base +—t—+t—+—+t—+—t— Tttt bugsUF
Tota Bugs per Functiondity :iter 5 lo pat 2——2—=2——2—=2—=2—2—2—2 2 bugdUF

Figure 4.157. OSSD Mode (Iteration V) Low Participation Run - Total Bugs per
Functionality

245

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
2 Dmnl /-Q'"_FT 2 2 r4 r4 Z] 7 - - IZ r4 r4 r4

1 Dmnl /
1 Dmnl
0 Dmnl /

0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter 5 base t+—t—t—t—t+t—t—t+—t—t—1t Dml
Severity of Total BugsProblem :iter 5 lo pat —2——2——2——2——2—=2—2—=2—2—=2 Dmnl

Figure 4.158. OSSD Model (Iteration V) Low Participation Run - Severity of
Total Bugs Problem

Perceived Product Quality

1 Dmnl

1 Dmnl &

0.75 Dmnl ~=
0.75 Dmnl < 7 P 2 2 2 2 2 2 2 2 2 2]

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Qudlity : iter 5 base —t—+t—+t—+t—t—+t—+t—+t—t—+ Dmnl
Perceived Product Quality :iter 5 lo pat —2——2—=2——2—=2——2—2—2—2—2 2 Dml

Figure 4.159. OSSD Modd (lteration V) Low Participation Run - Percevied
Product Quality

246

Average Developer Talent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people I e

=T
05 RTUlpeople |1, P P L N T e 2
0.5 RTU/people [|

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_5_base t—tr—t—t —t—t—t—t—¢t RTU/people
Average Developer Tdent:iter 5 lo pat —2——2——2——2—=2—=2—2 22— RTU/people

Figure 4.160. OSSD Mode (Iteration V) Low Participation Run - Avergae
Developer Talent

With the lteration V version, the OSSD model reached a maturity level that
provides adequate explanatory power for the purposes of this study. The model replicated
product functionality accumulation, and growth of developer and user populations in
successful, as well as unsuccessful open source software development communities. The
model also replicated the effects of time pressure and quality on community growth. With
the Iteration V version, four policy leverage points, namely debugging, coaching, barriers

to entry and barriers to contribution were integrated into the model.

A small number of simulation runs under a limited variety of conditions were
done during the model development stage. These runs showed that the model exhibited
plausible and consistent behavior under normal conditions at each iteration. However, a

more comprehensive model testing and analysis phase was needed to build confidence in

247

the model and to explore its behavior under different conditions and policy options before
reaching a substantial set of both theoretical and practical implications. Chapter 5
summarizes the findings of the model testing and analysis phase, which built confidence

in the model and provided critical implications about the model.

248

CHAPTER 5-- MODEL TESTING AND ANALYSIS
5.1. Model Testing and Analysis Overview

The open source software development (OSSD) model reached its final stage of
evolution within the scope of this study with the Iteration V version. Each iteration
involved aspects of model evaluation and testing as well as the adding of new structure.
As discussed in the methodology chapter, the process of testing a system dynamics model
isgenerally referred to as “ confidence building,” rather than “validation.” Therationaleis
that a model cannot be identified as either “valid” or “invalid,” but rather there is a level
of validity, or better yet, a confidence level for a given model. Also, “validation” is a
static activity inits plain “pass or fail” mode. However, “confidence building” implies an

iterative process of improving the model based on the model analysis findings.

Several authors suggested dlightly different sets of tests for analyzing system
dynamics models (Richardson and Pugh 1981 pp.313-318, Barlas 1989, Forrester and
Senge 1996 pp.414-434, Sterman 2000). Some of the tests are common to al the
suggested sets. A “complete” set of confidence building tests consists of many types of
tests. Forrester and Senge (1996 pp.414-434) alone suggest 17 types of tests for analyzing
a system dynamics model. Some of these tests involve comparing the behavior of the
model to real data generated by the actual system to test whether the model replicates the
real world behavior of the system it represents. Not all of the suggested tests were
performed on the OSSD model. The rationale for that was that the OSSD model was not
envisioned as an end product of this study. The model was used as a tool to integrate the
implications of relevant literature with the observations and mental models of the

members of an actual open online collaboration community in order to reach a dynamic

249

feedback framework, which serves as a theoretical basis for future research on the topic.
Thus, applying an exhaustive set of tests to the model in an effort to refine it beyond a
certain point was not considered relevant within the scope of this study. However, a
future study that focuses mostly on the OSSD mode itself should include a more
exhaustive set of confidence building tests. This chapter summarizes the findings of three
common tests applied to the model: extreme condition tests, sensitivity analysis tests, and
policy analysis tests. The empirical component of this study, which involved interviews
with system dynamics K through 12 instructional material development community
members, can aso be viewed as a test for building confidence in the model and

improving it. The findings of the interviews are discussed in Chapter 6.
5.2. Base-Case Run

The base-case run of the model involves the simulation of the model with the
default, or most likely parameter values. The base-case run mainly serves two purposes.
Its first purpose is to test whether the model generates plausible behavior under default
conditions. The base-case also serves as a reference, against which the nonrdefault runs

such as extreme condition and policy analysis runs can be compared.

The base case of the open source software development (OSSD) model was a run
that represents a project for a software product with an initial limit of 400 units of
functionality (UF.) The initial number of developers on the project is seven, and the
number of leaders is three, creating 10 total participants in the projects. The initial

number of users of the softwareis zero.

After the project starts, a number of developers join the project, increasing the

total number of developers up to 14 people at around month 17 of the project. (See Figure

250

5.1.) The number of developers stays amost the same until around month 30. After that
the number of developers starts to decline due to decreasing opportunities for
contribution. Note that at around month 30 product functionality reaches ailmost 70% of
the limit on product functionality. (See Figure 5.2.) The decrease in the number of

developers continues until month 80, when all the devel opers have I eft the project.

The number of users starts to increase visibly after month 15, when the achieved
functionality ratio reaches 0.3. The increase happens in an exponential fashion until about
mornth 35, when the achieved functionality ratio reaches 0.75, and continues in an

asymptotic fashion after that point (See Figure 5.1.)

Leaders - Developers - Users

4 people
20 people
20 people
20,000 pa)ple I N I 18 I N I N I I I N I
_—?—-—_3__
2 people L A,_wr’
10 people | A]
10 people | |~ ™ PR
10,000 people // >
A NI
0 people e N T
0 people / \ B 3 3
0 people _
0 people L | | | | i el L L]
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders: base case t T T T T T T T T T T 1 people
Developers : base_case 2 2 2 2 2 2 2 2 2 2 people
Tota Perticipants : base case 3 3 3 3 3 3 3 3 3 $— people
Users: base case = % % % % % % % % % % 4~ people

Figure 5.1. Leaders, Developers and Users under Base Case Conditions

251

Functionality Achievement

600 UE 2_/'5* 712 12 T2 21 21 2 2

1 Dmnl /

/ T T |

450 UF 4 B e e
0.75 Dmnl / /f
300 UF /z’ Pd

0.5 Dmnl /
150 UF /
0.25 Dmnl ? /1/

0 UF {/5

0 Dmnl k

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base case — ¢ UF
Achieved Functiondlity Ratio : base case 2222222222 Dml

Figure 5.2. Functionality Achievement under Base Case Conditions

In the first quarter of the base case run, the product quality exhibits a decline, due
to an increase in the number of bugs per unit of functionality. (See Figure 5.3.) The
number of bugs per functionality increases until about month 25 as new bugs are
introduced by production. During that period the participants (leaders and developers)
focus mostly on adding functionality to the product, rather than maintaining its quality.
As the severity of the total bugs problem increases, the participants feel an increased
pressure for bug detection and bug fixing. After month 25 debugging efforts reach a point
where the number of bugs per functionality starts to decrease, thus improving the

perceived product quality. (See Figure 5.3.)

252

Product Quality

bugs/UF

Dmnl \

Dmnl I~ | 1373

1

AR

ad

0.5 bugs/UF
2 Dmnl 1 . 3 t
0.5 Dmnl / | ot——aot—4——b |

bugs/UF
Dmnl
Dmnl

eNeole]

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functiondlity : base case N I T T S S T T bugs/UF
Severity of Total BugsProblem: base case 2——2——2——2——2—2—2—2—2—2—2 Dmnl
Perceived Product Quality : base case 33 3 3 3 3 3 3 3 33— Dmnl

Figure 5.3. Product Quality under Base Case Conditions

Average Developer Taent steadily increases until around month 80, as new
developer talent is built through coaching. (See Figure 5.4.) The increase stops after
month 80, since amost all the developers have left the project as it reached a
functionality saturation point, and there is no more coaching taking place within the

community. (See Figure 5.4.)

253

40
0.02

0.5

0.01

(oo NoNe)

RTU/people
hours’Month
RTU/(Month* people)
RTU

RTU/people
hours’Month
RTU/(Month* people)
RTU

RTU/people
hoursMonth
RTU/(Month* people)
RTU

Coaching and Developer Talent

PN

A

=
!

\

1

Average Developer Talent : base_case

Developer Hours Allocated to Coaching : base case
Average Developer Talent Built : base case
Developer Taent Pool : base case

Figure 5.4. Coaching and Developer Talent under Base Case Conditions

\‘3—"” 7 x‘&\
A
\%\\s *i—-«
10 20 30 40 50 60 70 80 90 100
Time (Month)

T T T T T T T + RTU/| p&)p| e
2 2 2 2 hours’/Month
3 3 3 3 3~ RTU/(Month* people)
7 7 7 7 7 7 7 7 7 RTU

5.3. Extreme Condition Runs

Extreme condition runs test whether the model behaves as expected under
conditions that deviate extremely from normal conditions. The idea that lies behind the
extreme condition tests is that model behavior under extreme conditions is far more
predictable that under normal conditions. As a trivial example, the behavior of any given
human body under extreme temperature conditions such as below the freezing point or
above the boiling point is far more predictable than its behavior under normal conditions,
i.e. between 60° to 80° Fahrenheit. The model of a human body may exhibit a
“shivering,” “sweating” or “total comfort” behavior between 60° to 80° Fahrenheit; and
al of these behaviors can be argued to be plausible for some actual human bodies.
Therefore, it may not be possible to refute the model based on its behavior under such

conditions. However, the model should exhibit a distinctive “dying” behavior under

254

freezing, or boiling conditions. If the model does not exhibit that distinctive behavior, it
should be refuted in its current state. Some of the most insightful extreme condition runs

performed on the OSSD model are discussed below.
5.3.1. No Developers

The model was run under the condition of no developers throughout the project
lifetime. The initial number of developers was set to zero. Also, the refusal ratio was set
to 1 to ensure no incoming developers. The run yielded expected results under the given
condition. The number of developers stayed at zero throughout the project. (See Figure
5.5.) Due to lack of developers, only leaders built product functionality under this
extreme condition run, and consequently the achieved functionality ratio could not reach
a point that could sustain the community. (See Figure 5.6.) The very limited amount of
achieved functionality attracts an extremely small number of users, and the number of
users increases until month 72. However, after that point even that small number of users
starts to decline, as the relative functionality of the product decreases. (See Figure 5.5.)
The failure to achieve a viable amount of product functionality caused leaders to leave
the community starting at around month 13. By month 70 all the leaders had left the

community. (See Figure 5.5.)

255

Leaders - Developers - Users

4 people
20 people
4 people
400 people

2 people — S s S
10 people sl

2 people e
200 people \\ rd

people [
people /)i\&
people 1 \1\}_}
people] 31
r4 - 4 4 Z 4 r4 r4 U4 1 Z 129 12O 1 N r4s]
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

(oo NoNe)

Leaders: ext_no_dev T T T T T T T T T T 1 people
Developers: ext_no_dev —2 2 2 2 2 2 2 2 2 2 people
Tota Participants : ext_no_dev 3 3 3 3 3 3 3 3 3 people
Users: ext no_dev 7 7 7 7 L L L 7 7 7 4~ people

Figure 5.5. Leaders, Developers and Users under “No Developers’ Extreme Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl =3

0 UF %'1/
1

2]
T T 5 It T T T T T T
L—117]

0 Dmnl

OH

0 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_no_dev r— 1t ¢t UF
Achieved Functiondlity Retio: ext no dev —2——2——2——2——2—=2 222 2 2 Dmnl

Figure 5.6. Functionality Achievement under “No Developers’ Extreme Case

256

The OSSD model assumes that production by leaders introduces a much smaller
number of bugs compared to production by developers, as discussed in the model
description in Chapter 5. Since no production by developers took place under this
extreme condition, the product quality stayed very high throughout the ssimulation run.
The small number of bugs introduced by leaders could be held under control through a

limited debugging effort. (See Figure 5.7.)

Product Quality

buggUF pe) 3 o [e) [e) [e) [e) pe) pe) pe) 3 o [e) [e) pe) pe)
Dmnl
Dmnl

AR

0.5 bugs/UF

0.5 Dmnl

bugs/UF
Dmnl
Dmnl

eleole]

t 1 1 1 1 t t t t 1 1 1 t t t t 1
Z Z Z Z Z] 4 4 Z Z Z Z Z Z Z 4 4 Z

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugsper Functiondlity : ext no dev —+—t+—+—+t—t+t—+t ¢ bugs/UF
Severity of Total Bugs Problem : ext_no_dev >——2 2222 —2—=2—2—=2 Dml
Perceived Product Qudity : ext no dev —3—=3—3—3 33 3 3 3 33— Dml

Figure 5.7. Product Quality under “No Developers’ Extreme Case

Since there were no developers in the community, the overall developer talent
pool and average developer talent stayed at zero throughout this run. Also, no coaching

took placein thisrun, as expected. (See Figure 5.8.)

257

Coaching and Developer Talent

1 RTU/people

0.2 hoursMonth

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people

0.1 hoursMonth

0.01 RTU/(Month*people)
4 RTU

RTU/people
hoursMonth
RTU/(Month* people)
RTU

(oo NoNe)

eo9F1l 541290 1254125341254 1295 1204125412541 2541
0 10 20 30 40 50 60 70 8 9 100
Time (Month)

Average Developer Taent : ext_no_dev T T T t t T RTU/people
Developer Hours Allocated to Coaching : ext_no_dev —2 2 2 2 2 hoursMonth
Average Developer Taent Built : ext_no_dev 3 3 3 3 3~ RTU/(Month* people)
Developer Tdent Pool : ext no dev —= 7 7 7 7 7 7 7 7 RTU

Figure 5.8. Coaching and Developer Taent under “No Developers’ Extreme Case

5.3.2. No Leaders

Another extreme condition applied to the model was the case with no leaders in
the community. The number of developers increased slightly at the beginning, but started
to decline rapidly after month 10, dissolving the community within the first 25 months

under this condition (See Figure 5.9.)

The product could attract an extremely small number of 13 users by month 18,
which started to decrease after that point. (See Figure 5.9.) This was due to the very
limited level of functionality achievement, which was caused by the lack of development

by leaders. (See Figure 5.10.)

258

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people / d\
10 people
10 people N

10 people \
people N | .
people \{

people

pa)ple / L &9 i e) 1 < ape) L 29 r4are) i e) i e) 1 < L 29

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

[cNeoNoNe)

Leaders: ext_no_lead T T T T T T T T T T 1 people
Developers: ext no_lead —2 2 2 2 2 2 2 2 2 2 people
Totd Participants : ext_no_lead 3 3 3 3 3 3 3 3 3 people
Users: ext_no_lead 7 7 7 7 L L L 7 7 7 4~ people

Figure 5.9. Leaders, Developers and Users under “No Leaders’ Extreme Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

L~27 4
/{/,(_TJ. T T T T i [T T T T T T

0 Dmnl

0 UF {ﬁ;
1

OH

0 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_no_lead r— 1t ¢t UF
Achieved Functionality Ratio:ext no leed —2——2——2——2——2—=2—2—2—2 22 Dmnl

Figure 5.10. Functionality Achievement under “No Leaders’ Extreme Case

259

Product quality started at a considerably low level and decreased even further at
the beginning of the project. That was due to the lower average quality of the production,
which was done solely by the developers. The OSSD model assumes that the bug
detection and bug fixing skills of developers are lower than those of leaders. The already
bad bugs-per-functionality problem was worsened by the lack of effective debugging by

leaders. (Figure 5.11.)

Product Quality

bugs/UF
Dmnl
Dmnl

R OoON

1 bugdUF

0.5 Dmnl

bugs/UF
Dmnl ..

Dmnl 9 l> S S S S S S 5] J 53 S S S S

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

eleole]

Totd Bugsper Functiondity :ext noleed Tttt Tt T T bugs/UF
Severity of Totd Bugs Problem : ext_no_lead ——2o——2>——2——2——2—=2—=2—=2—=2 Dmnl
Perceived Product Quality : ext no leead 3—=3—3—3 33 3 3 3 33— Dml

Figure 5.11. Product Quality under “No Leaders’ Extreme Case

Relatively low and stagnant devel oper talent was another factor that worsened the
quality problem in this run. The average devel oper talent started lower, due to the lack of
a selecting process, which is normally carried out by leaders. Also, the average devel oper
talent did not increase at al, since there were no leaders to coach the developers. (Figure

5.12.)

260

Coaching and Developer Talent

1 RTU/people

0.2 hoursMonth

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
0.1 hoursMonth
0.01 RTU/(Month*people)

4 RTU
_ﬂ"i L L 18 pi| L L s pi| L L

0 RTU/people N

0 hoursMonth

0 RTU/(Month*people)

0 RTU

P4ns) 4] O o AL Z O P4ns) A 4 = o Z O A
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Tdent : ext_no_lead T T T T T T RTU/people
Developer Hours Allocated to Coaching : ext_no_lead =2 2 > > 2 hoursMonth

Average Developer Tdent Built : ext_no_lead 3 3 3 3 3— RTU/(Month* people)
Developer Talent Pool : ext_ no_leed —= 7 7 7 7 7 7 7 7% RTU

Figure 5.12. Coaching and Developer Talent under “No Leaders’ Extreme Case

5.3.3. No Participants

The “no developers’ and “no leaders’ extreme cases were combined in another
extreme condition run. This time, the community started with no participants at al, no
developers and no leaders. Also the incoming developers flow was set to zero. All the
population stayed at zero throughout the run (See Figure 5.13.) As expected, no
production, no debugging and no coaching took place. Functionality stayed at zero. (See
Figure 5.14.) The number of users stayed at zero, too, since there could be no users for a
nonexistent product (See Figure 5.13.) Only the product quality stayed at 1, since there
were no bugs, and consequently no bugs problem. (See Figure 5.15.) Average developer

talent, too, stayed at zero, since there were no developers. (See Figure 5.16.)

261

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people
10 people
10 people
10 people

people
people
people
people

[cNeoNoNe)

12541254 + 1 23541295 SAlZ341l2354L 5] T 1 254129 94

r4ns] 1 Z =3 S 12541
10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders: ext no _part s —t T T T T T T t t T 1 people
Developers: ext_no _part s 2 2 2 2 2 2 2 2 2 2 people
Tota Participants: ext_no_part_s 3 3 3 3 3 3 3 3 3 people
Users: ext_no_part s —= % % % 7 7 7 % % % #~ people

Figure 5.13. Leaders, Developers and Users under “No Participants’ Extreme
Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 Dmnl

IrZ T ITZTrr—Tr—Tr—T TZ TZ ITZ2 T2 Z TZ ITZ I/ Trr—Tl—TZ

0 10 20 30 40 50 60 70 80 90 "100
Time (Month)

Product Functiondlity : ext no pat s +——+—+—+—t—+t +t—t—t—t—t ¢t UF
Achieved Functionality Ratio : ext_no_part_s r——2——2—2——2——2—=2—=2—2—=2 Dmnl

Figure 5.14. Functionality Achievement under “No Participants’ Extreme Case

262

Product Quality

bugS/U F 5] 3 o [[[[5] 5] | 3 o)) 5] 5]
Dmnl
Dmnl

AR

0.5 bugs/UF
2 Dmnl
0.5 Dmnl

0 bugsUF
0 Dmnl
0 Dmnl

TZ T2 TITZ—TZ TZ TZ TZT1TZ7/™—/7T/7T TZ

00 "T10° 200 30 40 50 60 70 8 90 100
Time (Month)

Tota Bugs per Functiondlity : ext no_part s e A A bugs/UF
Severity of Total BugsProblem : ext no pat s —2——2——2—=2—2—2—2—2—2—2 Dml
Perceived Product Qudity : ext_no_part s 3 3 3 3 3 3 333 Dml

Figure 5.15. Product Quality under “No Participants’ Extreme Case

Coaching and Developer Talent

1 RTU/people

0.2 hourgMonth

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people

0.1 hoursMonth

0.01 RTU/(Month*people)
4 RTU

RTU/people
hours’Month
RTU/(Month* people)
RTU

(oo NoNe)

29412541295 12541 412341295 1254172 o4 1254

07710 20 30 40 B0 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_no_part_s T T T T t T RTU/people
Developer Hours Allocated to Coaching : ext_no_part s 2 2 2 2 hoursMonth
Average Developer Talent Built: ext_no_pat s —3 3 3 3 3~ RTU/(Month* people)
Developer Tdent Pool : ext_no_part_s % % % % % % % % RTU

Figure 5.16. Coaching and Developer Taent under “No Participants’ Extreme

Case

263

5.3.4. No Developer Participation

“No developer participation” was a dlightly different variant of the “no
developers’ extreme case. Here the community has an initial body of developers, and
continues to recruit developers, but the developers do not participate in any activities
within the community. The results of this run were very close to the results of the “no
developers’ run, with the exception of the behaviors of the number of developers, the
overall developer talent pool and the average devel oper talent. (Compare Figures 5.5 - 5.8
and Figures 5.17 - 5.20.) The number of developers continued to increase until the
community starts to dissolve at around month 13, and started to decrease after that until it
reached zero at around month 80. (See Figure 5.17.) The average developer talent did

increase, since the developers did not participate in coaching. (See Figure 5.20.)

Leaders - Developers - Users

4 people
20 people
20 people
400 people

7

2 people / s A——pb |

10 people N,
L \\§ //

10 people
200 people

NN

people
people //
people —T

0 10 20 30

(oo NoNe)

K
O 5 60 70 8 90 100
Time (Month)

/

people /}i%\\ﬁ
RN

4

Leaders: ext_no_dev_part t T T T T T T T T T 1 people
Developers: ext_no_dev_part 2 2 2 2 2 2 2 2 2 people
Tota Participants: ext_no_dev_part 3 3 3 3 3 3 3 3 3 people
Users: ext_no_dev_part = % % % 7 7 7 % % % #~ people

Figure 5.17. Leaders, Developers and Users under “No Developer Participation”

Extreme Case

264

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl 7

0 UF %'1/
1

i
T T 5 in T T T T T T
L—117]

0 Dmnl

OH

0 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity : ext_no_dev_part t—t—t—t—t—t—t—t—t—t—¢t UF
Achieved Functiondity Ratio: ext no dev pat —2——2——2 2222 2 2 2 Dmnl

Figure 5.18. Functionality Achievement under “No Developer Participation”

Extreme Case

Product Quality

bUgS/UF pe) 3 o O O O O pe) pe) pe] 3 o O O pe) pe)
Dmnl
Dmnl

[T

0.5 bugs/UF
2 Dmnl
0.5 Dmnl

0 bugsUF
0 Dmnl
0 Dmnl

t ' ' ' ' t t t t 1 ' ' t t t t '
Z Z Z Z Z] 4 4 P4 Z Z Z Z Z Z 4 4 Z

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondity : ext no dev pat +——+t—+—+t—+—+t— Tttt bugsUF
Severity of Totd Bugs Problem : ext_ no_dev_part r——2——2——2——2——2—=2—2—=2 Dmnl
Perceived Product Quadlity : ext no dev pat —3—3— 333 3 3 3 3 3 Dmnl

Figure 5.19. Product Quality under “No Developer Participation” Extreme Case

265

Coaching and Developer Talent

1 RTU/people

0.2 hoursMonth

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people / /‘\

0.1 hours’Month /
0.01 RTU/(Month¥people) [/ | | | | " i s

4 RTU \

N

0 RTU/people A

0 hoursMonth \\\4\

0 RTU/(Month*people) |

0 RTU B s

P4ns) 4] O Z o 4ns] Z O P4ns) P4ns) 4 4ns] Z O
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_ no_dev_part —t T T T T T RTU/people
Developer Hours Allocated to Coaching : ext_no_dev_part —2 2 > 2 hoursMonth
Average Developer Talent Built : ext_no_dev_part 3 3 3 3— RTU/(Month* people)

Developer Tdent Pool : ext_no_dev_part 7 7 7 7 7 7 7 7% RTU

Figure 5.20. Coaching and Developer Talent under “No Developer Participation”
Extreme Case

5.3.5. No Participation

In another extreme case applied to the model the community had both developers
and leaders, but neither developers nor leaders participated in any activities within the
community. Since there was no participation, no production was created and thus no

functionality growth was achieved. (See Figure 5.21.)

266

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 Dmnl

12 L L Z Lz L 12 L 12 1z L L 4 Lz 1 Z 1z 1 Z 12 L

0 10 20 30 40 50 60 70 80 90 "100
Time (Month)

Product Functionality : ext_no_part_ion t—t—t—t—t—t—t—t—t—t—¢t UF
Achieved Functiondity Ratio: ext no pat ion —2——=2——2——2—=2—2 2222 Dmnl

Figure 5.21. Functionality Achievement under “No Participation” Extreme Case

Due to the lack of functionality achievement, both leaders and devel opers started
to leave the community rapidly after approximately month 10. The number of developers
continued to increase until that time, since new developers continued to join the
community based on the expectations for future functionality growth. (For a discussion
about the expected and achieved functionality ratios, and how they affect the
attractiveness of the product for developers and users see Section 4.3, “lteration II:
Adding Time Pressure.”) The number of users stayed at zero since there was no
functionality, and consequently no product to use. (See Figure 5. 22.) Product quality
stayed at one since no bugs were introduced, and no bugs problem existed. (See Figure
5.23.) No coaching took place, since there was no participation; and consequently the

average developer talent did not change at all. (See Figure 5.24.)

267

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people /

10 people
10 people
10 people

=
H

NN

people AN
people \, N
people 3\%3\
people

[cNeoNoNe)

23 e Tr T T T AL Z o L2Zod L2204 L 2o I Zo Z =T

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders: ext_no_part_ion + T T T T T T t t T 1 people
Developers: ext_no_part_ion 2 2 2 2 2 2 2 2 2 people
Tota Participants : ext_no_part_ion -3 3 3 3 3 3 3 3 3 people
Users: ext_no_part_ion —= % % % 7 7 7 % % % #~ people

Figure 5.22. Leaders, Developers and Users under “No Participation” Extreme
Case

Product Quality

S s 53 S S S S S S] s 5] S S S S

bugs/UF
Dmnl
Dmnl

[T

0.5 bugs/UF

0.5 Dmnl

bugs/UF
Dmnl
Dmnl

[eNeoNe]

12 L 1L Z L Z L L 12 12 1z Lz L Z Lz 12 12 1z 12 L

0 10° "20 ° 30 40 50 60 70 80 ~ 90 100
Time (Month)

Totad Bugs per Functiondlity : ext no_part ion —+—+t—+—+t—+—+t— Tttt bugs/UF
Severity of Total Bugs Problem : ext no part ion 2——2——2——2——2—=2—2—=2—=2—=2 Dmnl
Perceived Product Quality : ext no_part ion —3—3—3—3 3 3 3 3 3 3 Dmnl

Figure 5.23. Product Quality under “No Participation” Extreme Case

268

0.2
0.02

0.5

0.01

(oo NoNe)

Average Developer Talent : ext_no_part_ion
Developer Hours Allocated to Coaching : ext_no_part_ion
Average Developer Talent Built : ext_no_part_ion
Developer Talent Pool : ext_no_part_ion

Figure 5.24. Coaching and Developer Taent under “No Participation” Extreme

Case

RTU/people
hours’Month
RTU/(Month* people)
RTU

RTU/people
hours’Month
RTU/(Month* people)
RTU

RTU/people
hoursMonth
RTU/(Month* people)
RTU

Coaching and Developer Talent

L/

™
\Zh\“‘ﬁb
P4ns) 4] O Z o 4ns] Z O P4ns) A 4 = o Z O A
0 10 20 30 40 50 60 70 80 90 100

Time (Month)
T T T T T T RTU/peopIe
> > hoursMonth
3 3 3 RTU/(Month* people)
7 7 7 7 7 7 7 7 RTU

5.3.6. Extremely High Participation

The opposite of the “ no participation” case, “extremely high participation” was
aso applied to the model. In this run, both developer participation and leader
participation were set to 10 times their normal level of 30 hours per month per person. As
expected, the product functionality increased rapidly and reached the saturation point
within the first 5 months. (See Figure 5.25.) This rapid growth in product functionality
caused afast decrease in opportunities for contribution, and thus the devel opers started to

leave the community very early. The number of users increased rapidly, also due to the

fast growth in product functionality. (See Figure 5.26.)

269

Functionality Achievement

600 UF 4 Z 4 4 4 £ (Z r4 r4 r4 Z Z Z Z Z
1 Dmnl

450 UF]

0.75 Dmnl T T

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_hi_part_ion t—t—t—t—t—t—t—t—t—t—¢t UF
Achieved Functionality Retio : ext_hi_part ion r——2——2—72——2——2—2—2—2—=2 Dml

Figure 5.25. Functionality Achievement under “Extremely High Participation”

Case

Leaders - Developers - Users

4 people
20 people

20 people
20,000 people

2 people LT
10 people

10 people
10,000 people

N D
A

people P
people 3 3 3 3 3 3 3 3
people
people . 5 5 5 5 5 5
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

OO0 OoOOo

Leaders: ext_hi_part ion —t T T T T T T T T T 1 people
Developers: ext_hi_part_ion 2 2 2 2 2 2 2 2 2 people
Total Participants: ext_hi_part_ion —3 3 3 3 3 3 3 3 35— people
Users: ext_hi_part_ ion —= 7 7 7 7t 7t 7t % % % 2~ people

Figure 5.26. Leaders, Developers and Users under “Extremely High Participation”
Case

270

The rapid growth in product functionality generated an equally rapid increase in
the number of bugs per functionality. Due to the delay between the assessment of the
bugs problem and reallocation of hours for debugging, and another delay between the
detection and fixing of the bugs, the bugs problem increased considerably at the
beginning of the run before it was under control. That caused the product quality to drop
to a very low level during the first 10 months of the project. Eventually the product
quality increased to an acceptable level. However, it stayed at an equilibrium that was

lower than that in the base case. (See Figure 5.27.)

Product Quality

bugs/UF
Dmnl

Dmnl —1\3/“3—-35“3-0:,66: B—T3— T3 T3 T3

0.5 bugs/UF % X
2 Dmnl X
0.5 Dmnl y \ /

bugs/UF /é
Dmnl

Dmnl

AR

'\// H /
b
\
7
N
N
N
N
N
N
N
N
N

eleole]

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functiondity : ext_hi_part ion —t+—+—+—+—+t ¢ bugs/UF
Severity of Total Bugs Problem : ext_hi_part ion 2——2——2——2——2—2—2—2—2—2 Dmnl
Perceived Product Quality : ext_hi_part ion —8—=3—3—3 33 3 3 33— Dml

Figure 5.27. Product Quality under “Extremely High Participation” Extreme Case

The overall developer talent pool grew rapidly during the first five month of this
run; however it decreased equally rapidly as the developers left the community. Average

developer talent increased for the first 10 months as more developer talent was built

271

through coaching, but as experienced developers left the community it dropped back to

its normal level. (See Figure 5.28.)

Coaching and Developer Talent

1 RTU/people
40 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people \
20 hoursMonth

0.01 RTU/(Month*people)
4 RTU

hours/Month
RTU/(Month* people)
RTU

RTU/people \

(oo NoNe)

a3 Ao) e e 4 = Z O pas) A Z = Z O Z oA
0 10 20 30 40 50 60 70 8 9 100
Time (Month)

Average Developer Taent : ext_hi_part ion —=t T T T t T T RTU/people
Developer Hours Allocated to Coaching : ext_hi_part_ion 2 2 2 2 hoursMonth
Average Developer Tdent Built : ext_hi_part_ion 3 3 3 3— RTU/(Month* people)
Developer Talent Pool : ext_hi_part_ion % % % % % % % % RTU

Figure 5.28. Coaching and Developer Talent under “Extremely High
Participation” Case

5.3.7. Zero Productivity

An extreme case somewhat similar to “no participation” was “zero productivity.”
Here, both leaders and devel opers participate, but their productivity is zero. The results of
this run showed similarities with the results of the “no participation” run. There was no
increase in product functionality, since the participants could not produce. (See Figure
5.29.) Leaders and developers left the community very early on, and there were no users

throughout the run. (See Figure 5.30.)

272

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 Dmnl

12 L L Z Lz L 12 L 12 1z L L 4 Lz 1 Z 1z 1 Z 12 L

0 10 20 30 40 50 60 70 80 90 "100
Time (Month)

Product Functiondlity : ext zero prod +—+—+t—+—t +t t —t—t—t—t ¢ UF
Achieved Functionality Ratio : ext_zero_prod r——2——2—72——2——2—2—2—2—=2 Dml

Figure 5.29. Functionality Achievement under “Zero Productivity” Extreme Case

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people /

10 people
10 people
10 people

=
H

NN

0 people Y
0 people \
0 people 3\%3\
0 people [
4 4 + L 4 51 L 4 51 4l o4l 04 o4l o411l oo 1 < 41l o4
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders: ext_zero_prod —t T T T T T T T T T 1 people
Developers: ext_zero_prod 2 z z 2 2 2 z z z 2 people
Tota Participants : ext_zero_prod 3 3 3 3 3 3 3 3 3 people
Users: ext_zero_prod —= % % % 7 7 7 % % % #~ people

Figure 5.30. Leaders, Developers and Users under “Zero Productivity” Extreme

Case

273

Product quality stayed at one, again, since there was no production to introduce

any bugs. (See Figure 5.31.)

Product Quality

bugS/U F 5] 3 o [[[[5] 5] | 3 o)) 5] 5]
Dmnl
Dmnl

AR

0.5 bugs/UF
2 Dmnl
0.5 Dmnl

0 bugsUF
0 Dmnl
0 Dmnl

OLL J.LlOJ.L J.420J.L Lsol_ L4.6 1 Z 504 J.L664 J.L70LL Léoll_ LgLO 1 Z 1J.OO
Time (Month)

Tota Bugs per Functionality : ext_zero_prod e A A bugs/UF
Severity of Total Bugs Problem : ext zero prod —2——2——2——2——2—2—=2—2—=2—2 Dmnl
Perceived Product Qudlity : ext_zero_prod 33 3 3 3 3 333 Dml

Figure 5.31. Product Quality under “Zero Productivity” Extreme Case

One notable difference from the “no participation” run was the existence of
coaching in the “zero production” run, since developers and leaders participated in
coaching as well as other activitiesin this run. Consequently, the average devel oper talent
increased dlightly while the participants stayed in the community. That growth stopped,
however, as both the leaders and developers started to leave the community. (See Figure

5.32.)

274

Coaching and Developer Talent

1 RTU/people
20 hoursgMonth

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people \/ /

10 hoursMonth
0.01 RTU/(Month*people) [/

4 RTU \

0 RTU/people

0 hoursMonth

0 RTU/(Month*people) \\4\

0 RTU — i

o e Z O 4 4] Z 9 9" 4 = o Z O A
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_zero_prod T T T T T T T RTU/people
Developer Hours Allocated to Coaching : ext_zero_prod 2 > > 2 hoursMonth
Average Developer Talent Built : ext_zero prod —3 3 3 3 3~ RTU/(Month* people)
Developer Tdent Pool : ext_zero_prod % % 7 7 7 7 7 % RTU

Figure 5.32. Coaching and Developer Taent under “Zero Productivity” Extreme
Case

5.3.8. Extremely High Productivity

“Extremely high productivity” represents the opposite of the “zero productivity”
case. In thisrun both the leaders’ and developers' productivity levels were set to 10 times
their normal values of 10 lines/hour and 5 lines/hour respectively. The results were very
similar to those in the “extremely high participation” case. (Compare Figures 5.25 - 5.28
and Figures 5.33 - 5.36.) In this case, the rapid growth was driven by the extremely high
productivity yield per hour of participation, as opposed to the extremely high level of
participation as the driving factor in the earlier case. One notable difference was the
behavior of the average developer talent. Since the level of participation was not as high
in this case as in the “ extremely high participation” case, there was not as much coaching,

and consequently average devel oper talent did not increase as much as in the earlier case.

275

Functionality Achievement

600 UF Z ‘? 2 v 4 4 £ (Z r4 r4 r4 r4 r4 r4 r4 Z
1 Dmnl
—1—'—'—1’_""1_'__1_'-
450 UF —— .
0.75 Dmnl B e N N

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_hi_prod r— 1t ¢t UF
Achieved Functionality Ratio: ext hi prod —2——2——2——2——2——2—2—2—2—2 2 Dmnl

Figure 5.33. Functionality Achievement under “Extremely High Productivity”

Case

Leaders - Developers - Users

4 people
20 people

20 people
20,000 people

2 people L]
10 people A\ 1|

10 people
10,000 people

NN
—
N
3

people
people 3 3 3 3 3 3 3 3
people
people

OO0 OoOOo

Z z ra

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders: ext_hi_prod T T T T T T T T T T 1 people
Developers: ext_hi_prod 2 2 2 2 2 2 2 2 2 2 people
Total Participants : ext_hi_prod 3 3 3 3 3 3 3 3 35— people
Users: ext_hi_prod 7 7 7 7 7t 7t 7t % % % 2~ people

Figure 5.34. Leaders, Developers and Users under “Extremely High Productivity”
Case

276

Product Quality

bugs/UF
Dmnl

Dmnl /1\ | 3 T3 3 3 3 3 3 33 3

0\
Og bugs/UF y\ .

Dmnl \EL e : : Tt
0.5 Dmnl y\ i EE R A e e e A

AR

PN

0 bugsUF [
0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Bugsper Functiondlity :ext hi prod +—— Tttt Tttt 1 bugsUF
Severity of Tota Bugs Problem : ext_hi_prod ——2o——2>——2——2——2—=2—=2—=2—=2 Dmnl
Perceived Product Quality : ext hi prod 3—=%—=3—3 333 3 3 33— Dml

Figure 5.35. Product Quality under “Extremely High Productivity” Case

Coaching and Developer Talent

1 RTU/people
40 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
20 hoursMonth k

0.01 RTU/(Month*people)
4 RTU

RTU/people \
hours’Month
RTU/(Month* people) \
RTU

(oo NoNe)

O O o o S r4nS) o o Lo O A
0 10 20 30 40 50 60 70 80 9 100
Time (Month)

Average Developer Tdent : ext_hi_prod T T T t t T T RTU/people
Developer Hours Allocated to Coaching : ext_hi_prod =2 2 2 2 2 hoursMonth
Average Developer Tdent Built : ext_hi_prod 3 3 3 3 3~ RTU/(Month* people)
Developer Talent Pool : ext_hi_prod —= % % % % % % % % RTU

Figure 5.36. Coaching and Developer Taent under “Extremely High
Productivity” Case

277

5.3.9. Zero Bug Generation

In another extreme condition run, the generating rate was set to zero, which meant
that leaders and developers did not introduce any bugs while producing functionality. The
behavior of the model under this condition was very close to its behavior under the base
case condition with respect to functionality achievement and |leader, developer and user
populations. (Compare Figures 5.1 - 5.2 and Figures 5.37 - 5.38.) The expected behavior
under this condition would be a faster growth in product functionality and the user
population. This expectation was based on the rationale that no bug generation would
save the participants considerable debugging time, which could be channeled to faster
production. Figure 5.39 and 5.40 show that achieved functionality ratio and the number
of users exhibited essentially the same behaviors under the base and the “zero bug
generation” cases. One possible explanation for the small increase in the speed of
functionality growth is that the participants worked under a considerably high pressure
for production even in the base case, and the lack of debugging duties did not prompt
them to achieve an ever faster production schedule in the “zero bug generation.” This
finding caused some doubt about the confidence in the model, and was noted as a

potential analysis point for possible future extensions of this study.

278

Leaders - Developers - Users

4 people
20 people
20 people
20,000 pa)ple T T t T T T T T T T T T
S
//3”' I BN |t
2 pmple 4 2~ \\ |~ ’_/-’4"—’
10 people |4 ™ sl
10 people L~ LT
10,000 people /2/
| v \A\\
0 people
0 people / \\ e 5
0 people ;
0 people . . o \"2—~ L . , . !
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Leaders: ext_zero_bug_gen T T T T T T t t T 1 people
Developers: ext_zero _bug_gen 2 2 2 2 2 2 2 2 2 people
Tota Participants : ext_zero_bug_gen 3 3 3 3 3 3 3 3 people
Users: ext_zero_bug_gen % % % % % % % % % 4~ people

Figure 5.37. Leaders, Developers and Users under “Zero Bug Generation” Case

Functionality Achievement

600 UF AE TP

1 Dmnl /
450 UF 7

0.75 Dmnl

300 UF ﬁ/
0.5 Dmnl L

/)

035 Dl i
Z/;/
1

0 20 30 40 50 60 70 80 90 100
Time (Month)

NN

0 Dmnl

OH

Product Functiondlity : ext_zero bug gen —+—+—+—+—+—t+—t+—t+—t+—t—¢t UF
Achieved Functionality Retio : ext zero bug gen 2222222222 Dmnl

Figure 5.38. Functionality Achievement under “Zero Bug Generation” Case

279

Achieved Functionality Ratio
1 Dmnl %PTFJ.L 2 L2 (t2 [t2 fr2ft2f t2

1 Dmnl /
0.75 Dmnl
0.75 ”//A

Dmnl /

0.5 Dmnl /
0.5 Dmnl A

0.25 Dmnl /
0.25 Dmnl 7

0 Dmnl /

0 Dmnl

OH

10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functiondity Ratio:base case —+—t—t——t—t——t—t—t—t—t—t Dmnl
Achieved Functionality Retio : ext zero bug gen 2222222222 Dl

Figure 5.39. Achieved Functionality Ratio under Base Case and “Zero Bug
Generation” Case

Users
20,000
15,000
T f
4@‘#%
10,000 T
|
5,000 /
A
0 1Z 1Z 1 Z L2 - {/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users: base_C& T T T T T T T T T T T T T T T 1 peop|e
Users: ext_zero_bug_gen 22 2 2 2 2 2 2 2 22 22 22 2 people

Figure 5.40. Users under Base Case and “ Zero Bug Generation” Case

280

Some of the behaviors yielded by this run were within the expected ranges. For
example, product quality stayed at one, since no bugs were introduce to the product. (See

Figure 3.41.)

Product Quality

bugS/U F 5] 3 o)))) 5] 5] | 3 o)) 5] 5]
Dmnl
Dmnl

AR

0.5 bugs/UF

0.5 Dmnl

bugs/UF
Dmnl
Dmnl

eleole]

IrZ TZ TITZTr&—Tr’—T TZ TZ2 T2 Z ITZ TZ—TIrZ/TT T Z

0 10° "20 30 40 50 60 70 80 ~ 90 100
Time (Month)

Tota Bugs per Functionality : ext_zero_bug_gen — Ittt bugs/UF
Severity of Total Bugs Problem : ext_zero_bug_gen ——o——2>—2——2—2—=2—2—2 Dml
Perceived Product Quality : ext zero bug gen 33333 3 3 3 33— Dmnl

Figure 5.41. Product Quality under “Zero Bug Generation” Case

Another expected behavior was the increase in the average developer talent level.
(See Figure 3.42) A portion of the time saved from debugging was channeled to more
coaching, and that yielded a higher increase in the long run than that under the base case

conditions. (See Figure 5.43.)

281

Coaching and Developer Talent

1 RTU/people

4 hours/(Month* people) BN R
0.02 RTU/(Month*people) AT TN

8 RTU /] N - Tt

1]
T
1T |~
7

\

0.5 RTU/people ;(1
2 hourg/(Month* people) ol &{M
0.01 RTU/(Month*people) |/
4 RTU ;\

A
\

RTU/people AN NN Y
hours/(Month* people) \ s~ | Y\
RTU/(Month* people) ™ N
RTU I]
0 10 20 30 40 50 60 70 8 9 100

Time (Month)

/]
7

(oo NoNe)

Average Developer Tdent : ext_zero_bug_gen T T T t T RTU/people
Coaching Hours per Developer : ext_zero_bug _gen 2 2 2 2— hours/(Month* people)
Average Developer Talent Built : ext_zero_bug_gen 3 3 3 3— RTU/(Month* people)
Developer Talent Pool : ext_zero bug gen —= 7 7 7 7 7 7 7 RTU

Figure 5.42. Coaching and Developer Talent under “Zero Bug Generation” Case

Average Developer Talent
1
0.75 i 1
. f:ﬁ: I IC
o sl
I L
ant Tl
i
05 ==
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case t—tr—t—t —t—t—t—t—¢t RTU/people
Average Developer Tdent : ext_zero _bug_gen >——2——2 22 —2z—2—2— RTU/people

Figure 5.43. Average Developer Talent under Base Case and “Zero Bug

Generation” Case

282

5.3.10. Extremely High Bug Gener ation

Another extreme condition run was done by setting the bug generating rate to 20
times its normal value of 0.01 bugs per line. As expected, the number of bugs per
functionality turned out extremely high under this case, rendering an extremely low

product quality. (See Figure 5.44.)

Product Quality

8 bugyUF
40 Dmnl
1 Dmnl PKT_

4 bugsUF / [~ ot—s

0.5 Dmnl

bugs/UF
Dmnl
Dmnl N

=2 O =2

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

eleoNe]

Totd Bugsper Functionality : ext hi bug gen —+— T+ttt 1t 1 bugs/UF
Severity of Total BugsProblem : ext_ hi_ bug gen =——2——2——2——2—2—=2—2—=2—2 Dmnl
Perceived Product Qudity : ext_ hi_ bug gen —8s—=%—=3—3—=3—3—3—3—3—3— Dmnl

Figure 5.44. Product Quality under “Extremely High Bug Generation” Case

The extremely low level of product quality caused the number of developers to
decrease right from the start of the run, and that decrease became sharper when the
leaders started to leave the community for quality reasons as well. Also, the product
could not attract a notable pool of users due to quality problems. (See Figure 5.45.)
Functionality achievement stagnated due to the rapidly decreasing number of developers

and leaders. (See Figure 5.46.)

283

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people
10 people
10 people
10 people

¥

N

d

Nig
~ANURN
people // \S\

people
0 10 2

[cNeoNoNe)

T 2o ZS LT Zo ITZo IZ T Zo

“40 50 60 70 80 90 100
Time (Month)

NS T
{
/
/
7
J
[
i
l

Leaders: ext_hi_bug gen —t T T T T T T T T T 1 people
Developers: ext_hi_bug_gen z z 2 2 2 z z z 2 people
Totd Participants: ext_hi_bug gen —3 3 3 3 3 3 3 3 3 people
Users: ext_hi_bug gen —= % % % % % % % % % 4~ people

Figure 5.45. Leaders, Developers and Users under “Extremely High Bug

Generation” Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

"
i
N
N

/‘2//'1"'" B N | AN N A B A O T S S

1./

0 UF 1//2’/‘1/
1

0 Dmnl

Oy

0 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_hi_bug_gen N N T SO S S S A UF
Achieved Functiondity Ratio : ext_hi_bug_gen r——2——2—2——2——2—=2—=2—2—=2 Dmnl

Figure 5.46. Functionality Achievement under “Extremely High Bug Generation”
Case

284

Developer talent increased only until the leaders started to leave the community.
After that point it started to decrease until it reached its original value of 0.5 relative
talent units per person by month 40, since the talent built through the limited coaching
efforts did not compensate for the decrease caused by the devel oper turnover. (See Figure

5.47.)

Coaching and Developer Talent

1 RTU/people

4 hours/(Month* people)
0.02 RTU/(Month*people)

8 RTU

0.5 RTU/people
2 hourg/(Month* people)
0.01 RTU/(Month*people)
4 RTU

RTU/people

hours/(Month* people)

RTU/(Month* people) \
RTU N

D

!

(oo NoNe)

Z= S Z 5 oOF Z90F £5% £S5

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_hi_bug gen —= T T T t T RTU/people
Coaching Hours per Developer : ext_hi_bug_gen 2 2 2 2— hours/(Month* people)
Average Developer Talent Built : ext_hi_bug gen 3 3 3 3 3~ RTU/(Month* people)
Developer Taent Pool : ext_hi_bug gen % % % % % % % % RTU

Figure 5.47. Coaching and Developer Tadent under “Extremely High Bug
Generation” Case

The extreme condition runs yielded mostly expected results, thus building a
certain confidence for the model. Some results were outside the expected ranges,
however the deviations were not so high as to refute the model atogether. The
unexpected deviations can be used as analysis foci for possible future studies based on

the model.

285

5.3.11. Implications of the Extreme Condition Runs

The extreme condition run performed on the OSSD model showed that the model
exhibited expected behaviors under a substantial number of conditions that deviate
extremely from normal conditions. Thus, the results of the extreme condition runs
contributed to building confidence in the OSSD model. A limitation of extreme condition
runsin general isthat while they provide very useful information for confidence building,
they do not provide much information for decision making based on the model. The
reason for that is that decison making involves setting policy parameters to a choice of
normal values under normal conditions, while extreme condition runs focus on abnormal
conditions. Sensitivity runs, another type of model tests, provide important information
for decision making as well as for building confidence in the model. The application of

sensitivity runs to the OSSD model is discussed below.
5.4. Senditivity Runs

Sensitivity runs are done in order to test whether the model exhibits the expected
range of behavior under a range of parameter values. The model should not be
abnormally sensitive to parameter changes. Substantial changes in model behavior for
relatively small changes in parameter values would decrease the confidence in model. On
the other hand, the model should exhibit the expected variety of behavior for relatively

large changes in parameter values.

Sensitivity analysis has another important role beyond its function as a model-
testing tool. It is possible to use sensitivity runs as preliminary analysis tools for policy
analysis. Sensitivity runs done for policy variables, which can be controlled by decision

and policy makers, may give initial hints about what policy variables yield the greatest

286

improvement, and what values of these variables yield results that are better than the base

case.

Many sensitivity runs were performed on the OSSD model. Several sensitivity
runs, which yielded the most critical findings, are discussed below. Among these are runs
that served as preliminary policy runs, such as the runs for refusal rate and rejection rate.

(See Section 5.4.7 and Section 5.4.8.)
5.4.1. Average Developer Participation

The model was run for different values of average developer participation. The
runs yielded results that are within a reasonable range. The runs where average devel oper
participation was set to 5, 10, 45 and 60 hours/(month*person) are discussed below,
aong with the base case, where average developer participation was 30
hours/(month* person.) Figure 5.48 displays the behaviors of product functionality for
different values of average developer participation. As the average participation increased
so did the speed of product functionality growth. In the runs where average participation
was set to 10 and 5 hours/(month* person) the product functionality level did not reach
the saturation point during the 100-month simulation horizon. (See Figure 5.48.) In fact,
under a 5 hours/(month* people) average participation condition product functionality
reached a low equilibrium of around 125 UF, which indicates that all the participants

have |eft the community.

287

Product Functionality

600
e 34 o
450 /// j/ S 33 S
300 / ? //; 7
b —9 2 Z
150 ! A /4 / {]
4 ; r,_.—-—«—'—]_— T T T T T
/’/1%
0L I
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : sen_dev_part 5 T T T T T T T UF
Product Functionality : sen_dev_part_10 2 2 2 2 2 2 2— UF
Product Functiondlity : base case 30 —3 3 3 3 3 3 3 3 UF
Product Functionality : sen_dev_part_45 7 7 7 7 7 7 UF
Product Functionality : sen dev_part 60 —5 5 5 5 5 5 5 UF

Figure 5.48. Product Functionality for Different Vaues of Average Developer
Participation

The number of total participants showed different behaviors for different values
of average developer participation as well. Figure 5.49 shows that as average
participation increased, the change in the number of developers happened more quickly.
As the speed of functionality growth increased, opportunities for contribution got scarcer
faster. That caused the developers to leave the community earlier for higher values of
average participation. (See Figure 5.49.) Figure 5.49 shows that all the participants left
the community by month 75 for the run where average participation was set to 5

hours/(month* person.)

288

Total Participants

20
15 e
F ——— [
N \ A
NVis N N N
5 \\\x \\:‘\7\: \‘
I~
N ~w¥bﬁ mj—%rry‘ L
I
O s = B B T T
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Total Participants: sen_dev_part_5 T T T T T T 1 people
Tota Participants : sen_dev_part_10 2 2 2 2 2 2 people
Total Participants : base_case 30 3 3 3 3 3 3 3 people

Tota Participants : sen_dev_part_45 7 % % % 7 7 % people
Total Participants: sen_dev_part_60 5 5 5 5 5 5 5- people

Figure 5.49. Tota Participants for Different Values of Average Developer
Participation

Figure 5.50 shows the behaviors of the number of users under different average
participation values. Here again, as the average participation increased, the growth of the
number of users became faster. Decreasing the average participation value impeded the

growth of the user population.

289

Users

20,000
15,000
=T
ﬁ:ﬁ w13 |
10,000 s
¢,_,4' [~
AT
prapd
5,000 v
/ L
/ / / 5 —1—2—1 2
O 1 J/_ __A _,_,_,-2——'—'—'__'2'_—
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: sen dev_part 5 —t T T 1 1 T T T 1 people
Users: sen_dev_part_10 2 2 2 2 2 2 2 2 people
Users: base case 30 3 3 3 3 3 3 3 3 3 people
Users: sen_dev_part_45 4 7 7 7 7 7 7 7 people
Users: sen_dev_part_60 5 5 5 5 5 5 5 5 5~ people

Figure 5.50. Users for Different Values of Average Developer Participation

The anaysis indicated that there is a critica value of average developer
participation for the given model, below which the community would not be able to
sustain itself. Running the model for 200 months instead of the origina 100 months
revealed that the critical value lies between 10 and 11 hours/(month* person). Figure 5.51
shows that the number of participants decreased early on after a short period of increase
for both cases where average participation was set to 10 and 11 hours/(month* person).
However, in the case where average participation was 11 hours/(month* person), the
number of participants started to increase once again, due to increasing interest among
potential developers, since the product had reached a critical level of functionality, and
continued with healthy growth. (See Figure 5.52.) Such an increase does not happen in
the case where average participation was 10 hours/(month* person), indicating that the

community would eventually cease to exist.

290

Total Participants

20
15
(i TN
0 \ \
s
\2\\ L
BN |
5 5 et 7]
4 Z
R
=3 4] 3 3 3 3 3 3 3 3 3 3 3
I L T T I I L T It
0
0 20 40 60 80 100 120 140 160 180 200

Time (Month)

Totd Participants: sen_dev_part 10 200 +——+—+—+—+t—+t 1t 1 people
Total Participants: sen_dev_part_ 11 200 22222 2 2 2 2 people
Tota Participants: base case 30 200 —3—3 33 3 3 3 3 3 3 3 people

Figure 5.51. Total Participants for Different Values of Average Developer
Participation

Product Functionality

600 _'_’_3,_,_—3-'--‘"3’
;3,‘_'_‘5_,_,..-3-'-
.,—gf"'‘f_d’g_
L3 |
450 /-"‘3_ °
Lot T7 |
300 /

150

/ %ﬁr—"rﬂ‘frﬁ
Vi

#
20 40 60 80 100 120 140 160 180 200
Time (Month)

OH

Product Functionality : sen dev_part 10 200 —+—+—+t—+—+t —t+ 1t ¢ UF
Product Functionality : sen_dev_part_11 200 2222222222 UF
Product Functionality : base_case 30 200 $—38 3 333 333353 UF

Figure 5.52. Product Functionality for Different Values of Average Developer
Participation

291

Figure 5.53 shows that the number of users started to decrease after a certain point
for 10 hours/(month* people) average developer participation, thus confirming that the
community would dissolve under that condition. Meanwhile, the number of users

continued to increase under the condition of 11 hours/(month* people).

Users
20,000
11 [|
15,000 L—F [
/_,-:'r”/r_/
|1
|4
3
10,000
r/ﬁ’ _,.-'-2”'_2_'__2'_'_7
7]
{ 7]
5,000 —
L7 7 1
L~ -1-—~1-"”‘1_"'I_~1—_ N
O 123172912 £ #
0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Users: sen_dev_part 10 200 —tr—t—+t—t—t—t—t—t 1t 1t —1 people
Users:sen dev part 11 200 222222 2 2 2 2 2 2 2 people
Users:base case 30 200 3333 3 3 3 3 3 3 3 3 3 3 people

Figure 5.53. Users for Different Values of Average Developer Participation

Perceived product quality exhibited larger decreases at the beginning of the
project for higher values of average developer participation. (See Figure 5.54.) This is
attributable to the fact that the proportion of code produced by developers was higher for
higher values of average developer participation, and developers introduced more bugs
per functionality compared to leaders. However it can aso be seen in Figure 5.54 that the
perceived product quality improved faster as the average participation level increased,
due to more developer hours available for debugging. Perceived product quality stayed

considerably high for very low average participation levels, due to the limited amount of

292

code produced by developers. However, higher quality did not help the community in

those cases, since the quality of a product that is not functional would be irrelevant for

users.
Perceived Product Quality
1 5 > T T T T ft —1 1
74 2 22— Bt #L_Z-‘L D B
\ {;rdm’iﬁ/_—gfﬁ:—ﬂ‘_ F 2
$\\ e 5
0.75 S K
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quality : sen dev_part 5 T T T T T T Dmnl
Perceived Product Quality : sen_dev_part_10 2 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 30 3 3 3 3 3 3 Dmnl
Perceived Product Quality : sen _dev_part_ 45 —= % % 7 7 % Dmnl
Perceived Product Quality : sen_dev_part_60 5 5 5 5 5 5 Dmnl

Figure 5.54. Product Quality for Different Vaues of Average Developer
Participation

Developer talent increased faster for higher values of average participation, since
more developer hours were available for coaching. However, the average talent reached
lower equilibriums for higher values of average participation, since developers left the
community earlier in those runs, and did not have the time to have more coaching. (See

Figure 5.55.)

293

Average Developer Talent

0.8
kel iie] [T O
07 PP
Xﬁ[’;/z"’
0.6 =5
s
2 >
0.5 f - - - —— === 5 7
04
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : sen_dev_part 5 T T T T t— RTU/people

Average Developer Taent : sen_dev_part 10 2 2 2 2 2 RTU/people

Average Developer Talent : base case 30 3 3 3 3 3 RTU/people

Average Developer Talent : sen_dev_part 45 —= % % 7 7 RTU/people

Average Developer Talent : sen_dev_part 60 5 5 5 5 5 RTU/people

Figure 555. Average Developer Talent for Different Vaues of Average
Developer Participation

5.4.2. Average Developer Productivity

Another set of sengitivity runs was done for different values of average developer
productivity. Average developer productivity in the base case run was 5 lineshour. The
results of the runs where average developer productivity was set to 1, 2.5, 7.5 and 10
linesshour are discussed below. As expected, higher average developer productivity

yielded faster product functionality growth. (See Figure 5.56.)

294

Product Functionality

600
4 4 34T o
450 j/ S S o L —— 7
L~
/ e]
300 :4/ / P
% L]]
D /‘Z/
150 %,/ = : M M
/2/ | —1 r""_'d_T
Zza
O L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : sen dev_prod 1 T T T T T T T UF
Product Functionality : sen_dev_prod 2-5 —2 2 2 2 2 2 2— UF
Product Functionality : base case 5 —3 3 3 3 3 3 3 3 UF
Product Functionality : sen_dev_prod_7-5 4 7 7 7 7 7 UF
Product Functionality : sen dev_prod 10 5 5 5 5 5 5 5 UF

Figure 5.56. Product Functionality for Different Vaues of Average Developer
Productivity

Higher values of average developer productivity also caused the number of total
participants to exhibit its fundamental behavior pattern and reach equilibrium earlier.
(See Figure 5.57.) Tota participants decreased early on in the case where the average
developer productivity was set to 1 lines/hour, since many developers left the community
due to very low product functionality levels. The leaders followed the developers, thus
bringing the total number of participants to zero by the end of the simulation horizon for
that run. An interesting aternative behavior pattern was observed when average
developer productivity was set to 2.5 lines/hour. In that run the number of total
participants decreased early on as well, due to the low product functionality level.
However, that decrease slowed down as the developer interest in the project was

rekindled due to improving functionality achievement. Finally the decrease accelerated

295

again due to scarce contribution opportunities as the product functionality approached the

saturation point. (See Figure 5.57.)

Total Participants

20
15 -
5]
/ﬂ 5:\ X:’\
B
10 < s
g
™
5 \s\\ ™ | \\\L\
3 [~ [~
\\\-_5_,_:3 S S——Strs s 45—57s ,5::\-
1\\1
0 [T . :
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Total Participants: sen_dev_prod_1 T T T T T T 1 people
Total Participants : sen_dev_prod_2-5 2 2 2 2 2 2 people
Total Participants : base case 5 3 3 3 3 3 3 3 people
Total Participants: sen_dev_prod 7-5 —= % % % 7 7 % people

Total Participants: sen_dev_prod_10 5 5 5 5 5 5 5- people

Figure 557. Tota Participants for Different Values of Average Developer
Productivity

Figure 5.58 shows how the behaviors of the number of users unfolded under
different average productivity conditions. Basicaly, as the average productivity
increased, the growth of the number of users became faster, as expected. The behavior of
number of users for very low average productivity values, together with the behaviors of
the number of total participants, indicated that there should be a critical value for average
developer productivity below which the community would not be able to sustain itself.
Further analysis revealed that the critical value lies between 1.6 and 1.7 lines/hour. (See

Figures5.59 - 5.61.)

296

20,000
15,000
zi
ﬁ’ﬁ
10,000 P 3 — ,
poird o
5,000
T
1
0 / -4
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users:sen dev_prod 1 —= T T 1 1 T T T 1 people
Users: sen_dev_prod 2-5 —2 2 2 2 2 2 2 2 people
Users: base case 5 —3 3 3 3 3 3 3 3 3 people
Users: sen_dev_prod_7-5 4 7 7 7 7 7 7 7 people
Users: sen_dev_prod_10 5 5 5 5 5 5 5 5~ people

Figure 5.58. Users for Different Vaues of Average Developer Productivity

Total Participants

20
15
N]
10 \ - —
Z,_,_H'
7 |
o 17|
5 M P et
3\%-4—3_ - 5 3 3 3 3 3 T3
\‘\1 = Bl 2 Bl = 1] = L L L L L L L L L L
0
0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Totd Participants: base case 5 200 +—+—+—+t—+—+t—+t 1t 1 people
Total Participants: sen_dev_prod 1-7 200 2——2—=2 222 2 2 2 2 people
Total Participants: sen dev_prod 1-6 200 —3— 33 3 3 3 3 3 3 3 people

Figure 559. Tota Participants for Different Values of Average Developer
Productivity

297

Product Functionality

600 [S
''_,_,_j-r"'_'j
.,--"'_‘L-ﬂ_ﬂj
—1 1

450 /rf—r"

-

/ R P
L
300 f e “"'__'_3‘_2 = =5
JQ.H—’_'_{;_.—'-—S—
LS 7|
150 A%
i
O €T
0 20 40 60 80 100 120 140 160 180 200

Time (Month)

Product Functionality : base case 5 200 —+—+—+—+—+—t+—t—t—t—t ¢ UF
Product Functionality : sen dev_prod 1-7 200 —2——2—=2—=2 2222 22— UF
Product Functionality : sen_dev_prod_1-6_200 33 3 3 3 3 3333 UF

Figure 5.60. Product Functionality for Different Values of Average Developer

Productivity
Users
20,000
e N Nl M
T | *
15,000 =y
-/f-/
JI,-H'
/’r/
10,000 £ —
4/ | o2
/ |7
| —2
L7
5,000 7] N S
e 31
/ i S
ﬁ%%ﬂ
0
0 "0 40 60 80 100 120 140 160 180 200
Time (Month)

Users: base case 5 200 Tttt —t—t—t—t 1t 1 people
Users:sen_dev prod 1-7 200 — 2222 2 2 2 2 2 2 2 2 people
Users:sen dev prod 1-6 200 3— 333 3 3 3 3 3 3 3 3 3 people

Figure 5.61. Users for Different Vaues of Average Developer Productivity

298

Like the case with average developer participation, higher values of average
developer productivity yielded larger decreases in perceived product quality at the
beginning of the project. (See Figure 5.62.) This is again attributable to the increased
portion of code produced by developers in the overall code base as average developer
productivity increased. The improvement in perceived product quality was faster as the
average production level increased. Perceived product quality stayed high for very low
average developer productivity levels, again due to the limited amount of code produced

by developers. (See Figure 5.62.)

Perceived Product Quality

1 M~ . | T T T — T =1 I
\- 2 va b— E 5 T _ SRR P2
\ ;,4': 5 4 r4 2
T =T
0.75 K
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quality : sen dev_prod_1 T T T T T T Dmnl
Perceived Product Quality : sen_dev_prod_2-5 2 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 5 3 3 3 3 3 3 Dmnl
Perceived Product Quality : sen_dev_prod_7-5 —= % % 7 7 % Dmnl
Perceived Product Quality : sen_dev_prod_10 5 5 5 5 5 5 Dmnl

Figure 5.62. Users for Different Vaues of Average Developer Productivity

299

5.4.3. Bug Generating Rate Nor mal

The model was also run under different values of bug generating rate normal,
namely 0.002, 0.005, 0.020, 0.050 bugs/line. The base case value of bug generating rate

normal was 0.010 bugs/line.

As expected, higher values of bug generating rate normal caused higher levels of
total bugs per functionality, and consequently, lower levels of perceived product quality.
(See Figure 5.63. and Figure 5.64.) Perceived product quality improved after a decline in
most runs, but it failed to do so in some runs with very high values of bug generating rate
normal. The run where the rate was set to 0.050 bugs/line was one of those cases, as seen
in Figure 5.64. This indicated that bug generating rate normal should also have a critical

value, above which the community would fail due to low product quality.

Total Bugs per Functionality

2
N
Dv,
15
™5~
\%H
B 5 5 5 5 5 5
1
(—\
At
0.5 3 B 3 3 = 3 # —
/{ 4 2 2 P A [4 4 4 2] 2
0 - T T T + + ¥ : . '
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Total Bugs per Functionality : sen_bug_gen rate 0-002 T T T T bugs/UF
Tota Bugs per Functiondity : sen_bug_gen rate 0-005 2 2 2 2 bugs/UF
Total Bugs per Functionality : base case 0-010 3 3 3 3 3 bugs/UF
Tota Bugs per Functionality : sen_bug_gen rate 0-020 —= % 7 7 24— bugs/UF

Total Bugs per Functionality : sen_bug_gen rate 0-050 —5 5 5 5 5 bugs/UF

Figure 5.63. Total Bugs per Functionality for Different Vaues of Bug Generating
Rate Normal

300

Perceived Product Quality

1 p —2 2 —p — 2 b 1o 2 b ~ 5
|5 3 T A
\ A _'3'__,_,_,-——'3"_ _H_’__n_,_,_——-'-"’ﬂ"
B S —] 4
AT

73]

\
#

0.75] —1
L]
0.5 /
‘_//
0.25
,_ e t+—F 5 5 5 5 b 5
0 5~
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quality : sen bug_gen rate 0-002 T T T T — Dmnl
Perceived Product Quality : sen_bug_gen rate 0-005 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 0-010 -3 3 3 3 3 3 Dmnl
Perceived Product Quality : sen_bug_gen rate 0-020 —= % 7 7 % Dmnl

Perceived Product Quality : sen bug_gen rate 0-050 5 5 5 5 5 Dmnl

Figure 5.64. Percelved Product Quality for Different Vaues of Bug Generating
Rate Normal

The behaviors of product functionality, number of users, and number of total
participants in the run where the rate was set to 0.050 bugs/line supported the idea about
the existence of a critical value for bug generating rate normal. (See Figures 5.65 through
5.67.) Based on further runs, the critical value for bug generating rate normal was found

to lie between 0.025 and 0.030 bugs/line. (See Figures 5.68 through 5.70)

301

Product Functionality

600
+=ST | L < a4
450 3 2 :{,%*
A el
300 / . —
150 A 55 5 5 5 c 5
=2
S
0 L ﬁf
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : sen_bug_gen rate 0-002 —t T T T T T UF
Product Functionality : sen_bug_gen_rate 0-005 2 2 2 2 2 2— UF
Product Functionality : base case 0-010 3 3 3 3 3 3 3 UF
Product Functionality : sen_bug_gen rate 0-020 4 7 7 7 7 UF
Product Functionality : sen_bug_gen rate 0-050 —5 5 5 5 5 5 UF

Figure 5.65. Product Functionality for Different Vaues of Bug Generating Rate

Normal
Users
20,000
15,000
| ’4##5—-:4 s-'_':'-_’,--'-"3"'21
10,000 e aasees il
' ik ?_-/’_‘ /4'/ i
/ i /"‘/
5,000 Wi p
Vvike
|14
0 Lo LS JiN NrANre Rs Jne iy oy \:T@fj-/ 9 9 J J 9 9 J
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: sen_bug_gen rate 0-002 —t T T T t t T 1 people
Users: sen_bug_gen rate 0-005 2 2 2 2 2 2 2 people
Users: base_case 0-010 3 3 3 3 3 3 3 3 people
Users: sen_bug_gen rate 0-020 7 7 7 7 7 7 24— people
Users: sen_bug_gen rate 0-050 5 5 5 5 5 5 5 5~ people

Figure 5.66. Users for Different Values of Bug Generating Rate Normal

302

Total Participants

20

15 —
/?f"’ < 3%
~—]

10 \‘*“&g Z —4——._ﬂz

/
[
3
]
/

: N NERR
Ny) ~al

L2235 23 2 1 t
\“S'_HH i
0 3 St s 3 5 5
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Total Participants: sen_bug_gen rate 0-002 T T T T T 1 people
Tota Participants : sen_bug_gen rate 0-005 2 2 2 2 2 2 people
Tota Participants : base case 0-010 —3 3 3 3 3 3 3 people
Tota Participants : sen_bug_gen_rate 0-020 % % % 7 7 % people

Total Participants: sen_bug_gen rate 0-050 5 5 5 5 5 5- people

Figure 5.67. Total Participants for Different Values of Bug Generating Rate
Normal

Product Functionality

600
4 —
450 / P
yd

300 ram

/f . L —to—T2—72

,Z,J-"Z"F_ZF | =1 5 3 3 3 3 3T 3]
A S
150 % o
0 /(

OH

10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base case 0-010 —t—+—+—+ 1t ¢ UF
Product Functionality : sen_bug gen rate 0-0256 =——2——=2—=2—=2—=2 =22 <2 =2~ UF
Product Functionality : sen_ bug gen rate 0-030 —3—=3—3 33333 33 UF

Figure 5.68. Product Functionality for Different Values of Bug Generating Rate
Normal

303

Users

20,000
15,000
1
1T
L1
10,000 T T
/l/-/
vl d
/_,_2-'—'_2
5,000 / e il
e 7
71
|~
/ |
_/_2(_,-/2(
0 4’// A.ge‘:'/z/,—— i B 3 3 3——3~—ts—1|a
0 30 40 50 60 70 80 90 100
Time (Month)

Users: base case 0-010 —t—+—+—+—+—t + t +—+t—t 1t —t—1 people
Usaers:sen bug gen rate 0-025 —2—=2—=2 2222 2 2 2 2 2 people
Users: sen_bug_gen rate 0-030 33 3 3 3 3 3 3 3 3 3 3 people

Figure 5.69. Users for Different Values of Bug Generating Rate Normal

Total Participants

20
15
| i R
10 }%%
\2\\ \
\\2\‘2\ b
5 \\3\ 2 2~ —to— \ = 2 4 4 4
\&\“3“ \'1"-._1___1 T T T T T T
A
0 I D B B A
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Totd Participants: base case 0-010 +——+—+—t+—+—+t—+t 1t 1 people
Tota Participants: sen bug gen rate 0-025 2——2——2——2—=2 22 2 2 2 people
Total Participants: sen bug gen rate 0-030 —3— 3333 3 3 3 3 3 people

Figure 5.70. Total Participants for Different Values of Bug Generating Rate
Normal

304

5.4.4. Normal Timeto Attract Developers

Normal time to attract developers was the basis for another set of sensitivity runs.
In the base case the value of the normal time to attract developers was 10 months. The
runs where normal time to attract developers was set to 2, 5, 20 and 30 months are

discussed below.

As expected, lower values of normal time to attract developers caused the number
of developers to increase faster. Also, the decline in the number of developers happened
earlier for runs with lower normal times to attract developers, since the limit on product
functionality was achieved earlier due to a larger developer population. (See Figure 5.71
and Figure 5.72.) As a consequence of faster functionality growth, number of users grew

faster under higher values of normal time to attract developers. (See Figure 5.73.)

Developers
20
LT
/1,-/'
//
10 ; - s
T T T
AT T
\3\5‘%
O \§%%404J1404J140+JL
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Developers: sen_att_dev_2 T T 1 1 T T T 1 people
Developers: sen att dev 5 2 2 2 2 2 2 2 2 people
Developers: base case 10 —s 3 3 3 3 3 3 3 people
Developers: sen_ait dev_20 —= 7 7 7 7 7 7 7 people
Developers: sen_att_dev_50 5 5 5 5 5 5 5 5- people

Figure 5.71. Developers for Different Vaues of Normal Time to Attract
Developers

305

Product Functionality

600
" i J4°
450 T2y
300 [/ /4/}/ -
/5/
2
150
O L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : sen_att dev_2 T T T T T T T UF
Product Functiondity : sen_att dev_5 2 2 2 2 2 2 2— UF
Product Functiondlity : base case 10 —3 3 3 3 3 3 3 3 UF
Product Functionality : sen_att_dev_20 —= 7 7 7 7 7 7 UF
Product Functionality : sen_att dev 50 —= 5 5 5 5 5 5 UF

Figure 5.72. Product Functionality for Different Values of Normal Time to Attract

Developers
Users
20,000
15,000
10,000
/
/_/
5,000 A2
vl
0 Lo Ll L oF I LY %
0 20 30 40 50 60 70 80 90 100
Time (Month)
Users: sen_att dev_2 T T T T T T T T 1 people
Users: sen att dev 5 2 2 2 2 2 2 2 2 people
Users: base case 10 3 3 3 3 3 3 3 3 3 people
Users: sen att dev 20 % 7 7 7 7 7 7 7 7 people

Users: sen_att dev 50 —5 5 5 5 5 5 5 5~ people

q

Figure 5.73. Users for Different Values of Normal Time to Attract Developers

306

Perceived product quality decreased faster and reached alower level for runs with
higher values of normal time to attract developers. This was due to the higher portions of
code produced in these runs due to higher numbers of developers. However, perceived
product quality improved and reached to about the same level by the end of the

simulation horizon in all the runs. (See Figure 5.74.)

Perceived Product Quality

1 |]
%“‘4‘ % 1 = ~_4_J_~_4__“_=;‘Eﬁ 1 "’
\1\2\ Pt LT
0.75 ~——
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Qudlity : sen_att dev 2 + T T T T T — Dmnl
Perceived Product Quality : sen_att dev 5 —2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 10 3 3 3 3 3 3 Dmnl
Perceived Product Quality : sen_att_dev_20 % % % 7 7 % Dmnl
Perceived Product Quality : sen_att dev_50 5 5 5 5 5 5 Dmnl

Figure 5.74. Users for Different Values of Normal Time to Attract Developers

Average developer talent increased faster and reached higher equilibriums for
higher values of normal time to attract developers, since the developers stayed in the
community longer, and thus had a longer period of coaching than in the runs with lower

normal times to attract developers. (See Figure 5.75.)

307

Average Developer Talent

1
0.75 —" =
= = T i T T
05 [
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : sen_att dev 2 ¢ T T T T t— RTU/people
Average Developer Talent : sen_att dev 5 —2 2 2 2 2 2 RTU/people
Average Developer Talent : base case 10 3 3 3 3 3 RTU/people
Average Developer Talent : sen_att_dev_20 % % % 7 7 RTU/people
Average Developer Talent : sen_att dev_50 5 5 5 5 5 RTU/people

Figure 5.75. Users for Different Values of Normal Time to Attract Developers

It can be argued that the model did not yield the expected diversity of behavior for
different values of normal time to attract developers. It was expected that the community
would fail to grow to a sustainable level for very high values of this variable. However,
even five times the base case value did not yield such as result. This fact was noted as an
opportunity for a future model refinement study, where this and other variables would be

revised in order to improve the model.
5.4.5. Normal Time for Developersto L eave

Another set of sensitivity runs was based on different values of normal time for
developers to leave, namely 16, 48, 144 and 198 months. The value of normal time for
developers to leave was 96 months in the base case. The findings of these runs were not

too different than those of the runs under different values of norma time to attract

308

developers, except for the fact that the diversity of behavior was even smaller in this case.
Hence, this variable was noted as a candidate for a future model refinement study, as

well.

Although the behavioral differences among the runs were not substantial, the
number of developer started to decrease earlier for runs with lower values of normal time
for developers to leave, as expected. That was due to the increased number of leaving

developersin these runs. (See Figure 5.76.)

Developers

15

10 T _‘%H\? ~

:é ‘Iﬂ\
5 ™ \ [5,

\\\5
M
0O 5 10 15 20 25 30 3H 40 45 50 55 60 65 70 75 8 8 90O 95 100
Time (Month)

Developers: sen_dev_leav_16— T T T T T T T T T 1 people
Developers: sen_dev_leav_48 people
Developers: base_case 96— 3 3 3 3 3 3 3 3 3 3 people
Developers: sen_dev_leav_144 7 7 7 7 7 7 7 7 7 7 people
Developers: sen_dev_leav_1925 5 5 5 5 5 5 5 5 5 s— people

Figure 5.76. Developers for Different Values of Normal Time for Developers to

Leave

Since the developers left the community earlier, causing the number of developers
to stay lower, product functionality growth under lower values of norma time for

developers to leave was slower. However, the differences in the pace of functionality

309

growth were far from being substantial. (See Figure 5.77.) That was another fact that cast

doubt on the validity of the way this variable was included in the model.

Product Functionality

600
450 5 = S e s s I 7
AT
300 /f j‘f Zal
150 J‘/
i
0 L /
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functiondity : sen dev_leav 16 —t T T T T T T UF
Product Functionality : sen dev_leav_48 2 2 2 2 2 2 2— UF
Product Functiondlity : base case 96 —3 3 3 3 3 3 3 3 UF
Product Functionality : sen_dev_leav_144 4 7 7 7 7 7 UF
Product Functionality : sen_dev_leav_192 5 5 5 5 5 5 UF

Figure 5.77. Product Functionality for Different Values of Norma Time for

Developersto Leave

Since the differences in the pace of product functionality growth across the runs
were very small, the differences between the behaviors of the number of usersin each run
were also small, contrary to the expectation. Nevertheless, the number of users increased
more slowly under lower values of normal time for developers to leave, due to slower

product functionality growth. (See Figure 5. 78.)

310

Users

20,000
15,000
SR
il il
10,000 - e s
5,000 parad
Vi
O Lo DL o591 9T
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users:sen dev leav 16 —t T T T T T T T 1 people
Users: sen_dev_leav_48 2 2 2 2 2 2 2 2 people
Users: base case 96 3 3 3 3 3 3 3 3 3 people
Users: sen_dev_leav_144 4 7 7 7 7 7 7 7 people
Users: sen_dev_leav_192 5 5 5 5 5 5 5 5~ people

Figure 5.78. Users for Different Values of Normal Time for Developers to Leave

Perceived product functionality exhibited behaviors which were essentially the
same for different for different values of normal time for developers to leave, again
contrary to expectation. However, it should be noted that the product quality was slightly
better for runs with lower values of normal time for developers to leave. (See Figure 5.
79.) This can be attributed to the lower portion of code produced by developers within the

overall code basein these runs.

Average developer talent increased slightly faster and reached higher equilibriums
for runs with higher values of normal time for developers to leave, as expected. Thiswas
due to developers staying in the community longer, and thus having a longer period of

coaching. (See Figure 5.80.)

311

Perceived Product Quality

1
S ETPS AP L2 P o+ O
% i AT ER)
AP T LB AT oY LF

0.75

0.5

0.25

0

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_dev_leav_16 T T T T T — Dmnl
Perceived Product Quality : sen_dev_leav_48 2 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 96 3 3 3 3 3 3 Dmnl
Perceived Product Quality : sen_dev_leav_144 —= % % 7 7 % Dmnl
Perceived Product Qudity : sen_dev_leav_192 —5 5 5 5 5 5— Dmnl

Figure 5.79. Perceived Product Quality for Different Vaues of Normal Time for

Developersto Leave

Average Developer Taent
1
0.75 =t e : B =
. LS F ‘ ‘ r ‘
T ™= £ - _;._T
B 1 g
05 L 1 L L
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : sen_dev_leav_16 T T t T t— RTU/people
Average Developer Talent : sen _dev_leav_48 2 2 2 2 2= RTU/people
Average Developer Taent : base_case 96 3 3 3 3 3 RTU/people
Average Developer Talent : sen_dev_leav_144 = 7 7 7 7 RTU/people
Average Developer Talent : sen_dev_leav_192 5 5 5 5 5 RTU/people

Figure 5.80. Average Developer Talent for Different Values of Normal Time for
Developersto Leave

312

5.4.6. Normal Timeto Attract Users

Another set of sensitivity runs was done for different values of normal time to
attract users. The runs where the variable was set to 6, 18, 72 and 108 months are
discussed below. As expected, the growth in the number of users was slower for runs

with higher value of normal time to attract users. (See Figure 5.81.)

Users
20,000
L1 |
15,000 I e O e
=y | > L3
10,000 e . il BN e 1
! AT LA L B e I B S R
7 5] || L5
/ = s s
5,000 // /{’] e il
/| AN
157
0 /f/_,g‘;ﬁ’éﬂ—a/-//f
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: sen_att_users 6 — T T 1 1 T T T 1 people
Users: sen_att_users 18 2 2 2 2 2 2 2 2 people
Users: base case 36 3 3 3 3 3 3 3 3 3 people
Users: sen_att_users 72 % 7 % % % 7 7 % people
Users: sen_att_users 108 5 5 5 5 5 5 5 5~ people

Figure 5.81. Users for Different Vaues of Normal Time to Attract Users

The number of users was modeled as a critical motivation factor for the
developers to join the community. Consequently, it was expected that the number of
developers would increase considerably faster in cases where the number of users
increased faster. However, the change in the behavior of the number of developers as the

normal time to attract users changed was smaller than expected. (See Figure 5.82.)

313

Developers

20 people
20 people
20 people
20 people
20 people
LI Z£34ap
" B

0 people 27 \
0 people
0 people N
0 people \5\}
0 people Eﬁw“q;

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers: sen_att_users 6 T T 1 1 T T T 1 people
Developers: sen_att_users 18 2 2 2 2 2 2 2 people
Developers: base case 36 —S 3 3 3 3 3 3 3 people
Developers: sen_att_users 72 = 7 7 7 7 7 7 7 people
Developers: sen_att_users 108 —5 5 5 5 5 5 5 5~ people

Figure 5.82. Developers for Different Values of Normal Time to Attract Users

Further analysis revealed that the attractiveness of joining the project due to the
number of users changed considerably for different values of normal time to attract users.
(See Figure 5.83.) However, overal attractiveness of joining the project did not change as
much, except for very low values of normal time to attract users. (See Figure 5.84.) Even
in such cases the difference occurred over a limited period. For example, for the run
where normal time to attract users was set to 6 months, the difference was limited to the
period between months 20 and 40, and it was not large enough to change the behavior of
the number of developers substantially. (See Figure 5.84.) Product functionality growth
was not accelerated, due to the limited acceleration in the growth of the number of
developers. (See Figure 5.85) Normal time to attract users, too, was noted as a candidate
for a future model improvement study, since it caused suspicion about the confidence

level of the modd!.

314

Attrractiveness of Product for Developers Due to Users

4 Dmnl + 1T
4 Dmnl (Jr’—’:}'r— F?;j
4 Dmnl /r’“/ /,/f’fj |
4 Dmnl P e
4 Dmnl /'f // //] o A—//
v LA] |
|~ /2// /3,,/ B 4_,_/" e S
0 Dl ,1/ v //3,/ PR il B S
0 Dmnl . L1 = |]
0 bl P e =
0 Dmnl
0 Dmnl
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Attrractiveness of Product for Developers Dueto Users: sen att users 6 —t T T Dmnl
Attrractiveness of Product for Developers Due to Users: sen_att_users 18 2 2 2 Dmnl
Attrractiveness of Product for Developers Due to Users : base case 36 3 3 Dmnl
Attrractiveness of Product for Developers Due to Users: sen _att_users 72 7 % Dmnl

Attrractiveness of Product for Developers Dueto Users: sen att users 108 ——5——5— Dmnl

Figure 5.83. Attractiveness of Product for Developers Due to Users for Different

Values of Norma Time to Attract Users

Overdl Attractiveness of Product for Devel opers

1 Dmnl
1 Dmnl 2375
1 Dmnl Ki / \
1 Dmnl \: -
1 Dmnl /
o)

0 Dmnl \
0 Dmnl \
0 Dmnl \
0 Dmnl
0 Dmnl

0 10 20 30 40 50 60 70 8 90 100

Time (Month)

Overal Attractiveness of Product for Developers: sen_att users 6 T t — Dmnl
Overall Attractiveness of Product for Developers: sen att users 18 -2 2 2 2 Dmnl
Overal Attractiveness of Product for Developers : base_case 36 3 3 3 Dmnl
Overall Attractiveness of Product for Developers: sen att_users 72 7 7 % Dmnl
Overal Attractiveness of Product for Developers: sen_att_users 108 5 5 5 Dmnl

Figure 5.84. Overall Attractiveness of Product for Developers for Different
Values of Normal Time to Attract Users

315

Product Functionality

600 UF
600 UF
600 UF] TP
600 UF a5 T 234 Ty 71
600 UF {/ﬁf
,{
r{{ d
0 UF 4/
0 UF A7
0 UF &
0 UF /
0 UF
0 10 20 30 40 50 60 70 80 20 100
Time (Month)
Product Functionality : sen_att users 6 T T T T T T T UF
Product Functiondlity : sen_att_users 18 2 2 2 2 > 2 >— UF
Product Functiondlity : base case 36 —3 3 3 3 3 3 3 3 UF
Product Functionality : sen_att_users 72 7% % % % % % UF
Product Functionality : sen_att users 108 5 5 5 5 5 5 UF

Figure 5.85. Product Functionality for Different Values of Normal Time to Attract
Users

5.4.7. Refusal Ratio

Refusal ratio was the basis for another set of sensitivity runs. In the base case run
refusal rate was set to 0.1. The senditivity runs where the refusal rate was set to 0.02,

0.05, 0.3 and 0.8 are discussed bel ow.

Refusal ratio directly affects two things: the number of incoming developers and
the average talent level of those incoming developers. As refusal ratio increases, a
smaller number of developers with a higher average talent level join the community.
Accordingly, higher values of refusal ratio were expected to decrease the number of
developers, and increase the average developer talent. As expected, higher refusal ratios
decreased the number of incoming developers, and consequently the number of

developers. (See Figure 5.86 and Figure 5.87.)

316

Candidates Selected as New Developers

0.8
/N
0.6 %\
0.4 \
4\\\

0.2 / \q*‘% o S L I A

O 5 \%\9‘?\) ol 5‘:‘\1—140‘0\)140‘0\)1404\);
0 10 20 30 40 50 60 7 80 90 100
Time (Month)

Candidates Selected as New Developers: sen_ref_rat_0-02 T T T people/Month
Candidates Selected as New Developers : sen ref _rat 0-05 —2 2 2 people/Month
Candidates Selected as New Developers: base case 0-1 3 3 3 people/Month
Candidates Selected as New Developers : sen_ref_rat_0-3 % % % people/Month
Candidates Selected as New Developers: sen_ref_rat 0-8 5 5 5— people/Month

Figure 5.86. Candidates Selected as New Developers for Different Vaues of
Refusal Ratio

Developers
20
15
10 szl ==
e e et BN NN ﬁf\\l\
5 1 5] 5 \y ‘1\\
-
\M ™
0 % 4are s ape) 4are s ape) oI 1 2
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Developers: sen ref_rat_0-02 T T T T t t T 1 people
Developers: sen_ref_rat_0-05 z z 2 2 z z 2 people
Developers: base case 0-1 —3 3 3 3 3 3 3 3 people
Developers: sen_ref_rat 0-3 —= 7 7 74 74 % 7 #— people
Developers: sen_ref_rat_0-8 5 5 5 5 5 5 5 5~ people

Figure 5.87. Developers for Different Vaues of Refusal Ratio

317

However, when the refusal ratio was set to 0.02, a very low level, the initia
increase in the number of developers was followed by an earlier decrease. This was
atributed to the large decrease in perceived product quality, which itself was a
conseguence of code produced by developers with a very low talent level. (See Figure
5.88.) In general, perceived product quality decreased less in runs with higher refusal
ratios, as expected. (See Figure 5.88.) This is attributable to the fact that average
developer talent started at higher levels and increased even higher in runs with higher

refusal ratios. (See Figure 5.89.) Basically, better devel opers produced better code.

Perceived Product Quality

1 1 4P | 2o #o | &P 4o Ro T 7% = b = =
2> L2 —r172
~ N i
0.75 \ I i T
1
_//r/
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quality : sen ref_rat 0-02 T T T T T T Dmnl
Perceived Product Quality : sen_ref_rat_0-05 2 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 0-1 3 3 3 3 3 3 Dmnl
Perceived Product Quality : sen_ref_rat 0-3 % % % 7 7 % Dmnl
Perceived Product Quality : sen_ref_rat 0-8 5 5 5 5 5 5 Dmnl

Figure 5.88. Perceived Product Quality for Different Values of Refusal Ratio

318

Average Developer Talent

1 5 5 5 5 5 5 5 5 5 5 5 5
W 2 4} 23 a4 a4
0.75 * - s
e s— >
Lot 3 s _’_'_z__,_,.'—f—f" _'_H-—ff/_—
0 5 | 2 2 i _,—r—'-"'I_'Fd_F—-FI-—r
‘ 1] +
?’,’/f]
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : sen ref_rat 0-02 T T T T t— RTU/people
Average Developer Tdent : sen ref_rat_0-05 2 2 2 2 2 RTU/people
Average Developer Talent : base case 0-1 —3 3 3 3 3 RTU/people
Average Developer Taent : sen_ref_rat 0-3 % % % 7 7 RTU/people
Average Developer Taent : sen_ref_rat_0-8 5 5 5 5 5 RTU/people

Figure 5.89. Average Developer Talent for Different Vaues of Refusal Ratio

Higher refusal ratios impede the increase of the number of developers. Since a
smaller number of developers would produce a smaller amount of product functionality,
it was expected that the growth of product functionality would be slower under higher
refusal ratios. However, higher refusal ratios did not always yield slower functionality
growths. (See Figure 5.90.) In fact, the slowest functionality growth among the runs in
the exhibited set took place under a very low refusal ratio level. Although the number of
developers was higher for a longer period of time in that run, a lot of the available
developer time had to be channeled to debugging and coaching activities, instead of
production. On the other hand, increasing the refusal ratio beyond a point yielded slower
functionality growth. (See Figure 5.90.) Since the marginal quality gain by increasing the

refusa ratio became very small in such runs, it was concluded that there should be a

319

critical value of refusal ratio that would yield an optimal combination of higher quality

and faster functionality growth. This critical value was found to be around 0.3.

Product Functionality

600
450 W’-‘: = Fﬁ_j_. o1 DL T
Zaey
- e
300 ez
=

% gl
150 /

Pl

0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen ref rat 0-02 —t T T T T T T UF
Product Functionality : sen_ref _rat_0-05 2 2 2 2 2 2 — UF
Product Functionality : base case 0-1 3 3 3 3 3 3 3 3 UF
Product Functionality : sen_ref rat 0-3 = % 7 7 % % 7 UF
Product Functiondlity : sen_ref rat 0-8 —5 5 5 5 5 5 5 UF

Figure 5.90. Product Functionality for Different Vaues of Refusal Ratio

Although the sensitivity runs based on different refusal ratios provided valuable
insights about the model, the range of behaviors observed in these runs was smaller than
expected. It was expected that the community would not be able to sustain itself with the
limited number of developers under very high refusal ratios. However, it was found that
theinitial group of seven developers was enough to bring the product functionality above
the critical level before they left the community, even if no new developers were
accepted into the community. This was noted as a point to consider for future model

improvement.

320

5.4.8. Regection Ratio

Rejection ratio, too, was used as the basis for a set of sensitivity runs. The base
case value of rejection ratio was 0.2. The sensitivity runs where the rejection ratio was set

t0 0.05, 0.1, 0.4 and 0.8 are discussed below.

Rejection ratio determines both the amount and the quality of the code added to
the overall code base by developers. It also affects the level of average developer
participation. A higher rejection ratio yields a smaller amount of code, which is of higher
quality. A higher regection ratio also yields a lower level of average developer
participation. In the actual sensitivity runs, lower regjection ratios caused the total
production to increase faster at the beginning of the project due to a greater amount of
accepted code by developers, and a higher level of developer participation. (See Figure
5.91 and Figure 5.92.) For refusal ratios below 0.3, the fundamental behavior pattern of
total production stayed the same; however it unfolded faster as the refusal ratio
decreased. In other words, total production increased more slowly, but started to decrease
later due to product functionality saturation, as the refusal ratio increased up to 0.3. The
behavior pattern was different in runs with refusal ratios above 0.3. The initia increase
continued to slow down as refusal ratio increased; however, the decrease started earlier,
rather than later, under higher refusal ratios. The reason for the decrease in those runs
was low functionality achievement, rather than the depletion of opportunities for
contribution due to functionality saturation. This can be observed better in Figure 5.93,

which displays the behaviors of the number of developers under different refusal ratios.

321

Total Production

4,000
3,000
—-—'—j_——
/f/-f ﬂ 2 hk\
2,000 v N
L3 _;R
1,000 [—~ " %53
S'/-’ﬂs\ L 3—4—-%_4_‘_ Z O] 49
\§\q‘
O ‘SWHE— J J J J J
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Total Production : sen_rgj_rat_0-05 T T T T T T— linesMonth
Total Production: sen_regj_rat 0-1 —2 2 2 2 2 2 2= lineMonth
Total Production : base case 0-2 3 3 3 3 3 3 3 linesMonth
Total Production : sen_rej_rat_0-4 7 % % % 7 7 linesMonth
Total Production : sen rgj_rat_0-8 5 5 5 5 5 5 linesMonth

Figure 5.91. Total Product for Different Values of Regjection Ratio

Total Developer Hours Available

600
450
/-’I_F '_h'-_\
pZ
/// L ¢ B
300 L/X - \
// T T \ |
iso 1 | | \ T
/6’” P~ \g\
0 ‘5\5‘5‘_ \‘ \‘\—QH \\4-_
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Total Developer Hours Available: sen rej_rat_0-05 T T T t— hoursMonth
Total Developer Hours Available: sen rg_rat 0-1 —2 2 2 2 2 hourgMonth
Total Developer Hours Available : base case 0-2 3 3 3 3 hours’Month
Total Developer Hours Available : sen rg_rat 0-4 % % 7 7 hours’Month
Total Developer Hours Available : sen_rgj_rat_0-8 5 5 5 5 hours’Month

Figure 5.92. Total Developer Hours Available for Different Vaues of Rejection
Ratio

322

Developers

20

15

10 (fr M %Rﬁ“‘ ~ T

5 \ \\ \\ M <
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers: sen rg_rat_0-05 T T T T T T T 1 people
Developers: sen rgf_rat_0-1 2 2 2 2 2 2 2 people
Developers: base case 0-2 —s 3 3 3 3 3 3 3 people
Developers: sen rej_rat 0-4 —= 7 7 7 7 7 7 7 people
Developers: sen rgj_rat 0-8 5 5 5 5 5 5 5 5- people

Figure 5.93. Developers for Different Values of Rejection Ratio

Functionality growth was slower for higher rejection ratios, as expected. (See
Figure 5.94.) Observing the behaviors of the number of users under different rejection
ratios indicated that rejection ratios above a critical value would cause the community to
fail to sustain itself in the long run. (See Figure 5. 95) The critical value was found to lie

between 0.50 and 0.55.

323

Product Functionality

600
FE L34
450 /7‘7;’_ ° ;4,/
7] L]
300 % P
150 2
% :// . | 5 5 5 5 S g S
AT
O L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functiondlity : sen_rgj_rat_ 0-05 —t T T T T T T UF
Product Functionality : sen rej_rat 0-1 2 2 2 2 2 2 2— UF
Product Functionality : base case 0-2 3 3 3 3 3 3 3 3 UF
Product Functionality : sen_rej_rat_0-4 = 7 7 7 % % 7 UF
Product Functionality : sen rej_rat 0-8 —5 5 5 5 5 5 5 UF

Figure 5.94. Product Functionality for Different Values of Rejection Ratio

Usars
20,000
15,000
ii?—_-zstﬁ
fﬁﬁz 3 .,_/—‘11'—"_;-4
17
10,000 = -
P | /r""
AT L]
el P
5,000 v
/*’// 4 A
O L2 Ll o591 % —A-,"T)//,AJ ~J J J < < J
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users:sen rg rat 0-05 —¢ T T T T T T T 1 people

Users: sen re_rat 0-1 2 2 2 2 2 2 2 2 people

Users: base _case 0-2 3 3 3 3 3 3 3 3 people

Users: sen rej_rat_0-4 4 7 7 7 7 7 7 7 people

Users:sen rg_rat_ 0-8 —5 5 5 5 5 5 5 5 5- people

Figure 5.95. Users for Different Values of Rejection Ratio

324

An important finding was that the improvements in perceived product
functionality caused by higher rejection rates were not as large as the improvements by
higher rejection rates. (Compare Figure 5.88 and Figure 5.96) This was noted as an
important implication for policy anaysis runs, which followed the sensitivity analysis

phase.

Perceived Product Quality

1 o 5 5 5 5 5T—1 5 F— 5
NI
\\\ 51 A 73— -2.3.
» o L
0.75 N 7
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quality : sen_rej_rat_0-05 T T T T T +— Dmnl
Perceived Product Quadlity : sen rej_rat 0-1 2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 0-2 —3 3 3 3 3 3 Dmnl
Perceived Product Quality : sen_rej_rat 0-4 % 7 7 % % 7 Dmnl
Perceived Product Quality : sen_rej_rat 0-8 5 5 5 5 5 5— Dmnl

Figure 5.96. Perceived Product Quality for Different Values of Regection Ratio

5.4.9. Implications of the Sensitivity Runs

Sensitivity runs provided critical insights about the OSSD model. An important
finding was about variables that determine the amount of functionality added to the
product within a given period of time. These variables, such as average developer
participation and average developer productivity, have critical values below which an

open source software community fails to sustain product functionality and community

325

growth. The critical value for a given variable can differ from community to community,
but the fact that there are such critical values for these variables would hold for any open

source software community.

Variables that eventually determine the level of perceived product quality also
have critical values. One such variable, which emerged from the sensitivity analysis, was
bug generating rate normal. Above a critical value of bug generating rate normal, the
number of bugs per functionality becomes so overwhelmingly high that the participants
fail to maintain an acceptable level of product quality and consequently the community

dissolves.

The model did not show a wide variety of behaviors under different values of
some variables. For example, running the model for different values of normal time to
attract developers, normal time for developers to leave, and normal time to attract all
users yielded different model behaviors, but the variety of behavior was not very wide.
That finding indicated that the model might be improved by refining the equations

involving these variables. This was noted as a potential future research opportunity.

Sensitivity runs also provided some important implications for the policy runs.
Running the model under different values of refusal ratio and rejection ratio showed that
there are optimal values for these variables that are high enough to improve the product
quality substantially, but still low enough to sustain functionality and community growth.
Increasing refusal ratio and rejection ratio above those values did not yield a considerable
marginal improvement in product quality, but impeded product functionality and
community growth. In fact, the community failed to sustain itself above a certain value of

rejection ratio. The sensitivity analysis did not reveal such a critical value for refusal

326

ratio, since the highest possible value for refusal ratio could be 1 and even that value did
not fail the community. However, it can be argued that a very high refusal ratio combined
with low average developer participation or average developer productivity value could

fail the community in sustaining itself.
5.5. Policy Runs

Policy runs involve simulating a model under a set of policy settings. Policy
settings apply to parameters that can be determined by the policy or decision makers of
the real system the model represents. Policy runs basically have two purposes. First, they
are used to test whether the model exhibits a plausible variety of behavior under different
policy options. In that sense they are close to sensitivity tests. Second, they are used to
simulate the consequences of different policy options in order to evaluate and compare
them. In this study, policy runs were used both to build confidence in the OSSD model,
and to analyze a set of policy options before they were discussed with interview subjects

in the empirical component of the study.
5.5.1. Higher Barriersto Entry

A set of policy runs was done on the model to see the consequences of different
levels of barriers to entry to the community. The barriers to entry policies were
conceptualized as a combination of different refusal ratios and initial number of
developers, since a higher barrier to entry would mean a higher scrutiny level for
accepting developer into the community. Table 5.1 summarizes the conditions of the

three policy runs along with the base case conditions.

327

Table5.1. Barriersto Entry Policy Settings

Run Refusal Ratio Initial Number of
Developers

Base Case 0.10 7

Higher Barriersto Entry 1 | 0.35 5

Higher Barriersto Entry 2 | 0.60 3

Higher Barriersto Entry 3 | 0.80 1

Figure 5.97 shows that the number of developers started at a lower level and

increased less under higher barriers to entry settings.

Developers
20
15
1| [
10 / \3\
L]
5 2//4’ ?‘xk\\
2 i ®) 3 3 o\\‘z 3
31—
) o e e e O O 0 55 O e 5 L N O
0 10 20 30 40 50 60 70 80 90 100

Developers : base_case T T T T T T T T T T 1 people
Developers: pol_hi_barr_entry 01 2 2 2 2 2 2 2 2 people
Developers: pol_hi_barr_entry 02 -3 3 3 3 3 3 3 3 3 people
Developers: pol_hi_barr_entry 03 7 7 % % % 7 7 7 4= people

Figure 5.97. Developers under Different Barriersto Entry Policy Settings

Figure 5.98 shows that product functionality growth was slower under higher

barriersto entry settings. In fact, under very high barriersto entry settings the community

328

failed to achieve a viable level of product functionality and to sustain itself in the long

run. (See Figure 5.98 and Figure 5.99.)

Product Functionality

600
450 /:r/;;;r ;{ T
/ vd vl
300 A — zll
ff/f/ S,/’g/
150 fééffﬁﬂ—”f‘#—b— i " i i i
% il
0

10 20 30 40 50 60 70 80 90 100
Time (Month)

OH

Product Functionality : base case T T T T T t T T UF
Product Functionality : pol_hi_barr_entry 01 2 2 2 2 2 2 v >— UF
Product Functionality : pol_hi_barr_entry 02 3 3 3 3 3 3 3 3 UF
Product Functionality : pol_hi_barr_entry 03 7 7 7 7 7 7 7% UF

Figure 5.98. Product Functionality under Different Barriers to Entry Policy
Settings

329

20,000
15,000
T2
T 3]
10,000 AT
A o]
< LA
/]
5,000 //
/ A L, .
O L o9 109 1L 0% .__%é%-——fﬁ-’_‘_rﬂ_
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users: base case —t T T T T T T T T T T 1 people
Users: pol_hi_barr_entry 01 2 2 2 2 2 2 2 2 2 people
Users: pol_hi_barr_entry 02 -3 3 3 3 3 3 3 3 3 3 people
Users: pol_hi_barr_entry 03 —= 7 7 7 7 7 7 7 7 4~ people

Figure 5.99. Users under Different Barriersto Entry Policy Settings

It is obvious from these figures that there has to be a trade-off in terms of product
functionality and community growth whenever a higher barriers to entry policy is
implemented to improve quality. The critica question then becomes what level of this
policy would yield the most quality increase per decrease in the pace of functionality and
community growth? Figure 5.100 shows that all three policy settings provided substantial
increases in perceived product quality over the base case conditions. Furthermore, the
differences between the levels of perceived product quality under the three policy settings
were not large. Hence we may conclude that the first policy setting yields the greatest
product quality payoff, while compromising relatively small in terms of functionality and

community growth.

330

Perceived Product Qualit

1@*%4 VA A A A RS s e
\1\\1__‘_ X N _,_.-I——-""f— T —
0.75
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Perceived Product Quality : base case —t T T T t t t T — Dmnl
Perceived Product Quality : pol_hi_barr_entry 01 2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_barr_entry 02 3 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_barr_entry 03 —= 7 % 7 7 7 7 Dmnl

Figure 5.100. Perceived Product Quality under Different Barriers to Entry Policy
Settings

Furthermore, the first policy setting provided a large increase in average
developer talent. (See Figure 5.101.) While the two higher policy settings provided even
higher developer talent levels, the marginal gains might not be deemed enough to justify

the compromises in functionality and community growth.

331

Average Developer Talent

1 i3 3 3 i3 7T 7T i3 3 3 i3 7T 7T i3 3 3
S 5) Pl o o S S 5 S S P 5]
2— 2 4 4 4
> P r4 V4 4 4 z
075 _,_,_,I—--""'_ r_,_._-r— T [is is
| —f—T 1T
L1
05 [
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case —t T T T t t T T RTU/people
Average Developer Taent : pol_hi_barr_entry 01 2 2 2 2 2 RTU/people
Average Developer Taent : pol_hi_barr_entry 02 3 3 3 3 3 RTU/people

Average Developer Taent : pol_hi_barr_entry 03 = 7 7 7 7 2— RTU/people

Figure 5.101. Average Developer Talent under Different Barriers to Entry Policy
Settings

The barriers to entry policy option was introduced as the “Selecting New
Inexperienced Authors’ policy option to the subjects during the interview done with the
members of the system dynamics K through 12 instructional material development

community. (See Section 6.3.4.)
5.5.2. Higher Barriersto Contribution

“Barriers to contribution” was conceptualized as another important policy option
for improving product quality, while maintaining functionality and community growth.
The barriers to entry policy option was based on applying different rejection ratios to
code produced by developers. Table 5.2 summarizes the conditions of the three policy

runs along with the base case condition.

332

Table 5.2. Barriersto Contribution Policy Settings

Run Rejection Ratio
Base Case 0.20
Higher Barriersto Contribution1 | 0.40

Higher Barriersto Contribution 2 | 0.50

Higher Barriersto Contribution 3 | 0.60

The implications of the barriers to entry policy option were similar to the
implications of the sensitivity runs done with different rejection ratios. Basically, higher
barriers to contribution settings improved product quality by ensuring that the better
portions of the code produced by devel opers were added to the overall code base, while
low quality code was discarded. Hence higher barriers to contributions settings yielded
initially better perceived product quality levels. However, the quality levels tended to
decrease in the later stages of the project. (See Figure 5.102.) This was caused by the
multiple effects of decreased developer participation. As discussed earlier in this chapter,
the OSSD model assumes that developer participation decreases as rejection ratio
increases due to decreased developer motivation. Decreased developer participation
causes fewer developer hours available for debugging, which worsens the quality
problem over time. Also, decreased participation limits developer talent growth,

impeding the potential improvement in product quality.

333

Perceived Product Quality

1 e > ¢ 4 = 4 f 43 Z i [& 3 A %4 yas
< 4 4 Z 4 Z L= Z : 3
\1\\1“— S e e

0.75
0.5
0.25

0

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base case —t T T T t t t T — Dmnl
Perceived Product Quality : pol_hi_barr_contr_01 2 2 2 2 2 2 2 Dmnl
Perceived Product Qudlity : pol_hi_barr_contr_02 3 3 3 3 3 3 Dmnl
Perceived Product Qudlity : pol_hi_barr_contr 03 —= 7 % 7 7 7 7 Dmnl

Figure 5.102. Perceived Product Quality under Differernt Barriers to Contribution
Policy Settings

Anocther adverse effect of higher barriers to contribution through decreased
developer participation is the decrease in the level of total production. (See Figure 5.103.)
Product functionality grows more slowly as total production decreases. (See Figure

5.104.)

334

Total Production

2,000
//r /r———I_H\\
pal N
1,500 \}\
~—_] \
1000 [l A ==
% 4_/ \\4, \ H‘s\ T 1
500 m\\ \—3 S 5] S
\\4\\ 3 3 3
S|
2|
0 WH = 4y Z
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Total Production : base case T T T T T t t T 1 linesMonth
Total Production : pol_hi_barr_contr 01 -2 2 v v > > 2 2 linesMonth
Tota Production : pol_hi_barr_contr_02 3 3 3 3 3 3 3 linesMonth

Total Production : pol_hi_barr_contr_03 7 7 7% 7% 7 7 2— linesMonth

Figure 5.103. Total Production under Different Barriers to Contribution Policy
Settings

Product Functionality

600
i o] L
450 (/ LT B S
/_/'" 4 /_3,_/-'—"3
300 AL — -
/,-/_ ’_/3,..—/‘" ;—Fﬂ_d
e //f//g/’ 7 r 4 4 # i
150 W ? S ot il
zs8
o L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : base case T T T T T T T T T UF

Product Functiondity : pol_hi_barr_contr_01 2 2 2 2 2 2 2 2— UF
Product Functionality : pol_hi_barr_contr_02 3 3 3 3 3 3 3 3 UF
Product Functiondity : pol_hi_barr_contr_03 % % % 7 7 7 % UF

Figure 5.104. Product Functionality under Different Barriers to Contribution
Policy Settings

335

User community growth follows functionality growth, and thus a slower
functionality growth brings about a slower community growth. (See Figure 5.104.)
Extremely high barriers to contribution may cause the community to fail to reach aviable
product functionality level and to sustain itself in the long run, leading the community to
extinction. Policy setting three, where the rejection rate was set to 0.60 is an example of
such an extreme policy. Under that policy setting user and developer populations fail to

reach sustainable levels (See Figure 5.105 and Figure 5.106.)

Users
20,000
15,000
]
1 2]
lo,ooo _’,_/"f/ - /7_' /-3'//\‘
o / L5 o
5,000 / _
4 P F
/ /2/ 4/’/{
0 TrZoagrITzZoarlZox #ij 7 i | 4
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users: base case —t T T T T T T T T T T 1 people
Users: pol_hi_barr_contr_01 2 2 2 2 2 2 2 2 2 people
Users: pol_hi_barr_contr 02 -3 3 3 3 3 3 3 3 3 3 people
Users: pol_hi_barr_contr 03 —= 7 7 7 7 7 7 7 7 4~ people

Figure 5.105. Users under Different Barriers to Contribution Policy Settings

336

Developers

20

15

10 i"'ﬁg?\zzu [

f/ NN i SNEE S
3 3 3 S

i “\\&\ \\ \

(T &\.\A

0 ™ AN ==

0 10 20 30 40 50 60 700 80 90 100
Time (Month)

Developers : base case T T T T T T T T T T 1 people
Developers: pol_hi_barr_contr_01 2 2 2 2 2 2 2 v people
Developers: pol_hi_barr_contr_ 02 -3 3 3 3 3 3 3 3 3 people
Developers : pol_hi_barr_contr_03 % % % % % % % % 4~ people

Figure 5.106. Developers under Different Barriers to Contribution Policy Settings

Once again, the fundamental question about the usefulness of this policy option
was whether it provided a large enough quality improvement for a considerably small
trade-off in terms of functionality and community growth. The answer to this question
was not positive. The quality improvements in the policy runs were relatively small
considering the substantial decrease in functionality and community growth rates.
Furthermore, the quality improvement eroded after the initial improvement, thus
rendering the policy totally unfavorable. A smaller, but neverthel ess notable consequence
of this policy option, which supported the unfavorable position, was the decreases in the
rate of average developer talent growth due to decreased developer participation. (See

Figure 5.107.)

337

Average Developer Talent

1
0.75 f T
——T1 1 A3
| il L—p~" =]
. — 2
05 = sl L F il 4T~ SE Sl = ==
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case —t T T T t t T T RTU/people
Average Developer Talent : pol_hi_barr_contr_01 2 2 2 2 2 RTU/people
Average Developer Talent : pol_hi_barr_contr_02 3 3 3 3 3 RTU/people

Average Developer Taent : pol_hi_barr_contr 03 = 7 7 7 7 2— RTU/people

Figure 5.107. Average Developer Talent under Different Barriers to Contribution
Policy Settings
Barriers to contribution was introduced as the “Filtering New Material” policy

option to the interview subjects. (See Section 6.3.2.)
5.5.3. Higher Barriersto Entry and Contribution

Comparing the consequences of higher barriers to entry and higher barriers to
contribution policy options revealed that higher barriers to entry option was the better
choice between the two. Another policy run was done in order to test whether a
combination of the two policies would yield better results than only the higher barriers to
entry option. Table 5.3 summarizes the conditions of the two policy runs along with the

base case condition.

338

Table 5.3. Barriersto Entry and Barriers to Entry and Contribution Policy Settings

Run Refusal Ratio Initial Number of | Rejection Ratio
Developers

Base Case 0.10 7 0.20

Higher Barriers | 0.35 5 0.20

toEntry 1

Higher Barriers | 0.30 5 0.30

to Entry and

Contribution 1

A comparison of the results of the two policy options revealed that the barriers to
entry option performed better than the combination policy option in all main criteria. The
barriers to entry option yielded a faster production growth (See Figure 5.108), which led
to a faster user community growth (See Figure 5.109). This policy option also yielded a
higher average developer talent (Figure 5.110.) and a better product quality, although the
difference in product quality between the two policy options was very small. (See Figure

5.111.)

339

Product Functionality

600
450 TTES “ -
L/o—"‘
1
A
300 A
g
g/f
150]
0 al
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Product Functionality : base case . T T T T T T B UF
Product Functionality : pol_hi_barr_entry 01 >——2 2222 —2—=2—2—2- UF
Product Functiondlity : pol_hi_barr_entry contr_01 33333 —3—3—3 UF

Figure 5.108. Product Functionality under Barriers to Entry and Combination
Policy Settings

Users

20,000

15,000

10,000 =

e
5,000 /] %/ d

RN
N

L2351 Z23531251 290

0 10 20 3 40 50 60 70 80 90 100

Time (Month)

Users:base case +—+t—+t—+ —+—+t +t—+ +t—+ +t—+t—t—t—1t—1 people
Users:pol_hi_bar entry 01 =—=2—=2—2—2 22 2 2 2 2 2 2 people
Users: pol_hi_barr_entry contr 01 3—=3—3—3 3 3 3 3 3 3 3 3 people

Figure 5.109. Users under Barriers to Entry and Combination Policy Settings

340

Average Developer Taent

1
v4 T2 12 21 Cotts 6‘0_2?4.5 43‘£'3—3'-'£3'_3" <3 S S
0.75 N T ft
—
T r——f“dr‘d’rﬁ
— 1T

05 [
0.25

0

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case E N S T T S S S S RTU/people
Average Developer Taent : pol_hi_barr_entry 01 —=2—=2 22 22— RTU/people
Average Developer Taent : pol_hi_barr_entry_contr_01 s—s—3—3—3—3 RTU/people

Figure 5.110. Average Developer Talent under Barriers to Entry and Combination
Policy Settings

Perceived Product Quality

1

\ ST 23 23123 23 23] 231 23 23 232812323t >tz
0.95

—
\ afill
0.9 //
0.85 k\ ’ |
18 [/

0.8

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Perceived Product Quality : base case t+—t—t—t—t+t—t—t—t+t—t—t—t Dml

Perceived Product Quality : pol_hi_barr_entry 01 r——2——2——2——2——2—=2—2—=2 Dmnl
Perceived Product Qudlity : pol_hi_barr_entry_contr_01 S8 33 33 3 Dmnl

Figure 5.111. Perceived Product Quality under Barriers to Entry and Combination
Policy Settings

341

5.5.4. Higher Debugging Emphasis

Another important policy option applied to the model was higher debugging
emphasis. This option is conceptualized as increases in the relative pressures for bug
detection and bug fixing within the community. As these relative pressures increase, the
same number of known and/or unknown bugs generate relatively higher amounts of

developer and leader time allocated for bug detection and bug fixing activities. Table 5.4

summarizes the conditions of the three policy runs as well as the base case conditions.

Table 5.4. Higher Debugging Emphasis Policy Settings

Run Pressurefor Bug Pressurefor Bug
Detection Fixing

Base Case Base Case Level*1 Base Case Level*1

Higher Debugging Emphasis1 | Base Case Level*5 Base Case Level*5

Higher Debugging Emphasis2 | Base Case Level*8 Base Case Level*8

Higher Debugging Emphasis3 | Base Case Level* 10 Base Case Level* 10

As expected, higher debugging emphasis yielded higher levels of perceived
product quality. (See Figure 5.112) However, the marginal quality improvement by the
second and third level policy settings did not yield as large a difference as the first policy
setting yielded over the base case conditions. (See Figure 5.113.) This was noted as a

potential limiting factor on the policy level, in case of alarge functionality or community

growth trade-off for higher levels of the policy.

342

Perceived Product Quality

1
\ | 5] i?z__?T < - =
0.95 L,J_(’,'gf - L—7
0.9 \ ,4 Rt el
/|]
0.85 \\ el e
1| ol
0.8
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base case —t T T T t t t T — Dmnl
Perceived Product Quality : pol_hi_debug emph 01 —2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_debug_emph_02 3 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_debug_emph_03 7 % 7 7 7 7 Dmnl

Figure 5.112. Perceived Product Quality under Different Debugging Emphasis
Policy Settings

Perceived Product Quality

1 - ¥4 o+ o+ Z O - Z = y o
212 L4t I T T
&bﬁﬁfu’; 4 A—t [T —
0.75
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base case —t T T T T T T T — Dmnl
Perceived Product Quality : pol_hi_debug_emph_ 01 —2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_debug_emph_02 3 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_debug_emph_03 % % 7 7 7 % Dmnl

Figure 5.113. Perceived Product Quality under Different Debugging Emphasis
Policy Settings

343

Further analysis revealed that substantially higher debugging emphasis did not
necessitate large trade-offs in terms of product functionality and community growth or
developer talent improvement. (See Figure 5.114 through Figure 5.116.) Therefore, it was
concluded that higher levels of debugging emphasis would be favorable until further

increasesin the policy level yielded anegligibly small quality improvement.

Product Functionality

600
>4 4o
450 rl.z-n-fz—ﬂ R R
300 / :
150 / ﬂéf
0 L /
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : base case T T T T T t T T UF

Product Functionality : pol_hi_debug emph 01 = Z Z 2 2 2 2 — UF
Product Functiondity : pol_hi_debug_emph 02 —3 3 3 3 3 3 3 3 UF
Product Functiondity : pol_hi_debug_emph_03 7 7 7 7 7 7 7% UF

Figure 5.114. Product Functionality under Different Debugging Emphasis Policy
Settings

344

Developers

20

15

Sy \1\
: i R

N

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : base case T T T T T T T T T T 1 people
Developers : pol_hi_debug_emph 0O 2 2 2 2 2 2 2 2 people
Developers: pol_hi_debug_emph 02 3 3 3 3 3 3 3 3 people

Developers: pol_hi_debug_emph 03 —= % % % % % % % 4~ people

Figure 5.115. Developers under Different Debugging Emphasis Policy Settings

Average Developer Talent

1

075 s A T L SAfFZofF T Zpat S 4
s i i
- ra-3 x4 Rkl

0.5 |2 £
0.25

0

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Average Developer Talent : base case —t T T T t t T RTU/people
Average Developer Tdent : pol_hi_debug_emph 01 —2 2 2 2 2 RTU/people
Average Developer Tdent : pol_hi_debug_emph_02 3 3 3 3 3 RTU/people
Average Developer Tdent : pol_hi_debug_emph_03 7 7 7 7 2— RTU/people

Figure 5.116. Average Developers Taent under Different Debugging Emphasis
Policy Settings

345

Higher debugging emphasis option was introduced as the “ Reviewing and Editing

Existing Materia” policy option to the interview subjects. (See Section 6.3.3.)
5.5.5. Higher Coaching Emphasis

Higher coaching emphasis was another policy option applied to the model. This
option is conceptualized as increased levels of pressure for talent building. As this
pressure increases, the same level of average developer talent generates a relatively
higher amount of developer and leader time allocated for coaching. Table 5.5 summarizes

the conditions of the three policy runs as well as the base case conditions.

Table 5.5. Higher Coaching Emphasis Policy Settings

Run Pressurefor Talent Building

Base Case Base Case Level*1

Higher Coaching Emphasis1 | Base Case Level*2

Higher Coaching Emphasis2 | Base Case Level*3

Higher Coaching Emphasis3 | Base Case Level*4

Average developer talent increased faster and reached higher equilibriums for
higher coaching emphasis levels. (See Figure 5.117.) The decrease in the pace of product

functionality growth was not substantial for higher policy settings. (See Figure 5.118.)

346

Average Developer Talent

1
?: = 13 - 5 74
g@ﬁgﬁz— 4 Z
> i S 7]
0.75 I . . Eﬁff I T 1 It T T
i e [—TT]
ﬁ | —f—T 1T T
L—1]
L4
05
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case —t T T T t t T T RTU/people
Average Developer Talent : pol_hi_coach emph 01 —2 2 2 2 2 RTU/people
Average Developer Taent : pol_hi_coach_emph_02 3 3 3 3 3 RTU/people
Average Developer Taent : pol_hi_coach_emph_03 7 7 7 7 2— RTU/people

Figure 5.117. Average Developers Talent under Different Coaching Emphasis
Policy Settings

Product Functionality

600

450 _ ?ﬁ,ﬁo 7
Pz

Pai

300

150 %
i

10 20 30 40 50 60 70 80 90 100
Time (Month)

OH

Product Functionality : base case T T T T T T T T T UF
Product Functiondlity : pol_hi_coach_emph 01 -2 2 2 2 2 2 2 2— UF
Product Functionality : pol_hi_coach_emph 02 —3 3 3 3 3 3 3 3 UF
Product Functionality : pol_hi_coach_emph_03 % % % 7 7 7 % UF

Figure 5.118. Product Functionality under Different Coaching Emphasis Policy
Settings

347

However, the improvements in perceived product quality under higher coaching

emphasis policy options were not satisfactory. (See Figure 5.119.)

Perceived Product Quality

1 , .
L] Zr L_Q_ﬁl--7 2 & 5 o4 S 4. 2 7 Vo a4
N=F i B e —
0.75
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base case —t T T T t t t T — Dmnl
Perceived Product Quality : pol_hi_coach emph_01 —2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_coach_emph_02 3 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_coach_emph_03 7 % 7 7 7 7 Dmnl

Figure 5.119. Perceived Product Quality under Different Coaching Emphasis
Policy Settings

Further analysis identified the lower levels of pressures for bug detection and bug
fixing as the causes behind the lack of sustained quality improvement under higher
coaching emphasis policy options. Pressures for bug detection and bug fixing remained
considerably lower under higher coaching policy conditions compared to the figures
under the base case conditions. That was due to the initially fewer number of bugsin the
product under higher coaching conditions. (See Figure 5.120 and Figure 5.121.) By the
time debugging came into focus, the developers had left the community, and the lack of

manpower slowed down the quality improvement process. (See Figure 5.122.)

348

Pressure for Bug Detection

TN

0.2

0.15 8 \
a
| +—
™
0.1 \\
0.05 \\4. e || l& S
\?' B 64‘—2-—+ 3t 7T 3t :‘_oql—mﬁl
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Pressure for Bug Detection : base case -t T T T t t t T — Dmnl
Pressure for Bug Detection : pol_hi_coach emph 01 —2 2 2 2 2 2 2 Dmnl
Pressure for Bug Detection : pol_hi_coach_emph_02 3 3 3 3 3 3 Dmnl
Pressure for Bug Detection : pol_hi_coach_emph_03 7 % 7 7 7 7 Dmnl

Figure 5.120. Pressure for Bug Detection under Different Coaching Emphasis
Policy Settings

Pressure for Bug Fixing

0.2

0.15 ZEIR
% ™~

0.1 NN
/ R
N
0.05 / =all
/A =i &
7] o /?4"
O 12534125341 2353412354 o4 o4 o4 34 éd‘}/({% S 4
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Pressure for Bug Fixing : base case T T T T T T T T — Dmnl
Pressure for Bug Fixing : pol_hi_coach_emph_01 2 2 2 2 2 2 2 Dmnl
Pressure for Bug Fixing : pol_hi_coach_emph 02 3 3 3 3 3 3 3 Dmnl

Pressure for Bug Fixing : pol_hi_coach_emph_ 03 —= % % 7 7 7 % Dmnl

Figure 5.121. Pressure for Bug Fixing under Different Coaching Emphasis Policy
Settings

349

Developers

20 people
20 people
20 people
20 people

10 people
10 pa)p|e SH - 2B & &

=Py }\“:\\&
N

N\

0 people N A
0 people \
0 people \\E%
0 pa)ple g 5g L 2o 1L 2o
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Developers : base case T T T T T T T T T T 1 people
Developers : pol_hi_coach_emph_0O 2 2 2 2 2 2 2 2 people
Developers: pol_hi_coach_emph_02 3 3 3 3 3 3 3 3 people

Developers : pol_hi_coach_emph 03 #4442+ people
Figure 5.122. Developers under Different Coaching Emphasis Policy Settings
The higher coaching emphasis option was introduced as the “ Coaching Existing
Inexperienced Authors’ policy option to the interview subjects. (See Section 6.3.5.)
5.5.6. Higher Debugging and Coaching Emphases

Another policy option was conceptualized after identifying the lack of debugging
pressures as the main reason behind the unsatisfactory quality improvement under higher
coaching emphasis policy option. The new policy option combined the higher debugging
emphasis and higher coaching emphasis options. Table 5.6 summarizes the policy

settings for the cases that were compared.

350

Table 5.6. Higher Debugging Emphasis, Higher Coaching Emphasis, and Higher

Debugging and Coaching Emphases Policy Settings

Run Pressurefor Bug Pressurefor Bug Pressurefor
Detection Fixing Talent Building

Base Case BaseCaselLevel*1 | BaseCaselLevel*1l | BaseCaselLevel*1l

Higher Base Case Level*10 | Base Case Level*10 | Base CaseLevel*1

Debugging

Emphasis 3

Higher Coaching | BaseCaselLevel*1l | BaseCaselevel*1l | BaseCaseleve*4

Emphasis 3

Higher Base Case Level*10 | Base Case Level*10 | Base Case Level*4

Debugging and

Coaching

Emphases 1

The combination policy option yielded a higher and more sustained quality
improvement than those yielded by both the higher debugging emphasis and the higher
coaching emphasis options. (See Figure 5.123.) Also, the increase in average developer
talent under the combination policy was much higher than that under the higher
debugging emphasis option, and very close to that under the higher coaching emphasis
option. (See Figure 5.124.) Furthermore, the decrease in the pace of both product
functionality growth and community growth (in terms of developers and users) was very

small under the combination policy option. (See Figures 5.125 through 5.127.)

351

Perceived Product Quality

1
st A== 2 | i
.-/'4"/1/_'_/
0.95 /r_,/—:‘f/z,_/-"'f']
/’/{;Z%iﬁs—'_——?—'—ﬂg_ 4 3 i//r,.--::—'-J. 3 B 3]
0.9 \\§ % " 1]
||
0.85 \ e
1| -
0.8
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Perceived Product Quality : base case —t T T T t t t T — Dmnl
Perceived Product Quality : pol_hi_debug emph 03 —2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_coach_emph_03 3 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_debug_coach _emph 01 7 7 7 7 7 Dmnl

Figure 5.123. Perceived Product Quality under Higher Debugging Emphasis,
Higher Coaching Emphesis, and Combination Policy Settings

Average Developer Talent
1
| =33
B il
BT
0.75 ﬂ,% 4 5 7 = Eya
— " | TSP | | leertF |
p——172 Lz - i
Fﬁ_-"‘i‘
0.5
0.25
0
0 10 20 30 40 50 60 70 80 20 100

Time (Month)

Average Developer Talent : base case t t t :: :: t + RTU/people
Average Developer Talent : pol_hi_debug_emph_03—=2 2 2 2 2 RTU/people
Average Developer Talent : pol_hi_coach_emph_03—s 3 3 3 3 RTU/people
Average Developer Talent : pol_hi_debug coach emph 01— 4 4 4+— RTU/people

Figure 5.124. Average Developer Talent under Higher Debugging Emphasis,
Higher Coaching Emphasis, and Combination Policy Settings

352

Product Functionality

600
e e i ST B
450 ﬂ/// S L i
/,a/‘f
300 ;4/
150 4
%ﬁ’“
o |t
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : base case + t : : : + + + UF

Product Functionality : pol_hi_debug_t emph Oa 2 2 2 2 2 2 — UF
Product Functionality : pol_hi_coach emph 03— 3 3 3 3 3 3 3 UF
Product Functionality : pol _hi_debug coach_emph_061—= # # % % # UF

Figure 5.125. Product Functionality under Higher Debugging Emphasis, Higher
Coaching Emphasis, and Combination Policy Settings

Developers

20

15

10 i RS
N \Q\i\
\%&

0 \Ta
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Developers : base _case T T T T T T T T T 1 people
Developers : pol_hi_debug_emph 03 2 2 2 2 2 2 2 2 people
Developers: pol_hi_coach_emph_03 3 3 3 3 3 3 3 3 people

Developers: pol_hi_debug_coach emph 01 = 7 7 7 7 7 7 2~ people

Figure 5.126. Developers under Higher Debugging Emphasis, Higher Coaching
Emphasis, and Combination Policy Settings

353

Users

20,000

15,000

10,000 M

]
/fz%
A
5,000 / //27/
0 loglisoleisloan ._.,_,.%’3{
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users: base case —t T T T T T T T T T T 1 people
Users: pol_hi_debug_emph 03 2 2 2 2 2 2 2 2 2 people
Users: pol_hi_coach_emph 03 3 3 3 3 3 3 3 3 3 people
Users: pol_hi_debug coach emph_01 % % % % % % % 4~ people

Figure 5.127. Users under Higher Debugging Emphasis, Higher Coaching
Emphasis, and Combination Policy Settings
5.5.7. Higher Barriersto Entry, and Higher Debugging and Coaching

Emphases

Higher barriers to entry and a combination of higher debugging and higher
coaching emphases were found to be the two best policy options during the earlier policy
runs. An overall combination policy run combining these two options was also tested on

the model. Table 5.7 summarizes the policy settings for the compared runs.

354

Table 5.7. Higher Barriers to Entry, Higher Debugging and Coaching Emphases,

and Combination Policy Settings

Run Refusal Initial Pressure Pressure Pressure
Ratio Number of | for Bug for Bug for Talent
Developers | Detection Fixing Building
Base Case 0.10 7 Base Case | Base Case Base Case
Level*1 Level*1 Level*1
Higher 0.35 5 Base Case | Base Case Base Case
Barriersto Level*1 Level*1 Level*1
Entry 1
Higher 0.10 7 BaseCase | BaseCase | BaseCase
Debugging Level*10 Level*10 Level*4
and
Coaching
Emphases 1
Higher 0.35 5 BaseCase | BaseCase | BaseCase
Barriersto Level*10 Level*10 Level*4
Entry and
Higher
Debugging
and
Coaching
Emphases 1

The analysis of the model behaviors under these three policy runs demonstrated
that the overall combination policy yielded higher improvements in both perceived
product quality and average developer talent than the two alternatives. (See Figure 5.128
and Figure 5.129.) However, the product functionality growth and community growth
became much slower under the overall combination policy conditions. (See Figures 5.130

through 5.132.)

Another finding of the comparison of these three policy options was that the

specific higher barriers to entry, and higher debugging and coaching emphases policy

355

settings caused almost the same amount of loss in product functionality and community
growth. However, while higher barriers to entry yielded a faster and larger quality
improvement, higher debugging and coaching emphases yielded a higher average
developer talent in the long run. Furthermore, higher debugging and coaching emphases
achieved the same quality level with higher barriers to entry toward the end of the

simulation horizon of 100 months.

Perceived Product Quality

1
Fo2]+ B 12 - 21+ P 12 = +£4‘4‘+ % %
—s—T3 T 3 i
0.95 — =
. /_/-‘
3]
/ -
0.9 xg — <
ey
0.85 \1\ i E
i f’/
0.8
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base case —t T T T t t t T — Dmnl
Perceived Product Quality : pol_hi_barr_entry 01 2 2 2 2 2 2 2 Dmnl
Perceived Product Qudlity : pol_hi_debug_coach_emph_01 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_barr_entry_hi_debug_coach emph_01 7 7 % Dmnl

Figure 5.128. Perceived Product Quality under Higher Barriers to Entry, Higher
Debugging and Coaching Emphases, and Overall Combination Policy Settings

356

Average Developer Talent

1
— 7] 23 64
— T % i % % i El ,_25;‘_':’ P ° 2 > 2 i
-{-’ 74 Z Z 4 z Z 1/
0.75 }—'—'—"3'_‘/3’ _,_.'I-"""_I—'_'-Fr_ T I T T
T ° LT
I ey
L1
05
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case —t T T T t t T T RTU/people
Average Developer Talent : pol_hi_barr_entry 01 2 2 2 2 2 RTU/people
Average Developer Talent : pol_hi_debug_coach_emph 01 3 3 3 RTU/people

Average Developer Talent : pol_hi_barr_entry_hi_debug_coach emph_01 —=#——=— RTU/people

Figure 5.129. Average Developer Talent under Higher Barriers to Entry, Higher
Debugging and Coaching Emphases, and Overall Combination Policy Settings

Product Functionality

600
s T2 AT 40"
450 P e
300 L |
pr st
vl

150 % 2

o Lt

0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : base case T T T T T T T T T UF

Product Functionality : pol_hi_barr_entry 01 2 2 2 2 2 2 2 2— UF
Product Functionality : pol_hi_debug_coach emph 01 —3 3 3 3 3 3 3 UF
Product Functiondlity : pol_hi_barr_entry hi_debug_coach_emph 01 —= 7 7 % UF

Figure 5.130. Product Functionality under Higher Barriers to Entry, Higher
Debugging and Coaching Emphases, and Overall Combination Policy Settings

357

20,000
15,000
fﬁf;ﬁjgg;ﬂ
10,000 =it
A
A
5,000 A L
//{{ V4
_#{1/
0 i raure) L2 o9 L 2o
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users: base_case T T T T t t T T T T t 1 people
Users: pol_hi_barr_entry 01 2 2 2 2 2 2 2 2 2 people
Users: pol_hi_debug_coach_emph_01 3 3 3 3 3 3 3 3 people
Users: pol_hi_barr_entry_hi_debug_coach_emph_01 7 % 7 7 7 2~ people

Figure 5.131. Users under Higher Barriers to Entry, Higher Debugging and
Coaching Emphases, and Overall Combination Policy Settings

Developers

20

15

10

TR

A

5 =g
\?\
N
O J.%_J. o I B aare) 1z S 1L Z
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : base_case T T T T T T T T T T 1 people
Developers: pol_hi_barr_entry 01 2 2 2 2 2 2 2 2 people
Developers: pol_hi_debug_coach_emph_01 3 3 3 3 3 3 3 people
Developers: pol_hi_barr_entry_hi_debug_coach_emph_01 % 7 7 7 4= people

Figure 5.132. Developers under Higher Barriers to Entry, Higher Debugging and
Coaching Emphases, and Overall Combination Policy Settings

358

5.5.8. Higher Barriersto Contribution and Higher Debugging Emphasis

During one of the interviews done with the members of the system dynamics K
through 12 community, the interviewee argued that a combination of the higher barriers
to contribution and the higher debugging emphasis options would be the most beneficial
policy. This combination policy option, which was not in the original policy run set, was
then performed on the OSSD model. (See Section 6.3.6 for an analysis of policy
comparisons by the interviewees.) Table 5.8 summarizes the policy settings for the

compared runs.

Table 5.8. Higher Barriers to Contribution and Higher Debugging Emphasis
Policy Settings

Run Regection | Pressurefor Bug Pressurefor Bug
Ratio Detection Fixing

Base Case 0.20 Base Case Level*1 Base Case Level*1

Higher Barriersto | 0.40 Base CaseLevel*1 Base Case Level*1

Contribution 1

Higher Debugging | 0.20 Base Case Level*10 | Base Case Level*10

Emphasis 1

Higher Barriersto | 0.40 Base Case Level*10 | Base Case Level*10

Contribution and

Higher Debugging

Emphasis 1

The combination of higher barriers to contribution and higher debugging
emphasis yielded a faster product quality improvement than both of the pure policy
options. (See Figure 5.133.) Higher debugging emphasis caught the combination policy
in terms of product quality improvement by month 75, or in other words, by the three

quarters of the simulation horizon.

359

On the other hand, the combination policy yielded the slowest product
functionality growth among the three policy options. (See Figure 5.134) While the
difference between the behaviors of product functionality under the combination policy
and the pure barriers to contribution policy was not too large, the combination policy
performed much worse than the pure higher debugging emphasis option in terms of
product functionality. Community growth under the combination policy was also much
slower than that under the pure higher debugging emphasis option. (See Figure 5.135.)
The combination policy option yielded a much slower average developer talent growth
than that under the pure higher debugging emphasis option, as well. (See Figure 5.136.)
However, the behaviors of average developer talent under the combination and the pure

higher barriers to contribution options were not too different.

The overall comparison of the three policy runs revealed that a pure higher
debugging emphasis policy would yield better overall results than a combination of
higher debugging emphasis and higher barriers to entry. On the other hand, the
combination policy might be more favorable than a pure higher barriers to contribution
policy, since it yields a substantially faster product quality improvement with relatively
small marginal losses in functionality and community growth on top of the losses caused

by the pure higher barriers to contribution option.

360

Perceived Product Quality

1
ﬂ-—r—Fsr—ﬁ—,ﬁ-"- R
0.95 AN = —
X = Nt - it = 3
\ Z“ﬁ— va i . 3_/_/ 1 —
2 3/,1‘?“*—2~ﬁ?,H s s T -
F 2 2 4
L e ‘ ‘
e]
0.85 \1\ i E
1| ol
0.8
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base case —t T T T t t t T — Dmnl
Perceived Product Quality : pol_hi_barr_contr_01 2 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_debug_emph_01 3 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_barr_contr_hi_debug_emph_01 7 7 7 % Dmnl

Figure 5.133. Perceived Product Quality under Higher Barriers to Contribution,
Higher Debugging Emphasis, and Combination Policy Settings

Product Functionality

600
— 4 i
450 p—— T
/ L
rd T
300 A <l
/2’/ ﬁr’
]
/ //
150 / f; W
o Lt
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : base case T T T T T T T T T UF

Product Functiondlity : pol_hi_barr contr 01 —2——2—2—2>—2>——2>——2>—2> UF
Product Functiondity : pol_hi_debug_emph 01 —3 3 3 3 3 3 3 3 UF
Product Functionality : pol_hi_barr_contr_hi_debug_emph 01 —= 7 7 7 7 UF

Figure 5.134. Product Functionality under Higher Barriers to Contribution, Higher
Debugging Emphasis, and Combination Policy Settings

361

Users

20,000
15,000
ﬁﬂe—’r’f
T T
10,000 ST
L7 ol
Vs
5,000 b ,ﬂ
/ /
/ A
U “o““..‘—ﬂsé”“’f
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users: base_case T T T T t t T T T T t 1 people
Users: pol_hi_barr_contr_01 2 2 2 2 2 2 2 2 2 people
Users: pol_hi_debug_emph_01 3 3 3 3 3 3 3 3 3 people
Users: pol_hi_barr_contr_hi_debug_emph_01 7 7 % 7 7 7 2~ people

Figure 5.135. Users under Higher Barriers to Contribution, Higher Debugging
Emphasis, and Combination Policy Settings

Average Developer Taent
1
0.75 T3 3 £ B
=3 * | —o1 F
T | N o o W gy
o 3 L =z=F"—Z—¢"Z:;
FOLE -4 £ #2427 2 § | =
05 = il
0.25
0
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Average Developer Talent : base case —t T T T T T T RTU/people
Average Developer Talent : pol_hi_barr_contr_01 2 2 2 2 2 RTU/people
Average Developer Tdent : pol_hi_debug_emph_01 3 3 3 3 3 RTU/people
Average Developer Talent : pol_hi_barr_contr_hi_debug_emph_01 7 7 2— RTU/people

Figure 5.136. Average Developer Talent under Higher Barriers to Contribution,
Higher Debugging Emphasis, and Combination Policy Settings

362

5.5.9. Implications of the Policy Runs

The policy runs demonstrated that the OSSD model has the potential to replicate a
variety of behaviors within expected limits under different policy conditions. In that
sense, the policy runs helped build confidence in the model, from both internal validity

and usefulness perspectives.

The policy runs aso provided insight about the effectiveness of different policy
options under the existing structure and parameters of the OSSD model. As a general
finding, the policy runs showed that any quality improvement policy has the potential of
dowing product functionality and community growth beyond a certain level.
Furthermore, the marginal quality improvement may decrease substantially as the policy
level increases. These two findings together imply smaller quality gains at expense of

larger functionality losses as the policy level increases.

Specifically, the two pure-policy runs focusing on barriers to entry and barriers to
contribution showed that any quality increase that is gained through these policy options
would come at the expense of functionality growth. Furthermore, while the quality gains
for relatively lower levels of these policy options are substantial and thus justify the
functionality and community growth losses, margina quality gains for higher policy

levels are very small.

The barriers to contribution runs showed that there is a critical level for that
policy, where the functionality loss becomes so substantial that the community fails to
sustain itself in the long run. Although the barriers to entry runs did not show such a

critical level, higher levels of that policy combined with conditions such as low devel oper

363

participation, or low productivity may also cause large functionality loses which would

fail the community in the long run.

The comparison of the pure-policy options showed that the barriers to entry policy
yielded higher and more sustained quality gains for lower functionality loses than the
barriers to contribution option. A comparison of the pure barriers to entry policy with a
combined barriers to entry and contribution policy showed that the pure barriers to entry
policy performed better both in terms of quality gain and functionality loss. However, it
should be pointed out that the performances of these three policy options were not
dramatically different, and barriers to contribution policy appeared to be an acceptable
policy for communities that cannot implement other quality improvement policies for a

variety of reasons.

Policy runs under higher debugging emphasis yielded substantial quality
improvements with very small losses in product functionality, developer talent and
community growth. Although very high levels of this policy option did not impede
community growth substantially, marginal improvements by higher levels became very

small beyond a point.

Another set of policy runs under higher coaching emphasis conditions provided
substantial improvements in average developer talent. However, these runs did not yield
the expected levels of product quality improvement, and the limited improvements were
not sustained throughout the runs. The cause for limited quality improvement under
higher coaching emphasis was found to be a lack of debugging emphasis that would

couple the increase in coaching emphasis. It was as if the large improvements in

364

developer talent achieved in these runs were not being put to use due to low debugging

emphasis.

Based on the finding that higher debugging and higher coaching emphases
improve the system in different ways, a combination of these two policy options was also
put to the test with the expectation that substantial improvements would be achieved both
in product quality and average developer talent. As expected, the combination policy
option provided better overall results than both pure policy options. It yielded a quality
improvement higher than that under the higher debugging emphasis option, and a
developer talent improvement almost as high as that under the higher coaching emphasis
option. Furthermore, the losses in product functionality and community growths were not
critically different than those under the two pure policy options. Thus, the combination

policy proved to be a better choice than the two pure policy options.

Another set of policy runs was performed under an overall combination of the two
best policy options of the earlier runs: higher barriers to entry, and higher debugging and
coaching emphases. The product quality and developer talent improvements under the
overall combination policy were higher than those under the two aternative options.
However, the product functionality and community growth losses were also greater under
the combination policy conditions. Furthermore, comparing the pure higher barriers to
entry option with the combined higher debugging and coaching emphases option revealed
that the first option yielded a faster and larger quality improvement, while the second

yielded a higher average developer talent in the long run.

The final policy run combining higher barriers to contribution and higher

debugging emphasis policies yielded avery fast product quality improvement, but caused

365

the product functionality and community growths slow down substantially. The
combination policy option was found to be more favorable than the pure higher barriers
to contribution option, since it yielded a much faster and larger product quality
improvement in expense of arelatively small additional loss in product functionality and
community growth. However, the overall performance of the combination policy was not
better than that of the pure higher debugging emphasis policy, since the marginal
improvement in product quality was not high enough to justify the marginal loss in

product functionality and community growth.

These findings clearly showed that an open source software community has to
consider the trade-off between building functionality and improving quality while
developing policies. Based on these findings, this study defines the underlying policy
problem in an open source software development community as the tension between
building product functionality and improving product quality while sustaining
community growth. Furthermore, there are several ways to achieve quality improvement,
including policies such as setting barriers to entry or contribution, putting more emphasis

on debugging or coaching, or a combination of these and other policies.
5.6. Analysis of Bifurcation Behavior

An important observation during the sensitivity and policy runs was the existence
of behaviora bifurcation points that separated successful and unsuccessful cases under
different parametric conditions. For example, when average developer participation was
set to val ues below a certain point, the community could not sustain itself in the long run.
The same behavior was observed for values of average developer productivity below a

certain point. (See Section 5.4.1 and Section 5.4.2.) Also, policy runs such as those for

366

higher barriers to contribution indicated the existence of bifurcation points for some
policy options. (See Section 5.5.2.) These observations indicated an underlying cause that

drives the community to failure under a set of parametric conditions.

An analysis of the model structure revealed that the cause behind the bifurcation
behavior is the patience factor. As discussed in Section 4.3, the OSSD model assumes a
general level of patience that determines the expectations of the users and the developers
related to product functionality. Patience runs out as time passes, and thus the expectation
about the functionality of the product increases. When the real functionality achievement
is below the expected level, the attractiveness of the community for both users and
devel opers decreases. On the other hand, a functionality achievement above the expected

level attracts users and developers more.

As a starting point, a set of sensitivity runs was done with different values of
normal time to lose patience -- the rate with which patience diminishes. The results
reveled that the model is sensitive to changes in the value of this variable, especialy if
the value is below 25 months. A decreased normal time to lose patience causes the
expectations about product functionality to increase faster (See Figure 5.137.) When the
achieved level of functionality cannot match the fast increase in expectations, a large
number of developers lose their motivations and leave the community. (See Figure
5.138.) This further decreases e community’s ability to achieve a functionality level
that can match the expectations. As a consequence, product functionality stagnates, and
this decreases the number of new users, slowing down community growth. (See Figure
5.139 and Figure 5.140.) For values of normal time to lose patience that are below a

certain level community fails to sustain product functionality and community growth, and

367

disintegrates. Further analysis indicated that the critical value is between 12 and 13
months. Perceived product quality and average developer talent were also lower for lower

values of normal time to lose patience. (See Figure 5.141 and Figure 5.142.)

Expected Funtionality Ratio

1 ‘_'_'_J’._, > —ﬁ'ﬁ' I] TL S Tz
Sl B~ | | 3
//3/ /// i /-"5"_/_'_5’
0.75 il s
1B82d -
A]
/ /] 5]
0.5 7 =
/ / //{
0.25 ,/ pd B
/| T
4] 5]
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Expected Funtionality Ratio : sen time lose pat 5 T T T T — Dmnl
Expected Funtionality Retio : sen_time lose pat 15 -2 2 2 2 2 2 Dmnl
Expected Funtionality Ratio : base case 25 —3 3 3 3 3 3 Dmnl
Expected Funtionality Ratio : sen_time lose pat 45 % % 7 7 % Dmnl
Expected Funtionality Ratio : sen_time lose pat_75 5 5 5 5 5— Dmnl

Figure 5.137. Expected Product Functionality Ratio for Different Values of

Normal Time to Lose Patience

368

Developers

20
15
10 T “5::4“
(5‘\ \ \\
5 [/< \2\\\ _e—hc—ff*’?“_’_z_’ i T
N L N 2
0 \\1“- \5 3, |
0 10 20 30 40 50 60 70 8 90 100
Time (Month)
Developers: sen_time lose pat 5 T T 1 1 T T T 1 people
Developers: sen_time lose pat_15 -2 2 2 2 2 2 2 people
Developers: base case 25 —3 3 3 3 3 3 3 3 people
Developers: sen_time lose pat_45 7 % % % 7 7 % people
Developers: sen_time_lose_pat_75 5 5 5 5 5 5 5- people

Figure 5.138. Developers for Different Values of Normal Time to Lose Patience

Product Functionality

600
450 S e B
34 S N I
e - anll
300 7
/ —T 7|
| ——F
el
150 o
i
f%:—-—"‘ T T T I T T T
O L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functiondity : sen time lose pat 5 T T T T T T UF
Product Functiondity : sen_time lose pat 15 2 2 2 2 2 2— UF
Product Functiondlity : base case 25 —3 3 3 3 3 3 3 3 UF
Product Functionality : sen time lose pat 45 —= 7 7 7 7 7 UF
Product Functionality : sen_time lose pat 75 5 5 5 5 5 5 UF

Figure 5.139. Product Functionality for Different Vaues of Normal Time to Lose

Patience

369

Users

20,000
15,000
59
|45 |
s ’3'4‘5_’3-4_5/2’/?;
10,000 =3 —
Lz |1
e 2]
5,000 £ et
L 2
A A
0 T
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Users: sen_time_lose pat_5 T T 1 1 T T T 1 people
Users: sen _time lose pat 15 2 2 2 2 2 2 2 people
Users: base case 25 3 3 3 3 3 3 3 3 3 people
Users: sen time lose pat 45 —= 7 % % % 7 7 % people
Users: sen_time lose pat 75 —5 5 5 5 5 5 5 5~ people

Figure 5.140. Users for Different Values of Normal Time to Lose Patience

Perceived Product Quality

1 -
] _5,_,_._3-4—3 3¢5 34 B4
§- o g\ o 5] ,./-’2'- _:L:)_‘_z_‘{_ 4 Z Z 4 4
N
0.75 ~J T
S|
I I I I in T T
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quality : sen time lose pat 5 —t T T T T — Dmnl
Perceived Product Quality : sen time lose pat 15 —2 2 2 2 2 2 Dmnl
Perceived Product Quality : base case 25 3 3 3 3 3 3 Dmnl
Perceived Product Qudlity : sen time lose pat_45 % % 7 7 % Dmnl
Perceived Product Quality : sen_time lose pat_75 5 5 5 5 5 Dmnl

Figure 5.141. Perceived Product Quality for Different Vaues of Normal Time to
Lose Patience

370

Average Developer Talent

1
075 - B4 o S H O o4 40
55 75"“3'4’5-'-1
‘3‘4_5-'-'- 7 P 4
05 - ‘-A.-q ;e":r = + 1 L I i = T - T
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent: sen time lose pat 5 —t T T T t— RTU/people
Average Developer Talent : sen_time lose pat 15 —2 2 2 2 2 RTU/people
Average Developer Talent : base case 25 3 3 3 3 3 RTU/people
Average Developer Talent : sen _time_lose pat_45 % % 7 7 RTU/people
Average Developer Talent : sen_time lose pat_75 5 5 5 5 RTU/people

Figure 5.142. Average Developer Taent for Different Vaues of Normal Time to
Lose Patience

These results reveded that the bifurcation is caused fundamentally by the
discrepancy between the expectations about functionality growth and the actua growth in
functionality. If functionality growth cannot measure up to expectations due to low
participation, low productivity or a similar factor, or if the expectations grow far faster
than the actual functionality growth the community fails to sustain itself and

disintegrates.

Several additional sensitivity and policy runs were made to analyze the
importance of the patience factor within the overall model structure, and its effects on
model behavior under different parametric conditions and policy settings. These runs
revealed that the patience factor is indeed an important determinant of model behavior,

and that it has alarge effect on the outcomes of policy options.

371

As a starting point the base case was run under the condition of infinite patience.
For this run, normal time to lose patience was set to a very high number, which kept the
patience level constant throughout the run. There behaviors of product functionality and
the number of users were ailmost indentical to their behaviors in the original base case

run. (See Figure 5.143 and Figure 5.144.)

Product Functionality

600
450 7 72 et T
fé/rf’
//
300 /{
//
150 / -
"y

OH

10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base case . T T T T T T B UF
Product Functionality : base case inf_pat 222 2 2 2 2 222 UF

Figure 5.143. Product Functionality under Base Case Conditions and under
Infinite Patience Assumption

372

Users

20,000
15,000
L1217
e
T2
10,000 7Tt
7]
A7 al
5,000 /!
Vi
0 1Z 1Z 1 Z L2 = = ’1/
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

UserSZbase_C& T T T T T T T T T T T T T T T 1 peop|e
Users: base case inf_pat 222 2 2 2 2 2 2 2 2 2 people

Figure 5.144. Users under Base Case Conditions and under Infinite Patience

Assumption

The behavior of the number of developers was dightly different than its behavior
in the original base case run. (See Figure 5.145.) This is attributable to the change in the
behavior of attractiveness of product for developers due to achieved functionality, which,

in turn, was caused by the change in the behavior of operative functionality versus

expected functionality. (See Figure 5.146 and Figure 5.147.)

373

Developers

20

15

10 (2/ ~

AN

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : base _case —t—r—+t—+t—t —t—t—t—t—t—t—t—1 people
Developers: base_case inf_pat 2 2 2 2z 2z 2z 2z 2z 2z 2z 2z people

Figure 5.145. Developers under Base Case Conditions and under Infinite Patience

Assumption

Attrractiveness of Product for Developers Due to Achieved Functionality

1
A T
L2 Zﬂ 4 4 4 4 4 4 {Z 4 4 4 4 4 4 L Z L=
0.85 k //
0.7 /
0.55
0.4
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Attrractiveness of Product for Developers Due to Achieved Functiondity : base case —t— Dmnl
Attrractiveness of Product for Devel opers Due to Achieved Functionality : base case inf_pat 2 Dmnl

Figure 5.146. Attractiveness of Product for Developers Due to Achieved
Functionality under Base Case Conditions and under Infinite Patience Assumption

374

Operative/Expected Functionaity Ratio

1.5

1.25
1
1 L2 Z L\ 4 4 Z Z L/I/L 4 4 4 4 Z Z Lz iz Z ra =

0.75 A

0.5

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

"Operative/Expected Functiondity Ratio" : base_case t+—t—t+t—t—t+t—t—+t—1t Dmnl
"Operative/Expected Functionaity Ratio" : base case inf_pat r——2——2——2——2—2—=2 Dmnl

Figure 5.147. Operative/Expected Functionality Ratio under Base Case

Conditions and under Infinite Patience Assumption

A number of the runs involved the replication of the sensitivity runs that indicated
bifurcation points. One group of such runs was done for different values of average
developer participation. The sensitivity runs under the original diminishing patience
assumption of the model indicated that there is a bifurcation point somewhere between 10
to 11 hours per month average developer participation. (See Section 5.4.1)
Consequently, the original sensitivity runs with values of average developer participation
below 11 hours/month portrayed behaviors where the community failed to sustain itself
and disintegrated. On the other hand, the sensitivity runs for different values of average
developer participation under the “infinite patience” assumption rendered a completely
different picture. As Figure 5.148 shows, product functionality grew and approached the

l[imit on product functionality for even very low values of average developer

375

participation. Product functionality grew considerably slower for lower values of average

developer participation, but the community was able to sustain the functionality growth.

Product Functionality

600
450 — t % ;j :ir 3
300 v . :1:; e el
a e
??”‘2’
150 //4/ - é..r-/
/ ~7
éﬁ"%ﬁ
O L
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functionality : sen_dev_part 1 inf_pat T T T T T T T UF

Product Functionality : sen_dev_part_5 inf_pat -2 2 2 2 2 2 2 2— UF
Product Functionality : sen_dev_part 10 inf_pat —3 3 3 3 3 3 3 3 UF
Product Functionality : base case 30_inf_pat 4 7 7 7 7 7 7 UF

Figure 5.148. Product Functionality for Different Values of Average Developer

Participation under Infinite Patience Assumption

Community growth could also be sustained for even extremely low values of
average developer participation. Figure 5.149 shows that although the number of users
grew slower for lower values of average developer participation, the growth could be

sustained in al of the runs.

376

Users

20,000
15,000
|
L1
) is 7
5,000 a Al 7
v Iz
/ e
gl gl P
éw”" el
0 Loolissnlyssloawies ﬁﬁﬁ .
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users: sen dev_part 1 inf_pat —t T T
Users: sen _dev_part 5 inf_pat 2 2 2 2 2 2 2 2 2 people
Users: sen dev_part 10 inf_pat 3 3 3 3 3 3 3 3 3 people
Users: base case 30 inf_pat —= 7 7 7 7 7 7 7 7 14— people

F
H
o
o
o
H
o

g

S
)

Figure 5.149. Users for Different Values of Average Developer Participation

under Infinite Patience Assumption

Average developer productivity was another variable, the lower values of which
led the community to fail in the original sensitivity runs. The bifurcation point for this
variable was somewhere between 1.6 and 1.7 lines/hour. (See Section 5.4.2.) Under the
infinite patience assumption, no bifurcation was observed for this variable, as well.
Figure 5.150 and Figure 5.151 show that product functionality and community growth
could be sustained for even very low values of average developer productivity. Again,
product functionality and community growth were slower for lower values of average

developer productivity, as expected.

377

Product Functionality

600
450 I = 7 L7
300 v /3’/ = el
/_ _/'IF
150 PPl B g I o
s
e
0 XL
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_dev_prod 0-2_inf_pat —= T T T t T T UF

Product Functionality : sen_dev_prod_1 inf_pat 2 2 2 2 2 2 2— UF

Product Functionality : sen_dev_prod_2-5_inf_pat 3 3 3 3 3 3 3 UF

Product Functiondlity : base case 5 inf_pat = 7 7 74 % 7 7 % UF

Figure 5.150. Product Functionality for Different Values of Average Developer

Productivity under Infinite Patience Assumption

Usars

20,000
15,000

LA

4] 1

10,000 P P
LT |] /4/
5,000 /1 i .
” L 72 1
O Lo LLOHLLO*J#éﬁﬁFW{/
0 10 20 30 40 50 60 70 80 90 100

Users: sen_dev_prod_0-2_inf_pat T 1 1 1 T T T 1 1 people
Users: sen_dev_prod 1 inf pat —2 2 2 2 2 2 2 2 2 people
Users: sen_dev_prod_2-5_inf_pat —3 3 3 3 3 3 3 3 35— people
Users: base case 5 inf_pat 7 7 7 % % % 7 7 7 4 people

Figure 5.151. Users for Different Values of Average Developer Productivity
under Infinite Patience Assumption

378

Some of the policy runs were replicated under the infinite patience assumption, as
well. One such policy runs was higher barriers to entry. In the original set of policy runs,
the community failed to sustain its growth under very high level of he barriers to entry
option. (See Section 5.5.1.) However, under the infinite patience assumption, product
functionality and community growth could be sustained even for very high levels of the
barriers to entry option. (See Figure 5.152 and Figure 5.153.) The behaviors of perceived
product quality and average developer talent were not different than those in the origina

set of higher barriers to entry policy runs. (See Figure 5.154 and Figure 5.155.)

Product Functionality

600
450 T A = T
2 L sl
//z///;//{/“/
300 //;? f"[/ﬂf’
//”/f//r/
A A
150 %/31
% |
0

10 20 30 40 50 60 70 80 90 100
Time (Month)

OH

Product Functionality : base case inf_pat T T T T T T T T UF
Product Functionality : pol_hi_barr_entry 01 inf pat —2 2 2 2 2 2 2— UF
Product Functiondity : pol_hi_barr_entry 02 inf_pat 3 3 3 3 3 3 3 UF
Product Functionality : pol_hi_barr_entry 03 inf_pat % % 7 7 7 % UF

Figure 5.152. Product Functionality for Different Barriers to Entry Policy Settings

under Infinite Patience Assumption

379

20,000
15,000
Lo
10.000] ﬂﬁggﬁf’;gﬂ
’ B |]
Tl L
5,000 // /,/
éi =g //
0 i raure) L2 o9 L 2o _'-"_4
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users: base case inf_pat + T T T T T T T T T 1 people
Users: pol_hi_barr_entry OL inf_pat 2 2 2 2 2 2 2 2 people
Users: pol_hi_barr_entry 02_inf_pat 3 3 3 3 3 3 3 3 people
Users: pol_hi_barr_entry 03 inf pat = 7 7 7 7 7 7 7 4~ people

Figure 5.153. Users for Different Barriers to Entry Policy Settings under Infinite

Patience Assumption

Perceived Product Quality

1 wiﬁﬁ Zo 2P POl 2ol 27 | Z 7 z Z > E Ao
\1\ L L 4—1 iy T T
Ie3 Iy T T
0.75
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Qudlity : base case inf_pat T T T T T T — Dmnl

Perceived Product Quality : pol_hi_barr_entry 01 inf_pat 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_barr_entry 02 inf_pat 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_barr_entry 03_inf_pat % 7 7 7 % Dmnl

Figure 5.154. Perceived Product Quality for Different Barriers to Entry Policy
Settings under Infinite Patience Assumption

380

Average Developer Taent

1 - 7% % i3 7T 7T i3 3 3 i3 7T 7T i3 3 3
S P o S S 3 5] 5] S b S S P 5]
P 2 z 2 <
— 21 s 2 2 P z <
0.75 T
'r’_/_r — 1 I8 T T
=1 | L i
|
—all
05
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case inf_pat T T T + T + RTU/people
Average Developer Tadent : pol_hi_barr_entry 01 inf_pat 2 2 2 2 RTU/people
Average Developer Tdent : pol_hi_barr_entry_02_inf_pat 3 3 3 3 RTU/people
Average Developer Tadent : pol_hi_barr_entry_03_inf_pat % 7 7 2— RTU/people

Figure 5.155. Average Developer Talent for Different Barriers to Entry Policy

Settings under Infinite Patience Assumption

Higher barriers to contribution option was another policy, very high levels of
which caused the community to fail to sustain itself in the long run under the original
diminishing patience assumption. (See Section 5.5.2.) Higher barriers to contribution
policy did not cause such a failure under the infinite patience assumption. Even for the
highest setting of this policy option the community could sustain product functionality
and community growth. (See Figure 5.156 and Figure 5.157.) The behavior of perceived
product quality was not critically different than that in the original set of higher barriers
to contribution policy runs. (See Figure 5.158.) Average developer talent was higher for
the same level of higher barriers to contribution under the infinite patience assumption
than its level under the original assumption, due to the decreased number of leaving

developers under the infinite patience assumption. A smaller number of leaving

381

developers decreases the talent loss, and thus yields a higher average developer talent.

(See Figure 5.159.)
Product Functionality

600

450 = {F;/r/f;ﬂ ; =]

300 A LA ,46,4

150 s e

T
T

10 20 30 40 50 60 70 80 90 100
Time (Month)

OH

Product Functionality : base case inf_pat T T T T T T T T UF
Product Functiondity : pol_hi_barr_contr_01 inf _pat —2 2 2 2 2 2 2— UF
Product Functionality : pol_hi_barr_contr_02_inf_pat 3 3 3 3 3 3 3 UF
Product Functiondity : pol_hi_barr_contr_03_inf_pat % % 7 7 7 % UF

Figure 5.156. Product Functionality for Different Barriers to Contribution Policy

Settings under Infinite Patience Assumption

382

Users

20,000
15,000
F—”If%
=T 7
10,000 fﬂ/%ﬂgﬁ
’ T 4 il
A AN
5,000 < i
e //’ 4
/]]
. pecstel
6 2>=34F Llooq +2=3 ﬁéOL 30 40 50 60 70 80 90 100
Time (Month)

Users: base case inf_pat + T T T T T t t t T 1 people
Users: pol_hi_barr_contr_01 inf_pat 2 2 2 2 2 2 2 2 people
Users: pol_hi_barr_contr_02_inf_pat 3 3 3 3 3 3 3 3 people
Users: pol_hi_barr_contr_03 inf_pat = 7 7 7 7 7 7 7 4~ people

Figure 5.157. Users for Different Barriers to Contribution Policy Settings under

Infinite Patience Assumption

Perceived Product Quality

1 i 3o 3 34 3 t 3 3 & 34 3T B
4 Z Z 4 Z Z 4 Z - Tz = Ty
RN 1] &
Ie3 Iy T T
0.75
0.5
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Qudlity : base case inf_pat T T T T T T — Dmnl

Perceived Product Quality : pol_hi_barr_contr_01_inf_pat 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_barr_contr_02_inf_pat 3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_barr_contr_03_inf_pat % 7 7 7 % Dmnl

Figure 5.158. Percelved Product Quality for Different Barriers to Contribution
Policy Settings under Infinite Patience Assumption

383

Average Developer Taent

0.75 F——= v T3
05 <
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case inf_pat T T T + T + RTU/people
Average Developer Taent : pol_hi_barr_contr_01 inf_pat 2 2 2 2 RTU/people
Average Developer Taent : pol_hi_barr_contr_02_inf_pat 3 3 3 3 RTU/people
Average Developer Taent : pol_hi_barr_contr_03_inf_pat % 7 7 2— RTU/people

Figure 5.159. Average Developer Taent for Different Barriers to Contribution

Policy Settings under Infinite Patience Assumption

The original policy analyses under the diminishing patience assumption included
a comparison of the pure higher barriers to entry option with a combination of higher
barriers to entry and higher barriers to contribution options. (See Section 5.5.3.)
Replicating those runs under the infinite patience assumption yielded findings similar to
those under the original diminishing patience assumption. Here again, the pure higher
barriers to entry option performed better than the combination policy in terms of product
functionality, community and average developer talent growth. (See Figures 5.160
through 5.162.) Once again, there was virtually no difference between the quality

improvements yielded by these two policy options. (See Figure 5.163.)

384

Product Functionality

600
450 s e E LA R
ricg EEE B
- 1
el

200 pars

/f// 7

Zze
150 s

0 al
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Product Functiondlity : base case inf pat —+——+—+—t—+—+t—t—t—t—t ¢ UF
Product Functionality : pol_hi_barr_entry 01 inf paa —2—=2——2——2——2—=2—=2—=2—2— UF
Product Functionadlity : pol_hi_barr_entry contr 01 inf pat —3—=3—=3—3 3333 UF

Figure 5.160. Product Functionality for Barriers to Entry and Combination Policy

Settings under Infinite Patience Assumption

Users

20,000

15,000

L

10,000
P
P
/ //
14
40 50 60 70 80 90 100
Time (Month)

5,000

L2351 Z23531251 29

0 10 20 3

RS

Users: base case inf_pat Tttt —t—t—t—t 1t 1 people
Users: pol_hi_barr entry Ol inf pat —2—=2——2——2——2 222 2 2 2 people
Users: pol_hi_barr_entry contr OL inf pat —s—s—3—3 3333 3 3 people

Figure 5.161. Users for Barriers to Entry and Combination Policy Settings under

Infinite Patience Assumption

385

Average Developer Talent

1
075 LO4T~ATQ g‘d‘o JL Aaé 34"3' S 3 S o S
. 1_,_,_:— i N
] | s
— 1]
05 [
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base case inf pgt +—— 1+t RTU/people
Average Developer Tdent : pol_hi_barr_entry 01 inf_ pat —2——2—=2—=2—2—=2— RTU/people
Average Developer Taent : pol_hi_barr_entry contr_01_inf pat —s—3—3—3 3 RTU/people

Figure 5.162. Average Developer Talent for Barriers to Entry and Combination
Policy Settings under Infinite Patience Assumption

Perceived Product Quality

1
\ =3 =3 o3 T3 £33 23 23 23 £ 3 Z 3 23 23T 2312323253123 =
0.95
——
i /-I—"’r#—
0.9 /]
0.85 \\ e
| |
0.8
0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Qudlity : base case inf pat +——+—+t—+t——+t—+—+t—+—+t—+t Dmnl
Perceived Product Quality : pol_hi_barr_entry 01 inf paa —2——2——2——2——2—2—2—2 Dmnl
Perceived Product Quality : pol_hi_barr_entry contr 01 inf pat —3—3—3—3—3 3 Dmnl

Figure 5.163. Perceived Product Quality for Barriers to Entry and Combination
Policy Settings under Infinite Patience Assumption

386

Another combination policy option compared with its pure counterparts under the
original diminishing patience assumption was the combination of higher debugging and
higher coaching emphases options. (See Section 5.5.6.) Comparing the pure higher
debugging and higher coaching emphases options with the combination option under
infinite patience assumption yielded results that were similar to those under the original
diminishing patience assumption. Once again, the combination policy performed better
than the two pure options in the overall. The behaviors of the key variables were not

critically different than those under the original diminishing patience assumption. (See

Figures 5.164 through 5.167.)
Perceived Product Quality
1
Lt e 2 | | |
& P His 7
0.95 s s A
/@j 3]
sl S] I o aEa
| T
0.9 7” //
0.85 \1\ e ‘1—"/1/
\'\b—ﬂ-i/")
0.8
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quadlity : base case inf_pat T T T t t T — Dmnl

Perceived Product Quality : pol_hi_debug emph_03 inf_pat -2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_coach emph 03 inf pat —3 3 3 3 3 Dmnl
Perceived Product Quality : pol_hi_debug_coach emph_OL inf_pat 7 7 7 % Dmnl

Figure 5.164. Perceived Product Quality for Higher Debugging, Higher Coaching,
and Combination Policy Settings under Infinite Patience Assumption

387

Average Developer Talent

1
3] ft = "
7] il
_,5/?4"
0.75 R BT = = 5 i) 2 7 T
(/3_,4—-—-"3 7 I " 4 {_:ﬂi‘fz—
L2 -
LY
05 [Z
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case inf_pat T T T t T RTU/people

Average Developer Talent : pol_hi_debug emph_03 inf_pat -2 2 2 2 RTU/people
Average Developer Tdent : pol_hi_coach emph 03 inf pat —3 3 3 3 RTU/people
Average Developer Taent : pol_hi_debug _coach _emph 01 _inf pat —=# 22— RTU/people

Figure 5.165. Average Developer Taent for Higher Debugging, Higher Coaching,
and Combination Policy Settings under Infinite Patience Assumption

Product Functionality

600
450 K Wwar B srtesd T2 THTT
AT
300 J/Vg(
%%/
150 % %{
o L
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Product Functionality : base case inf_pat T T T T T T T T UF
Product Functionality : pol_hi_debug_emph_03_inf_pat 2 2 2 2 2 2— UF
Product Functiondlity : pol_hi_coach_emph 03 inf_pat -3 3 3 3 3 3 3 UF
Product Functionality : pol_hi_debug_coach emph 01 inf pat —= 7 7 7 7 UF

Figure 5.166. Product Functionality for Higher Debugging, Higher Coaching, and
Combination Policy Settings under Infinite Patience Assumption

388

Users

20,000

15,000

10,000 M
7]

A

5,000 Q/
%/
0

40 50 60 70 80 90 100
Time (Month)

| NS L i A R e ﬁ

Users: base case inf_pat + T T T T T t t t T 1 people
Users: pol_hi_debug_emph 03 inf_pat —2 2 2 2 2 2 2 v people
Users: pol_hi_coach_emph_03_inf_pat 3 3 3 3 3 3 3 3 people
Users: pol_hi_debug_coach_emph 01 inf_pat 7 7 7 7 7 7 2~ people

Figure 5.167. Users for Higher Debugging, Higher Coaching, and Combination
Policy Settings under Infinite Patience Assumption

Just like under the original diminishing patience assumption, the best policy
aternatives under the infinite patience assumption were the pure higher barriers to entry
and the combination of higher debugging and higher coaching emphases options. (See
Section 5.5.7.) The combination of these two policy options was also replicated under
infinite patience assumption. Once again, the overall combination policy yielded better
results in terms of both perceived product quality and average developer talent than those
of its components. (See Figure 5.168 and Figure 5.169.) The product functionality and
community growth were slower under the combination policy, just like they were under

the original diminishing patience assumption. (See Figure 5.170 and Figure 5.171.)

389

Perceived Product Quality

1 . , ,
+4-rc-r4'¢'¢“4‘4“444*4“¢4 fr L3
8 3 P i
La—3] P ST B
0.95]
o Py i
0.9 X //
0.85 \1\ I “1—"’(
| A
\‘\-1 L
0.8
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Perceived Product Quadlity : base case inf_pat T T T t t T — Dmnl

Perceived Product Quality : pol_hi_barr_entry 01 inf_pat 2 2 2 2 2 2 Dmnl
Perceived Product Quality : pol_hi_debug_coach_emph 01 inf_pat —s 3 3 3 Dmnl
Perceived Product Quality : pol_hi_barr_entry hi_debug coach emph 01 inf pat —#——=— Dmnl

Figure 5.168. Perceived Product Quality for Barriers to Entry, Debugging and

Coaching, and Combination Policy Settings under Infinite Patience Assumption

Average Developer Taent
1 7 7
4 —a7 1| i E B 3
_G/-'I_F’_’ﬁ_ i i i -3 "":3- 2 P 2 - P
5+ —o1 P 2 4 F < el
0.75 ,_,_‘3_'———3""'_'_”3 L — T T I T T
L—1 1_—'_—1_'_ g
L1
05 f
0.25
0
0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Average Developer Talent : base case inf_pat T T T T T RTU/people
Average Developer Tadent : pol_hi_barr_entry 01 inf_pat 2 2 2 2 RTU/people

Average Developer Taent : pol_hi_debug _coach _emph 01 _inf pat —s——3——3—— RTU/people
Average Developer Taent : pol_hi_barr_entry_hi_debug_coach_emph_01 inf_pat —2— RTU/people

Figure 5.169. Average Developer Taent for Barriers to Entry, Debugging and
Coaching, and Combination Policy Settings under Infinite Patience Assumption

390

Product Functionality

600
3 4o
450 a< il R
P
300 ; ﬁ/
Vil

150]

o Lt

0 10 20 30 40 50 60 70 80 90 100
Time (Month)
Product Functiondity : base _case inf_pat T T T T t T UF
Product Functiondity : pol_hi_barr_entry 01 inf pat —2 2 2 2 2— UF

Product Functionadlity : pol_hi_debug_coach emph_01_inf_pat 3

5]

3 UF

Product Functiondlity : pol_hi_barr_entry hi_debug coach_emph Ol inf pa #———=2——=—— UF

Figure 5.170. Product Functionality for Barriers to Entry, Debugging and

Coaching, and Combination Policy Settings under Infinite Patience Assumption

20,000

15,000

10,000

5,000

Users
Users
Users
Users

Users
k23
T3
ﬁfﬂ;ﬁg’
?fﬁg
T
A
/ . /
0 10 20 30 40 50 60 70 8 90 100
Time (Month)
:base case inf_pat T T T T T T T 1 people
:pol_hi_barr_entry 01 inf_pat 2 2 2 2 2 2 people
: pol_hi_debug_coach _emph 01 inf_pat —3 3 3 3 3 people
: pol_hi_barr_entry_hi_debug_coach_emph_01 inf_ pat —= 7 4= people

Figure 5.171. Users for Barriers to Entry, Debugging and Coaching,

Combination Policy Settings under Infinite Patience Assumption

391

and

The results of the comparisons among the policy options under infinite patience
assumption were not different than those under the original diminishing patience
assumption. The best policy options were higher barriers to entry, combination of higher
debugging and coaching emphases, and an overall combination of these two policy
options. However, the implications about certain individual policy options were rather
different than those under the original assumption. The bifurcation observed for higher
levels of barriers to entry and barriers to contribution under the original assumption was
not observed at all under infinite patience assumption. This finding indicated that the
assumption about the patience factor could affect the outcomes of the policy

interventions.

All of these findings indicate that the existence of a diminishing patience level,
which drives the expectations about product functionality, is a key assumption of the
OSSD model. Furthermore, the values of the parameters that drive the patience factor,
such as normal time to lose patience may affect how the model behaves under different
parametric conditions and different policy settings. This leads to the conclusion that the
values of such parameters should be estimated very accurately in order to achieve an
acceptable level of confidence in the model. This would be a crucial antecedent to
drawing implications for real life applications from the findings of the model, especially
from the policy runs. The chalenge of estimating an accurate value for such parameters

in the OSSD model was noted as a potential future research topic.

Another important implication of the analyses on the patience factor is that
managing patience and expectations in an open online collaboration community can

provide considerable leverage as a policy. The leaders of such communities can sustain

392

the attractiveness of their communities for exiting and potential contributors and users by
maintaining a healthy level of expectations, which is neither too high not too low
compared to the realities of the community. While unrealisticaly high expectation would
cause disappointments among the members of the community and lead them to leave the
community, low expectations would decrease the attractiveness of the community for
potential members, and may have a decreasing effect on the motivation of the existing

contributors.

On the other hand, rivals of such communities can employ tactics that would
decrease the patience level within the community and increase or decrease expectations
beyond realistic limitsin order to impede the growth of the community and hurt its ability
to develop products. The software development world have witnessed allegations about
proprietary software companies trying to impede the growth of open source software
development communities (Valloppillil, Cohen and Raymond (annotations) 1998,
Valloppillil and Raymond (annotations) 1998). Although it would be very interesting and
insightful, a detailed study of the implications discussed in this and the previous
paragraphs are obviously beyond the scope of this dissertation. However, such a study

was noted as a potential topic for future research, as well.

The following chapter summarizes the findings of a series of interviews carried
out in order to test whether the structure of the OSSD model and the policy implications
discussed in this chapter can be applied to actual open online collaboration communities.
The policy options tested on the model were introduced to the interviewees as pure policy
options only, and not in combination with one another. Barriers to entry policy option

was introduced to the interviewees as “ Selecting New Inexperienced Authors’. Barriers

393

to contribution was introduced as “Filtering New Materia”, higher debugging emphasis
as “Reviewing and Editing Existing Materiad”, and higher coaching emphasis as

“Coaching Existing Inexperienced Authors.”

The interviewees were then asked whether they observed similar polices
implemented in their community, and if so what the consequences of such policies were,
or if not, what they thought the potential consequences of such policies would be in case
they were implemented. The interviewees also compared the policy options based on
their potentia positive and negative consequences. At that stage, the interviewees

discussed about combination policy options, as well as the pure policy options.

394

CHAPTER 6 -- INSTRUCTIONAL MATERIAL DEVELOPMENT - THE

CASE OF SYSTEM DYNAMICSK THROUGH 12 COMMUNITY
6.1. Analysis of the Interviews

In this study, the main function o the interviews was to test the applicability of
the hypothetical open source software development (OSSD) model to the case of a
specific instructional material development community. Accordingly, the interviews were
analyzed in order to see whether the personal observations and mental models of the
interviewees supported or refuted the assumptions and the structure of the model. The
interviews were analyzed in the order in which the subjects were interviewed. The
analysis involved testing the main reinforcing and balancing (limiting) loops in the
model, the assumption of the underlying policy problem for the community, and the
policy options that had the potential of addressing that policy problem. Please refer to
Appendix A, Sections 5 through 7 for the worksheets and the diagrams used during the

interviews, and the complete interview protocol.

The interviews tested the main reinforcing and balancing loops, which are
discussed in Chapter 4. Loops of secondary importance, namely the Reinforcing Loop 1
(“Positive Network Externalities Effect Attracts More Users’), and the Balancing Loop 3
(“More Functionality Makes It Harder to Add Further Functionality”) were omitted from
the informed portion of the interview. This was done in order to simplify the
communication about the model between the interviewer and the interviewees and to help

interviewees comprehend the model within the short span of time the interviews allowed.

Another tactic used in order to simplify communication and increase

comprehension was the omission of certain outflows associated with the main stocks of

395

the model. “Leaving Authors’ and “Leaving Users’ were the two outflows omitted in the
diagrams presented to the interviewees. (See Appendix A, Section 6 for the diagrams.)
Another reason for omitting these outflows was to elicit interviewees observations and
mental models with the least possible amount of interference caused by exposing them to
an existing model. As discussed elsewhere in this chapter, several interviewees suggested
the existence of the omitted outflows. This provides stronger support to those
components of the model than having the interviewees approve them after being exposed

to diagrams that include those components.

Omitting the outflows of leaving authors and leaving users kept severa
reinforcing and balancing loops that work through these outflows out of the diagrams
shown to the interviewees. Namely, Reinforcing Loop 4 (“More Functionality Retains
More Existing Developers’), Reinforcing Loop 5 (“More Functionality Retains More
Existing Users, and That Attracts More New Developers’), and Balancing Loop 2
(“Fewer Opportunities for Contribution Retain Fewer Existing Developers’) were
excluded due to omitting the outflows. However, each of these three loops, which work
through outflows, has a symmetrical loop that works through a corresponding inflow.
Accordingly, the dynamic effects delivered to the corresponding stocks by these omitted
loops were tested in an indirect way, via the corresponding loops that work through the
inflows. Omitting these loops provided a way to elicit the interviewees observations and
mental models with the least amount of interference, in addition to simplifying
communication and facilitating comprehension. Once again, severa interviewees

suggested the existence of the omitted loops, albeit sometimes dlightly different than they

396

were originally conceptualized, thus providing support to those specific components of

the moded!.

Another step of the testing process was to ask the interviewees about the
underlying policy problem of the community with respect to developing instructional
materials. The underlying policy problem of the hypothetical OSSD model was identified
as a tension between producing content and maintaining quality. The interviewees were
asked to elaborate on whether they have observed that problem in the community, and to

what extent.

The last step involved the testing of the policy options outlined in the model. At
this stage, the interviewees were exposed to four series of diagrams about the four policy
options (See Appendix A.6.), and were asked to comment on whether they observed the
application of those policy options within the community and the consequences of the
policy options that were applied. In cases where an interviewee suggested that certain
policy options had not been applied to the community he or she was asked about the

possible consequences of those policy optionsif they were applied.
6.2. Analysis of the L oops
6.2.1. Reinforcing Loop 3 (“More Functionality Attracts More Authors’)

The first loop discussed with the interviewees was Reinforcing Loop 3. Figure 6.1
displays this loop asit was shown to the interviewees.* The explanation that accompanied

the sketch for Balancing Loop 3 was as follows:

* The loops were introduced to the interviewees as a series of diagrams building on top of each other. In
this chapter only the final (complete) diagram for each loop is shown. Please refer to Appendix A, Section
6 for the full set of diagrams. Also, the referencesto partial diagramsin the explanations that accompanied

397

“Here, participating authors produce content in the form of documents,
models, visuals, etc. and thus add new functionality to the teaching materials
collection. Here, functionality means a general level of usefulness of the materials
for teaching purposes. As new functionaity is added, functionality of the
materials approaches the level expected by possible users, and thus functionality
achievement increases. Increased functionality achievement increases the
attractiveness of participation for authors, and thus new authors becone active in

the community faster.”

- X » Authors
New
¥ Authors
+
. Production
Attractiveness of
Participation
+
Functionality +
. g
of Materials New ©

Functionality

Functionality
Achievement = +

\ Expected
Functionality

Figure 6.1. Reinforcing Loop 3 (“More Functionality Attracts More Authors’) as

Shown to the Interviewees

the diagrams were edited out for this chapter. For the complete explanations with references to the partial
diagrams see Part |1 in theinterview protocol in Appendix A, Section 4.

398

After this explanation, the interviewees were asked whether they thought such a
positive loop reinforces the growth of the number of authors, and the level of
functionality of the materials in the case of their community. Table 6.1 summarizes the
key comments made by the interviewees about this loop. In Table 6.1 and in the tables
from there on the interviewees are listed based on randomly assigned numbers,
independent of interview order, name, or other factors, in order not to disclose the

identities of the interviewees.

Table 6.1. Key Comments from Interviewees about Reinforcing Loop 3 (“More
Functionality Attracts More Authors”)

Respondent® Key Comments®

Interviewee 1 Yes.

Interviewee 2 Y es. It reaches a plateau though.

Interviewee 3 “1 am not sure about the applicability of this reinforcing loop [to
this community.]” No.

Interviewee 4 Make sense in general. However, the authors do not come from

acloud; they come from users. So potential users become users,
and some of those become authors. { This discussion took place
before the Users stock was introduced to the interviewee.} There
isalso attrition, people that leave.

Interviewee 5 “Probably.” Not the most important one though.

Interviewee 6 “Not quite the same as my mental model.”

Interviewee 7 Y es. { Discussed about users becoming authors.}

Interviewee 8 {Did not comment on thisloop.}

Interviewee 9 There has to be some kind of quality control mechanism for this
loop to work.

Interviewee 10 { Questioned the link from functionality achievement to

attractiveness of participation.} Functionality achievement
attracts users, and some users become authors. { This discussion
took place before the Users stock was introduced to the
interviewee.}

® Interviewees 1,3,5 and 6 were affiliated with the same organization. Interviewees 2 and 9, and
Interviewees 7, 8 and 10 were also affiliated with two other organizations within the overall community,
respectively. Interviewee 4 worked mostly independently. No other details are given about the relationships
between the interviewees in order not to revea their identities.

® Notation for comments: Direct quotations are given in quotation marks. Ellipsis dots denote words edi ted
out due to redundancy. Words and phrasesin straight brackets were added to the direct quotations for
clarification. Curly brackets denote explanations about the comments.

399

Although only two interviewees [3, 6] chalenged this loop, the other
interviewees' support for the loop was not very strong. Two other interviewees [4, 10]
initially challenged the causal link from the attractiveness of participation to the new
authors. Through discussion, the root cause of the challenge was found to be the idea that
new authors do not come from outside of the community (represented with a cloud), but
from the existing users. In fact, that was the strongest challenge about this loop. Three
interviewees [4, 7, 10] explicitly argued along the lines of this idea. The idea of new
users coming from existing users was discussed further within the context of the next

loop.

6.2.2. Reinforcing Loop 2 (“More Functionality Attracts More New Users,

and That Attracts More New Developers’)

The interviewees examined the sketch displayed in Figure 6.2 about Reinforcing

Loop 2, accompanied with the following explanation:

“...a higher level of functionality achievement attracts more users. ...
[and] a higher number of users increases the attractiveness of participation for the

authors, thus attracting more new authors.”

400

! v » Authors

New
Authors
Attractiveness of +
Participation _
+ Production
— +
+ Functiondity
of Maerias New
/ Functionality
Functiondity =+
Users |« % D Achievement Expected

New UseLs,_/ Y~ Functiondity
+

Figure 6.2. Reinforcing Loop 2 (“More Functionality Attracts More New Users,
and That Attracts More New Developers’) as Shown to the Interviewees

Again the interviewees were asked whether they observed such a positive loop
reinforcing the growth of their community. The key comments made by the interviewees

about thisloop are summarized in Table 6.2.

401

Table 6.2. Key Comments from Interviewees about Reinforcing Loop 2 (“More

Functionality Brings More Users, and More Authors”)

Respondent Key Comments

Interviewee 1 There is no feedback from the users. The link from usersto
attractiveness does not hold. If there were feedback this loop
would work.

Interviewee 2 Y es. However, it reaches a plateau. These two [together with the

previous loop] are the most important reinforcing loops, the
leverage points.

Interviewee 3 In theory yes, however, there is no feedback available to authors
about users. (This causal link does not exist. Theoreticaly, it
would if there were feedback mechanisms from users to authors.)
Interviewee 4 Yes. Don't forget the attrition. There is an outflow from users.
Interviewee 5 Theoretically, but such a feedback does not exist. More users
means more users becoming authors. This shoul dbe represented
as a stock-flow structure. Authors don’t come from a cloud, but
only from existing users. That is a stronger loop. { At this point,
argued against the previous loop.}

Interviewee 6 The link from functionality achievement to users works. The link
from the number of usersto attractivenessis questionable.

Interviewee 7 Authors come from users, not from a cloud. { Forcefully argued.}

Interviewee 8 {Did not comment on thisloop.}

Interviewee 9 “[Thelink from functionality achievement to users| would work

pretty well, provided that the materials are of high quality.”

{ About the link from users to attractiveness for authors:} “Yes,
that would work.”

Interviewee 10 Yes.

The main challenge against this loop, argued by four interviewees[1, 3, 5, 6], was
that the causal link from the number of users to the attractiveness of participation does
not exist. Apparently, the Creative Learning Exchange (CLE) website, which
disseminates the instructional material, did not track the number of visitors and
downloads in a manner that is visible to the authors. The argument here was that authors
could not gather any information regarding the number and characteristics of the users

and thus the number of users could not have any effect on the attractiveness of

402

participation. However, most interviewees[2, 3, 4, 5, 6, 7, 9, 10], including three of those
that question the link from the number of users to the attractiveness of participation,
suggested the existence of areinforcing loop that involved functionality, number of users,
and number of authors. One plausible explanation here was the argument that new
authors came fromthe stock of existing users. In fact, a fourth interviewee [5] explicitly
stated that argument, in addition to the three interviewees [4, 7, 10] who suggested the
structure within the context of the previous loop. Those three interviewees [4, 7, 10]
repeated their opinion again, and more forcefully within the context of this loop.
Apparently, the interviewees observed a “material” type of causal link between the

number of users and the number of authors, rather than an “information” link.

6.2.3. Balancing Loop 1 (“ Fewer Opportunitiesfor Contribution Bring Fewer

Authors’)

Figure 6.3 displays Balancing Loop 1, as shown to the interviewees. The

following explanation accompanied the sketch:

“Here as the materials approach the expected level of functionality,
opportunities for contribution decrease. Due to decreased opportunity, a smaller

number of new authors are attracted to participate.”

403

o SZ » Authors

New
Authors
Attractiveness of +
Participation _
(’f/ + Production
pportunities for - +
Contribution Functionality
\ of Materids New
/ Functionality
Functiondity =+
Users |« % - Achievement Expected
New Users Y~ Functiondity
+

Figure 6.3. Balancing Loop 1 (“Fewer Opportunities for Contribution Bring

Fewer Authors’) as Shown to the Interviewees

The interviewees were asked whether they observed such a negative loop limiting
the growth of their community, or whether they thought such a loop may become
dominant in the future. The key comments from the interviewees are summarized in

Table 6.3.

404

Table 63. Key Comments from Interviewees about Balancing Loop 1 (*Fewer

Opportunities for Contribution Bring Fewer Authors”)

Respondent Key Comments

Interviewee 1 “l don't seethat.” There are infinite applications. Each lesson can
be presented in anew, and different way.

Interviewee 2 Not at this point. “I would hope s0.” “That [would mean] we have

been successful.” “50 years down the road, | can see that
happening, not sooner.”

Interviewee 3 In theory yes. However the community is so far from that.
Interviewee 4 Curriculums change all the time; so the limit on functionality is
not constant, but rather a moving target. It changes, just like the
achieved functionality level.

Interviewee 5 “1 don’t think we are anywhere close to that.” Thiswill not happen
in the foreseeabl e future.
Interviewee 6 Probably an accurate loop. However, functionality achievement

right now islow enough that this loop is not dominant at the time
being, and for sometime it will not be even remotely dominant.
“There are lots of opportunities out there for people to be doing
things. [We have not] come close to saturating the domain yet.”

Interviewee 7 “We are so far fromit, it doesn’t have much effect now.... Asthe
gap closesit will have agreater...effect.”

Interviewee 8 Not at thistime. This may happen in the future. “ There are only so
many lessons you can write.”

Interviewee 9 “1 think it could... Most people get the same beginning ideas

often, and if there are materials already out there they won’t know
that they can contribute until they reach a higher level of
functionality. [This] makes sense to me.”

Interviewee 10 | “We are [about]...three decades away from seeing that happen.”
“That may end up being true, but... it will be so long from now,
you can barely even think about it.”

Almost al the interviewees, with the exception of one [1], said that Balancing
Loop 1 represented a theoretically plausible structure. However, all of them concurred
that their community was too far from such a saturation point, where a low level of
opportunities for contribution would decrease the attractiveness of participation for the
authors. Consequently, they suggested that the loop had no effect on the growth of the

community, at the time being. One interviewee [1] suggested that no such limit on

405

functionality exist, even on atheoretical level, since there are infinite ways to express the
same curriculum components. Another interviewee [4] suggested that the limit on
functionality would be a“moving target,” which changed through time, and thusit would
be hard to catch it even over a long period of time. This suggestion reflected the
“increasing limit on functionality” assumption, which was used in the OSSD model, but

omitted from the interview sketches for simplification purposes.
6.2.4. Balancing Loop 4 (“More Errors Bring Fewer Authors’)

Next the interviewees were asked whether they observed a loop similar to
Balancing Loop 4 in their community. The following explanation accompanied the sketch

displayed in Figure 6.4:

“... asauthors produce content and add functionality to the materials, they
also generate errors or weaknesses in the materials... the number of errors
decrease the perceived quality of the materials. ... A decreased perception of
quality decreases the attractiveness of participation for the authors, thus forming

another negative loop.”

406

- % » Authors
New

Authors

+
Attractiveness of Production
Participation
+4 +

Functionality
of Materiads New

Functionality ‘+/ Functionality
Achievement

Expected
Functionality

Perceived Quality
of Materials N

\ Errors |- 2z £

N
New Errors

Figure 6.4. Balancing Loop 4 (“More Errors Bring Fewer Authors’) as Shown to

the Interviewees

The interviewees were asked whether they observed this balancing loop (which
works through errors and weaknesses in the materials) limits the growth of their

community. A summary of key comments by intervieweesis given in Table 6.4.

407

Table 6.4. Key Comments from Interviewees about Balancing Loop 4 (“More

Errors Bring Fewer Authors’)

Respondent Key Comments

Interviewee 1 “1 don’'t know if it limits the number of existing authors, [and] how
that would work.” Thiswould not affect existing authors, because
they are the ones who generate the errorsin the first place.
However, it might affect the potential authors willingnessto join.
{Also mentioned that it might affect users.}

Interviewee 2 {Chuckled} “Have you been taping all the conversation over the
last three years?” Yes. { Strongly supports.}
Interviewee 3 “1 don’t see that loop operating [in this community.]”

Interviewee 4 { About the link from production to errors:} “I think that happened.
| can see that happening. And it did happen. At least the
perception was that it was happening. That was why there has
been more standardization and quality control at the CLE and
Waters Foundation level.” That was true in the past, but not any
more. The quality is very good now.

Interviewee 5 A decreased perceived quality might increase the number of
people who want to contribute, because they want to make it
better. So, one can argue both ways. This again works through
users.

Interviewee 6 It has the potential. If the ratio between errors and functionality
stays the same the perceived quality would not change. The effect
of quality would work more through users rather than authors.

Interviewee 7 For certain individuals, yes. As a general dynamic, no. If thereis
no structure to correct errors, this may have an effect.
Interviewee 8 Thisisnot avery strong loop. However, if the perceived quality
stays low for along time, there may be a problem there.
Interviewee 9 “Thereyou haveit.” “Absolutely.”

Interviewee 10 | Thisloop does not hold for this community, since there are
mechanisms to improve quality. Without such mechanisms this
loop might hold.

Although three interviewees [2, 4, 9] supported this loop (two of whom [2, 9]
rather strongly), the others were skeptical about its existence, or at least its relative power
within the overall system. Three interviewees [1, 5, 6] from the skeptical group suggested
that this loop again works through users rather than existing authors. Their argument was

that perceived quality would affect the number of users, and since new authors should

408

come from the stock of users, that would eventually have an affect on the number of
authors; however, not directly through an attractiveness factor as portrayed in the sketch.
An interesting argument made by an interviewee [5] was that a decreasing quality level
might motivate more people to become authors, in order to help increase the quality level.
The arguments about this loop support the alternative structure, which emerged from the
discussions about Reinforcing Loop 3 and Reinforcing Loop 2, where new authors come

from the stock of existing usersinstead of from outside of the model.

6.2.5. Balancing Loop 5 (“More Errors Bring Fewer Users, and Fewer

Authors’)

The last loop shown to the interviewees was Balancing Loop 5, as shown in

Figure 6.5. The following explanation accompanied the sketch:

“...adecreased Perceived Quality of Materials has a decreasing effect on

the number of new users, thus forming another negative feedback loop.”

409

0 S » Authors

AN
New
¥ Authors +

Production
Attractiveness of
+ Participation
+
+
Functionality)
o of Materias New
Functiondity ___— Functionality
. _ Achievement +
Perceived Quality -
of Maerids
— Expected
. Functionality
Users "
New Users< Errors [X =
New Errors

Figure 6.5. Balancing Loop 5 (“More Errors Bring Fewer Users, and Fewer

Authors’) as Shown to the Interviewees

Once again the interviewees were asked whether they observed such a balancing
loop limiting the growth of their community. Table 6.5 summarizes the key comments by

the interviewees.

410

Table 6.5. Key Comments from Interviewees about Balancing Loop 5 (“More

Errors Bring Fewer Users, and Fewer Authors’)

Respondent Key Comments

Interviewee 1 Yes. “That actually, happened... Teachers would say to me ‘|
don’'t bother to go to the CLE [website.] There is so much junk
there. | don’t have time to waste through all that stuff while I'm
trying to look for good stuff.’”

Interviewee 2 “Yes, yes, yes. Absolutely.” Substantial, however anecdotal,
evidence suggests that low quality material turned users off.

Interviewee 3 This may happen in the future. It doesn’t happen at this moment.
{Later on.} “OK. Now | see the argument. The combination of the
perceived quality and functionality do in fact define the new users.
I’ll buy this.”

Interviewee 4 The bigger issue here is not the quality itself, but whether the
materials are accessible to the users. The current users are not
skilled enough to assess and use the existing quality. Thisisa
minor issue. Most users don’'t even see the errors.

Interviewee 5 Y es. { Discussed about the previous one.} Thisoneis plausible,
not the previous one.

Interviewee 6 “[This] works better for me than a direct linkage to attractiveness.”
“1 like [this] better than [the previous one.]”

Interviewee 7 Thisissimilar to the previous loop. Again, without a structure to
correct errors, this may have an effect

Interviewee 8 Thisisastrong loop.

Interviewee 9 “1 have not had direct experience of this, but | think this would be

true theoretically.”

Interviewee 10

Yes.

More interviewees supported this loop than the previous one. Eight interviewees

[1, 2, 3, 5, 6, 8, 9, 10] suggested that this loop was plausible, at least on a theoretical

level. Some [1, 2] suggested that they had personal observations that thisloop exists. One

link that was questioned by some interviewees [5, 6] again was the link from the number

of users to the attractiveness of participation. The fact that not many interviewees argued

againgt that link this time might be attributed to the fact that they had already made their

points within the context of the discussion about Reinforcing Loop 2 and that they were

411

mostly focused on the link from perceived quality to number of users while discussing
this loop. These arguments again point to the alternative structure where new authors

come form the stock of existing users.
6.3. Analysis of the Palicy Options

6.3.1. Tension between Building Functionality and Maintaining Quality as

the Underlying Policy Problem

After the questions about the main loops, the interviewees were asked to comment
on the applicability of the main policy problem of the open source software devel opment
(OSSD) nodel to their community. The main policy problem for the OSSD model has
emerged as the tension between building functionality fast enough to attract a critical
mass of users and contributors, while trying to maintain an acceptable level of quality in

order to retain existing users and contributors.

The system dynamics K through 12 community is a multi-faceted entity, which
works to propagate system dynamics concepts to K through 12 education. The
community works on many fronts, including, but not limited to developing and
disseminating instructional material for introducing system dynamics concepts to K
through 12 educators and students. Obviously, the community has many different issues
and problems related to different facets of their existence and functions. However, since
this research studies the community from an instructional material development
perspective, the focus is on the policy problems related to that specific facet of the
community. Consequently, the interviewees were asked whether they observed the

tension between building functionality and maintaining quality as their community’s

412

underlying policy problem with respect to the functions of developing and disseminating

instructional materials.

Table 6.6 summarizes the key comments from the interviewees related to this
guestion. Almost all of the interviewees [1, 2, 3, 5, 6, 7, 8, 9, 10] responded that they
observed the tension between building functionality and maintaining quality as the
underlying policy problem leading to the symptomatic problems related to the
development and dissemination of instructional materials within the community. Some
interviewees [1, 2, 5, 7] argued strongly in support of this tension being the main
problem, which eventually led the leaders of the community to take serious measures in
order to improve the quality of the materials without hurting the growth of the materials

collections in terms of quantity and functionality.

Table 6.6. Key Comments from Interviewees about the Tension between Building
Functionality and Maintaining Quality as the Underlying Policy Problem in the

Community

Respondent Key Comments

Interviewee 1 Yes. At first, when CLE tried to get as much material as possible
on the website, the quality went down. Then the low quality
materia is taken off, and this time quantity suffered. Now the
guantity does not increase as fast, probably because of the quality
control process.

Interviewee 2 “Absolutely.”

Interviewee 3 “Yes. | think that’s valid.”

Interviewee 4 Thisis not the problem right now. It may become a problem when
the community becomes more mainstream.

Interviewee 5 “Yes, of course. We have just tried to address it.”

I nterviewee 6 “Yeah, | think so.”

Interviewee 7 “Yes. Thisis exactly the way we look at it, t0o.”

Interviewee 8 Yes

Interviewee 9 Y es. Coaching/training could help improve this.

Interviewee 10 | Yes.

413

An interesting theme narrated by severa interviewees was how the quality and
guantity of the materials collection hosted by the CLE website have changed over time.
As mentioned in Chapter 3, the CLE website is the main repository of instructional
materials for introducing system dynamics concepts to K through 12 education.
According to several interviewees, when the CLE started to gather instructional materials
from contributors and disseminate them through their website, they avoided putting a
quality control mechanism in place. One of the reasons for that was the concern that the
limited number of contributors might be discouraged by such a quality control
mechanism. That led to a considerably low level of quality for the general collection,
especialy in terms of the accuracy of system dynamics concepts, although there were
occasional pieces of realy high quality. The low quality level was not a big concern back
then, since the users of the collection were mostly newcomers to the field of system
dynamics, and they were not yet knowledgeable enough to find the small system
dynamics-related errors in the materials. During those initial stages the focus of attention
was to build as much quantity and functionality as possible in order to reach a critical
mass, which would be useful for many people and thus could attract a high number of

USers.

However, as the collection grew over time, two important dynamics came into
play. On one hand, the users became far more knowledgeable about system dynamics,
and started to find and complain about the systemdynamics-related errors. This shifted
the focus of attention from quantity and functionality to quality, since the main problem
became retaining exiting users as well as attracting new users. Another dynamic that

helped shift the focus was the fact that the materials collection had reached a considerable

414

mass. At that stage, the CLE felt more confident about putting a quality control

mechanism in place, even if it meant sacrificing some functionality in order to improve
quality.

The first step taken to improve quality was to carry out an audit of existing
materials. Three experienced system dynamicists reviewed all of the existing materials
and grouped them into three categories according to their quality. One group was those of
high quality, which stayed on the collection “as is.” The second group consisted of
materials that needed dlight improvements and updates, which were easily revised and
put back in the collection. The third group consisted of materials that needed a
considerable amount of rework. These materials were sent back to their authors for
revision. Some of these were so low quality that even the authors did not seek to revise
them. A mechanism for continued quality control was also put in place. New materias
were not directly added to the collection any more, but went through a similar quality
assurance process. However, the CLE is still sensitive about not discouraging
contributors. They try to keep the “quality threshold” at a level that strikes a balance
between improving quality and maintaining an acceptable stream of new materials into
the collection. This narrative reflects how the tension between building functionality and
maintaining quality can become an important policy problem and shape the policies of

the leadership of an open online collaboration community.
6.3.2. Policy Option 1: Filtering New Material

Following the discussion about the main policy problem, the first policy option
discussed with the interviewees was filtering new materials produced by inexperienced

authors, as shown in Figure 6.6. The counterpart of this policy option in the context of the

415

OSSD modd is the barriers to contribution policy option. The following explanation was

presented with the sketch:

“The first policy option is filtering materials that are produced by
inexperienced authors. This option is based on the premises that inexperienced
authors generate more errors per production, and by filtering the materials that are
produced by inexperienced authors, it may be possible to decrease the number of
new errors or weaknesses in materials. ... materials produced by inexperienced
authors are not added directly to the overall materials produced, but instead
diverted to a backlog to be filtered. ... a certain portion of this backlog would be
accepted and added to the overal production, while the rest is reected. ...
filtering would be done by experienced devel opers, with a certain filtering rate per
time unit, and an average rejection ratio would determine the amount of materials
that are accepted or rejected. The regjection ratio would depend on the level of
scrutiny experienced developers apply during filtering, and thus decrease the
number of new errors that go into the materials collection. ... a higher rgjection
ratio, which means a higher scrutiny level, would reduce the number of new
errors. ... apossible adverse effect of this policy would be decreasing motivation
for production on the part of the inexperienced authors. It is possible that as the
rejection rate increases, motivation for producing materials would decrease. ...
another adverse effect of this policy [might be that materials] produced by
experienced authors would decrease, since they would dedicate a portion of their

time to filtering.”

416

Motivation for‘/\
Production

Rejection
Ratio
Production to
Production % beFiltered |/ Rejected
- Inexperienc +
© K— > Inexpeﬂenced Authors .
New | nexperienced Authors Acoept Filtering
Authors eptef Rate
+ +
Attractiveness of + “
Participation Production
V" \ -
Production by Experienced
Functionality Functionality of Experienced _ Authors
Achievement Materials New Authors 7+
+ Functionality
Expected
Functionality
+
Perceived Quality Errors | X
of Materials <—/ New Errors

Figure 6.6. Policy Option 1: Filtering New Material as Shown to the Interviewees

The interviewees were asked whether they observed a similar policy implemented
in their community, and if so what the consequences were. Table 6.7 summarizes the key

comment by the interviewees.

417

Table 6.7. Key Comments from Interviewees about Policy Option 1: Filtering
New Material

Respondent Key Comments

Interviewee 1 { Discussed about diverting the production from inexperienced
authorsto a backlog to be filtered.} "Yes. That's what we do
now.” { About the two adverse effects:} “We observed all of that.”
Interviewee 2 CLE appliesthis. For aperiod, submissions were down. This may
be due to the decrease in motivation or other factors. CLE has a
three-tier policy, including rework. With just an accept-or-reject
policy average quality would increase but quantity would suffer.
Interviewee 3 Yes. A decrease in motivation could happen, but rejection rate is
not that high now. Decreased production by experienced authors
argument does not hold, because the materials to be filtered and
reviewed and edited are negligible in number at CLE.
Interviewee 4 “Yes, thisiswhat [CLE] isdoing.” Motivation decrease would in
fact be a problem. When the community is not mainstream
rejecting is more risky. Later on when the community becomes
more credible and mainstream that might become easier to do. At
this stage re-writes would work better. Inexperienced authors need
coaching, not rejecting. Decrease in experienced authors' own
production happens. But it could be made positive, if filtering [and
reviewing and editing] is done together with coaching.
Interviewee 5 “Filtering is what we are doing. But we are filtering from all
authors. [Not just from inexperienced authors.]” We have alimited
number of editors, so they cannot spend alot of time on other
things. We tried to avoid the motivation decrease. We have not
observed the amount of reaction we expected.

Interviewee 6 Not enough filtering is being done to hurt production by
experienced authors. “It may become a problem [in the future], |
haven't seen it yet.” The first adverse effect would happen rather
in the form of inexperienced authors leaving the community,
rather than their contribution level decreasing.

Interviewee 7 “[Our policy] is exactly this...[However,] we don’t differentiate
between experienced and inexperienced authors. [All work is
filtered.]” { Refersto afiltering and editing type of policy.}
Interviewee 8 Y es. Combined with reviewing and editing. Motivation decrease is
not observed, but makes sense theoretically. Decreasein
experienced authors' production is observed.

Interviewee 9 “This makes alot of sense to me.” CLE doesthis. Thereisno
direct observation, but a very high rejection ratio might in fact
hinder the production by inexperienced authors. CLE was
concerned about that. “[CLE ig] trying to find some middie
ground.” However CLE also has reviewing and editing.

418

Table 6.7. Key Comments from Interviewees about Policy Option 1: Filtering
New Material (continued)

Interviewee 10 | “Absolutely.” Thisis CLE’s approach. Waters Foundation

combines this with reviewing and editing. There is not enough
sample to comment on motivation decrease. Decrease in
experienced authors' production is actively avoided. “[We suggest
experienced authors to] focus on what [they] are doing, rather than
fixing things.”

All the interviewees suggested that they had observed some form of a filtering
policy being implemented in their community. However, in terms of the implementation
they emphasized two important differences between the suggested policy and the real life
applications within the community. First, filtering was not implemented as a pure policy,
where materials were either accepted as-is or regjected flatly. Whenever some kind of a
filtering policy was implemented, it was coupled with a revision extension, so that the
materials that are not accepted as-is can be “reworked” by the authors, the reviewers or

both.

The second difference suggested was that the community filtered all materials that
were submitted, both by experienced or inexperienced authors. This difference was not
brought up by as many interviewees as the first difference. However, those [5, 7] who

brought it up emphasized it forcefully.

One interviewee [1] suggested that the negative effect of filtering on motivation
for production was actually observed whenever a very high quality threshold was used.
Most other interviewees [2, 3, 4, 5, 6, 8, 9, 10] suggested that the negative effect was not
observed. They attributed that to the fact that the quality threshold, and consequently the

rejection rate were not high enough to trigger such an effect. However, even those

419

interviewees suggested that motivation for participation would decrease if the rejection
rate were high enough. In fact, they suggested that the understanding that motivation for
production would decrease under a high regjection rate was the reason why the quality
threshold and the rejection rate had been kept low. One interviewee [6] suggested that
this adverse effect would manifest itself as a portion of inexperienced author leaving the

community after being rejected, rather than a decrease in their motivation for production.

The other adverse effect of this policy, namely the decrease in experienced
authors' own production due to spending time on filtering, did not receive as much
support on a theoretical level from the interviewees as the first adverse effect. However,
at least four interviewees [1, 4, 8, 10] suggested that they had observed either a decrease
in experienced authors' production or a deliberate effort on the community’s part to avoid
such a decrease. One interviewee [3] argued that filtering had not hindered the production
by the experienced authors who participate in filtering, and that it did not have the

potential to do so.
6.3.3. Palicy Option 2: Reviewing and Editing Existing Material

Figure 6.7 displays the second policy option, reviewing and editing exiting
material, as shown to the interviewees. This policy option is the counterpart of the higher
debugging emphasis policy option in the context of the OSSD model. The following

explanation accompanied the sketch:

“The second policy option is reviewing and editing content in order to fix
existing errors. ... Here again, experienced authors and inexperienced authors
build functionality by producing materials and while doing that they generate

errors and weaknesses in materials. ... experienced authors would spend time on

420

reviewing and editing content and thus fix a portion of existing errors. ...
reviewing and editing would decrease production by experienced authors. This
decrease would probably be greater than that would happen under the filtering
option, since reviewing and editing existing content would ke more time than

filtering new production.”

Experienced
- % oy Inei&p?ﬂenced —~& Authors
New |nexperienced uthors Production by +J_
Authors Inexperienced Production by
+ Authors Experienced
\ Authors
. -
Attractiveness of e
Participation Production
+4) N
Reviewing and
Functionality Editing
Achievement

- Functionality

+

\ of Materias New

Functionality

Perceived Expected
Quality of Functionality
Materids

\ Errors

New Errors
%ﬂ Fixed

Errors¥
o

Figure 6.7. Policy Option 2: Reviewing and Editing Existing Material as Shown
to the Interviewees

Once again, the interviewees were asked whether they observed a similar policy
implemented in their community, and if so what the consequences were. Table 6.8

summarizes the key comment by the interviewees about the second policy option.

421

Table 6.8. Key Comments from Interviewees about Policy Option 2: Reviewing
and Editing Existing Material

Respondent

Key Comments

Interviewee 1

Yes. A combination of filtering and reviewing and editing is
implemented.

Interviewee 2

This policy has been implemented intermittently. Now it exist in
CLE.

Interviewee 3

Production decrease happened for a while during the general
retrospective review at CLE. CC-STADUS must have had that
during a period in the past. “It is periodic, ...rather than

continual.” CLE’sreview processis acombination of filtering, and
reviewing and editing

Interviewee 4

Filtering is done together with reviewing and editing. CLE waited
for material to gather for awhile and then carried out abig
filtering/reviewing and editing intervention. Nowadays materials
go through filtering, and reviewing and editing as they arrive.

Interviewee 5

Reviewing and editing is combined with filtering. CLE filters, but
doesn’t spend time on reviewing and editing if the author does not
do rework on a piece that is found to be of low quality. If the
author does rework, CLE does reviewing and editing, as well.”

Interviewee 6

CLE implements a combination of filtering and reviewing and
editing. There are four categories for incoming materials: 1) Good
enough to publish asis. 2) Requires very little editing. 3) Requires
substantial editing. 4) Has no value at al; diplomatically rejected.
Filtering does not take too much time, reviewing and editing does.

Interviewee 7

Thisis not used outside of Waters Foundation. Decrease in
experienced authors' production does not hold, since the reviewing
and editing load is not too big. If the expectations from the Waters
Foundation sites in terms of quantity were higher, that would
probably hold.

Interviewee 8

Y es. Combined with filtering. Decrease in experienced authors
production is observed.

Interviewee 9

Thisisused extensively. “1 agree [that reviewing and editing takes
more from experienced authors' time.] | don’t think you' re going
to find very many experienced authors willing to do this
scenario.... [They] loveto write, ...and if you take too much of
their time reviewing other materials, there hasto be areally good
compensation for that.” Have observed that effect.

I nterviewee 10

Combined with filtering. Not enough sample size to comment on
the production decrease effect. Thereis not alot of material to be
reviewed and edited.

422

All the interviewees suggested that they had observed the policy of reviewing and
editing existing material being implemented in their community. Many interviewees
reiterated the fact that their community implements the “filtering” and “reviewing and
editing” policies in combination. The interviewees suggested two reasons for this
combined implementation. First, the community tries to bring out the best in each author
and each work, so they encourage revisions based on rounds of reviews and edits in order
to help improve the quality of the submitted materials. Second, the community does not
want to flat out reject materials, in an effort not to discourage authors. Several
interviewees [3, 4, 6, 8] attributed the unwillingness to reject materials to the culture
within the overall community of K through 12 educators. They suggested that, as a
cultura value, criticism within the general K through 12 community tends to be more
indirect, encouraging, and constructive in nature, compared to criticism in an academic
setting, which is essentially direct and at times confrontational. To loosely paraphrase an
interviewee [4], the skins of K through 12 educators are not as thick as academicians.
When filtering is coupled with reviewing and editing, it becomes possible to reject
materials indirectly. As one interviewee [5] suggested, a work that is not found to be of
merit can be sent back to the author for revision numerous times. In the end it would
either become good enough to be added to the collection or the author would give up

trying to improve it further without feeling directly rejected.

Some interviewees suggested another difference between the reviewing and
editing policy as presented during the interviews and its actual implementation within the
community. The policy as presented during the interview assumes a continual reviewing

and editing intervention. As the materials are received, they are added to the backlog of

423

materials to be reviewed, and the experienced authors review the backlog with a certain,
continual rate. According to four interviewees [2, 3, 4, 5], the real life implementation of
the policy had been periodic, or intermittent rather than continual. One of the four
interviewees [5] suggested that the process had become more continual recently, and that

they were trying to keep it that way.

Several interviewees supported the hypothesis that this policy would have an
adverse effect on the production level of experienced authors who participate in
reviewing and editing. Four interviewees [3, 6, 8, 9] suggested that they had observed a
decrease in experienced authors production whenever they participated in reviewing and
editing. Two other interviewees [7, 10] suggested that they had not observed the adverse
effect, and they attributed it to the fact that there were not too many materials to be
reviewed. They concluded that if the submissions would increase, maintaining an
acceptable amount of reviewing and editing would take from experienced authors' own

production time.
6.3.4. Policy Option 3: Selecting New I nexperienced Authors

Selecting new inexperienced authors was the third policy option discussed with
the interviewees. The counter part of this policy option in the context of the OSSD model
is the barriers to entry policy option. Figure 6.8 displays this policy as shown to the

interviewees. The sketch was presented with the following explanation:

‘... the third policy option is selecting new inexperienced authors
according to their talents. ... Here, new inexperienced authors are not directly
accepted into the existing inexperienced authors pool. Rather, they apply and wait

to be selected. ... selecting is carried out by experienced authors, and of course

424

some applicants are refused, based on an average refusal ratio. Refusa ratio
would be based on the scrutiny level of the selection process. A higher level of
scrutiny would mean a higher refusal rate, and that in turn would mean a higher
average inexperienced author talent level... One possible adverse effect here
would be a decrease in the number of inexperienced authors applying. ... as
refusal ratio increases, number of inexperienced authors applying would decrease.

. another adverse effect of this policy [might be that materials] produced by
experienced authors would decrease, since they would dedicate a portion of their

time to selecting.”

+ Selecti ngi_\
R efu(Rate Experienced
| T Authors
Igtaﬂxr?en?nct;ad + Inexperienced
. orsto be
Inexperienced Selected Selected Authors
Authors Applying i \‘ +
+ / IProduct_i on 2)& Production by
nexperienc Experienced
Refusal
Authors
Retfio Authors
Attractiveness of t Average *
Participatjon Inexperienced Production™
Author Taent

_ _ Functionality
Functionality of Materias
Achieveme_nt T

New

Functionality
; Expected
giralcﬁ;// %cfj Functionality
Materials

\ Errors |

NerErrrors
Figure 6.8. Policy Option 3: Selecting New Inexperienced Authors as Shown to

D

the Interviewees

425

Table 6.9 summarizes the key comments by the interviewees about this policy.

Table 6.9. Key Comments from Interviewees about Policy Option 3: Selecting

New Inexperienced Authors

Respondent

Key Comments

Interviewee 1

Authors are not authors until they send something in; and when
someone sends something in, they are never refused. Their work
would be reviewed and comments would be sent in any case. What
may happen is someone sends something in that does not meet the
guidelines, and a comment is sent back suggesting following the
guidelines. If that person does not work on the submission any
further, the person does not become an author; but CLE never
refuses people. At least in the current stage, refusing people would
not help, because there is not enough participation anyway.

I nterviewee 2

No. If this policy isimplemented, a reduction in the number of
people interested could be observed in short run, and that would
have a negative impact. There might be a positive impact in the
long run.

Interviewee 3

Why are not there alot of inexperienced authors joining the
community? Is it because experienced authors are not supportive
enough? Maybe, maybe not? Along with that, time, willingness,
and predisposition for being an author might all be reasons. “In
fact, rather than acloud ... we may have a small stock of [potential
authorg], ... afinite stock.”

Interviewee 4

“No, | haven't seen that... | am personally for it. But, | don’t know
how it would work.”

Interviewee 5

No. Because motivation of inexperienced authorsto join would in
fact decrease. | don’t think this should be implemented. CLE has
the policy that anybody can submit to its website.

I nterviewee 6

CLE isinvolved not in selecting, but in training novices.

Interviewee 7

Donein avery refined, diplomatic, and covert way. People do not
apply formally, however, Waters Foundation site managers do
pick people to encourage and support. Motivation decrease has not
been an issue so far.

Interviewee 8

No. There is some covert selection, though. Most of the time not
even the mentor that does the selecting is aware of this. An overt
selection policy would not be a“helpful” policy.

I nterviewee 9

“Yes, | have seen this.” The best people among one year’s
workshop participants become next year’ s instructors. However
people don’t know about this beforehand, and thus it does not
affect the motivation. Production decrease on part of experienced
authorsis negligible.

I nterviewee 10

No. “We are not rejecting people.”

426

Most interviewees [1, 2, 3, 4, 5, 6] suggested that they had not observed a policy
of selecting new authors being implemented in their community. Three interviewees [7,
8, 9] argued that although an open selection process had never been implemented, there
were covert and subtle processes for selecting new authors. In most cases these processes
would be so subtle that even those doing the selecting would not be aware that what they
do is selecting. One example given was the process of picking people to support and

encourage.

Interviewees expressed varied opinions about the overall usefulness of this policy
option. Some [4, 7, 9] suggested that they are in favor of it, since it is an efficient way to
determine and encourage the best people to become authors. However, alarger portion of
interviewees [1, 3, 5, 6, 8] suggested that they would be against such a policy since it
would discourage and alienate most potential authors. One common concern expressed
by most of the interviewees, regardless of their being for or against selecting as a policy
option, was its potentia for decreasing new contributions, either only in the short run, or
both in the short and the long run. Thus, most interviewees [1, 2, 3, 5, 6, 8] supported the
hypothesized potential adverse effect of an overt selecting policy on the number of
inexperienced authors willing to join the community. The three interviewees[7, 8, 9] who
argued that covert and subtle forms of selecting were implemented suggested that these
implementations had not had a negative effect on the willingness of new authors who
want to join the community. However, one of them [8] suggested that an open selecting

policy could have such an adverse effect.

427

The hypothesis that the selecting policy would have an adverse effect on
experienced authors own production was not supported. The interviewees who

commented on that potential effect suggested that it would not be substantial.
6.3.5. Policy Option 4: Coaching Existing I nexperienced Authors

The last policy option discussed with the interviewees was coaching existing
inexperienced authors, which is the counterpart of the higher coaching emphasis policy
potion in the context of the OSSD model. Figure 6.9 displays this policy as shown to the

interviewees. The following explanation accompanied the sketch:

“...Here experienced authors coach inexperienced authors, and ...
coaching increases average inexperienced author talent gradually over time (with
a delay). Accordingly, average inexperienced author talent is defined as a
“smooth” in this context. Both experienced and inexperienced authors would
dedicate a portion of their time to coaching under this policy. So, ... coaching
would decrease materials produced by experienced and inexperienced authors,

thus affecting the functionality growth negatively in the short run.

428

— Coaching] Experienced
Authors

SZ

I X > |nexperienced + /
New |nexperienced Authors \ -

Production by +
Authors Inexperienced Production by
/4+ Authors Experienced
Authors
Attractiveness of
Participation +
+4 \+
Average
Inexperienced +)
Author Talent Production
Functionality
Achievement
Functionality X0
of Materias New
Functionality
Perceived
Quality of Expected
Materials Functionality
Errors = A D
New Errors

Figure 6.9. Policy Option 4: Coaching Existing Inexperienced Authors as Shown

to the Interviewees

429

The key comments by the interviewees about this policy option are summarized in

Table 6.10.

Table 6.10. Key Comments from Interviewees about Policy Option 4: Coaching
Existing Inexperienced Authors

Respondent Key Comments

Interviewee 1 The expectation is that coaching will increase the general talent
level, and the number of errors will decrease. Coaching indeed
takes alot of time, even more than reviewing and editing.

Interviewee 2 Thisis not done systematically. It might have a positive effect in
the long run.

Interviewee 3 Y es. However, not everybody does that. It is mostly donein a
localized manner. Carlisle site is an example where coaching
exists.

Interviewee 4 “Thereis quite alot of that. | have probably done [this] more than

anything else.” Coaching is very time-consuming. It’s the slowest,
but the safest policy.

Interviewee 5 It is hard to separate coaching from reviewing and editing.
Coaching isthe only way to increase the talent level across the
board.

Interviewee 6 Coaching is avery common strategy. Coaching overlaps with
production, It may limit production, but these two activities are not
completely divorced.

Interviewee 7 “You are probably getting closer to what happens within [the
Waters Foundation] network; and it does slow down the
production. But we think that that is probably desirable. The
quality will make up for the quantity. Y ou are much better off over

the long term.”

Interviewee 8 Y es. Coaching increases the talent level of both inexperienced and
experienced authors.

Interviewee 9 Timeis an issue in making coaching work. However if it works,

coaching is very effective.

Interviewee 10 Y es. Coaching raises awareness level. It absolutely helps. “You
can consider... the editing process to be some coaching.” “It keeps
me from going back and revising my own [work].” “It’'s something
of atrade off. I’ m taking time away from getting my thing done,
but I’'m putting more material our there through that other person
I’m coaching.”

430

All interviewees suggested that one form or another of coaching was done within
their community. They suggested that coaching was mostly done in an unorganized and
localized manner. In that sense, coaching was not implemented as a systematic policy,
but nevertheless encouraged within the community. Some interviewees [4, 5, 6, 10]
suggested that coaching was done in the form of experienced authors reviewing
inexperienced authors work and giving ideas to improve them. Thus, coaching was

coupled with reviewing and editing in some cases.

Most interviewees [1, 4, 5, 7, 8, 9, 10] suggested that coaching is indeed an
effective policy for improving the average author talent and consequently the overall
quality of the materials collection in the long run. Several interviewees [4, 5, 7] argued
that coaching is the only policy that would sustain the quality level of the collection in the
long run, since it gradually shifts the burden of maintaining quality within the community

from afew expertsto alarger number of experienced contributors.

The potential adverse effect of coaching on the experienced authors own
production was supported by most of the interviewees. Several interviewees [1, 4, 7, 9]
emphasized that coaching was indeed a time-consuming process and that it took a lot
from the experienced authors own production time. One interviewee [7] suggested that
the loss of production is compensated by the increasing level of overall quality. Another
interviewee [10] suggested that the production loss on the experienced authors part
would be compensated by the increase in the production by the inexperienced authors

who were coached.

431

6.3.6. Comparing the Policy Options

At the end of the discussions about the policy options, the interviewees were

asked to compare the policy options based on their merits and potential adverse effects,

and suggest which policy options would bring the highest improvement with the least

amount of loss when applied to their community. The key comments by the interviewees

aregivenin Table 6.11.

Table 6.11. Key Comments from Interviewees Comparing the Four Policy

Options

Respondent

Key Comments

Interviewee 1

Coaching takes alot of time, but pays off. Filtering, reviewing and
editing, and coaching all have their merits.

Interviewee 2

Coaching would be beneficial. Reviewing and editing and filtering
combined would also be useful. Coaching, combined with
reviewing and editing, has critical positive implications for the
future. Coaching can take the form of collaboration or mentoring
depending on the situation.

Interviewee 3

Selecting seems to be the most promising policy. Not everybody
would become an author. So pick the right ones and encourage
those. That can even be done overtly. It would require time,
money and structure.

Interviewee 4

“1 like [the selecting policy], but it would be very dangerous.”
Other than that, coaching is the most constructive, most positive. It
develops more collaboration.

Interviewee 5

CLE istrying to do the reviewing and editing with coaching, “A
little bit of filtering done in avery polite way, combined with
reviewing and editing, which becomes coaching.” If you do
reviewing and editing in a coaching fashion it becomes most
effective.

Interviewee 6

Reviewing and editing has coaching intrinsically. Coaching is the
most efficient strategy. Plain reviewing and editing is an “ after-
the-fact” approach, and thusit is not so efficient. It involves some
time and energy lost along the way. Selecting implies some kind
of pre-judgment before anything has been done. “Coaching is
more of a continuous quality improvement model.”

Interviewee 7

A combination of local filtering (* narrowing-down”), and
network-wide reviewing and editing works best.

432

Table 6.11. Key Comments from Interviewees Comparing the Four Policy
Options (continued)

Interviewee 8 Coaching isthe best policy. Especialy, in theinitial stages when
gathering a critical mass of authors.

Interviewee 9 Filtering is beneficial. Reviewing and editing is not feasible.
Selecting actually worksin a small group. However, it may or may
not be practical on alarger scale. Coaching has great potential, but
the timeissue is going to be critical. Release time for authors
would help make coaching work.

Interviewee 10 Coaching.

Half of the interviewees [1, 4, 6, 8, 10] suggested that coaching was the most
constructive and effective policy option. Two other interviewees [2, 5] suggested that
coaching coupled with reviewing and editing would have considerable potential in
improving product quality and developer talent while maintaining product functionality
growth. Some interviewees [1, 2, 4] reiterated their arguments that coaching worked
better in the long run. All of these suggestions were in parallel with the findings of the
OSSD model policy runs about the higher coaching emphasis option. Higher coaching
emphasis coupled with higher debugging emphasis provided an optimal mix of product
quality and developer talent improvement while causing very small amounts of product
functionality and community growth losses within the context of the OSSD model. (See

Sections 5.5.5 through 5.5.7 and Section 5.5.9.)

One interviewee [3] argued that selecting would be the best policy option.
Another interviewee [4] suggested that selecting would be favorable, but there was the
danger of losing the interest of potential authors, which might decrease the number of
authors, and consequently slow down the product functionality and community growth to

the point where the community would fail to sustain itself. The policy runs with the

433

counterpart of the selecting policy in the OSSD model, higher barriers to entry, provided
substantial product quality improvement without causing a dramatic loss in product
functionality growth. However, one argument about the findings of those runs was that a
very high barrier to entry coupled with developer participation or developer productivity
levels lower than those in the base case could cause a large enough product functionality
loss that the community would fail to sustain itself. Thus, the selecting policy was found
to be a beneficial, but also a dangerous policy option within the context of the OSSD
model. Accordingly, it can be argued that that interviewee's mental model about this

policy option was in parallel with the findings of the policy runs.

One interviewee [9] suggested that the only feasible policy option was filtering.
This interviewee argued that reviewing and editing and coaching were not feasible since
they consume too much of experienced authors’ time, and selecting would only work in a
small group. These arguments were in disagreement with the findings of the policy runs
on the OSSD moded. While barriers to contribution, the counter part of the filtering policy
in the OSSD model, did improve product quality, the improvement was just a little better
than the other policy options, and it came in expense of product functionality and

community growth.

One interviewee [7] suggested that the combination of the filtering and the
reviewing and editing options would be the best policy to improve quality while
maintaining product functionality growth. Another interviewee [2] suggested this
combination as a feasible and beneficia policy, athough not the best. A policy run that
combined the counterparts of these two policy options, namely barriers to contribution

and higher debugging emphasis, had not been performed on the OSSD model in the

434

original policy run set. However, such a run was performed in order to analyze the
implications of the arguments of these interviewees within the context of the OSSD
model. During the policy analysis of the OSSD model, the combination of filtering with
reviewing and editing was found to be less favorable than a pure reviewing and editing
policy in overall. On the other hand, the combination policy performed better than a pure

filtering policy.

The analysis of the responses to the policy comparison question revealed that
many of the interviewees observations and mental model were in paralel with the
findings of the policy analyses performed on the OSSD model. This finding provided
more support for the argument that open source software devel opment communities and
instructional development communities such as the system dynamics K through 12
community can be studied as the instances of the same kind of online communities,

which this study has defined as open online collaboration communities.
6.4. Implicationsfor the General Dynamic Feedback Framework

The analysis of the interviews provided several important implications that guided
the development of the dynamic framework. These implications are summarized in Table

6.11.

435

Table 6.11. Key Implications Indicated by the Interviews for the Genera
Dynamic Feedback Framework

L oop Summary Findings and Implications

Reinforcing Loop 3 Keep the loop. However, change the detail structure: Authors
(“MoreFunctionality | come from Users, not from outside the community
AttractsMore (represented by a cloud in theinitial model.)

Authors’)
Reinforcing Loop 2 Combine with Reinforcing Loop 3. The causal link from the
(“More Functionality | number of usersto the number of authorsisa*“material” link,

Attracts More New instead of an “information” link.

Users, and That

Attracts More New

Developers’)

Balancing Loop 1 Mark as suspect. May not hold for some communities, which
(“ Fewer focus on divergent products. May come into play very latein
Opportunitiesfor the life cycle of a community, thus having little effect on the

Contribution Bring success or failure of the community as awhole.
Fewer Authors’)

Balancing Loop 4 Keep the loop. However it works through Users rather than
(“MoreErrorsBring | through Authors, agreeing with the changes to Reinforcing
Fewer Authors’) Loop 3.

Balancing Loop 5 Combine with Balancing Loop 4. Once again, the causal link
(“MoreErrorsBring | from Usersto Authorsisnot an “information” link, but a
Fewer Users, and “materia” link.

Fewer Authors’)

Using these implications as guidelines, the basic feedback structure of the OSSD
model was transformed into a simplified, general dynamic feedback framework. In that
sense, the fina framework is a representation of the fundamental dynamic feedback
structure of open online collaboration communities based on the initial OSSD model and
the mental models of the interviewees about system dynamics K through 12 community.

The details of the dynamic feedback framework are discussed in Chapter 7.

436

CHAPTER 7 -- A GENERAL DYNAMIC FEEDBACK FRAMEWORK

FOR OPEN ONLINE COLLABORATION COMMUNITIES
7.1. The Framework

A general dynamic feedback framework was built based on the initial open source
software development (OSSD) model and the findings of the ten interviews with the
members of the system dynamics K through 12 instructional material development
community. The framework is a ssmplified theoretical representation of the fundamental
dynamic feedback structure underlying open online collaboration communities. The

framework is represented as a causal |oop/stock-and-flow diagram.

The dynamic feedback framework contains four main feedback loops. These
loops were among the main reinforcing and limiting structures in the OSSD model.
Furthermore, the interviewees identified these loops as structures that determine the

performance of their community. These four loops are introduced below.

The members of the community are grouped into three: Users, Inexperienced
Authors, and Experienced Authors. When users decide to make contributions to the
collection they become inexperienced authors. The OSSD model did not involve a flow
between the user pool and the author (developer) pool. In other words, there was no
material link from the user pool to the author (developer) pool. The user pool influenced
the author (developer) pool thorough an information link: as more users adopted the
product, more developers were attracted to the community. However, most of the
interviewees strongly argued in favor of a materia link between the user and author
pools. They had a twofold rationale for that: 1) Potential authors did not have adequate

means of knowing the size and the structure of the user pool, and 2) New authors did not

437

come from outside of the community, they came from among the existing users.
Accordingly, in the framework, new authors come from the user pool. Inexperienced
authors become experienced authors as they mature in authoring. There are members that

leave at every stage of the maturing process. (See Figure 7.1.)

438

: +
Users —a—»p Inexperienced

%’N W New Authors Maturing
Users \v+ Authors X _ Authors

Leaving Leaving

Users I nexperienced
Authors
8]

Figure 7.1. The General Dynamic Feedback Framework.

Authors

439

ST Experien@}=.@

Leaving
Experienced
uthors

Inexperienced and experienced authors contribute to the production and build the
product or the materials collection. The size and the functionality of the collection
determine the number of new users. A larger and more functional (more useful)

collection brings more new users, thus forming the main reinforcing loop of the

framework. (See Figure 7.2.)

440

=

Users 3! |NEXperienced
\v+ New AuthO{i Maturing Authors ExLeavmged
, ien
Leaving Authors Leaving Authors uthors
Users | nexperienced
Authors

Total Author

@ Hours

Q .
Production

s

Collection

Figure 7.2. The General Dynamic Feedback Framework.

441

As authors produce content, they add quality problems to the collection. (See
Figure 7.3.) Experienced authors review the collection, discarding materials that are of
very low quality, and choose some other materials for rework. Inexperienced and
experienced authors revise and improve the materials chosen for rework. (See Fgure

7.4)

442

ety Users %'nﬂpﬂim@ Experienced %

New \4_ New Au‘thos M aturi ng Authors EXL ea/l ncaj
i ien
s Leaving Authors " Leaving Quthors uthors
* Users I nexperienced
Authors
gt
+¢ T+
Total Author

Hours

& A Collection
Production
+)
O = »| Qudity
New Quadlity Problems
Problems

Figure 7.3. The General Dynamic Feedback Framework.

s o] Users =t/ Inexperieonced | [Exparienced |,

New + New Au‘thos M aturi ng Authors EXL ea/l ng&j
i ien
D Leaving AUOrs " Leaving Quthors + uthors
* Users Inexperienced ny
Authors eview
Rate

+y 4 /
Total Author”
+ » Rework
~

Hours v
To Rework Backlog

© 5 = Collection (= £
Production / Reworked
+
MDiscarded
Y
+)
O = »| Qudity
New Quadlity Problems
Problems

Figure 7.4. The General Dynamic Feedback Framework.

Discarding and reworking materials eliminate certain portions of the quality
problems. The amounts of discarded and reworked materials are determined by the
quality threshold, which is used by the experienced authors as the benchmark for
evaluating the collection. This threshold also affects the ratio of users who become
authors. A higher quality threshold means more discarded and reworked material, thus
yielding a higher quality level. However, it also means a lower number of new authors.
(See Figure 7.5.) The rationale is that a higher probability of their work being discarded
or sent for rework will decrease users motivation to make contributions and become
authors. This follows from the findings of the policy runs based on the higher barriers to
contribution option, which suggested that higher rejection ratios yield lower number of
new authors (developers). (See Section 5.5.2 for the discussion about the higher barriers
to contribution policy runs.) Also, the discussions with the interviewees supported the
hypothesis that a considerably high regjection ratio would decrease the motivation to
participate in production. (See Section 6.3.2 for the discussion about interviewees

comments on the effects of high rejection ratios.)

Quality threshold also determines the barriers to entry. As the quality threshold
increases the community becomes more selective in accepting new authors, and the

number of users accepted into the inexperienced author pool decreases. (See Figure 7.5.)

445

Qudlity
=g Users ——ava— o Inexperienced ;J’% Experienced Ny Threshold

New + New AuthO{i Maturing L__Authors ExLeaVinged
' ien
Users Leaving Authors “Leaving Authors) ence
" Users I nexperienced R
Authors eview To Rewark
- Rate Ratio
+y T /
Total Author
Hours s, | Rework
™~ To Rework |_Backlog

“ ——— % Collection < X
Production / Reworked
- + +
piDiscard Rejection
Retio
L
N) +
New Quality | Problems QP Fixed by
Problems Rework
QP Eliminated by
Discarding

Figure 7.5. The General Dynamic Feedback Framework.

446

The density of quality problems, which is defined as the number of quality
problems per unit of the collection, determines the rates with which new users join the
community, and exiting users leave. A higher density of quality problems would yield a
lower number of new users, and a higher number of leaving users. These links form the

second main loop in the framework, which is a balancing (limiting) one. (See Figure 7.6.)

447

Qudlity

S| USENS ” | nexperienced lE"' Experienced ;+ Threshold

Authors Maturing Authors Leavin

New + New ving
Users Leaving Authors N N\ Authors Ex t|r(]anoed
Usars Leaving + uthors
T | nexperienced Revi
Authors S/;IGN To Rework
“ ° Ratio
+§ 4 /
Total Author
Hours A4, | Rework
™~ To Rework |_Backlog

< 5 P> Collection [25
Production / Reworked
+
Density of Qudlity MDiscard Rej ecti(;;]
Problems _ Ratio
|2
- +
» Qudity & 0
Problems QP Fixed by
Rework
QP Eliminated by
Discarding

Figure 7.6. The General Dynamic Feedback Framework.

448

The third main loop of the framework, which aso is a balancing one, is formed by
the opportunities for contribution. As the collection gets larger and more functional,
opportunities for contribution decrease. Decreasing opportunities for contribution
decrease the number of new authors, since potential authors may be discouraged by the
lack of vast opportunities for making contributions. (See Figure 7.7.) This was one of the
main limiting loops in the OSSD model. However, the discussions with the interviewees
about the existence and effects of such a limiting loop suggested that this loop might
come into effect considerably late in the process for some open online collaboration
communities. In fact, it may not come into effect for some communities that focus on
divergent tasks such as instructional materials collections, rather than convergent tasks
such as software products. Although many interviewees suggested that this loop was
plausible theoretically, they emphasized that they have seen no indication that this loop
exists or can be effective in their community. Thus the link from the collection to the
opportunities for contribution and the link from the opportunities to new authors are
marked as “questionable” in the final framework, and shown in dashed lines. (See Figure

7.9)

449

Qudlity

- . . Threshold
szl Users |ne>(pe”mced/3X_> Expenen@,@ ik
Naw + New AuthO{i Maturing Authors ExLeaVi nged
Users %Leavi ng Authors “Leaving Authors N utlr?grs
Tt +Users I nexperienced Revi
Authors S/aitew To Rework
o N Ratio
+4 + /
Total Author
Hours = X Rework
To Rework |_Backlog
Opportunities for
Contribution > % Collection |- ok
Production / Reworked
+
Density of Qudity MDiscard Rej ecti(;;]
Problems _ Ratio
+
2
- +
o > » Qudity b4 !
New Quality Problems QP Fixed by
Problems Rework
QP Eliminated by
Discarding

Figure 7.7. The General Dynamic Feedback Framework.

450

Average developer taent and coaching form the fourth loop, which is a
reinforcing one. Coaching increases average developer talent, and as average developer
talent increases quality problems decrease, causing a lower density of quality problems.
A lower density of quality problems brings more new users, and slows the leaving of the
existing users, thus increasing the number of users more quickly. More users mean a
higher number of new authors, which increases the number of authors more quickly, and
thus provides more author hours available. More author hours close this reinforcing loop
by giving way to more coaching. (See Figure 7.8.) This loop shows its reinforcing effect
in the long run, since average talent takes a lot of time to build. This was an important
point that the interviewees argued when discussing the effects of coaching. Most of the
interviewees suggested that coaching is the most effective policy option in the long run.
(See Section 6.3.5 and Section 6.3.6 for discussions with interviewees about the coaching
policy and the comparison of the policy options.) Figure 7.9 shows the final framework in

its entirety with all the loops and variables involved.

451

T qaw
- i + : + Threshold
— epaiea |, [Epaead] N,
Oﬁg\/_’ : \+ New Authors Maturing |__Authors Leaving .
Users Leaving Authors X - NAuthors Ex t'ﬁ'”oed AN
N U%{'S +f L%" ng + uthors AN
+ + / I nexperienced Revi \
/ Authors S/a:tew To Rework N
& N Ratio \
\ / \
/ +} 1 \\
| Total Author \
I' Hours 4, Rework \
{l ~J To Rework |_Backlog N \
\ \
(. Coaching ‘}
Opportunities for |
Contribution 5 x— Collection [X \ '}
ANY Production / Reworked /
_ _ S + /
Density of Quality T~ pDiscard Rejection //’
Problems _ Retio /
+ /
+J /
Fi
Average
|-} Developer Talent
+ N
Quality v >
Problems QP Fixed by 4

Figure 7.8. The General Dynamic Feedback Framework.

452

QP Eliminated by
iscarding

Rework

Qudlity
p : . : + Threshold
ety Users |n®<peflmced/%, Experienced X o
Naw \er New AuthO{i Maturing Authors ExLeavmged
‘ ien
Ejfefs Leaving f‘UthOVS “Leaving Authors \+ eTience
P Users / | nexperienced Rvian
| & / Authors e To Rework
i / = Ratio
| ——
K / T
\ ," Total Author
\
\\\ i
\

Hours

\\
\

\

\\

N \\+ \‘\

\

\ (. N Coaching |
\ Opportunities for A \ !
\ . . | |
\ Contribution AN 0 % Collection [‘\ |

\ AN Production ! |
\\\ N + ||l I’I
Density of Quality T pxDiscard L
Problems _ | /
+ Ill /
Y uIn
ot} ~ Average
A4) Developer Talent
i + N’ e
Quality 4 >0 o
Problems QPFixedby , 7 pd
Rework <~ 7
QP Eliminated by 7
~i--__Discarding ____——""

Figure 7.9. The General Dynamic Feedback Framework.

453

The framework is a concise representation of the dynamic feedback structure that
underlies open online collaboration communities. It has the potential of explaining the
phenomena that determine the growth or decline of an open online collaboration
community. The feedback framework can be used as a basis for developing a generalized
dynamic feedback simulation model of an open online collaboration community. The
causal relationships between the variables of the framework or the feedback loops can be
used as hypotheses for empirical research studies. The framework can be further refined

based on the findings of such research studies.
7.2. Strengths and Limitations of the Study
7.2.1. Strengths of the Study

This study used a multi-method research approach, which combined system
dynamics and qualitative analysis of structured interview data. A multi-method approach
provides a way to study complex socia phenomena by integrating different
methodologies. That way the researcher has the opportunity to combine the strengths and
compensate for the limitations of each individual methodology (Brewer and Hunter 1989
pp.17). The system dynamics modeling phase provided a means to develop and articul ate
a preliminary hypothesis in the form of a system dynamics model. The interview and
gualitative analysis phases provided a way of testing the hypothetical model against the
observations and mental models of the members of a specific open online collaboration

community.

System dynamics is a quantitative modeling approach, which is particularly fit for
modeling complex, large scale, nontlinear, partially qualitative social systems. System

dynamics provides a means to conceptualize and model systems of mutual causal

454

relationships and feedback structures among high numbers of variables, which is harder

to achieve with other quantitative modeling methods.

The hypothetical system dynamics model was based on a literature review of
three relevant literature streams. The literature review was particularly focused on the
parallels that exist between these literature bodies, in an effort to ground the model on

multiple theoretical foundations.

Qualitative analysis of structured interviews is an efficient method for building
theories and testing hypotheses based on rich, qualitative data, which provides a meansto
look at complex social phenomena within a deeper context than that provided by most
guantitative approaches. The depth provided by a qualitative approach is hard, if not

impossible, to achieve using solely quantitative methods.

The research design provided a means to test the hypothetical system dynamics
model of open online collaboration communities against the persona observations and
mental models of the members of a representative community. The analysis of the
interviews provided rich and deep conceptual basis for testing the model and articulating
the dynamic framework. The final theoretical dynamic framework provided a basis for

developing models that can be applied to a wider range of cases.

Another important strength of this study was the contributions it made on several
fronts. The study contributed to various literatures, provided critical insights for
managing OOCCs, and constituted a basis for numerous potential future research studies.

For afull discussion about the contributions made by the study see Section 7.3.

455

7.2.2. Limitations of the Study

Qualitative research methods that are used to analyze rich qualitative data through
interviews and fieldwork have limitations with respect to reliability and
representativeness (Babbie 1998 pp.304). Findings of a qualitative research study would
inevitably bear subjective judgments on the researcher’s part. The researcher’s duty is to
consciously minimize this subjective “noise.” If more than one data collector or analyzer
isinvolved in the study, the differences intheir subjective dispositions would bring about

a problem with consistency of data collection and analysis.

Qualitative research studies based on interviews generaly involve smaller sample
sizes compared to those of questionnaire-based surveys, and experiments. Also the
sampling schemes are not always random (not probability-based). These factors bring
about a concern about the representativeness of qualitative research study findings. When
drawing conclusions from the findings of a qualitative research gudy, the researchers
should always keep in mind that external validities of qualitative research findings are

very limited.

Consequently, the research design used for this study had limitations with respect
to external validity. The findings of the case analysis have limited representative value.
The applicability of the initial system dynamics model was tested against only one open
online collaboration community. Thus, the final dynamic feedback framework, which is
based on the hypothetical system dynamics model and the findings of the interviews,

requires further empirical testing before it can be generalized to other cases.

System dynamics models are limited and ssimplified representations of the real

world. Classic system dynamics texts acknowledge this fact and argue that models cannot

456

be “verified,” or “validated” in the exact sense (Richardson and Pugh 1981, Sterman
2000). Thus, system dynamics methodology provides tests for “confidence building” in
models, rather than “validating” models. As discussed previoudy in this document,
system dynamics methodology is mostly used for modeling partially qualitative systems.
All variables in a model should be quantified in order to be able to simulate the model,
including the “soft,” qualitative variables, and that may mean that some (or in many cases
most) variables will be parameterized based on limited or no “hard” data. However, this
generally does not hurt the level of confidence toward robust models, since the overall
behavior of arobust model does not change significantly based on parameter changes. On
the other hand, system dynamics models are not good point estimators, partly due to the
parameterization issue, and partly due to the fact that they involve complex feedback
structures, and a significantly higher number of variables compared to predictive models

such as time series moddl's or econometric models.

System dynamics models, just like any conceptual model, contain biases that their
modelers bring in about the systems or problems being modeled. The modelers can try to
identify and stay aware of their biases, but ultimately, any model would contain a number
of biases. The effort of a modeler to keep his or her model bias-free is beneficial not
because it can actually achieve that goal, but because it can reduce the number and extent
of biasesin the model. The OSSD model is not an exception to the rule. While the model
is an integration of existing literatures on the theoretica approaches to online
communities, open source software development, and applications of system dynamicsto
software project management, it undoubtedly hosts the biases and presumption of its

modeler about these concepts. However, the OSSD model is as good as any other similar

457

model can be, since those similar models would be the products of modelers who have
their own biases and presumptions. The important point here is the acknowledgement of

this limitation about the model.

The research design lacks a component to test the initial system dynamics model
against empirical data from actual open source software development communities. This
limits the confidence with respect to the internal validity of the model. A possible
solution is testing the model through interviews with members of an actual open source
software development community, as discussed in the future research opportunities

section below.

When the initial model was tested for its applicability to the specific instructional
material development community through the interviews, the ideal case would be asking
the interviewees about the applicability of al the loops, variable definitions and causal
relationships in the model to their community. However, the limited time and attention
gpan of the interviewees during the interviews did not allow for an analysis of that
magnitude. Consequently, a substantial portion of the initial model could not be tested.
The loops and causal relationships that were selected for presentation to the interviewees
were those that were identified as the main drivers of model behavior during the model
building and model analysis phases. This approach holds a potentia bias factor on the
part of the modeler/researcher. Some of the feedback loops, variables and causal
relationshi ps that were omitted from the interviews based on the researcher’s judgment
about their importance could be identified by the interviewees as important structures that
affect the behavior of their community. However, the interviewees did not have the

chance to see and comment on these loops, variables, and relationships. This limitation is

458

not particular to this study. Any model-based socia research study based on testing a
large model against individuals observations and mental models should involve some
degree of simplification of the model before it can be tested. The OSSD model has over
270 variables, severa hundred causal relationships, and over 500 major and minor
feedback loops. A modd this big cannot be tested in its entirety against individuals
observations and mental models. That would require not only an enormous amount of
time, but also a tremendous cognitive effort and concentration on the part of the subjects
in order to understand all the structural details of the model. Not many subjects would be
willing and able to do that. Furthermore, trying to mentally digest a very large model
structure may overwhelm the cognitive ability of the subject. In such a case, the subject
may choose to accept or reject the model in its entirety without further comparison to his
or her observations and mental models. The subject may also choose to neglect certain
portions of the model in order to be able to digest at least a part of it, and thus compare
only the part that he or she chooses to focus on against his or her mental models. Any of
these strategies by the subject would defy the purpose of testing the model in its entirety.
Furthermore, it would not always be possible to detect whether the subject is using such a
strategy. Therefore, we can argue that any large model would need some degree of

simplification before it can be tested against individuals' mental models.

Testing simplified models pose cognitive problems too. Even small and simple
model s presented to subjects have the potential of distorting subjects own mental models
and inducing biases in subjects selection of personal observations to support or refute the
structures presented to them. In fact, we can argue that it isimpossible to keep the mental

models of the subjects intact while presenting them externa models. To further

459

complicate the problem, it is not practically possible to assess the degree to which the

mental model of a subject is affected by the introduction of the external model.

Another problem that is inherent to testing models with subjects is the effect of
psychological processes between the researcher and the subjects, and interna to the
subjects. The personalities of the subject and the researcher, the relationship between the
researcher and the subject, methodological factors such as the way the questions are
designed, the order in which the questions were asked, and external factors such as
interview media (phone, face-to-face, etc.) may al have substantial effects on the
responses of the subject. The subject may approach the questions in a conformist manner
and support even those structures that do not fit to his or her mental model or persond
observations. On the other hand, the subject may tend to reject more than what does not
fit to his or her mental models in an dfort to avoid looking (or feeling) too conformist.
Once again, it is not possible to catch all of the instances when such a process comesin
effect, and measure to what extend it affects the subject’s arguments about the model

being tested.

These problems limit the refuting power of interviews. Refutation is a crucia
feature of hypothesistesting. A research design or instrument that does not allow refuting
is not fit for hypothesis testing. It is an important task on the part of the researcher to
improve the refuting power of the design he or sheis using. All these arguments may cast
doubt about the validity of model-based social research. However, until we find better
methods and instruments to assess individuals mental models and personal observations,
model-based social research should be used as a viable approach with known and

acknowledged limitations.

460

In the case of this study, the interviewees supported most of the loops and policy
options presented to them during the interviews. A naive explanation for this would be
that the OSSD model captured the reality so accurately that there was not alot in it to be
refuted. However, a better approach would be to question the refuting power of the
interviews and the data analysis phase. The refuting power of the interviews and the data
analysis in the case of this study might have been limited by the factors inherent to
model-based social research as discussed above. The particular design of the study might
have limited the refuting power, as well. On the other hand, the interviews identified two
important differences between the generalized OSSD model and the interviewees mental
models. First, the interviewees rejected the casual link from the number of users to the
rate of new authors. The interviewees did not reject the overall loop and suggested an
alternate structure where the new authors come from the existing users rather than from
out of the community. Also, the interviewees argued that the balancing loop that is driven
by decreasing opportunities for contribution is not observed in their community, although
most of them suggested that it might be a plausible loop in theory. These examples show
that the research design used in this study had a certain refuting power. In fact, arguably
the most valuable findings of this study were these two challenges to the model. We can
argue that if a research study does not refute anything, nothing new has been learned
from it, since whatever the study supported was already known. In that sense, we would
not learn anything from the interviews if al the structure presented to the interviewees

went unchallenged.

Another limitations of the study is that the final dynamic feedback framework

does not provide a quantitative means to articulate and test the emergent theory until it is

461

further developed into a system dynamics model. Policy options cannot be tested without
simulation, and the final theoretical framework cannot be simulated until it is developed
into a system dynamics model. This hampers the usefulness of the final theoretical
framework for policy analysis purposes. Despite al its limitations, this study made
several contributions on different fronts. The following section discusses these

contributions.
7.3. Contributions of the Study

This study made notable theoretical and practical contributions to several fields.
These contributions can be grouped under three headings: 1) contributions to several
streams of literature 2) critical insights for managing OOCCs, and 3) topics for future
research studies. These groups of contributions are discussed below with references to

relevant sections of the dissertation.
7.3.1. Contribution to Related Literatures
Literature on Online Communities

This study made an important contribution to the online communities literature by
defining open online collaboration communities as a special type of online communities.
As discussed in the research purpose section, most of the existing studies approached
online communities without distinguishing between different types. On the other hand,
there are some studies that focused on specia types of online communities, such as
studies on open source software development communities. However, these studies kept
their focused too tight, and did not attempt to encompass as a wide a group of

communities as open online collaboration communities. This study defined open online

462

collaboration communities as online communities that are formed by loosely connected
groups of people, who use the Internet as a medium for carrying out collaborative
projects for producing and improving a wide range of information products. (See Section
2.2 for a discussion about the definition and characteristics of open online collaboration
communities.) This definition can be used as a starting point for studying phenomena
related to OOCCs, such as motivation factors for people to participate in these
communities, ways to manage motivations and expectations in order to accelerate and
sustain community growth, and strategies to improve the products developed by the
communities. Other questions related to OOCCs such as strategies to improve the talent
levels of inexperienced participants, ways to determine and enforce quality standards
within an OOCC, and methods to improve dissemination of products developed by the

community can also be studied using the framework as a starting point.

This study aso analyzed and integrated several theoretical approaches to the
study of online communities. Gift economies, public goods, social informatics and social
networks perspectives were analyzed, and the implications of the first three perspectives
for open online collaboration communities were identified. An important one of those
implications was that communities that provide more utility with their products would
attract more participants. Another important implication was that as the user pool of a
product developed by an OOCC becomes larger, the community would become more
attractive to contributors. The argument that an easier and simpler contribution process
would make an OOCC more attractive to contributors was another important implication

that emerged from the review and integration of the theoretical approaches. These

463

implications were integrated within the context of the open source software development

(OSSD) model.

Parallels between the online communities and open source software devel opment
literatures with respect to the theoretical approaches were also identified. Both literature
streams used al of the four theoretical perspectives, which were discussed in the
literature review section, to explain phenomena related to communities they studied.
Furthermore, the two literature streams derived similar implications from those
theoretical perspectives about the communities they studied. (For a detailed discussion

about those implications see Section 2.3.)

The findings of the literature review provided a comprehensive theoretical basis
for future studies that may approach phenomena related to open online collaboration
communities such as different ways of organizing these communities and how the way of
organizing affects the performance of communities, how leadership is structured and how
power is distributed within such communities, and how collaboration among participants
is realized. Those potential studies can employ different methodological perspectives
such as survey based dtatistical analysis to test hypotheses, ethnographic or grounded-
theory based qualitative approaches to identify deeper concepts and causal relationships
that are hard to discover without analyzing rich qualitative data, and simulation based

methods to test scenarios related to phenomena that pertain to OOCCs.

Furthermore, this is the first research study which applied system dynamics
modeling and simulation method to studying online communities. As discussed in the
methodology chapter, system dynamics is a quantitative modeling approach, which is

particularly fit for modeling complex, large scale, non-linear, partially qualitative social

464

systems such as open online collaboration communities. System dynamics provided an
adeguate means to conceptualize and model the system of mutual causal relationships and
feedback structures that exist in open source software development communities. That is
a task that would be considerably harder to achieve with most other quantitative
modeling methods. (See Section 3.2 for a discussion about the system dynamics

methods.)
Literature on Open Source Software Devel opment

The study made contributions to open source software literature, as well. First of
all, it placed open source software development communities within the concept of open
online collaboration communities. While the validity of this classification is open to
discussion, it nevertheless provides a framework for integrating studies on open source
software development with studies on other types of open online collaboration
communities, such as courseware development communities, collaborative authoring

communities or collaborative music making communities.

The system dynamics model provided valuable insights about the structure and
potential behaviors of a hypothetical open source software development community. An
important insight was that any policy aimed at improving the quality of an open source
software product would slow product functionality growth. In fact, extremely high levels
of such policies may lead to severe impediments of functionality growth, which may
stagnate community growth and even cause the community to fail to sustain itself and
disintegrate. The importance of the patience factor in making an open source software
community succeed or fail was another valuable insight. The findings of the analyses on

the patience factor implied that managing expectations about product functionality

465

growth within the community is a crucial task that the leaders of the community should
undertake in order to make the community successful. (See Section 5.4.9 and Section
5.5.9 for a full discussion about the implications of the potential behaviors of the OSSD
model under different external conditions and policy settings.) The model also served asa
hypothetical representation of open online collaboration communities, which was tested
through the interviews with the members of the system dynamics K through 12
community. (See Section 6.4 and Section 7.1 for discussions about the implications of the
interviews for the OSSD model, and the final framework based on the model and the

findings of the interviews.)

The OSSD modd is the first system dynamics model of open source software
development, which integrated concepts such & code production, debugging, coaching
and developer motivation. The model provided critical insights about the relationships
between performance measures such as product functionality, product quality,
community growth, and determinants of success such as participation, productivity and
developer talent. Sensitivity and policy tests performed on the model provided important
implications about the potential effects of policy interventions on performance measures.
One such implication was that variables such as average developer talent and average
developer productivity have critical values below which an open source software
development community fails to sustain itself in terms of product functionality and
community growth. Critically low values for such variables keep product functionality
growth so slow that achieved functionality growth cannot reach the level of expected
functionality. The fundamental cause behind such a failure was found to be the patience

factor -- as patience of users and developers runs out their expectations about product

466

functionality grows. Runs showed that, under an infinite patience assumption, failures
caused by low achieved functionality would not happen. Policy options such as barriers
to entry and barriers to contribution also had critical levels above which the community
could not sustain product functionality and community growth. Diminishing patience
assumption was the fundamental reason behind this as well. Under infinite patience even
extremely high levels of such policies did not cause afailure driven by slow functionality
growth. Higher barriers to entry, a combination of higher debugging and coaching
emphases, and and overall combination of these two policies were found to be the most
beneficial policy option in overall. (For a full discussion on the comparison of various

policy options see Section 5.4.9.)
Literature on Applications of System Dynamics

System dynamics is another stream of literature to which this study contributed.
As emphasized above, the OSSD model is the first comprehensive system dynamics
model of open source software development. Although many software project
management models have existed in the system dynamics literature, the OSSD model is
the first that focused specifically on an open source software development project. (See
Section 2.4 and Section 2.5 for areview of applications of system dynamics to software
project management and instructional material development.) The OSSD model opened a
new topic area for applying system dynamics modeling, since it was conceptualized also
as a representation of open online collaboration communities. In that sense, the OSSD
model serves as a starting point for future system dynamics studies applied to open online

collaboration communities in particular, and online communities in general.

467

This study also provided an example of combining qualitative and quantitative
research methods by using a multi-method research approach, which combined system
dynamics and qualitative analysis of structured interview data. That way the researcher
had the opportunity to combine the strengths and compensate for the limitations of each
individual methodology. The system dynamics modeling phase provided a means to
develop and articulate a preliminary hypothesis in the form of a system dynamics model.
The interview and qualitative analysis phases provided a way of testing the hypothetical
model against the observations and mental models of the members of a specific open

online collaboration community.
7.3.2. Implicationsfor Practice
Defining OOCCs and the Underlying Policy Problemin OOCCs

The study provided some critical implications for practice, as well. One important
contribution of the study in this regard was defining open online collaboration
communities as a special type of online communities, which involve a common
underlying policy problem. The anaysis of the policy runs performed on the OSSD
model revealed that a fundamental trade-off exists between building functionality and
improving quality of products developed in open online collaboration communities. (See
Section 5.5.9 for a discussion about the underlying policy problem.) The interviews with
the members of the system dynamics K through 12 community supported the argument
that the tension between building functionality and improving quality is a common policy
problem in open online collaboration communities. Almost all the interviewees, with the
exception of one, suggested that they see that tension as the underlying policy problem in

their community. (See Section 6.3.1 for the interviewees comments about the underlying

468

policy problem.) These findings imply that the leaders of open online collaboration
communities should be prepared to make decisions about how to best manage this
tension, and determine what emphases they will put on building functionality and
improving quality within their communities. This implication should be particularly
relevant for leaders of open source software development communities and instructional
material development communities since these communities were defined as open online

collaboration communities in this study.
Defining the Structure that Causes the Underlying Policy Problem

The study also identified the structure that caused the underlying policy problem
by building the OSSD model, testing it with the interviews and finally developing the
dynamic feedback framework based on the OSSD model and the implications of the
interviews. The dynamic feedback framework can be used as atool for understanding and
communicating the structure that causes the success or falure of open online
collaboration communities, as well as the fundamental tension between building
functionality and maintaining quality while building an open online collaboration

community.
Implications about Potential Solutions for the Policy Problem

Besides defining the fundamental policy problem, and the underlying structure
that causesit, the study provided several critical implications about the potential solutions
for the policy problem. One important implication was that each potential solution was
limited in terms of the improvement it can provide before causing another problem within
the overall system. For example, each of the policies tested for improving quality slowed

down product functionality and community growth beyond a certain level. Some of these

469

policies even had critical levels, above which the community would fail to sustain itself
due to losses in functionality and community growth. On the other hand, policy decisions
aimed at accelerating functionality gowth beyond a certain point would impede quality
improvement. All these findings point to the implication that the leaders of open online
collaboration communities can use a specific policy only to a certain extent while trying
to improve quality or accelerate functionality growth. Pushing any given policy option
beyond its optimal extent would not only fail to provide any additional performance
improvement in the expected direction, but also hamper the overal performance in terms
of other measures. (See Section 5.5.9 for a discussion about the policy implications of the

model.)

The analysis of the model through policy runs provided implications about the
effectiveness and the side effects of some specific policies. The two most favorable
options were a pure barriers to entry policy, which involved a high level of refusal ratio
for selecting new developers, and a combination of higher debugging and higher
coaching emphases, which was based on higher pressures for bug discovery, bug fixing
and talent building. These policies yielded substantial improvementsin product quality at
the expenses of very limited losses in product functionality and community growth. An
overall combination of the two best policy options yielded an even higher quality
improvement, but caused much bigger losses in product functionality and community
growth. Consequently, no single best policy option emerged from the policy runs.
However, depending on the structure and the culture of a given open online collaboration
community, a pure higher barriers to entry policy, a combination of higher debugging and

higher coaching emphases, or an overall combination of higher barriers to entry, and

470

higher debugging and coaching emphases policies would be effective policy aternatives
for improving product quality while maintaining functionality and community growth.

(See Section 5.5.9 for a detailed comparison of the policy runs.)

The analysis of the interviewees responses to a question about comparing the
policy options revealed that the interviewees observations and mental models were
mostly in parallel with the findings of the policy runs performed on the OSSD model.
Most of the interviewees argued that coaching either as a pure policy or in combination
with reviewing and editing would be the most effective policy, particularly in the long
run. (The counterpart of the reviewing and editing option was the higher debugging
emphasis policy in the context of the OSSD model.) Two interviewees suggested
selecting new developers as a viable option; however, one of them emphasized that such
a policy would pose the danger of alienating potential authors. These findings, coupled
with the findings of the policy runs on the OSSD model, imply that coaching is the most
effective policy for improving quality and developer talent while maintaining
functionality and community growth, especially in the long run. Selecting, either as a
pure policy option, or coupled with coaching, and reviewing and editing can also be a
viable and effective policy option for certain open online collaboration communities,

provided that their structures and the cultures allow such an approach.
7.3.3. Topicsfor Future Research Studies
Improving the Open Sour ce Software Devel opment Model

The study also provided a wide range of topics for future research studies. One
group of potential topics involves improving the open source software development

(OSSD) model. As discussed in Chapter 5, the OSSD model generaly performed

471

satisfactorily under extreme condition and sensitivity runs. However, there were some
runs, which indicated that the model could benefit from further refinement. For example,
the extreme condition run which involved zero bug generating rate normal did not
generate a behavior as extreme as expected. Also, the sensitivity runs with different
values of normal time to attract developers, normal time for developers to leave, and
normal time to attract users did not generate behavior as varied as expected. A study that
focuses on the revision and refinement of the equations involving these variables would

be very beneficial.
Testing the OSSD Model Against Empirical Data from Actual Communities

The research design used for this study did not include a component to test the
initial system dynamics model against empirical datafrom an actual open source software
development community. It is possible to design an interesting study that would test and
improve the model through interviews or questionnaires with the members of actual open
source software development communities. Another veriation of this study would be
testing the policy implications of the OSSD model with the members of an actual open

source software devel opment community.

The limited time and attention span during the interviews did not alow testing all
the feedback loops, causal relationships and variable definitions of the OSSD model
against the observations and the mental models of the interviewees. An extended version
of the interviews could put more of the structure of the OSSD model to test. Such a study
could be based on a delphi-type iterative approach, which would involve more than one
interview with each subject. This could improve the OSSD model dramatically, aswell as

build avery high level of confidence in the final model.

472

Developing a General System Dynamics Model of OOCCs

Another potential research topic is developing a general system dynamics model
for open online collaboration communities. The final dynamic feedback framework is an
adequate starting point for such a model. The general system dynamics model would
provide a quantitative means to articulate and test the theory that emerged through the
dynamic feedback framework. Such a model could be used as a testing platform for
policy analysis in the context of a wider range of open online collaboration communities.
An empirical component can be added to such a study by including data collection from
several open online collaboration communities, preferably with different characteristics
and product types. That would increase the representativeness of the model and build a

higher level of confidence in the model.
Testing the Implications of the Final Framework Against Data from OOCCs

Data collection from several open online collaboration communities through
interviews and questionnaires could also used in a study that would further test the
implications of the initial OSSD model or the final dynamic feedback framework. That
would increase the representative value of the dynamic feedback framework
substantially. Inclusion of a questionnaire-based component would be particularly
beneficial, since such a component would provide data from a larger sample. The
interviews used for this study involved 10 subjects and thus did not lend themselves to
statistical analysis. A guestionnaire-based data collection could provide enough sample
size for statistical analysis. A larger number of interviews would also provide a sample
size large enough for statistical analysis; however, that would obviously require more

time and resources than a questionnaire-based data collection method.

473

Empirical Research on Hypotheses Derived from the Final Framewrok

Another group of studies could focus on empirically testing the causal
relationships and feedback loops from the framework. The framework provides an
adequate theoretical basis for developing hypotheses related to open online collaboration

communities.
7.4. Conclusion

This study was afirst look at open online collaboration communities. It defined
open online collaboration communities as a special type of online communities, identified
the fundamental policy problem that exists in such communities, identified the underlying
structure that caused the policy problem, and analyzed the potential consequences of

several policy options for addressing that problem.

The study integrated several theoretical approaches to the study of online
communities and open source software development, built a dynamic feedback
simulation model of a hypothetical open source software development community, tested
the model under arange of external conditions and policy options, tested the applicability
of the model and its policy implications to a specific instructional material development
community, and integrated the implications of theinitial model and the interviews to built
a theoretica dynamic feedback framework for studying open online collaboration
communities. The study contributed to several streams of literature, provided critical
implications for practice, and laid a foundation for a wide range of potential future

research studies.

474

APPENDIX A -- INTERVIEW PROTOCOL AND RELATED

DOCUMENTS
A.l Initial E-mail Request

Dear

| am a PhD student at the University at Albany, working with David Andersen, George
Richardson, Deborah Andersen, and Karl Rethemeyer. | am currently studying the efforts

to develop teaching materials within the system dynamics K-12 community. | would like

to carry out a telephone interview with you in order to gather information pertaining to
this issue. The information | gather in the interview will be used as data in my
dissertation. Y our name or any information that might identify you as an individual will
not be used in the dissertation, or elsewhere.

| expect the interview to last between 60 to 90 minutes. | would be happy to call you any
day and time within the next two weeks, as long as my schedule permits. If you give your
permission, | would like to tape the interview for detailed analysis of your answers.
Please let me know, by replying to this e-mail, if you would accept doing such an
interview, and if so when you would like to do it. Also, if you decide to do the interview,
please fill out the attached consent form and fax or mail it to me. My contact information
is given below. If you cannot open or print the form, | would gladly fax or mail you a
copy.

Thank you

Sincerely,

Vedat Diker

Rockefeller College
University at Albany

Milne 300

135 Western Avenue
Albany, NY, 12222

Phone: (518) 442 3865

Fax: (518) 442 3398

E-mail: vd7606@albany.edu

475

A.2. Follow up E-mail M essages

Dear

Thank you for voluntarily accepting to do a telephone interview with me about the efforts
to develop teaching materials within the system dynamics K-12 community. As you
suggest in your message, | will call you on _ (Date) _ a _ (Time) _ . [Alternately:
Unfortunately, | am not ableto call youon _ (Date) _at _ (Time) _ . Please let me know
if you would be available on _ (Date) _at _ (Time) _ . If this does not work for you
please suggest another date and time.] [If the phone number is not provided: Please let me
know the phone number | should use to reach you.]

As | mentioned in my previous message | would like to tape the interview. In order to
comply with applicable laws, | will ask your permission to tape the interview during the
initial stage of our phone conversation. | will also ask your permission to quote the
interview anonymously. As | mentioned before, your name or any information that might
identify you as an individual will not be used in the dissertation, or elsewhere. Please
refer to your copy of the consent form for details about confidentiality and your rights as
aparticipant in this study.

If there is anything you would like to ask about the interview, please let me know.
Thanks again for accepting my request.

Sincerely,

Vedat Diker

476

Dear

| am sorry that you will not be able to do an interview with me. Thank you for

considering my request, al the same.

Sincerely,

Vedat Diker.

ar7

A.3. Interview Packet Cover Letter

Dear ,

Thank you once again for accepting to participate in my dissertation research.
Please find enclosed the hardcopy of the consent form, aong with a stamped and
addressed return envelope. You may use the return envelope to mail the signed consent
form if you have not mailed or faxed it yet. Also enclosed are the reference mode
worksheets, and diagrams that we will use during the interview. Please do not open the
smaller envelope, which holds the diagrams, until you are prompted to do so during the
interview. Please keep the reference mode worksheets, the diagram envelope, and a pen
or apencil close by during the interview. A second return envelope is enclosed for you to
mail the filled-out reference mode worksheets after the interview. Please contact me at

vd7606@al bany.edu or (518) 235 7048 if you have any questions or concerns.

Sincerely,

Vedat Diker

478

A.4. Participation in Research Consent Form

STUDY WORKING TITLE: Toward a Theory of Open Online Collaboration

RESEARCHER: Vedat G. Diker (University at Albany, Ph.D. Program in Information Science)
STUDY DESCRIPTION

My dissertation research is aimed toward exploring the mutual relationships between factors that
have potential of affecting the success of open online collaborative projects, (e.g., motivation,
participation, product quality and product functionality). The ultimate purpose of the research is
to articulate a theory of open online collaboration phenomena, in the form of a dynamic feedback
framework.

| concluded that the community of researchers and practitioners who are applying system
dynamics concepts to K-12 education, and their efforts for developing and sharing instructional
material on the Internet would be an excellent case for exploration, for the purposes of my
research. Since you are an important figure within that community, | would very much like to
carry out a telephone interview with you. During the interview | will ask you several questions
about the instructional material development projects within the system dynamics K-12
community. | expect the interview to last about one and a half hours.

Your participation in the study is completely voluntary, so you may stop and discontinue the
interview any time you wish without any adverse consequences on your part. You may also
choose not to answer any questions you do not wish to for any reason.

In order to keep a better record of the interview, | would like to tape the telephone conversation,
though this is not mandatory. The tapes of the telephone conversation will be stored in my home,
in a locked box, and will not be made available to anybody except myself and the below listed
members of my dissertation committee.

While | may quote from interviews in my dissertation or any other future publication related to
this research, | will not identify you or your organization in any quote or opinion. The tapes and
the transcript of the interview will not be made available to other researchers for secondary
analysis or any other research purposes without your written consent. | will keep all records that
identify you private to the extent allowed by law. However, officials from the federal government
and/or the University at Albany may inspect the records that identify you for the purpose of
protecting your rights as a human participant.

While | cannot promise you any direct benefit from your participation in this study, | hope that
this study will provide more information on the dynamics of open online communities. This
information may help us develop policies that would increase the success of such projects in the

future.

479

I will report my findings in my dissertation, which | expect to complete in August 2003. | can
provide you with an abstract and/or an electronic copy of the dissertation when it is completed, if
you would like.

My contact information is below, as is my dissertation committee members' information, if you

would like to discuss this research. If you would like to be interviewed, please sign this form, and

mail or preferably fax it to me.
CONSENT

If you agree to be interviewed for my research, please sign below.

/ /

Name

Furthermore, if you agree to me taping the telephone conversation, please sign below.

Date

/ /

Name
CONTACT INFORMATION

| am adoctoral student in the Information Science Program at the University at Albany. The

above mentioned interview will provide data for my dissertation. My contact information follows.

Date

Vedat G. Diker
Rockefeller College
University at Albany
Milne 300

135 Wedern Avenue
Albany, NY, 12222

Phone: (518) 442 3865
Fax: (518) 442 3398
E-mail: vd7606@al bany.edu

Dissertation Committee;

David F. Ander sen (co-chair)
Rockefeller College
University at Albany

GeorgeP. Richardson (co-chair)
Rockefeller College
University at Albany

Milne315-B Milne318

135 Western Avenue 135 Western Avenue
Albany, NY, 12222 Albany, NY, 12222
(518) 442 5280 (518) 442 3859
david.andersen@albany.edu gpr@albany.edu

Deborah L. Andersen
School of Infornmation. Science and Policy
University at Albany

R. Karl Rethemeyer
Rockefeller College
University at Albany

Draper 113 Milne312-A

135 Western Avenue 135 Western Avenue
Albany, NY, 12222 Albany, NY, 12222
(518) 442 5115 (518) 442 5258
dla@albany.edu kretheme@albany.edu

If you have any questions regarding your rights as a participant, contact the Compliance

Office, Office for Sponsored Programs, at (518) 437-4569.

480

A.5. Reference Mode Wor ksheet

481

A.6. Model Sketches

Sketch 0.1.

o X » Authors
New
* Authors
Attractiveness of
Participation
+

482

Functionality
of Materials

Functional ity“+/

Achievement

Expected

Functionality

+
Production

+

New
Functionality

Sketch 0.2.

2 < » Authors
New
* Authors
+
Attractiveness of Production
Participation
+
- - +
Functionality
of Materials New
Functionality
Functionality” +
Achievement
Users (= % D
New Users Expected
b, Functionality

483

Sketch 0.3.

2 < » Authors
New
* Authors
+
Attractiveness of Production
Participation
+
Functionality *
+ of Materials New
/ Functionality
Functionality” +
Achievement
Users (= % D
New Users Expected
D Functionality

484

Sketch 0.4.

2 < » Authors
New
* Authors
+
1 Attractiveness of Production
Participation
v

N Functionality +
Opportunities for of Materials New

Contribution ~ __ — Functionality
A Functionality” +

Achievement

e b
New Users Expected
4 Functionality

Users =

485

Sketch 0.5.

» Authors

+ Authors

Attractiveness of
Participation
+

Functionality
of Materials

Functional |ty‘+/

Achi evement

486

Functionality

+
Production

+

New
Functionality

+

Nz

Errors =

yAN
New Errors

48

Sketch 0.6.

» Authors
+ Authors
+
Attractiveness of Broduction
Participation
o 4
+
Functional |ty<¢—i—®
of Materials New
Functionality
_ Functionality<;
Achievement
| . \\ Expecied
Perceived Quality
of Materials Functionality

- +
\\/ Errors = S)
New Errors

487

Sketch 0.7.

-

O <
New
* Authors

Attractiveness of
Partl cipation

(L

Perceived Quality
of Materias

Users

. v:/g

AN

New Users

Authors

488

Functionality

of Materials

Functional |ty‘+/

Achi evement

Expected
Functionality

+
Production

+

New
Functionality

Errors [«

N
New Errors

Sketch 1.0.

o %z »| INeXperienced | o
New Inexperienced | Authors Production by
Authors I nexperienced
A Authors.

Attractiveness of
Participation
+4 Mt

Perceived Quality
of Materials

Production +
\

+

Functionality
of Materials New

/ Functionality

Functionality “+

Production by
Experienced

Achi evement
Expected
Functionality
+
Errors = P
New Errors

489

o

Authors

+

Experienced
Authors

Sketch 1.1.

o ¥ »| Inexperienced Production to
New |nexperienced Authors Production by be Filtered
Authors I nexperienced
A Authors

Attractiveness of

Participation
+4 A+
Production + : Experienced
Production b P
I— Experi encedy Authors
Authors ¥
: : +
Functionality
of Materials New
o / Functionality
Functionality “+
Achi evement
Perceived Quality Expected
of Materials Functionality
) +
Errors = x D
New Errors

490

Sketch 1.2.

o 2 > |nexper|enced + PrOdUFtion to Z >
New Inexperienced | Authors Production by | beFiltered Rejected
Authors I nexperienced
A Authors
Accepted
Attractiveness of
Participation ©
+4 M+
+
Production + : Experienced
Production b P
— Experi encedy Authors
Authors ¥
— +
Functionality
of Materials New
o / Functionality
Functionality “+
Achievement
Perceived Quality Expected
of Materials Functionality
) 4+
Errors [% ()
New Errors

491

Sketch 1.3.

Rejection
Ratio
X +
o 2 > |nexper|enced + PrOdUFUOH to > >
New Inexperienced | Authors Production by | beFiltered Rejected
Authors Inexperienced N
A Authors i
Accepted
+
Attractiveness of \Fi [tering
Participation o Rate
+4 M+ K
Prod t{r
roduction + Production b Experienced
— Experi encedy Authors
Authors ¥
— +
Functionality
of Materials New
o / Functionality
Functionality “+
Achievement
Perceived Quality Expected
of Materials Functionality
) 4+
Errors [% <
New Errors

492

Sketch 1.4.

Rejection

+ Production to 4 -

o 2 »| [Nnexperienced .
New Inexperienced | Authors Production by | beFiltered Rejected
Authors Inexperienced n
A Authors -
Acceptgd
Attractiveness of \Fi Itering
Participation o Rate
+. + ‘i
Prod t{r
roduction + Production b Experienced
Authors ¥
— +
Functionality
of Materials New
o / Functionality
Functionality “+
Achievement
Perceived Quality Expected
of Materials Functionality

Errors = %

New Errors-

493

Sketch 1.5.

Motivation fori—\ o
Rejection

Production :
/ Ratio
4 2 »| | nexperienced O+ Production to 4 -
New |nexperienced Authors Production by be Filtered Rej ected
Authors | nexperienced N
A Authors -
Acceptgd
Attractiveness of \Fi Itering
Participation o Rate
+4 A+ ii
Prod t{r
roduction + Production b Experienced
— Experi encedy Authors
Authors ¥
— +
Functionality
of Materials New

/ Functionality

Functionality “+

Achi evement
Perceived Quality Expected
of Materials Functionality
Errors = P
New Errors

494

Sketch 1.6.

4 2 »| | nexperienced + PI’OdU?tiOﬂ to Z
New |nexperienced Authors Production by be Filtered Rejected
Authors [nexperienced N
A Authors -
Acceptgd
Attractiveness of \Fi Itering
Participation o Rate
+ + ii
Product /
roduction + Production b Experienced
— Experi encedy Authors
Authors ¥

Functionality

of Materials
Functional ity‘+/
Achievement

Perceived Quality
of Materials

Expected
Functionality

Errors

495

Motivation fora————u—
Rejection

Production :
Ratio
/

+

New
Functionality

Sketch 2.1.

Experienced
o 2 »| [Nexperienced " Authors
New Inexperienced | Authors Production by /
* Authors '”ef\%?ﬁﬁ?ged Production b;
Experienced
+ Authors

Attractiveness of

Productio

+

New

Participation
a

Functionality
of Materials

Functional ity‘+/

Achievement

Perceived Quality Expected
of Materials Functionality

Errors

g

Functionality

496

pay (D
New Errors

Sketch 2.2.

Experienced
o 2 »| INexperienced | ¢ Authors
New Inexperienced Authors Production by
Inexperienced
ot Authors A%th ors Production bJ)r/
Experienced
\+ Authors
Attractiveness of Producti on./ *
Participation + Reviewing and
+ .y
+ Editing
. . +
Functionality
of Materials New
Functionality
Functionality“+
Achievement
Perceived Quality Expected
of Materials Functionality

4]

Errors <

AN
New Errors

497

Sketch 2.3.

Experienced
o 2 »| INexperienced | ¢ Authors
New Inexperienced Authors Production by
Inexperienced
+ Authors AFl)JthOI’S Production by
Experienced
\+ Authors
Attractiveness of Production/ A ot
PEI"[ICI pation + Reviewing and
+ Editing

+
Functionality
of Materials New
Functionality
Functionality“+
Achievement
Perceived Quality Expected
of Materials Functionality

Errors [%)
New Errors
Fixed
ErrorsY
)

498

Sketch 3.1.

Experienced
Authors
= Inexperienced | & 2
£ — : . +
New Inexperienced Authors | Production by Production by
Authors Inexperienced Experienced
Authors Authors
\+
Production
Attractiveness of
Participation
A %+
Average : : +
| nexperienced Functi ongl Ity v T
Author Talent of Materials New

Perceived Quality
of Materials

+
Achi evement

\ Expected

Functionality

Functionality

\/ Errors

499

|t

)

yAN
New Errors

Sketch 3.2.

Experienced
Authors
Inexperienced : —+ 2
, 2 Inexperienced N
© Inexperienced "] Authorsto be X > A?Jthors Production by ductiont
Authors Applying Selected Slected Inexperienced Plfrgpgr?gggedy
+ Authors

Authors
N L

Production *

Attractiveness of

Participation
A %+
Average : : +
I nexperienced Functi ongal Ity v T
Author Talent of Materials New

Functionality

+
Achi evement

\ Expected

Perceived Quality Functionality
of Materials

\/ Errors =

)

yAN
New Errors

500

Sketch 3.3.

+ Selectl ngL
Refused Rate ~Expaioncad
\ Authors
o I nexperienced : —~ 2
- 2 > Authorsto be > Inexperienced Product|on b +
Inexperienced Selected Selected Authors y Production by
Authors Applying Inexperienced Experienced
+ / } Authors Authors
Refusal \‘+ . ‘+/
Ratio Production
Attractiveness of
Participation
+
+ Average , , +
Inexperienced Functi ongl Ity e X)
Author Talent of Materias New

Perceived Quality
of Materias

+
Achievement

\ Expected

Functionality

\/ Errors

501

Functionality

|t

yAN
New Errors

Sketch 3.4.

+ Selectl ng
Refused Rate Experienced
‘\ Authors
o I nexperienced i —~J 2
© = ™ Authorsto be > Inexperienced Productlon b +
[nexperienced Selected Sel ected Authors y Production by
Authors Applying) Inexperienced Experienced
+ / Authors Authors
Refusal \‘+ . ‘+/
Ratio Production

Attractiveness of
Participation
+

Average
Inexperienced
Author Talent

Perceived Quality
of Materias

+
Achievement

\ Expected

Functionality

Functionality
of Materials

+
- X)

New

\/ Errors

502

Functionality

|t

yAN
New Errors

Sketch 3.5.

+ Selectl ng
Refused Rate Experienced
‘\ Authors
o I nexperienced : —~ 2
- a > Authorsto be > Inexperienced Production b +
Inexperienced Selected Sel ected Authors y Production by
Authors Applying) I nexperienced Experienced
e / Authors Authors
Refusal \‘+ . ‘+/
Ratio Production
Attractiveness of
Participation A
+
+ Average , , +
Inexperienced Functi ongal Ity e X)
Author Talent of Materias New

Functionality

+
Achievement

\ Expected

Perceived Quality Functionality
of Materials
\/ Errors [X O
New Errors

503

Sketch 3.6.

+ Selecting4:
Refused Rate Experienced
‘+\ Authors
o I nexperienced + i —~J 2
o = > Authorsto be & > Inexperienced Pr?)duction b T
Inexperienced Selected Selected Authors , y Production by
Authors Applying) I nexperienced Experienced
e / Authors Authors
Refusal \‘+ . ‘+/
Ratio Production
Attractiveness of
Participation A
+
+ Average , , +
Inexperienced Functi ongal Ity e X)
Author Talent of Materias New

+
Achi evement

\ Expected

Functionality

Perceived Quality
of Materias

Functionality

\/

Errors

|t

)

504

yAN
New Errors

Sketch 4.1.

Experienced
Authors
4 2 o | NEXperienced |
New Inexperienced Authors Production by K
I nexperienced Production by
Authors perienc .
+ Authors Experienced
Authors
+ /
L
Attractiveness of Production
Participation
+ +
Average
Inexperienced
Author Talent
Functionality +
of Materials New

: : Functionality
Functionality

Achievement .

Expected
Perceived Quality Functionality
of Materials N
\// Errors [e——=%)
New Errors

505

Sketch 4.2.

/_4 Coaching

Experienced

Authors

4 2 o | NEXperienced |
New Inexperienced Authors Production by K
I nexperienced Production by
Authors perienc .
+ Authors Experienced
Authors
+ /
L
Attractiveness of Production
Participation
+ +
Average
Inexperienced
Author Talent

Functionality +
of Materials

New
Functionality
Achievement .

Expected
Functionality

Perceived Quality,
of Materials

\// Errors | =

Functionality

pay
New Errors

506

g8

Sketch 4.3.

% el
Authors
4 2 o | NEXperienced |
New Inexperienced Authors Production by K
I nexperienced Production by
Authors perienc .
* Authors Experienced
Authors
+
L
Attractiveness of Production
Participation
+ +
Average
Inexperienced
Author Talent

Functionality +
of Materials

New

: : Functionality
Functionality

Achievement .

Expected
Functionality

Perceived Quality,
of Materials

\// Errors [« =X
New Errors

g8

507

Sketch 4.4.

% el
Authors
4 2 o | NEXperienced Y- \
New Inexperienced Authors Production by K
I nexperienced Production by
Authors perienc .
* Authors Experienced
Authors
+
L
Attractiveness of Production
Participation
+ +
Average
Inexperienced
Author Talent

Functionality +
of Materials

New

: : Functionality
Functionality

Achievement .

Expected
Functionality

Perceived Quality,
of Materials

\// Errors [« =X
New Errors

g8

508

A.7. Interview Protocol (Script)

Date: Time Start: Time End:
Interview Mode: [] Faceto face [] Telephone [] E-mail
Respondent: Title:
Affiliation:

Phone: E-mail:

Interview Start: First of all, thank you for voluntarily accepting to do this interview, and
for giving me your time. | am taking to you today to gather information about
collaborative efforts to develop teaching materials for introducing system dynamics
conceptsin K through 12 education. As | mentioned in my e-mail to you, the information
| gather today will be used as data in my dissertation in Information Science. Y our name
and any information that might identify you as an individual will not be used in the
dissertation, or elsewhere; and no one dse except myself and my dissertation committee

will have access to the raw data without your written consent

Before we start, | would like to ask your permission to tape this phone conversation. Do
you give your permission for me to tape this conversation? Also, | would like to ask your
permission for quoting sections of this conversation anonymously. Do you give your
permission for me to quote this conversation anonymously? [Prompt if not] May | loosely

paraphrase your replies?

Checklist:
1. Intro

2. Permission to tape

3. Permission to quote

Questions:
Partl.
1. How did you get involved in the system dynamics K through 12 community?

2. What isyour rolein that community?

509

a. Have you ever worked with others within the community? [Prompt if
necessary] Have you ever worked with a mentor?

How would you describe the efforts to develop and disseminate teaching

materials within the system dynamics K through 12 community? [Prompts, if

necessary] How is it organized? Is it coordinated? [Prompt, if yes] How?

[Prompt, if necessary] | am particularly interested in efforts for using the Internet

for sharing work on devel oping teaching materials, such asthe Creative Learning

Exchange, Waters Foundation, CC-STADUS and MIT System Dynamics in

Education Project websites.

Do you see any categories that the individuals who contribute to these efforts

would fall into? [Prompt, if necessary] The efforts to develop and disseminate

teaching materials within the community?

[Prompts, if necessary]

a. How would you categorize them based on expertise?

b. How would you categorize them based on contribution levels?

c. How would you categorize them based on reasons and motivation for
participation?

Is contributing to these efforts open to al? [Prompt, if necessary] Can anybody

who wants to make a contribution do so?

a. [Prompt if not] What are the requirements for participation?

Now | would like to talk a little about the teaching material repositories on the

Internet such as Creative Learning Exchange, Waters Foundation site, CC-

STADUS, and MIT System Dynamics in Education Project. Is contributing to

such online repositories open to all?

a. [Prompt if not] What are the requirements for contributions?

. What do you think motivates people to make a contribution?

a. Do you think characteristics of the materials developed have any effect on
the motivation of the contributors? [Prompt if necessary] ...characteristics
such as quality, functionality, customizability, etc. [Prompt if necessary]
Within this context, “ materials’ might mean documents such as handouts,

510

assignment sheets, models, etc. For example | think of the teaching
materials posted on the website such as Creative Learning Exchange.

b. Do you think community characteristics have any effect on the motivation
of the contributors? [Prompt if necessary] ...such as number or talent
level of contributors, number of users of the materials devel oped, ease of
making contributions, probability of one’s work being accepted and
recognized?

8. Do the contributors sometimes work together?
[Prompts, if they do]

a. What is the nature of such collaboration?

b. Do they collaborate using the Internet, such as by e-mail or on-line chat?
[Prompts, if they do]

i. Do they ever meet face-to-face
ii. Do they generally begin to collaborate online before they meet, or
vice-versa?

c. Do you have an estimate of what percentage of their contribution time the
participants devote to collaboration?

d. Do you have an estimate of what percentage of collaboration takes place
on-line ver sus face-to-face collaboration?

e. Does collaboration generally take place between peers, or between
participants with different characteristics?

i. [Prompt if necessary] ...such as experience level, contribution
level, researchersvs. practitioners, etc.
9. What do you think about the quality of the materials that are developed through
these efforts?

a. How would you evaluate the overall quality on a scale of 0 to 10, O being
the lowest and 10 the highest possible quality?

b. What about the variation of quality?

[Prompts if necessary]
i. What is the quality level of the top 10%, and top 25% of the

materials?

511

ii. What isthe quality level of the bottom 10%, and bottom 25% of the
materials?

c. How would you group the materials based on their quality levels?

10. How does good work get recognized or selected?

a. How doeswork get judged as high or low quality?

b. Isthere afiltering mechanism? How is it managed?

c. What happens to work judged to be high quality?

d. What happens to work judged to be low quality?

e. What happens to authors of work judged to be low quality?

11. Do you think anything can be done to improve the quality of the materials, in the
short and the long run?

12. What can you say about the quantity of materials produced? [How would you
guantify the work produced? Number of documents, number of models, number of
pages, etc.]

a. Do you have arough estimate of average work produced per contributor?

[Prompt if necessary] A very rough estimate is OK.

b. Arethere significant variations between the amounts of work produced by
contributors with different characteristics?

i. [Prompt if necessary] ...such as experience level, collaboration
level, researchersvs. practitioners, etc.

c. Do you see the teaching material collections such as that of the Creative
Learning Exchange as a coherent whole or a set of unconnected
documents?

13. Who are the users of those teaching materials? What can you say about their
characteristics?

a. What isyour estimate of a user/contributor ratio?

14. In what ways do you think the users make use of those materials? [Prompt if
necessary] ...such as self-study, classroom exercises, homework assi gnments.

a What features make those materials more or less useful ?

15. What do you think makes those materials attractive to the users?

512

a. [Prompt if necessary] ...such as quality, functionality, ease of access,
customizability, existence of other users, etc.
Reference Modes

16. 1 would like you to draw some observed reference modes about the concepts
(variables) we have discussed so far. Please use the sheet titled “ Reference Modes
- Observed”. [Prompt if necessary] Behaviors over time; graphs over time. |
would like youto pick the variables you think are key to the issue first.

[Prompt if necessary]
a. What about the number of contributors,...
b. number of users,...
c. number of materials produced,...
d. functionality of materials,...
e. quality of materials?
Policy Problems & Scenario

17. Are there large problems or issues within the community?

a. [Prompt if there are problems] Do you think anything can be done about
these problemsin the short or the long run?

18. What do you think the future holds for the system dynamics K through 12
community? [Will the community grow? Decline? Split? Divide?]

a. What isyour “best case” scenario?
b. What isyour “worst case” scenario?
c. What isyour “most likely” scenario?

19. At this stage, | would like you to draw some more reference modes. This time
let's focus on projected reference modes, which you think may happen in the
future. Please use the sheet titled “ Reference Modes - Projected”.

[Prompt if necessary]
a. What about the number of contributors,...
b. number of users,...
c. number of materials produced,...
d. functionality of materials,...
e

quality of materials?

513

Part |1,

20. In the previous phases of this study | built a system dynamics model of a

hypothetical open online collaboration community. | would like to show you

some sketches from that model. | will explain the variables and loops in the

sketches, and then ask you whether they apply to the case of system dynamics K

through 12 community.

a. Please look at Sketch 0.1. Here, participating authors produce content in

the form of documents, models, visuals, etc. and thus add new
functionality to the teaching materials collection. Here, functionality
means a general level of usefulness of the materials for teaching purposes.
As new functionality is added, functionality of the materials approaches
the level expected by possible users, and thus functionality achievement
increases. Increased functionality achievement increases the attractiveness
of participation for authors, and thus new authors become active in the
community faster. Do you think such a positive loop reinforces the growth
of the number of authors, and the level of functionality of the materialsin

the case of this community?

. Sketch 0.2 shows that a higher level of functionality achievement attracts

more users. In Sketch 0.3 a higher number of users increases the
attractiveness of participation for the authors, thus attracting more new
authors. Do you think such a positive loop reinforces the growth of the
number of authors, the level of functionality of the materials, and the
number of usersin the case of this community?

Do you see any other influence that might reinforce the growth of the
number of authors, the level of functionality of the materials, and the

number of usersin the case of this community?

. Please look at Sketch 0.4. Here as the materials approach the expected

level of functionality, opportunities for contribution decrease. Due to
decreased opportunity, a smaller number of new authors are attracted to
participate. Do you think such a negative loop limits the growth of the

number of authors, and the level of functionality of the materials in the

514

case of this community at the time being? [Prompt if not] Do you think
there is a probability that such a negative loop may limit growth in the
future?

e. Please look at Sketch 0.5. Here, as authors produce content and add
functionality to the materials, they also generate errors or weaknesses in
the materials. In Sketch 0.6 the number of errors decrease the perceived
quality of the materials. This is represented as a “smooth”, since the
perception of quality would change gradually (with a delay). A decreased
perception of quality decreases the attractiveness of participation for the
authors, thus forming another negative loop. Do you think such a negative
loop, which runs through errors and weaknesses, limits the growth of the
number of authors, and the level of functionality of the materias in the
case of this community? [Prompt if not] Do you think there is a
probability that such a negative loop may limit growth in the future?

f. Sketch 0.7 shows that a decreased Percelved Quality of Materials has a
decreasing effect on the number of new users, thus forming another
negative feedback loop. Do you think such a negative loop limits the
growth of the number of authors, the level of functionality of the
materials, and the number of usersin the case of this community? [Prompt
if not] Do you think there is a probability that such a negative loop may
[imit growth in the future?

0. Do you see any other influence that might limit the growth in this
community?

21. As you can see, when conceptualizing the model, | laid out the main problem as
the dichotomy between building functionality and maintaining quality; or put in
another way, producing materials vs. improving materials. Many times these act
against each other. When you try to build functiorality too fast, you may hurt
quality. On the other hand, trying to increase quality above a certain level may
bring about too slow a functionality growth. Do you observe such a problem in
the case of this community?

515

22. Having laid out the problem about building functionality while maintaining
quality, | tried to sketch some policy options. | would like to show you these
sketches and ask you whether any of these processes have been implemented, or
at least suggested as a remedy for the problems of this community? Before
moving on to the policy options, please look at Sketch 1.0, where | divided the
authors into two groups, experienced authors and inexperienced authors. These
two groups add functionality to the materials by producing content, and while
doing that they generate new errors or weaknesses in materials. Now the policy
options...

23. The first policy option is filtering materials that are produced by inexperienced
authors. This option is based on the premises that inexperienced authors generate
more errors per production, and by filtering the materials that are produced by
inexperienced authors, it may be possible to decrease the number of new errors or
weaknesses in materials. In Sketch 1.1, materials produced by inexperienced
authors are not added directly to the overall materials produced, but instead
diverted to a backlog to be filtered. As Sketch 1.2 shows, a certain portion of this
backlog would be accepted and added to the overall production, while the rest is
rgected. Sketch 1.3 shows that filtering would be done by experienced
developers, with a certain filtering rate per time unit, and an average rejection
ratio would determine the amount of materials that are accepted or rejected. The
rgiection ratio would depend on the level of scrutiny experienced developers
apply during filtering, and thus decrease the number of new errors that go into the
materials collection. As Sketch 1.4 shows, a higher rejection ratio, which means a
higher scrutiny level, would reduce the number of new errors. As portrayed in
Sketch 1.5 a possible adverse effect of this policy would be decreasing motivation
for production on the part of the inexperienced authors. It is possible that as the
rejection rate increases, motivation for producing materials would decrease.
Sketch 1.6 shows another adverse effect of this policy: Materials produced by
experienced authors would decrease, since they would dedicate a portion of their
time to filtering.

516

24,

25.

a Have you observed such processes operating in the case of this
community? [Prompt if yes] What wer e the consequences of these filtering
processes? [Prompt if not] Has such processes ever been suggested?
[Prompt if not] Do you think such processes would remedy certain
problems in this community? [Prompt if yes] What do you think the
consequences of such a filtering approach would be?

The second policy option is reviewing and editing content in order to fix existing
errors. Please look at Sketch 2.1. Here again, experienced authors and
inexperienced authors build functionality by producing materials and while doing
that they generate errors and weaknesses in materials. Sketch 2.2 shows that
experienced authors would spend time on reviewing and editing content and thus
fix aportion of existing errors. As Sketch 1.3 shows, reviewing and editing woul d
decrease production by experienced authors. This decrease would probably be
greater than that would happen under the filtering option, since reviewing and
editing existing content would take more time than filtering new production.

a. Have you observed such processes operating in the case of this
community? [Prompt if yes] What were the consequences of these
reviewing and editing processes? [Prompt if not] Has such processes ever
been suggested? [Prompt if not] Do you think such processes would
remedy certain problems in this community? [Prompt if yes] What do you
think the consequences of such a reviewing and editing approach would
be?

Before moving on to the third policy option, 1 would like to introduce another
concept, namely the average talent level of the inexperienced authors. Please ook
at Sketch 3.1. | suggest that the number of errors generated by inexperienced
authors would depend on their talent level. The higher the average inexperienced
author talent, the fewer new errors generated by the inexperienced authors.

Based on this talent concept, the third policy option is selecting new
inexperienced authors according to their talents. Please look at Sketch 3.2. Here,
new inexperienced authors are not directly accepted into the existing

inexperienced authors pool. Rather, they apply and wait to be selected. As Sketch

o517

26.

3.3 shows, selecting is carried out by experienced authors, and of course some
applicants are refused, based on an average refusal ratio. Refusal ratio would be
based on the scrutiny level of the selection process. A higher level of scrutiny
would mean a higher refusal rate, and that in turn would mean a higher average
inexperienced author talent level, as Sketch 3.4 shows. One possible adverse
effect here would be a decrease in the number of inexperienced authors applying.
As shown in Sketch 3.5, | suggest that as refusal ratio increases, number of
inexperienced authors applying would decrease. Sketch 3.6 shows another
adverse effect of this policy: Materials produced by experienced authors would
decrease, since they would dedicate a portion of their time to selecting.

a. Have you observed such processes operating in the case of this
community? [Prompt if yes] What were the consequences of these
selecting processes? [Prompt if not] Has such processes ever been
suggested? [Prompt if not] Do you think such processes would remedy
certain problems in this community? [Prompt if yes] What do you think
the consequences of such a selecting approach would be?

The fourth policy option is aso geared toward increasing the average
inexperienced author talent level. However, this time not by selecting the
incoming inexperienced authors, but coaching the existing inexperienced authors.
Please look at Sketch 4.2. Here experienced authors coach inexperienced authors,
and as Sketch 4.3 shows, coaching increases average inexperienced author talent
gradually over time (with a delay). Accordingly, average inexperienced author
talent is defined as a “smooth” in this context. Both experienced and
inexperienced authors would dedicate a portion of their time to coaching under
this policy. So, Sketch 4.4 shows that coaching would decrease materials
produced by experienced and inexperienced authors, thus affecting the
functionality growth negatively in the short run.

a. Have you observed such processes operating in the case of this
community? [Prompt if yes] What were the consequences of these
coaching processes? [Prompt if not] Has such processes ever been

suggested? [Prompt if not] Do you think such processes would remedy

518

certain problems in this community? [Prompt if yes] What do you think
the conseguences of such a coaching approach would be?
27. At this stage, | would like you to compare these four policy options in the context
of system dynamics K through 12 community.
a. Which of these four policy options do you think would be beneficia in the
case of this community?

b. Which of these four policy options do you think could be implemented?

Part I11.
28. Is there anything you would like to add that might help me get a better
understanding of the system dynamics K through 12 community?
29. Is there anything you are surprised | have not brought up about the community?
30. Who else would you recommend | talk to about these issues?
31. What else do you think | should be asking during the interviews to gget a better

understanding of these issues?

519

APPENDIX B -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL

(ITERATION V VERSION) EQUATIONS AND SECTOR VIEWS'
B.1. Mode Equations (Iteration V Version)

(001) Acceptable Level of Known Bugs per Functionality = 0.1 [Units: bugs/UF]
(002) Acceptable Level of Total Bugs per Functionality = 0.3 [Units: bugs/UF]

(003) Accepted Production = Production to be Filtered * Filtering Rate * (1 - Rgjection
Ratio) [Units lines/Month]

(004) Achieved Functionality Ratio = Product Functionality / Limit on Product
Functionality [Units: Dmnl]

(005) "Achieved/Expected Functionality Ratio" = Achieved Functionality Ratio /
Expected Functionality Ratio [Units: Dmnl]

(006) Attractiveness of Product for Developers Due to Achieved Functionality = f
Attractiveness for Developers vs Achieved Functionality (" Operative/Expected
Functionality Ratio") [Units: Dmnl]

(007) Attractiveness of Product for Developers Due to Potential Functionality = f
Attractiveness for Developers vs Potential Functionality (Achieved Functionality Ratio)
[Units: Dmnl]

(008) Attractiveness of Product for Developers Due to Users = f Attractiveness for
Developers vs Success in Attracting Users (Success in Attracting Users) [Units Dmnl]

(009) Attractiveness of Product for Users = f Attractiveness for Users vs Achieved
Functionality (Achieved Functionality Ratio) [Units: Dmnl]

(010) Average Developer Participation = f Average Developer Participation vs
Rejection Ratio (Rejection Ratio) * Average Developer Participation Normal [Units:
hours/(Month* people)]

(011) Average Developer Participation Normal = 30 [Units: hours/(Month* people)]

(012) Average Developer Productivity = Average Developer Productivity Normal * f
Average Developer Productivity vs Participant Population Intensity (Participant
Population Intensity) [Units: lines/hour]

(013) Average Developer Productivity Normal =5 [Units: lineshour]

(014) Average Developer Talent = IF THEN ELSE (Developers =0, 0, (Developer
Talent Pool / Developers)) [Units RTU/peoplé]

" Themode file for the Iteration V version of the OSSD model, aswell as the prior versions (Iteration |
through Iteration 1V) can be downloaded from http://www,glue,umd,edu/~diker. The page also contains a
link to download aloyalty free persona version of Vensim, the system dynamics modeling and simulation
package, which can be used to view and simulate the model.

520

(015) Average Developer Taent Building Opportunity = Maximum Developer Talent -
Average Developer Talent [Units: RTU/people]

(016) Average Developer Taent Building Ratio = f Average Developer Talent Building
Ratio vs Coaching Hours Coverage (Coaching Hours Coverage) * Maximum Developer
Talent Building Ratio [Units: 1/Month]

(017) Average Developer Talent Built = Average Developer Talent Building
Opportunity * Average Developer Talent Building Ratio [Units: RTU/(Month* people)]

(018) Average Incoming Developer Talent = f Average Incoming Developer Talent vs
Refusal Ratio (Refusal Ratio) [Units: RTU/people]

(019) Average Leader Participation = 30 [Units: hours/(Month* people)]

(020) Average Leader Productivity = Average Leader Productivity Normal * f Average
Leader Productivity vs Participant Population Intensity (Participant Population Intensity
) [Units lines/hour]

(021) Average Leader Productivity Normal = 10 [Units: lines/hour]
(022) Average Leader Talent =1 [Units: RTU/people]

(023) Average Relative Developer Talent = Average Developer Talent / Maximum
Developer Talent [Units: Dmnl]

(024) Average Relative Leader Talent = Average Leader Talent / Maximum Developer
Taent [Units: Dmnl]

(025) Bug Discovery Rate Normal = 3 [Units. bugs/hour]

(026) Bug Fixing Quality = f Debugging Quality vs Average Relative Developer Talent
(Average Relative Developer Talent) [Units Dmnl]

(027) Bug Fixing Rate Normal =1 [Units: bugs/hour]
(028) Bug Generating Rate Normal = 0.01 [Units: bugs/line]

(029) Bugs Added per Bug Fixed = f Bugs Added per Bug Fixed vs Debugging Quality
(Bug Fixing Quality) * Bugs Added per Bug Fixed Normal [Units: Dmnl]

(030) Bugs Added per Bug Fixed Normal = 0.075 [Units: Dmnl]
(031) Bugs Fixed = (Developer Bug Fixing Rate * Developer Hours Allocated to Bug

Fixing) + (Leader Bug Fixing Rate * Leader Hours Allocated to Bug Fixing) [Units:
bugs/Month]

(032) Bugs Found = (Developer Bug Discovery Rate * Developer Hours Allocated to
Bug Detection) + (Leader Bug Discovery Rate * Leader Hours Allocated to Bug
Detection) [Units: bugsgMonth]

(033) Bugsin Accepted Code = Accepted Production * Bugs per Code in Production to
be Filtered * (1 - Quality Improvement by Filtering) [Units. bugs/Month]

(034) Bugsin Production to be Filtered = INTEG(New Bugs in Production to be
Filtered - Bugs in Accepted Code - Bugsin Rejected Code, Initial Bugsin Production to
be Filtered) [Units bugs)

521

(035) Bugsin Regected Code = Rejected Production * Bugs per Code in Production to
be Filtered * (1 + Quality Improvement by Filtering) [Units: bugsMonth]

(036) Bugs per Code = Total Bugsin Code/ Project Size [Units: bugs/ling]

(037) Bugs per Code in Production to be Filtered = ACTIVE INITIAL(ZIDZ (Bugsin
Production to be Filtered , Production to be Filtered) , 0.0064) [Units bugs/line]

(038) Candidates Applying = Overall Attractiveness of Product for Devel opers *
Potential Developers/ Normal Time to Attract All Potential Developers [Units
people/Month]

(039) Candidates Refused = Selecting Rate * Refusal Ratio * Developer Candidates
[Units: people/Month]

(040) Candidates Selected as New Developers = Selecting Rate * (1 - Refusal Ratio) *
Developer Candidates [Units: people/Month]

(041) Coaching Hours Availability Ratio = ZIDZ (Total Coaching Hours Available,
Developer Hours Needed for Coaching) [Units: Dmnl]

(042) Coaching Hours Coverage = Coaching Hours per Developer / Maximum
Coaching Hours Needed per Developer [Units: Dmnl]

(043) Coaching Hours Needed per Developer = Pressure for Talent Building *
Maximum Coaching Hours Needed per Developer [Units hours/(Month* people)]

(044) Coaching Hours per Developer = ZIDZ (Developer Hours Allocated to Coaching
, Developers) [Units hours/(Month* people)]

(045) Code Added per Bug Fixed = ZIDZ (f Code Added per Bug Fixed vs Debugging
Quality (Bug Fixing Quality) , Bugs per Code) [Units: lines/bug]

(046) Desired Timeto Discover All Bugs=6 [Units: Month]

(047) Desired Timeto Fix All Known Bugs=6 [Units: Month]

(048) Developer Bug Discovery Rate = Bug Discovery Rate Normal * f Bug Discovery
Rate vs Average Relative Developer Talent (Average Relative Developer Talent) * f
Bug Discovery Efficiency vs Unknown Bugs Density (Unknown Bug Density) [Units:
bugs/hour]

(049) Developer Bug Fixing Rate = Bug Fixing Rate Normal * f Bug Fixing Rate vs
Average Relative Developer Talent (Average Relative Developer Talent) [Units:
bugs/hour]

(050) Developer Bug Generating Rate = Bug Generating Rate Normal * f Bug
Generating Rate vs Average Relative Talent (Average Relative Developer Talent)
[Units: bugs/ling]

(051) Developer Candidates = INTEG(Candidates Applying - Candidates Refused -
Candidates Selected as New Developers, 0) [Units people]

(052) Developer Hours Allocated to Bug Detection = Developer Hours Revised
Allocation Factor * Developer Hours Needed for Bug Detection [Units: hours/Month]

522

(053) Developer Hours Allocated to Bug Fixing = Developer Hours Revised Allocation
Factor * Developer Hours Needed for Bug Fixing [Units: hours/Month]

(054) Developer Hours Allocated to Coaching = Developer Hours Revised Allocation
Factor * Developer Hours Planned for Coaching [Units: hoursMonth]

(055) Developer Hours Allocated to Production = Total Developer Hours Available -
"Total Developer Hours Allocated for Non-Production Tasks' [Units: hours/Month]

(056) Developer Hours Allocation Factor = f Developer Hours Allocation Factor vs
Developer Hours Coverage Ratio (Developer Hours Coverage Ratio) [Units: Dmnl]

(057) Developer Hours Coverage Ratio = ZIDZ (Total Developer Hours Available,,
Total Developer Hours Needed) [Units: Dmnl]

(058) Developer Hours for Bug Detection Gap = Developer Hours Needed for Bug
Detection - Developer Hours Allocated to Bug Detection [Units: hours/Month]

(059) Developer Hours for Bug Fixing Gap = Developer Hours Needed for Bug Fixing -
Developer Hours Allocated to Bug Fixing [Units: hours/Month]

(060) Developer Hours for Production Gap = Developer Hours Planned for Production -
Developer Hours Allocated to Production [Units: hours/Month]

(061) Developer Hours Needed for Bug Detection = (Pressure for Bug Detection *
ZI1DZ (Unknown Bugsin Code , Developer Bug Discovery Rate)) / Desired Time to
Discover All Bugs [Units: hoursMonth]

(062) Developer Hours Needed for Bug Fixing = (Pressure for Bug Fixing * ZIDZ (
Known Bugsin Code, Developer Bug Fixing Rate)) / Desired Timeto Fix All Known
Bugs [Units: hours/Month]

(063) Developer Hours Needed for Coaching = MIN ((Coaching Hours Needed per
Developer * Developers) , Total Developer Hours Available) [Units hours/Month]

(064) Developer Hours Planned for Coaching = f Developer Hours Planned for
Coaching vs Coachi ng Hours Availability Ratio (Coaching Hours Availability Ratio) *
Developer Hours Needed for Coaching [Units: hours/Month]

(065) Developer Hours Planned for Production = Total Developer Hours Available
[Units: hoursMonth]

(066) Developer Hours Revised Allocation Factor = INTEG(Developer Hours Revised
Allocation Factor Adjustment , Initial Developer Hours Revised Allocation Factor)
[Units: Dmnl]

(067) Developer Hours Revised Allocation Factor Adjustment = Developer Hours
Revised Allocation Factor Adjustment Discrepancy / Developer Hours Revised
Allocation Factor Adjustment Time [Units. /Month]

(068) Developer Hours Revised Allocation Factor Adjustment Discrepancy = Indicated
Developer Hours Revised Allocation Factor - Developer Hours Revised Allocation
Factor [Units: Dmnl]

(069) Developer Hours Revised Allocation Factor Adjustment Time=1 [Units:
Month]

523

(070) Developer Talent Built = Average Developer Talent Built * Developers [Units
RTU/Month]

(071) Developer Talent Gained = Average Incoming Developer Talent * Candidates
Selected as New Developers [Units: RTU/Month]

(072) Developer Taent Lost = Average Developer Taent * Leaving Developers
[Units: RTU/Month]

(073) Developer Talent Pool = INTEG(Developer Taent Gained - Developer Talent
Lost + Developer Talent Built , Initial Developer Talent Pool) [Units: RTU]

(074) Developers = INTEG(Candidates Selected as New Developers - Leaving
Developers, Initial Developers) [Units: people]

(075) Developers on Other Projects = INTEG(Potential Developers Choosing Other
Projects - Leaving Developers from Other Projects, Initial Developers on Other Projects
) [Units people]

(076) Expected Funtionality Ratio = f Expected Functionality Ratio vs Patience (
Patience) [Units: Dmnl]

(077) f Attractiveness for Developers vs Achieved Functionality ([(0,0)-(6,1) 1,(0,0),
(0.165138,0), (0.311927,0.0307018), (0.40367,0.114035), (0.862385,0.758772),
(1.04587,0.96), (1.3211,0.986842), (1.54128,0.991228), (1.88379,0.995614),
(2.39755,0.995614), (2.88073,0.995614), (3.2844,0.995614), (4,1), (5,1)) [Units:
Dmnl]

(078) f Attractiveness for Developers vs Potential Functionality ([(0,0)-(1,1) 1,(0,1),
(0.125,0.994737), (0.25,0.987719), (0.3333,0.980263), (0.425,0.972807), (0.5,0.959211),
(0.575,0.890351), (0.6666,0.723684), (0.761468,0.486842), (0.810398,0.328947),
(0.862385,0.184211), (0.905199,0.0877193), (0.941896,0.0394737), (0.97,0), (1,0))
[Units: Dmnl]

(079) f Attractiveness for Developers vs Success in Attracting Users ([(0,0)-(1,4)
1.(0,1), (0.125382,1.07018), (0.24159,1.22807), (0.348624,1.47368), (0.428135,1.82456),
(0.5,2.31579), (0.575,2.96491), (0.6666,3.5614), (0.75,3.78947), (0.875,3.92982),
(1,3.96491)) [Units Dmnl]

(080) f Attractiveness for Usersvs Achieved Functionality ([(0,0)-(1,1)], (0,0),
(0.131498,0.00877193), (0.253823,0.0263158), (0.357798,0.0701754),
(0.477064,0.131579), (0.574924,0.241228), (0.651376,0.390351), (0.706422,0.557018),
(0.749235,0.697368), (0.807339,0.837719), (0.892966,0.95614), (1,1)) [Units Dmnl]

(081) f Average Developer Participation vs Regjection Ratio ([(0,0)-(1,1.4)],(0,1.3333),
(0.1,1.1667), (0.2,1), (0.35,0.8), (0.5,0.65), (0.6,0.5667), (0.75,0.5), (0.85,0.4333),
(0.9,0.36667), (0.95,0.2667), (1,0)) [Units: Dmnl]

(082) f Average Developer Productivity vs Participant Population Intensity ([(0,0)-
(3.1)1,(0,2), (0.2,1), (0.4,0.99), (0.62,0.95), (0.95,0.85), (1.5,0.6), (2,0.4), (2.3,0.29),
(2.5,0.22), (3,0.2)) [Units: Dmnl]

524

(083) f Average Developer Taent Building Ratio vs Coaching Hours Coverage ([(0,0)-
(1,2)1,(0,0), (0.1,0.02), (0.2,0.08), (0.3,0.19), (0.4,0.36), (0.5,0.6), (0.6,0.78), (0.7,0.87),
(0.8,0.94), (0.9,0.98), (1,1)) [Units Dmnl]

(084) f Average Incoming Developer Talent vs Refusal Ratio ([(0,0)-(1,1)], (0,0.3),
(0.045,0.4), (0.1,0.5), (0.2,0.65), (0.3,0.75), (0.45,0.85), (0.6,0.9), (0.8,0.95), (1,1))
[Units: RTU/people]

(085) f Average Leader Productivity vs Participant Population Intensity ([(0,0)-(3,1)
1,(0,1), (0.2,2), (0.4,0.99), (0.62,0.95), (0.95,0.85), (1.5,0.6), (2,0.4), (2.3,0.29),
(2.5,0.22), (3,0.2)) [Units: Dmnl]

(086) f Bug Discovery Efficiency vs Unknown Bugs Density ([(0,0)-(1,1)],(0,0),
(0.1,0.2), (0.2,0.37), (0.3,0.52), (0.4,0.65), (0.5,0.77), (0.6,0.85), (0.7,0.91), (0.8,0.96),
(0.9,0.98), (1,2), (2,2), (5,1)) [Units Dmnl]

(087) f Bug Discovery Rate vs Average Relative Developer Talent ([(0,0)-(1,1)],(0,0),
(0.1,0.02), (0.2,0.05), (0.3,0.15), (0.4,0.3), (0.5,0.5), (0.6,0.7), (0.7,0.85), (0.8,0.95),
(0.9,0.98), (1,1)) [Units: Dmnl]

(088) f Bug Fixing Rate vs Average Relative Developer Talent ([(0,0)-(1,1)],(0,0),
(0.1,0.02), (0.2,0.05), (0.3,0.15), (0.4,0.3), (0.5,0.5), (0.6,0.7), (0.7,0.85), (0.8,0.95),
(0.9,0.98), (1,1)) [Units: Dmnl]

(089) f Bug Generating Rate vs Average Relative Talent ([(0,0)-(1,1)],(0,1), (0.1,0.98),
(0.2,0.95), (0.3,0.89), (0.4,0.78), (0.5,0.65), (0.6,0.48), (0.7,0.28), (0.8,0.14), (0.9,0.07),
(1,0.05)) [Units Dmnl]

(090) f Bugs Added per Bug Fixed vs Debugging Quality ([(0,0)-(1,1)],(0,1),
(0.1,0.98), (0.2,0.95), (0.3,0.85), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.15), (0.8,0.05),
(0.9,0.02), (1,0)) [Units: Dmnl]

(091) f Code Added per Bug Fixed vs Debugging Quality ([(0,0)-(1,1)],(0,1),
(0.1,0.98), (0.2,0.95), (0.3,0.85), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.15), (0.8,0.05),
(0.9,0.02), (1,0)) [Units: Dmnl]

(092) f Debugging Quality vs Average Relative Developer Talent ([(0,0)-(1,1) 1,(0,0),
(0.1,0.03), (0.2,0.1), (0.3,0.2), (0.4,0.36), (0.5,0.58), (0.6,0.8), (0.7,0.94), (0.8,0.98),
(0.9,0.995), (1,1)) [Units: Dmnl]

(093) f Developer Hours Allocation Factor vs Developer Hours Coverage Ratio ([(0,0)-
(1,1)],(0,0), (0.01,0), (0.25,0.24), (0.5,0.49), (0.75,0.74), (1,0.99), (20,0.99)) [Units
Dmnl]

(094) f Developer Hours Planned for Coaching vs Coaching Hours Availability Ratio (
[(0,0-(1,1)],(0,0), (1,2), (20,1)) [Units: Dmnl]

(095) f Developer Hours Revised Allocation Factor vs Pressure for Production ([(0,0)-
(1,2)],(0,2), (0.1,0.97), (0.2,0.9), (0.3,0.767544), (0.4,0.6), (0.5,0.416667),
(0.6,0.280702), (0.7,0.2), (0.8,0.15), (0.9,0.12), (1,0.1)) [Units: Dmnl]

(096) f Expected Functionality Ratio vs Patience ([(0,0)-(1,1)],(0,1), (0.1,0.97),
(0.2,0.92), (0.3,0.833333), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.166667), (0.8,0.08),
(0.9,0.03), (1,0.0001)) [Units: Dmnl]

525

(097) f Functionality Adding Efficiency vs Achieved Ratio ([(0,0)-(1,1)],(0,1),
(0.140673,0.99), (0.25,0.98), (0.38,0.9693), (0.5,0.9561), (0.65,0.9386), (0.75,0.9211),
(0.85,0.8947), (0.9,0.8553), (0.929664,0.7763), (0.95,0.5877), (1,0)) [Units: Dmnl]

(098) f Functionality Lost per Bug Fixed vs Debugging Quality ([(0,0)-(1,1)],(0,1),
(0.1,0.98), (0.2,0.95), (0.3,0.85), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.15), (0.8,0.05),
(0.9,0.02), (1,0)) [Units: Dmnl]

(099) f Initial Developer Hours Revised Allocation Factor vsinitial Average Devel oper
Participation ([(0,0)-(8,0.6)1,(0,0), (7,0), (8,0.6), (300,0.6), (1000,0.6)) [Units: Dmnl]

(100) f Initial Leader Hours Revised Allocation Factor vsinitial Leader Hours Coverage
Ratio ([(0,0)-(1,0.6)],(0,0), (0.01,0), (0.015,0.6), (1,0.6), (11,0.6), (300,0.6), (1000,0.6))
[Units: Dmnl]

(101) f Leader Hours Allocation Factor vs Leader Hours Coverage Ratio ([(0,0)-(1,1)
1,(0,0), (1,1), (20,1)) [Units: Dmnl]

(102) f Leader Hours Planned for Coaching vs Leader Hours Availability for Coaching (
[(0,0)-(100,1)1,(0,0), (0.001,1), (1,1), (2,0.5), (2.5,0.4), (4,0.25), (5,0.2), (8,0.125),
(10,0.1), (12.5,0.08), (20,0.05), (40,0.025), (100,0.01)) [Units: Dmnl]

(103) f Leader Hours Revised Allocation Factor vs Pressure for Production ([(0,0)-
(1,2)],(0,2), (0.1,0.97), (0.2,0.9), (0.3,0.767544), (0.4,0.6), (0.5,0.416667),
(0.6,0.280702), (0.7,0.2), (0.8,0.15), (0.9,0.12), (1,0.1)) [Units: Dmnl]

(104) f Leaving Accelaration vs Achieved Functionality ([(0,0)-(1,10)],(0,10),
(0.088685,9.76316), (0.159021,9.36842), (0.214067,8.85526), (0.262997,8.22368),
(0.308868,7.5), (0.342508,6.7), (0.379205,5.53947), (0.40367,4.55263),
(0.428135,3.48684), (0.470948,2.53947), (0.510703,1.78947), (0.562691,1.23684),
(0.657492,1.01754), (0.75,1), (1,1), (5,1)) [Units Dmnl]

(105) f Leaving Accelaration vs Perceived Product Quality ([(0,0)-(1,10)], (0,10),
(0.088685,9.76316), (0.159021,9.36842), (0.214067,8.85526), (0.262997,8.22368),
(0.308868,7.5), (0.342508,6.7), (0.379205,5.78947), (0.425076,4.60526),
(0.470948,3.90351), (0.510703,3.20175), (0.562691,2.58772), (0.657492,1.97368),
(0.75,1.5), (1,1)) [Units: Dmnl]

(106) f Leaving Accelaration vs Potential Functionality ([(0,0)-(1,20)],(0,1), (0.15,1.1),
(0.3,1.22), (0.45,1.35), (0.6,1.6), (0.75,1.95), (0.85,2.6), (0.91,4), (0.944954,6.15),
(0.97,8.8), (0.985,12.5), (1,20)) [Units: Dmnl]

(107) "f Leaving Leaders Coefficient vs Operative/Expected Functionality Ratio” (
[(0,0)-(5,1)],(0,0.5), (0.1,0.3), (0.2,0.18), (0.3,0.12), (0.4,0.08), (0.5,0.04), (0.6,0.01),
(0.7,0), (0.8,0), (0.9,0), (1,0), (5,0)) [Units: /Month]

(108) f Leaving Users Acceleration vs Achieved Functionality ([(0,0)-(5,20)],(0,20),
(0.0764526,13.6842), (0.129969,9.91228), (0.197248,6.66667), (0.3,4), (0.42,2.4),
(0.6,1.15), (1,2), (5,1)) [Units Dmnl]

526

(109) f Leaving Users Acceleration vs Perceived Product Quality ([(0,0)-(1,10)
1,(0,10), (0.088685,9.76316), (0.159021,9.36842), (0.214067,8.85526),
(0.262997,8.22368), (0.308868,7.5), (0.342508,6.7), (0.379205,5.78947),
(0.425076,4.60526), (0.470948,3.90351), (0.510703,3.20175), (0.562691,2.58772),
(0.657492,1.97368), (0.75,1.5), (1,1)) [Units: Dmnl]

(110) f New Users Acceleration vs Success in Attracti ng ([(0,0)-(1,10)],(0,1),
(0.0458716,3.91667), (0.0764526,4.91667), (0.143731,6.21053), (0.272171,7.51316),
(0.434251,8.73684), (0.6,9.28947), (0.75,9.56579), (0.85,9.72368), (0.944954,9.88158),
(1,10)) [Units Dmnl]

(111) f Norma Timeto Attract All Potential Developers vs Refusal Ratio ([(0,0)-
(1,10)1,(0,0.8), (0.1,1), (0.2,1.2), (0.3,1.5), (0.4,2), (0.5,2.5), (0.6,3.4), (0.7,4.5), (0.8,6),
(0.9,7.8), (1,10)) [Units: Dmnl]

(112) f Optimal Filtering Rate vs Optimal Filtering Horizon ([(0,0)-(5,2)], (0,0), (1e-
006,2), (0.5,1.4), (1,1), (2,0.5), (3,0.333), (4,0.25), (5,0.2), (6,0.166), (7,0.143), (8,0.125),
(9,0.111), (10,0.2), (20,0.05), (100,0.01)) [Units /Month]

(113) f Perceived Product Quality vs Severity of Total Bugs Problem ([(0,0)-(40,1)
1,(0,2), (0.1,1), (0.963303,0.964912), (1.36086,0.921053), (1.80428,0.79386),
(2.15596,0.600877), (2.53823,0.381579), (3.0581,0.22807), (3.59327,0.135965),
(4.29664,0.0745614), (5,0.05), (10,0.02), (30,0)) [Units Dmnl]

(114) f Pressure for Bug Detection vs Perceived Product Quality ([(0,0)-(1,1) 1,(0,1),
(0.214067,0.982456), (0.360856,0.942982), (0.5,0.846491), (0.59633,0.758772),
(0.688073,0.635965), (0.752294,0.45614), (0.788991,0.276316), (0.83792,0.149123),
(0.899083,0.0526316), (1,0)) [Units: Dmnl]

(115) f Pressurefor Bug Fixing vs Severity of Known Bugs Problem ([(0,0)-(5,1)
1,(0,0), (1,0), (1.46789,0.0657895), (1.92661,0.20614), (2.27829,0.429825),
(2.53823,0.618421), (2.98165,0.828947), (3.50153,0.921053), (4.09786,0.986842),
(5,0.99), (10,0.99), (50,0.99)) [Units Dmnl]

(116) "f Pressure for Production vs Achieved/Expected Functionality Ratio" ([(0,0)-
(1,2)],(0,2), (0.1,0.98), (0.2,0.95), (0.3,0.9), (0.4,0.8), (0.5,0.6), (0.6,0.4), (0.7,0.23),
(0.8,0.11), (0.9,0.03), (1,0, (20,0)) [Units Dmnl]

(117) "f Pressure for Production vs Operative/Expected Functionality Ratio” ([(0,0)-
(1,1)1,(0,1), (0.1,0.98), (0.2,0.95), (0.3,0.9), (0.4,0.8), (0.5,0.6), (0.6,0.4), (0.7,0.23),
(0.8,0.11), (0.9,0.03), (1,0), (20,0)) [Units DmnI]

(118) f Pressurefor Taent Building vs Taent Building Opportunity ([(0,0)-(1,1)
1,(0,0), (3,1)) [Units Dmnl]

(119) f Quality Improvement by Filtering vs Quality of Filtering ([(0,0)-(1,0.3)],(0,0),
(0.125,0.01), (0.25,0.03), (0.375,0.058), (0.5,0.09), (0.625,0.128), (0.75,0.17),
(0.875,0.225), (1,0.3)) [Units: Dmnl]

(120) f Quality of Filtering vs Relative Filtering Rate ([(0,0)-(10,1)],(0,1), (0.5,1),
(1,2), (1.6,0.84), (2.5,0.64), (3.2,0.52), (4,0.4), (5,0.28), (6.2,0.18), (7.5,0.1), (8.5,0.05),
(10,0)) [Units Dmnl]

527

(121) f Timeto Lose Patience vs Limit on Product Functionality ([(0,0)-(20000,8)
1,(0,0), (400,1), (1000,1.68), (2000,2.6), (3000,3.4), (4000,4), (7000,5.2), (10000,6),
(20000,7.5)) [Units Dmnl]

(122) f Weight on Expected Functionality Ratio vs Expected Functionality Ratio (
[(0,0)-(1,1)],(0,1), (0.1,1), (0.12,0.98), (0.14,0.94), (0.1666,0.85), (0.185,0.72), (0.2,0.5),
(0.215,0.28), (0.2333,0.15), (0.26,0.06), (0.28,0.02), (0.3,0), (1,0)) [Units: Dmnl]

(123) Filtering Rate=0.5 [Units: /Month]
(124) FINAL TIME =100 [Units: Month]

(125) Functionality Lost by Debugging = Functionality Lost per Bug Fixed * Bugs
Fixed [Units: UF/Month]

(126) Functionality Lost per Bug Fixed = ZIDZ (f Functionality Lost per Bug Fixed vs
Debugging Quality (Bug Fixing Quality) , Total Bugs per Functionality) [Units:
UF/bug]

(127) Functionality per Code = Product Functionality / Project Size [Units. UF/ling]

(128) Increasein Limit on Product Functionality = Increase in Limit on Product
Functionality Coefficient * Limit on Product Functionality [Units: UF/Month]

(129) Increasein Limit on Product Functionality Coefficient = 0.002 [Units: /Month]

(130) Indicated Developer Hours Revised Allocation Factor = f Developer Hours
Revised Allocation Factor vs Pressure for Production (Pressure for Production) *
Developer Hours Allocation Factor [Units: Dmnl]

(131) Indicated Leader Hours Revised Allocation Factor = f Leader Hours Revised
Allocation Factor vs Pressure for Production (Pressure for Production on Leaders) *
Leader Hours Allocation Factor [Units: Dmnl]

(132) Initia Bugsin Production to be Filtered =0 [Units: bugs]

(133) Initial Developer Hours Revised Allocation Factor = f Initial Developer Hours
Revised Allocation Factor vsinitia Average Developer Participation (Average
Developer Participation) [Units: Dmnl]

(134) Initial Developer Talent Pool = Average Incoming Developer Talent * Initia
Developers [Units: RTU]

(135) Initial Developers=7 [Units: people]

(136) Initial Developers on Other Projects = Initial Developers on Other Projects per
Limit on Product Functionality * Limit on Product Functionality [Units: people]

(137) Initia Developers on Other Projects per Limit on Product Functionality = 0.1
[Units: people/UF]

(138) Initial Functionality =0 [Units: UF]
(139) Initia Known Bugs=0 [Units: bugs|

528

(140) Initial Leader Hours Revised Allocation Factor = f Initial Leader Hours Revised
Allocation Factor vsinitial Leader Hours Coverage Ratio (Leader Hours Coverage Ratio
) [Units Dmnl]

(141) Initia Leaders=3 [Units: people]
(142) Initia Limit on Product Functionality = 400 [Units: UF]
(143) Initia Patience=1 [Units: Dmnl]

(144) Initia Potential Developers = Initial Potential Developers per Limit on Product
Functionality * Limit on Product Functionality [Units: people]

(145) Initia Potential Developers per Limit on Product Functionality = 0.025 [Units:
people/UF]

(146) Initial Potential Users = Initial Potential Users per Limit on Product Functionality
* Limit on Product Functionality [Units: people]

(147) Initia Potential Users per Limit on Product Functionality =20 [Units:
people/UF]

(148) Initia Production to be Filtered =0 [Units: lines]
(149) Initia Project Size=0.012 [Units: lines]|

(150) INITIAL TIME=0 [Units: Month]

(151) Initia Unknown Bugs=0 [Units: bugs]|

(152) Initia Users=0 [Units: people]

(153) Initial Users Using Competitor Products = Initial Users Using Competitor
Products per Limit on Product Functionality * Limit on Product Functionality [Units:

peopleg]

(154) Initia Users Using Competitor Products per Limit on Product Functionality = 30
[Units: people/UF]

(155) Known Bugsin Code = INTEG(Bugs Found - Bugs Fixed , Initial Known Bugs)
[Units: bugs]

(156) Known Bugs per Code = Known Bugsin Code/ Project Size [Units: bugs/ling]

(157) Known Bugs per Functionality = ZIDZ (Known Bugsin Code, Product
Functionality) [Units: bugs/UF]

(158) Leader Bug Discovery Rate = Bug Discovery Rate Normal * f Bug Discovery
Efficiency vs Unknown Bugs Density (Unknown Bug Density) [Units: bugs/hour]

(159) Leader Bug Fixing Rate=1 [Units: bugs/hour]

(160) Leader Bug Generating Rate = Bug Generating Rate Normal * f Bug Generating
Rate vs Average Relative Talent (Average Relative Leader Talent) [Units: bugs/line]

(161) Leader Hours Allocated to Bug Detection = Leader Hours Revised Allocation
Factor * Leader Hours Needed for Bug Detection [Units: hours/Month]

529

(162) Leader Hours Allocated to Bug Fixing = Leader Hours Revised Allocation Factor
* Leader Hours Needed for Bug Fixing [Units: hours/Month]

(163) Leader Hours Allocated to Coaching = Leader Hours Revised Allocation Factor *
Leader Hours Planned for Coaching [Units: hours/Month]

(164) Leader Hours Allocated to Production = Total Leader Hours Available - "Total
Leader Hours Allocated for Non-Production Tasks' [Units: hours/Month]

(165) Leader Hours Allocation Factor = f Leader Hours Allocation Factor vs Leader
Hours Coverage Ratio (Leader Hours Coverage Ratio) [Units: Dmnl]

(166) Leader Hours Availability for Coaching = ZIDZ (Leader Hours Needed for
Coaching , Maximum Total Leader Hours Available for Coaching) [Units: Dmnl]

(167) Leader Hours Coverage Ratio = ZIDZ (Total Leader Hours Available, Total
Leader Hours Needed) [Units: Dmnl]

(168) Leader Hours Needed for Bug Detection = ZIDZ (Developer Hours for Bug
Detection Gap , "Leader/Developer Bug Discovery Efficiency Ratio”) [Units:
hours/Month]

(169) Leader Hours Needed for Bug Fixing = ZIDZ (Developer Hours for Bug Fixing
Gap , "Leader/Developer Bug Fixing Efficiency Ratio") [Units: hours/Month]

(170) Leader Hours Needed for Coaching = Developer Hours Needed for Coaching
[Units: hoursMonth]

(171) Leader Hours Needed for Filtering =1 [Units: hours‘Month]
(172) Leader Hours Needed for Selecting=1 [Units: hours/Month]

(173) Leader Hours Planned for Coaching = f Leader Hours Planned for Coaching vs
Leader Hours Availability for Coaching (Leader Hours Availability for Coaching) *
Leader Hours Needed for Coaching [Units: hoursMonth]

(174) Leader Hours Planned for Production = Total Leader Hours Available [Units:
hours/Month]

(175) Leader Hours Revised Allocation Factor = INTEG(Leader Hours Revised
Allocation Factor Adjustment , Initial Leader Hours Revised Allocation Factor) [Units:
Dmnl]

(176) Leader Hours Revised Allocation Factor Adjustment = Leader Hours Revised
Allocation Factor Adjustment Discrepancy / Leader Hours Revised Allocation Factor
Adjustment Time [Units: /Month]

(177) Leader Hours Revised Allocation Factor Adjustment Discrepancy = Indicated
Leader Hours Revised Allocation Factor - Leader Hours Revised Allocation Factor
[Units: Dmnl]

(178) Leader Hours Revised Allocation Factor Adjustment Time=4 [Units: Month]

(179) "Leader/Developer Bug Discovery Efficiency Ratio” = IF THEN ELSE (
Developer Bug Discovery Rate > 0, (Leader Bug Discovery Rate / Developer Bug
Discovery Rate) , 1.308) [Units. Dmnl]

530

(180) "Leader/Developer Bug Fixing Efficiency Ratio" = ZIDZ (Leader Bug Fixing
Rate , Developer Bug Fixing Rate) [Units: Dmnl]

(181) "Leader/Developer Coaching Ratio" =1 [Units: Dmnl]
(182) Leaders=INTEG(- Leaving Leaders, Initial Leaders) [Units: people]
(183) Leaders Coaching Involvement Factor = 0.9 [Units: Dmnl]

(184) Leaving Accelaration Dueto Low Achieved Functionality = f Leaving
Accelaration vs Achieved Functionality (" Operative/Expected Functionality Ratio")
[Units: Dmnl]

(185) Leaving Accelaration Dueto Low Quality = f Leaving Accelaration vs Perceived
Product Quality (Perceived Product Quality) [Units: Dmnl]

(186) Leaving Acceleration Due to Potential Functionality = f Leaving Accelaration vs
Potential Functionality (Achieved Functionality Ratio) [Units: Dmnl]

(187) Leaving Developers = Leaving Acceleration Due to Potential Functionality *
Leaving Accelaration Due to Low Achieved Functionality * Leaving Accelaration Due to
Low Quality * Developers/ Normal Time for Developersto Leave [Units:
people/Month]

(188) Leaving Developers from Other Projects = Developers on Other Projects/ Normal
Time for Developersto Leave [Units: people/Month]

(189) Leaving Leaders= Leaders* Leaving Leaders Coefficient [Units:
people/Month]

(190) Leaving Leaders Coefficient = "f Leaving Leaders Coefficient vs
Operative/Expected Functionality Ratio" (" Operative/Expected Functionality Ratio")
[Units: /Month]

(191) Leaving Users = Leaving Users Acceleration Due to Low Achieved Functionality
* Leaving Users Acceleration Due to Low Quality * Users/ Normal Timeto Lose All
Users [Units: people/Month]

(192) Leaving Users Acceleration Due to Low Achieved Functionality = f Leaving
Users Acceleration vs Achieved Functionality (" Operative/Expected Functionality
Ratio") [Units: Dmnl]

(193) Leaving Users Acceleration Due to Low Quality = f Leaving Users Acceleration
vs Perceived Product Quality (Perceived Product Quality) [Units: Dmnl]

(194) Leaving Users from Competitor Products = Users Using Competitor Products/
Normal Timeto Lose All Users [Units people/Month]

(195) Limit on Product Functionality = INTEG(Increase in Limit on Product
Functionality , Initial Limit on Product Functionality) [Units: UF]

(196) Maximum Coaching Hours Needed per Developer =10 [Units
hours/(Month* people)]

(197) Maximum Developer Tdent =1 [Units: RTU/peoplé]
(198) Maximum Developer Talent Building Ratio = 0.1 [Units: 1/Month]

531

(199) Maximum Talent Building Opportunity =1 [Units: RTU/people]

(200) Maximum Total Leader Hours Available for Coaching = Leaders Coaching
Involvement Factor * Total Leader Hours Available [Units: hours/Month]

(201) New Bugs Added by Bug Fixes = Bugs Added per Bug Fixed * Bugs Fixed
[Units: bugg/Month]

(202) New Bugs Added by Production = Bugsin Accepted Code + (Leader Bug
Generating Rate * Production by Leaders) [Units: buggMonth]

(203) New Bugsin Production to be Filtered = (Developer Bug Generating Rate *
Production by Developers) [Units: bugs/Month]

(204) New Product Functionality Added = Product Functionality Adding Efficiency *
Total Production [Units: UF/Month]

(205) New Users = New Users Acceleration Due to Success in Attracting *
Attrractiveness of Product for Users * Potential Users/ Normal Time to Attract All
Potential Users [Units people/Month]

(206) New Users Acceleration Due to Successin Attracting = f New Users Acceleration
Vs Success in Attracting (Success in Attracting Users) [Units: Dmnl]

(207) Normal Timefor Developersto Leave =96 [Units. Month]

(208) Normal Timeto Attract All Potential Developers = f Normal Time to Attract All
Potential Developers vs Refusal Ratio (Refusal Ratio) * Time to Attract Developers
Normal [Units: Month]

(209) Normal Timeto Attract All Potential Users=36 [Units: Month]

(210) Normal Timeto Lose All Potential Developers to Other Projects = 10 [Units:
Month]

(211) Normal Timeto Lose All Potential Users to Competitor Products = 36 [Units:
Month]

(212) Norma Timeto Lose All Users=60 [Units: Month]
(213) Norma Timeto Lose Patience =25 [Units: Month]

(214) Operative Functionality Ratio = (Weight on Expected Functionality Ratio *
Expected Funtionality Ratio) + (Weight on Achieved Functionality Ratio * Achieved
Functionality Ratio) [Units: Dmnl]

(215) "Operative/Expected Functionality Ratio" = Operative Functionality Ratio /
Expected Funtionality Ratio [Units: Dmnl]

(216) Optimal Filtering Amount = Optimal Filtering Amount per Leader * Leaders
[Units: lines’Month]

(217) Optimal Filtering Amount per Leader = 3000 [Units: lines/(Month* people)]

(218) Optimal Filtering Horizon = ZIDZ (Production to be Filtered , Optimal Filtering
Amount) [Units: Month]

532

(219) Optimal Filtering Rate = f Optimal Filtering Rate vs Optimal Filtering Horizon (
Optimal Filtering Horizon) [Units: /Month]

(220) Overdl Attractiveness of Product for Developers = (Attractiveness of Product for
Developers Due to Achieved Functionality * Attractiveness of Product for Developers

Due to Potentia Functionality * Attractiveness of Product for Developers Due to Users)
[Units: Dmnl]

(221) Participant Population Intensity = (Developers + Leaders) / Productive
Participant Population Limit [Units: Dmnl]

(222) Patched Code = Code Added per Bug Fixed * Bugs Fixed [Units: lines’Month]
(223) Patience = INTEG(- Patience Lost , Initial Patience) [Units: Dmnl]

(224) Patience Lost = Patience/ Timeto Lose Patience [Units: 1/Month]

(225) Perceived Product Quality = f Perceived Product Quality vs Severity of Total
Bugs Problem (Severity of Total Bugs Problem) [Units: Dmnl]

(226) Potential Developers = INTEG(Leaving Developers + Leaving Developers from
Other Projects + Candidates Refused - Candidates Applying - Potential Developers
Choosing Other Projects, Initial Potential Developers) [Units: people]

(227) Potential Developers Choosing Other Projects = Potential Developers/ Normal
Timeto Lose All Potential Developersto Other Projects [Units people/Month]

(228) Potential Users = INTEG(Leaving Users + Leaving Users from Competitor
Products - New Users - Potential Users Choosing Competitor Products, Initial Potential
Users) [Units: people]

(229) Potential Users Choosing Competitor Products = Potential Users/ Normal Time
to Lose All Potential Usersto Competitor Products [Units: people/Month]

(230) Pressure for Bug Detection = f Pressure for Bug Detection vs Perceived Product
Quality (Perceived Product Quality) [Units: Dmnl]

(231) Pressurefor Bug Fixing = f Pressure for Bug Fixing vs Severity of Known Bugs
Problem (Severity of Known Bugs Problem) [Units: Dmnl]

(232) Pressurefor Production ="f Pressure for Production vs Operative/Expected
Functionality Ratio" ("Operative/Expected Functionality Ratio") [Units: Dmnl]

(233) Pressure for Productionon Leaders = "f Pressure for Production vs
Achieved/Expected Functionality Ratio” ("Achieved/Expected Functionality Ratio")
[Units: Dmnl]

(234) Pressurefor Talent Building = f Pressure for Talent Building vs Talent Building
Opportunity (Relative Average Taent Building Opportunity) [Units: Dmnl]

(235) Product Functionality = INTEG(New Product Functionality Added -
Functionality Lost by Debugging , Initial Functionality) [Units: UF]

(236) Product Functionality Adding Efficiency = f Functionality Adding Efficiency vs
Achieved Ratio (Achieved Functionality Ratio) * Product Functionality Adding
Efficiency Normal [Units: UF/ling]

533

(237) Product Functionality Adding Efficiency Normal = 0.006 [Units. UF/ling]

(238) Production by Developers = Average Developer Productivity * Developer Hours
Allocated to Production [Units: lines’Month]

(239) Production by Leaders = Average Leader Productivity * Leader Hours Allocated
to Production [Units: lines’Month]

(240) Production to be Filtered = INTEG(Production by Developers - Accepted
Production - Rejected Production , Initial Production to be Filtered) [Units lines]

(241) Productive Participant Population Limit = 100 [Units: people]

(242) Project Size = INTEG(Patched Code + Total Production , Initial Project Size)
[Units: lines]

(243) Quality Improvement by Filtering = f Quality Improvement by Filtering vs
Quality of Filtering (Quality of Filtering) [Units: Dmnl]

(244) Quality of Filtering = f Quality of Filtering vs Relative Filtering Rate (Relative
Filtering Rate) [Units: Dmnl]

(245) Refusal Ratio=0.1 [Units: Dmnl]

(246) Reected Production = Production to be Filtered * Filtering Rate * Rejection Ratio
[Units: lines’Month]

(247) Regection Ratio=0.2 [Units: Dmnl]

(248) Relative Average Talent Building Opportunity = Average Developer Talent
Building Opportunity / Maximum Talent Building Opportunity [Units: Dmnl]

(249) Relative Filtering Rate = ZIDZ (Filtering Rate , Optimal Filtering Rate) [Units:
Dmnl]

(250) SAVEPER =TIME STEP [Units: Month]
(251) Selecting Rate=0.5 [Units: 1/Month]

(252) Severity of Known Bugs Problem = Known Bugs per Functionality / Acceptable
Level of Known Bugs per Functionality [Units: Dmnl]

(253) Severity of Total Bugs Problem = Total Bugs per Functionality / Acceptable
Level of Total Bugs per Functionality [Units: Dmnl]

(254) Successin Attracting Users = Users/ Total User Population [Units: Dmnl]
(255) TIME STEP=0.125 [Units: Month]
(256) Timeto Attract Developers Normal = 10 [Units: Month]

(257) Timeto Lose Patience = f Time to Lose Patience vs Limit on Product
Functionality (Limit on Product Functionality) * Normal Timeto Lose Patience [Units:
Month]

(258) Tota Bugsin Code = Known Bugsin Code + Unknown Bugsin Code [Units.
bugs]

534

(259) Tota Bugs per Functionality = ACTIVE INITIAL(ZIDZ (Total Bugsin Code,
Product Functionality) , 0.6) [Units: bugs/UF]

(260) Tota Coaching Hours Available = "L eader/Devel oper Coaching Ratio” * Leader
Hours Allocated to Coaching [Units: hours/Month]

(261) "Tota Developer Hours Allocated for Non-Production Tasks' = Developer Hours
Allocated to Bug Detection + Developer Hours Allocated to Bug Fixing + Devel oper
Hours Allocated to Coaching [Units: hours/Month]

(262) Tota Developer Hours Available = Average Developer Participation *
Developers [Units: hours/Month]

(263) Tota Developer Hours Needed = Developer Hours Planned for Production +
"Total Developer Hours Needed for NornProduction Tasks® [Units: hours/Month]

(264) "Total Developer Hours Needed for Non-Production Tasks" = Developer Hours
Needed for Bug Detection + Developer Hours Needed for Bug Fixing + Developer Hours
Planned for Coaching [Units: hours/Month]

(265) "Total Leader Hours Allocated for Non-Production Tasks" = Leader Hours
Allocated to Bug Detection + Leader Hours Allocated to Bug Fixing + Leader Hours
Allocated to Coaching [Units: hours/Month]

(266) Tota Leader Hours Available = Average Leader Participation * Leaders [Units:
hours/Month]

(267) Total Leader Hours Needed = Leader Hours Planned for Production + "Total
Leader Hours Needed for Non-Production Tasks" [Units: hours/Month]

(268) "Total Leader Hours Needed for Non-Production Tasks' = Leader Hours Needed
for Bug Detection + Leader Hours Needed for Bug Fixing + Leader Hours Planned for
Coaching [Units: hours/Month]

(269) Tota Participants = Leaders + Developers [Units: people]

(270) Tota Production = Production by Leaders + Accepted Production [Units:
linesMonth]

(271) Total User Population = Users + Potential Users + Users Using Competitor
Products [Units: people]

(272) Unknown Bug Density = ZIDZ (Unknown Bugs per Code , Bug Generating Rate
Normal) [Units Dmnl]

(273) Unknown Bugsin Code = INTEG(New Bugs Added by Production - Bugs Found
+ New Bugs Added by Bug Fixes, Initial Unknown Bugs) [Units: bugs]

(274) Unknown Bugs per Code = Unknown Bugsin Code / Project Size [Units:
bugs/ling]

(275) Users=INTEG(New Users - Leaving Users, Initial Users) [Units. peopl€]

(276) Users Using Competitor Products = INTEG(Potential Users Choosing
Competitor Products - Leaving Users from Competitor Products, Initial Users Using
Competitor Products) [Units: people]

535

(277) Weight on Achieved Functionality Ratio = 1 - Weight on Expected Functionality
Ratio [Units: Dmnl]

(278) Weight on Expected Functionality Ratio = f Weight on Expected Functionality
Ratio vs Expected Functionality Ratio (Expected Functionality Ratio) [Units: Dmnl]

536

B.2. Moddl Sector Views (Iteration V

Refusal Ratio— + Normal Timeto Attract Leaving Accelaration=—
Il Potential Developers Dueto Low Quality

Version) Developersand P

Average Incorfiing Selecting
Developer Tdent ~ Ra€

Candidates

K
Devel oper iy
Y AN

+
-

Developers

Candidates Selected

+ /
Normal Time Candidates R&used

for Developers —
toLeave Leaving Developers

+

Cand| dates AppIy| ng

asNeW Developérs g

4+

from Othsr Projects

_FQ

Leaving

+

Developerson
-

Other Projects Potential Bevel opers
+ Choosing Other Projects

Av/

Normal Timeto Lose All
Potential Developersto
Other Projects

. Potent|a| =7
Devel fej(foevelo ers

Attrractiven&es of Product

Overall Attractiveness
of Product for
Developers

+

Leaving Accelaration
Dueto Low Achieved

- Functionality

for Developers Dueto

Population Intensity

Total Devel oper
Hours Available

Leav| ng Acceleration
Dueto Potentia
Functionali |t_¥

roduction Sector

<Perceived
Product Quality>
Productive Participant

Population Limit

Average Developer
Productivity Normal

<Leaders>

Participant

4

Average Devel oper

+ Productivit

Average Devel oper
Participation Developer Hours

Allocated to

Production
Filtering

Rate
+

o
+
Production by
Rejectio Developers
Ratio

Rejected
Production

Accepted
Production

Achieved Functionality ___ Operative/Expected Total -
Attrractiveness of Product 3~ Functiondlity Retio Production + =
_ for Developers Due to + Achieved <Production b
Attrractivenessof Potential Functionality Functionality Rati o\ I?e:dc ion by
Product for Developers | + ers>
Dueto Users Expected) v 2 Onaat % Product +
Funtionality Ratio Weight on Achiev + perative Functionality
. % New Product

Att?g:[llcr?esjg? _ FunCtlona“ty Ratio FUl’_;l_Ctlona“ty Ratio Functionality Added

9 Weight on Expected Limit on k , /ﬁ

Functionality Ratio L Product. Product Functionality

Increasein Limit on| Functionality Adding Effic_i'_ency
A

Patience L ost

Pati ence/%'—é:\ﬁﬁ'rme toLose™—%

Product Functionality
Coefficient
Norma Timeto
Lose Patience

Patience

537

Product Functionality
Adding Efficiency
Normal

Increase in Limit
on Product
Functionality

Users Sector

Attrractiveness of
Product for Developers
Successin —F Dueto Users

New Users™ Attracting Usgrs
Acceleration Dueto

Successin Attractin

Normal Timeto
Attract All Potential
Users

+ Total User

+
Population
+ .
New Users <Achieved
- sy Users Functionality
+ Ratio>
<Operative
+ \Attrrmt|vme$ of Functi Onal |ty Ratio>
Product for Users
Leaving Usersfrom
Compentgr I_Droducts . [Potential |« 9 .
v Users Leaving Opera_tlve/I_Expectc_ad
Users _+ Functionality Ratio
A N+ \ Leaving Users Acceleration «— \
Dueto Low Achieved > o
; Functionality <Expect
Normal Timeto . . .
+ —
UsersUsing | = Lose All Users Funtionality Retio>
Competitor Potential Users _
Products Choosing Competitor ' Leaving Users .
Products _ Normal Timeto Lose All Acceleration Dueto <Perceived
~~__Potentid Usersto Low Quality ~ ~———— product Quality>

Competitor Products

538

Quality Sector

Bugsin <Average ;
R - X + . . Bugs per <Maximum
New Bugsin Produptlon to be Bugsin o =4 Project Sizg Code Developer Taent> o q oper Talent>
Production to Filtered | Rejected Code Totdl : .
be Filtered / Production + Average Relative Perceived
_ <Accepted Patched Code Added Developer Talent _Product Quality
Bugsin Production> . Code __per Bug Fixed
Accepted Code Functionality i,) Severity of Total
per Code Bug Fixing Bugs Problem
Bugs per Codein ﬂ Quality
) Production to be a. Total Bugs
<prod§ct|on by Filtered Product e —— & gy Functiogallicﬁ/r
Developers> New Product |Functionalityl Fynctionality L ogt +
/ Functionality Add by Debugging <,?\(1:_cegtaé)le Level
<Production by 4y BUGS Added) V Funct|onal|ty Lost of Total Bugs per
L eaders> o 95 per per Bug Fixed Functionality>
<Product Functionality Bug Fixed Normal -
Adding Efficiency> Severity of Known
.\ Bugs Added Known Bugs Bugs Problem
C[B)evelgtpa' EL;? New Bugs Added 42— per BugFixed per Functlonallty
engaing rae by Bug Fixes <Acceptab|e Level
+ <Leader Bug of Known Bugs per
New Bugs Added Discovery Rate> Functionality>
by Production Unknown) q Knowcr:w Bdugs
o b , e in Code <Developer Hours
. Bugsin Code| Bugs Found Bugs leeg , Allocated to Bug
<Averege Relative <Project > <L eader Hours / <Leader Bug Fixing>
Developer Taent> Size> Allocated to Bug N p Fixing Rate>
Leader Bug \ Detection> Total Bugsin Bug Fixing Rate
Generating Rate + <Developer Hours Code Normal
Unknown Bugs Allocated to Bug <L eader Hours
: per Code Detection> Allocated to Bu
<Average Relative Fixings ~ Developer Bug
~ Leader Talent N Bug Discovery Develoner Bu Fixing Rate
Bug Gmerat;lng Unk B Rate Normal D P R atg <Average Relative __— %
RaeNorma ___ Un Sg\évsri]ty ug _/, Iscovery Rale -——pael oper Talent>

539

Filtering Sector

o R— > Bugsin — %= >
New Bugsin Production to be _bugsin
Production to be Filtered Rejected Code _+
Filtered
+ - -
Bugsin Quiality
Accepted Code Improvement by
-+ Filtering
e +
<Developer Bug A Quality of
Generating Rate> Bugs per Codein Filtering
Production to be B
Filtered
+ .
Relative

o Optimal
Filtering Rate; Filtering Rate
e % » Production to be % 0
Production by + Filtered Rejected
Developers Er’roducti_en + Leaders
) \+ * Optimal Filtering
Accepted Rejection Horizon N
Productio -\ Vs
A Optimal Filtering
/Amount
. . . +
. Optimal Filtering
Filterin
Rate Amount per Leader

540

Developer Talent and Coaching Sector

Initial <Developer Hours Developer Hours <Total Coaching
Developers Revised Allocation Planned for Coaching Hours Available>
Factor>

Coaching Hours
Availability Ratio

Developer [——ao -

Aw 4

AP ; —X Developers X 70
Candidates | Candidates | candidates P <Leaving
Applying Selected as New Developers> Developer Hours

Needed for Coaching

Refusal Ratio Developer Hours

Average Allocated to Coaching
] Developer Talent
Average Incoming Devel coer Coaching Hours Coaching Hours
Developer Talent Taae BFI’J” . per Devel oper Needed per Developer
Coaching Hours
Developer = > Coverage Maximum Coaching
Developer Talent Pool | Developer Hours Needed per
Talent Gained Talent Lost Devel oper
Average Developer Maximum Devel oper
Talent Building Ratio Talent Building Ratio Pressure for
Av age Devd oper - Taent Buildi ng
Talent Built _
Relative Average
Initial Developer \ Average Developer Talent Building
Talent Pool TalentBuilding ____» Opportunity
Opportunity
Maximum / .
Maximum Talent
Developer Talent Building Opportunity

541

Developer Time Allocation Sector

4— <Rgjection Ratio>

Average Developer
Participation <Developers> Severity of Tota <Total Bugs per
T <Known Bugs per Acceptable Level
,l\‘ Bugs Problem \ Functionality> Functionality> of Known Bugs per
TOta| Da/d Oper De\/el Oper Hours Accq)table La/d Of FunCtlonaIIty
Hours Available Allocated to Total Bugs per Desired Timeto
Developer Hours Production o Functionality Discover All Bugs
Planned for ercelved <Unknown Bugs .
Production Product Quality <Developer Bug in Code> ¢ Severity of Known
Discovery Rate> Pressure for Bug Bugs Problem
Fixing
Total Developer <Developer Bug
Hours Needed Pressure for Bug +— Fixing Rate>
Devel oper Hours for Detection Developer Hours Developer 9
Developer Hours Production Gap " Needed for Bug Hours Needed .
Coverage Ratio Developer Hours Detection for Bug Fixing <Known Bugsin
Allocated to Bug «— Code>
Detection
Developer Hours
Allocation Factor " Devel opgr_Hoursfor
dicated o Developer Hours for Bug Fixing Gap
Indicated Devel oper Bug Detection G ; i
Pressurefor Hours Revised ¢ P Desired Timeto
Production Allocation Factor Developer Hours Fix All Known
Allocated to Bug Fixing Bugs
<Operative/Expected Developer Hours Revised Total Developer Hours

Functionality Ratio> Allocation Factor

Needed for
Adjustment Discrepancy \

Non-Production Tasks

et s [ST~ e
Revised Allocation = ' ! Developer
Factor Adjustment Time gﬂiﬁ%lgg{;{; Factor Hours A”gcated <D%|Vg|n%%%r fl;:)urs
Factor Adjustment to Coaching Coaching>

542

L eaders Sector

~—
Leaving Leaders Total Participants <Developers> — ,
Average L eader Leader Hours
o L eaders Participation Available for Coaching <Bug Discovery <Unknown Bug
Leaving Leadii/ Rate Normal> Density>
: Total Leader Leader Hours <Developer Hours
<QOperative/Expected ’ il
Functionality Ratio> HoursAvallable | earier/Devel oper Avggﬂ%for IEI:eedﬁd f(;r
Coaching Ratio oaching
Leader Hours ~ Leader Hours
CoverageRatio Planned for _ Leader Hours LeaderBug ~ <Developer Bug
Production Total Coaching Needed for Discovery Rate . Discovery Rate>
L eader Hours Hours Available / Coaching
Allocation Factor Total Leader Leader Hours <Developer L eader/Developer Bug
Hours Needed Planned for Hours for Bug Discovery Efficiency
Indicated L eader Coaching Detection Gap> Ratio
Hours Revised Totdl Leader H Y / Il_:_ea_der S:tg
i ixin e
Allocation Factor Y er Fours L eader Hours Needed <Developer Hours g
Needeq for for Bug Detection for Bug Fixing Gap>
Pressure for \Non-Production Tasks 9 g Lo3p
Production on <Developer Bu
L eaders Leader Hours «— Leader/Developer Fixing pRate> o
Leader Hours Needed for Bug Efqug F'X'g%t.
<Achieved/Expected _ Allocated to Fixing iciency Ralio
Functionality Ratio> ~ Leader Hours Revised Coaching <Participant
Allocation Factor ¥ A Leader Hours Production by Pool atri)on
Leader Hours Revised ~ Adjustment Discrepancy Leader Hours Allocated to L eaders Intpensity>
Allocation Factor Allocated to Bug Production —
Adjustment Time J ~_» Detection
) 2 »| Leader Hours Total Leader Hours e Average Leader
Leader Hours Revised | Revised Allocation—a | aader Hours Allocated for Productivity
Allocation Factor Factor Allocated to Bug Non-Production Tasks ~ Average L eader Normal
Adjustment — Productivity

Fixing

REFERENCES

Abdel-Hamid, T. K. (1984). The Dynamics of Software Development Project
Management: An Integrative System Dynamics Perspective. Ph.D. Thesis. Massachusetts
Institute of Technology.

Abdel-Hamid, T. K. (1989). "The Dynamics of Software Project Staffing: A System
Dynamics Based Simulation Approach.” 1EEE Transactions on Software Engineering
15(2): 109-119.

Abdel-Hamid, T. K. and S. E. Madnick (1983). "The Dynamics of Software Project
Scheduling." Communications of the ACM 26(5): 340-346.

Abdel-Hamid, T. K. and S. E. Madnick (1989). "Lessons Learned from Modeling the
Dynamics of Software Project Management." Communications of the ACM 32(12):
1426-1438.

Abdel-Hamid, T. K. and S. E. Madnick (1991). Software Project Dynamics. An
Integrated Approach Englewood Cliffs, New Jersey, USA, Prentice Hall.

Abdel-Hamid, T. K. and J. D. W. Morecroft (1983). "A Generic System Dynamics
Model of Software Project Management.” International System Dynamics Conference,
Chestnut Hill, MA.

Andersen, D. F. and G. P. Richardson (1997). "Scripts for Group Model Building."
System Dynamics Review 13(2): 107-129.

Andersen, D. F.,, G. P. Richardson and J. A. M. Vennix (1997). "Group Model Building:
Adding More Science to the Craft." System Dynamics Review 13(2): 187-201.

Andersen, D. L., M. J. Radzicki, R. L. Spencer and W. S. Trees (1997). "The Dynamics
of the Field of System Dynamics." 15th International System Dynamics Conference:
"Systems Approach to Learning and Education into the 21st Century"”, Istanbul, Turkey,
Bogazici University Printing Office.

Applegate, L., C. Ellis, C. W. Holsapple, F. J. Radermacher and A. B. Whinston (1991).
"Organizational Computing: Definitions and Issues.” Journal of Organizational

Computing 1(1): 1-10.

Babbie, E. (1998). The Practice of Social Research. Belmont, CA, Wadsworth Publishing
Co.

Barbrook, R. (1998). The Hi-Tech Gift Economy. First Monday 3 (12) Last Accessed:
January 10, 2003
Available: http://www.firstmonday.org/issues/issue3_12/barbrook/index.html

Barlas, Y. (1989). "Multiple Tests for Validation of System Dynamics Type of
Simulation Models." European Journal of Operational Research 42(1): 59-87.

Barlas, Y. and |. Bayraktutar (1992). "An Interactive Simulation Game for Software
Project Management (Softsim).” Proceedings of the 1992 International System Dynamics
Conference of the System Dynamics Society, Utrecht, the Netherlands, The System
Dynamics Society.

Barros, M. d. O., C. M. L. Werner and G. H. Travassos (2000). "Applying System
Dynamics To Scenario Based Software Project Management." 18th International
Conference of the System Dynamics Society, Bergen, Norway, System Dynamics
Society.

Bays, H. and M. Mowbray (2001). Cookies, Gift-Giving, and Online Communities.
Online Communities. C. Werry and M. Mowbray. Upper Saddle River, NJ, Prentice Hall
PTR.

Bell, D. (1991). "Modes of Exchange: Gift and Commodity." Journal of Socio-
Economics 20(2): 155-167.

Bell, G. A. and J. O. Jenkins (1998). "Methods Chosen to Identify Dominant Feedback
Loops that Explain Software Project Cost." 16th International Conference of the System
Dynamics Society, Quebec '98, Quebec City, Canada, System Dynamics Society.

Bessen, J. (2002). "Open Source Software: Free Provision of Complex Public Goods."
Open Source Software: Economics, Law and Policy, Toulouse, France, Institut
d'Economie Industrielle.

Bezroukov, N. (1999). Open Source Software Development as a Speciad Type of
Academic Research. First Monday L ast Accessed: April 20, 2002
Available: http://www.firstmonday.org/issues/issued 10/bezroukov/index.html

Bourdieu, P. (1997). Marginalia--Some Additional Notes on the Gift. The Logic of the
Gift: Toward an Ethic of Generosity. A. D. Schrift. New York, NY, Routledge.

Brewer, J. and A. Hunter (1989). Multimethod Research: A Synthesis of Styles. Newbury
Park, CA, Sage.

Brooks, F. P. (1995). The Mythical Man-Month - 20th Anniversary Edition. Reading,
MA, Addison-Wedley.

Browne, C. B. (1998). Linux and Decentralized Development. First Monday Last
Accessed: November 09, 2002
Available: http://www.firstmonday.org/issues/issue3 3/browne/index.html

Carrier, J. (1991). "Gifts, Commodities, and Socia Relations. A Maussian View of
Exchange." Sociological Forum6(1): 119-136.

Cowen, T. (1993). Public Goods and Externalities. The Fortune Encyclopedia of
Economics. D. R. Henderson. New York, NY, Warner Books: 74-77.

545

Cox, A. (1998). Cathedrals, Bazaars and the Town Council. Slashdot Last Accessed:
November 09, 2002 Available:http://d ashdot.org/features/98/10/13/1423253.shtml

Dempsey, B. J.,, D. Weiss, P. Jones and J. Greenberg (2002). "Who is an open source
software developer?' Communications of the ACM 45(2): 67-72.

Diker, V. G. and H. J. Scholl (1999). "David vs. Goliath: Responses to Domination
Strategies in PC and Server OS Markets." 17th International Conference of the System
Dynamics Society, Wellington, New Zealand.

Diker, V. G. and H. J. Scholl (2001). "The Art of Leveraging : How Powerful Nonlinear
Feedback Processes Can Restructure Rapidly Growing Technology and Knowledge
Industries.” 34th Annual Hawaii International Corference on System Sciences, Maui, HI.

Donzelli, P. and G. lazeolla (2001). "Hybrid Simulation Modeling of the Software
Process." The Journal of Systems and Software 59: 227-235.

Eason, K. (1997). Understanding the Organisational Ramifications of Implementing
Information Technology Systems. Handbook of Human-Computer Interaction. M. G.
Helander, T. K. Landauer and P. V. Prabhu. Amsterdam, Elsevier Science: 1475-1495.

Fogel, K. and M. Bar (2001). Open Source Development with CVS. Scottsdale, AZ,
Coriolis Technology Press.

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, MA, Productivity Press.

Forrester, J. W. and P. M. Senge (1996). Tests for Building Confidence in System
Dynamics Models. Modeling for Management: Simulation in Support of Systems
Thinking. G. P. Richardson. Dartmouth, NH, Aldershot. 2: 414-434.

Fox, R. (1995). "Newstrack." Communications of the ACM 38(8): 11-12.

Gallaugher, J. M. and Y. Wang (1999). "Network Effects and the Impact of Free Goods:
An Anaysis of the Web Server Market." International Journal of Electronic Commerce
3(4): 67-88.

Garton, L., C. Haythornthwaite and B. Wellman (1997). Studying Online Social
Networks. Journal of Computer-Mediated Communication 3(1) Last Accessed: May 29,
2003 Available: http://www.ascusc.org/jcmc/vol 3/issuel/garton.html

Gates, W. (1995). The Road Ahead. New York, NY, Viking Penguin.

Ghosh, R. A. (1995). The Problem with Infinity. Electric Dreams #63 (June 19) Last
Accessed: January 14, 2003 Available: http://dxm.org/dreams/dreams63.html

Ghosh, R. A. (1998). Cooking Pot Markets: An Economic Model for the Trade in Free
Goods and Services on the Internet. First Monday 3 (3) Last Accessed: January 10, 2003
Available: http://www.firstmonday.org/issues/issue3 3/ghosh/index.html

546

Gregory, C. (1982). Gifts and Commodities. London, Academic Press.

Grudin, J. and M. L. Markus (1997). Organizational Issues in Development and
Implementation of Interactive Systems. Handbook of Human-Computer Interaction. M.
G. Helander, T. K. Landauer and P. V. Prabhu. Amsterdam, Elsevier Science: 1457-
1474.

Hagel, J. and A. Armstrong (1997). Net Gain: Expanding Markets through Virtua
Communities. Boston, MA, Harvard Business School Press.

Hawkins, R. (2001). "The Economics of Free and Open Source Software." 7th
International Conference of the Society for Computational Economics, New Haven, CT.

Hiltz, S. R. (1986). Online Communities: A Case Study of the Office of the Future. New
York, NY, Ablex.

Jones, Q. (2000). "Time to Split, Virtually: Expanding Virtua Publics Into Vibrant
Virtual Metropolises.” 33rd Hawaii International Conference on System Sciences, Maui,
HI.

Kahen, G., M. M. Lehman, J. F. Ramil and P. Wernick (2001). "System Dynamics
Modeling of Software Evolution Processes for Policy Investigation: Approach and
Example.” The Journal of Systems and Software 59: 271-281.

Katz, M. and C. Shapiro (1985). "Network Externalities, Competition and
Compatibility.” American Economic Review 75(3): 424-440.

Kling, R. (1999). What is Socia Informatics and Why Does It Matter? D-Lib Magazine 5
(1) Last Accessed: January 12, 2003
Available: http://www.dlib.org/dlib/january99/kling/01kling.html

Kollock, P. (1999). The Economies of Online Cooperation: Gifts and Public Goods in
Cyberspace. Communities in Cyberspace. M. Smith and P. Kollock. London, Routledge:
220-239.

Kvale, S. (1996). Interviews. An Introduction to Qualitative Research Interviewing.
Thousand Oaks, CA, Sage.

Lazar, J. and J. Preece (1998). "Classification Schema for Online Communities." AMCIS
- Americas Conference on Information Systems, Baltimore, MD.

Lin, N. (2001). Social Capital: A Theory of Socail Structure and Action. Cambridge,
Cambridge University Press.

Luna, L. F. and D. L. Andersen (2002). "Using Qualitative Methods in the
Conceptualization and Assessment of System Dynamics Models." 20th International
System Dynamics Conference, Palermo, Italy, System Dynamics Society.

547

Madachy, R. (1994). A Software Project Dynamics Model for Process Cost, Schedule
and Risk Assessment. Ph.D. Dissertation. Los Angeles, CA, University of Southern
Cdlifornia.

Madachy, R. (1996). "Modelling Software Processes with System Dynamics. Current
Developments.” 14th International System Dynamics Conference, Cambridge, MA,
System Dynamics Society.

Madachy, R. (2000). "Recent Results In Software Process Modeling.” 18th International
Conference of the System Dynamics Society, Bergen, Norway, System Dynamics
Society.

Madachy, R. (2002). "Software Process Concurrence." Proceedings of the 20th
International Conference of the System Dynamics Sciety, Palermo, Italy, The System
Dynamics Society.

Madachy, R. J. (1996). "System Dynamics Modeling of an Inspection-Based Process.”
Eighteenth International Conference on Software Engineering, Berlin, Germany.

Madachy, R. J. and B. W. Boehm (2003). Software Process Modeling With System
Dynamics, John Wiley & Sons.

Markus, M. L., B. Manvilleand C. E. Agres (2000). "What Makes a Virtua Organization
Work?" Sloan Management Review 42(1): 13-26.

Martin, R. and D. Raffo (2001). "Application of a Hybrid Process Simulation Model to a
Software Development Project.” The Journal of Systems and Software 59: 237-246.

MartinezMoyano, I. J. and G. P. Richardson (2002). "An Expert View of the System
Dynamics Modeling Process. Concurrences and Divergences Searching for Best
Practices in System Dynamics Modding." Proceedings of the 20th International
Conference of the System Dynamics Society, Palermo, Italy, The System Dynamics
Society.

Mauss, M. (1990). The Gift: The Form and Reason for Exchange in Archaic Societies.
London, Routledge.

Millen, D. R. (2000). "Community Portals and Collective Goods: Conversation Archives
as an Information Resource." 33rd Hawaii International Conference on System Sciences,
Maui, Hawaii, |EEE.

Olson, G. M. and J. S. Olson (1997). Research on Computer Supported Cooperative
Work. Handbook of Human-Computer Interaction. M. G. Helander, T. K. Landauer and
P. V. Prabhu. Amsterdam, Elsevier Science: 1433-1456.

Olson, M. (1965). The Logic of Collective Action Cambridge, MA, Harvard University
Press.

548

OReilly, T. (1999). "Lessons from OpenSource Software Development.”
Communications of the ACM 42(4): 33-37.

Pfahl, D., M. Klemm and G. Ruhe (2001). "A CBT Module with Integrated Simulation
Component for Software Project Management Education and Training." The Journal of
Systems and Software 59: 283-298.

Preece, J. (2000). Online Communities. Designing Usability, Supporting Sociability.
New York, NY, John Wiley & Sons Inc.

Preece, J. (2000). Online Cumminites: Designing Usability, Supporting Sociability. New
York, NY, John Wiley & SonsInc.

Putnam, R. (1995). "Bowling Alone: America’s Declining Social Capital." Journal of
Democracy 6(1): 65-78.

Rai, V. K. and B. Mahanty (2002). "Dynamics of Schedule Pressure in Software
Projects.” Proceedings of the 20th International Conference of the System Dynamics
Society, Paermo, Italy, The System Dynamics Society.

Raymond, E. S. (2001). The Cathedral and the Bazaar : Musings on Linux and Open
Source by an Accidental Revolutionary. Sebastopol, CA, O'Reilly and Associates.

Reid, E. (1996). Communication and Community of Internet Relay Chat: Construction
Communities. High Noon on the Electronic Frontier: Conceptual Issuesin Cyberspace. P.
Ludlow. Cambridge, MA, MIT Press. 397-411.

Rethemeyer, R. K. (2002). Centralization or Democratization: Assesing the Internet's
Impact on Policy Networks - A Theoretical and Empirical Inquiry. Ph.D. Thesis. Boston,
MA, Harvard University.

Richardson, G. P. and A. L. Pugh (1981). Introduction to System Dynamics Modeling
with DYNAMO. Cambridge, MA, Productivity Press.

Rodrigues, A. G. and T. M. Williams (1997). "System Dynamics in Software Project
Management: Towards the Development of a Formal Integrated Framework." European
Journal of Information Systems 6(1): 51-66.

Ruiz, M., I. Ramos and M. Toro (2001). "A Simplified Model of Software Project
Dynamics." The Journal of Systems and Software 59: 299-309.

Sandred, J. (2001). Managing Open Source Projects. New York, NY, John Wiley and
Sons.

Scott, J. (2000). Social Network Analysis: A Handbook. London, Sage.

Slouka, M. (1995). War of the Worlds. Cyberspace and the High-Tech Assault on
Reality. New York, NY, Basic Books.

549

Smith, M. J. and F. T. Conway (1997). Psychosocial Aspects of Computerized Office
Work. Handbook of Human-Computer Interaction. M. G. Helander, T. K. Landauer and
P. V. Prabhu. Amsterdam, Elsevier Science: 1497-1517.

Spector, J. M. (1995). "Using System Dynamics to Model Courseware Development: The
Project Dynamics of Complex ProblemSolving." Proceedings of the 1995 ACM
Symposium on Applied Computing, Nashville, TN.

Stallinger, F. and P. Gruenbacher (2001). " System Dynamics Modeling and Simulation of
Collaborative Requirements Engineering.” The Journal of Systems and Software 59: 311-
321.

Stanoevska-Slabeva, K. and B. F. Schmid (2001). "A Typology of Online Communties
and Community Supporting Platforms.” 34th Hawaii International Conference on System
Sciences, Maui, HI.

Sterman, J. D. (2000). Business Dynamics : Systems Thinking and Modeling for a
Complex World. Boston, MA, Irwin/McGraw-Hill.

Torvalds, L. (1999). "The Linux edge." Communications of the ACM 42(4): 38-39.

Turoff, M. (1991). "Computer-Mediated Communication Requirements for Group
Support.” Journal of Organizational Computing 1(1): 1-10.

Turoff, M. (1997). "Virtuality." Communications of the ACM 40(9): 38-43.

Turoff, M. and S. R. Hiltz (1982). "The Electronic Journal: A Progress Report." Journal
of The American Society for Information Science 33(4).

Valoppillil, V. and E. Raymond (annotations) (1998). Halloween | Memo.
Opensource.org Last Accessed: November 09, 200 2
Available: http://www.opensource.org/hall oween/halloweenl.php

Valloppillil, V., J. Cohen and E. Raymond (annotations) (1998). Halloween 1| Memo.
Opensource.org Last Accessed: November 09, 2002
Available: http://www.opensource.org/hall oween/hall oween2.php

Wasko, M. M. and R. Teigland (2002). "The Provision of Online Public Goods:
Examining Social Structure in a Network of Practice." 23th International Conference on
Information Systems, Barcelona, Spain, AlS.

Wasserman, S. and K. Faust (1994). Social Network Analysis : Methods and
Applications. Cambridge, Cambridge University Press.

Wellman, B. (1997). An Electronic Group is Virtually a Social Network. Culture of the
Internet. S. Kiesler. Mahwah, NJ, Lawrence Erlbaum 179-205.

550

Wellman, B. and S. D. Berkowitz, Eds. (1988). Social Structures. A Network Approach
Cambridge, Cambridge University Press.

Wellman, B. and M. Gulia (1999). Virtual Communities as Communities. Net Surfers
Don't Ride Alone. Communities in Cyberspace. M. Smith and P. Kollock. London,
Routledge: 167-194.

Williams, D. (2001). "Towards a System Dynamics Theory of Requirements Engineering
Process.” The 19th International Conference of the System Dynamics Society, Atlanta,
Georgia, System Dynamics Society.

Williams, R. L. and J. Cothrel (2000). "Four Smart Ways to Run On-line Communities.”
Sloan Management Review 41(4): 81-91.

551

