

TOWARD A DYNAMIC FEEDBACK THEORY OF

OPEN ONLINE COLLABORATION COMMUNITIES

by

Vedat G. Diker

A Dissertation

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

School of Information Science and Policy

Information Science

2003

Toward a Dynamic Feedback Theory of

Open Online Collaboration Communities

by

Vedat G. Diker

COPYRIGHT 2003

 iii

ABSTRACT

This study posits a theory of open online collaboration communities in the form

of a dynamic feedback framework and provides implications about the potential

consequences of policy interventions for improving the performance of such

communities. The study was carried out in three phases. During the first phase, several

theoretical approaches were integrated to build a dynamic feedback model of a

hypothetical open source software development community. The second phase involved

the administration and analysis of a series of interviews with the members of an actual

instructional material development community, in order to test the applicability of a

generalized version of the open source software development model and its implications

to that specific community. In the third phase, the implications of the initial model and

the findings of the interviews were integrated to posit a theory of open online

collaboration communities, in the form of a dynamic feedback framework. The study

provided theoretical and practical implications about open online collaboration

communities, and thus, contributed to several streams of literature, generated critical

insights for managing open online collaboration communities, and laid a foundation for a

variety of potential future research studies.

 iv

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGMENTS ..ix

CHAPTER 1 -- INTRODUCTION AND RESEARCH PURPOSE..............................1

CHAPTER 2 -- PROBLEM BACKGROUND AND LITERATURE REVIEW.........9

2.1. Online Communities ...9

2.2. Defining Open Online Collaboration Communities ...13

2.2.1. A Working Definition of Open Online Collaboration Communities.............. 13

2.2.2. Positioning Open Online Collaboration Communities 13

2.2.3. Characteristics of Open Online Collaboration Communities 14

2.3. Theoretical Approaches to the Study of Online Communities16

2.3.1. Gift Economies ... 16

2.3.2. Public Goods... 20

2.3.3. Social Networks .. 25

2.3.4. Social Informatics ... 28

2.4. System Dynamics Approaches to Software Project Management32

2.5. System Dynamics Approaches to Instructional Material Development36

2.6. Problem Statement and Dynamic Hypothesis...38

CHAPTER 3 -- METHODOLOGY...61

3.1. Overview...61

3.2. System Dynamics..62

3.3. Structured Interviews..66

3.4. Research Design..67

3.4.1. Analysis and Modeling of Open Source Software Development 68

3.4.2. Interviews with the Members of an Instructional Material Development

Community ... 69

3.4.2.1. Population.. 69

3.4.2.2. Sample Method and Rationale ... 72

3.4.2.3. Data Collection .. 74

3.4.2.4. Interview Data Analysis... 80

 v

3.4.3. Development of a General Dynamic Feedback Framework for Open Online

Collaboration Communities .. 80

CHAPTER 4 -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL82

4.1. Process of Building the OSSD Model...82

4.2. Iteration I: Functionality ...82

4.3. Iteration II: Adding Time Pressure ...123

4.4. Iteration III: Adding Quality ...153

4.5. Iteration IV: Adding Developer Talent ...198

4.6. Iteration V: Adding Barriers to Entry and Contribution.......................................220

CHAPTER 5 -- MODEL TESTING AND ANALYSIS..249

5.1. Model Testing and Analysis Overview...249

5.2. Base-Case Run..250

5.3. Extreme Condition Runs ...254

5.3.1. No Developers... 255

5.3.2. No Leaders .. 258

5.3.3. No Participants .. 261

5.3.4. No Developer Participation... 264

5.3.5. No Participation .. 266

5.3.6. Extremely High Participation.. 269

5.3.7. Zero Productivity .. 272

5.3.8. Extremely High Productivity .. 275

5.3.9. Zero Bug Generation... 278

5.3.10. Extremely High Bug Generation... 283

5.3.11. Implications of the Extreme Condition Runs.. 286

5.4. Sensitivity Runs ..286

5.4.1. Average Developer Participation.. 287

5.4.2. Average Developer Productivity... 294

5.4.3. Bug Generating Rate Normal.. 300

5.4.4. Normal Time to Attract Developers.. 305

5.4.5. Normal Time for Developers to Leave ... 308

5.4.6. Normal Time to Attract Users... 313

 vi

5.4.7. Refusal Ratio... 316

5.4.8. Rejection Ratio.. 321

5.4.9. Implications of the Sensitivity Runs ... 325

5.5. Policy Runs ...327

5.5.1. Higher Barriers to Entry.. 327

5.5.2. Higher Barriers to Contribution.. 332

5.5.3. Higher Barriers to Entry and Contribution ... 338

5.5.4. Higher Debugging Emphasis .. 342

5.5.5. Higher Coaching Emphasis... 346

5.5.6. Higher Debugging and Coaching Emphases .. 350

5.5.7. Higher Barriers to Entry, and Higher Debugging and Coaching Emphases. 354

5.5.8. Higher Barriers to Contribution and Higher Debugging Emphasis.............. 359

5.5.9. Implications of the Policy Runs .. 363

5.6. Analysis of Bifurcation Behavior ...366

CHAPTER 6 -- INSTRUCTIONAL MATERIAL DEVELOPMENT - THE CASE

OF SYSTEM DYNAMICS K THROUGH 12 COMMUNITY.................................395

6.1. Analysis of the Interviews...395

6.2. Analysis of the Loops ...397

6.2.1. Reinforcing Loop 3 (“More Functionality Attracts More Authors”)............ 397

6.2.2. Reinforcing Loop 2 (“More Functionality Attracts More New Users, and That

Attracts More New Developers”) ... 400

6.2.3. Balancing Loop 1 (“Fewer Opportunities for Contribution Bring Fewer

Authors”)... 403

6.2.4. Balancing Loop 4 (“More Errors Bring Fewer Authors”) 406

6.2.5. Balancing Loop 5 (“More Errors Bring Fewer Users, and Fewer Authors”)409

6.3. Analysis of the Policy Options..412

6.3.1. Tension between Building Functionality and Maintaining Quality as the

Underlying Policy Problem... 412

6.3.2. Policy Option 1: Filtering New Material .. 415

6.3.3. Policy Option 2: Reviewing and Editing Existing Material 420

6.3.4. Policy Option 3: Selecting New Inexperienced Authors 424

 vii

6.3.5. Policy Option 4: Coaching Existing Inexperienced Authors 428

6.3.6. Comparing the Policy Options .. 432

6.4. Implications for the General Dynamic Feedback Framework..............................435

CHAPTER 7 -- A GENERAL DYNAMIC FEEDBACK FRAMEWORK FOR

OPEN ONLINE COLLABORATION COMMUNITIES..437

7.1. The Framework...437

7.2. Strengths and Limitations of the Study...454

7.2.1. Strengths of the Study... 454

7.2.2. Limitations of the Study.. 456

7.3. Contributions of the Study..462

7.3.1. Contribution to Related Literatures... 462

7.3.2. Implications for Practice... 468

7.3.3. Topics for Future Research Studies .. 471

7.4. Conclusion ..474

APPENDIX A -- INTERVIEW PROTOCOL AND RELATED DOCUMENTS....475

A.1. Initial E-mail Request ..475

A.2. Follow up E-mail Messages...476

A.3. Interview Packet Cover Letter ...478

A.4. Participation in Research Consent Form..479

A.5. Reference Mode Worksheet...481

A.6. Model Sketches ..482

A.7. Interview Protocol (Script)...509

APPENDIX B -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL

(ITERATION V VERSION) EQUATIONS AND SECTOR VIEWS.......................520

B.1. Model Equations (Iteration V Version)..520

B.2. Model Sector Views (Iteration V Version) Developers and Production Sector537

Users Sector ...538

Quality Sector ..539

Filtering Sector...540

Developer Talent and Coaching Sector ...541

Developer Time Allocation Sector ..542

 viii

Leaders Sector..543

REFERENCES...544

 ix

ACKNOWLEDGMENTS

Many individuals contributed to this study directly and indirectly. Most important

of all, I am grateful to my advisors David F. Andersen, George P. Richardson, Deborah

L. Andersen and R. Karl Rethemeyer for guiding me through the many stages of my

dissertation and enabling me to earn my degree. David has been a very significant figure

in my life since I started my doctoral study in Albany. He helped me with all sorts of

problems, big and small, be it academic, personal or financial. George is the most skilful

modeler and teacher I have ever met. I believe I had the privilege of being taught by

excellent teachers throughout my life, and George was an excellent final note, who has

become one of my role models as an educator. Deborah taught me a lot about empirical

research and helped me build solid social research skills. She was an extremely patient

reviewer of the numerous drafts of this dissertation, and taught me how to “see one, do

one and teach one.” Karl helped me with finding my way in the academic job market, as

well as guiding me through the literature review and the model-based interview

development stages of this study. His guidance has had tremendous impact on my career

choices.

I am grateful to Roberta L. Spencer, my former boss and my friend, for helping

me tremendously with all the aspects of my life since I met her more than six year’s ago

in Istanbul. She was the best boss ever, and will stay a very special friend. I also would

like to thank Jennifer I. Rowe, Robin S. Langer and Joan M. Yanni of the System

Dynamics Society for their friendship and support throughout the years.

Many fellow students and graduates of the Information Science and Public

Administration doctoral programs have contributed to this dissertation. I am thankful to

 x

Michael A. Deegan, Hassan S. Dibadj, Luis F. Luna-Reyes, Roderick H. MacDonald,

Ignacio J. Martinez-Moyano, Mohammad T. Mojtahedzadeh, Nandhini Rangarajan, Eliot

H. Rich, Hans J. Scholl, Silvia Ulli-Beer, Aldo A. Zagonel-Dos Santos and many others

for their ideas, suggestions and personal support during my study. They made Albany a

fun place to stay. A very special thanks goes to Luis F. Luna-Reyes for helping me with

the technical details of submitting my dissertation, among many other things. Not many

friends would do the things he did for me. Also, a special thanks to Hans J. Scholl for

“initiating” me with the open source idea, which finally gave way to my dissertation

topic.

I also would like to thank the members of the system dynamics K-12 community

who kindly agreed to participate in the interviews and helped me in gathering crucial

information about their community.

I am also grateful to my father Omer Diker and my mother Ozden Diker for

raising me to be the person I am. I am particularly thankful to my father for flying

thousands of miles to be with me and help me during the final stages of my study and my

transition -- and I am thankful to my mother for agreeing to send him over for three

months. I am also thankful to my sister Nur O. Eruzel for being one of the best friends in

my life.

Last, but definitely not the least, I am forever thankful to my dear wife Zeynep

Diker and my precious little son Omer F. Diker. They helped me through the frustrations

and the occasional gloom that necessarily accompany working on a dissertation. They

had to sacrifice a lot so that daddy could work. Zeynep, here is another step in our

 xi

journey together; let’s hope it takes us to the place we want to be. And Omer, I hope my

accomplishment becomes a foundation for many more by you.

 1

CHAPTER 1 -- INTRODUCTION AND RESEARCH PURPOSE

The foundation of this dissertation was laid in early 1999, when I started working

on a term project with Jochen Scholl, a fellow graduate of the University at Albany’s

Interdisciplinary Doctoral Program in Information Science. Jochen and I were first year

students in the doctoral program and we were looking for an interesting problem to model

as our term project for an intermediate level system dynamics course taught by George

Richardson. 1999 was the year of “DOJ vs. Microsoft”, arguably the most critical

monopoly case in the history of software industry. It did not take us too long to pick the

cutthroat competition in PC operating systems market as our project topic. After some

preliminary research, we concluded that we should build the model around the

competition between Microsoft’s Windows operating system and the competitor product

that poses the greatest threat to Windows’ market share: Linux. In our project report and

the two conference papers that followed it we argued that Linux was the only imminent

rival to Windows that could break Microsoft’s vicious market cycle that could be

summarized as “leverage applications with operating system -- leverage operating system

with applications.” We argued that Linux had the potential to break that cycle due to

being an open source software project, which was not driven by market share or revenue

(Diker and Scholl 1999, Diker and Scholl 2001).

I loved the experience of working on the operating systems market model. The

dynamics in the operating systems market were quite interesting. However, I soon

concluded that the dynamics of open source software development itself were even more

interesting. In less than a year, I knew that my dissertation would involve open source

software development phenomenon in one way or another. What fascinated me most

 2

about open source software development was the idea that there were thousands of

people ready and willing to write software for free -- an activity which brought some

other people six-digit salaries. As I continued to read cases in open source software

development, I began to identify certain dynamics, which I believed were responsible for

making open source software projects succeed or fail. I concluded that I could make a

contribution to the theory and practice of open source software development by

identifying those dynamics and the ways to leverage them in order to increase the

performance of open source software communities.

While my interest in open source software development was growing deeper, my

advisor David Andersen suggested to me that I study as a potential dissertation topic a

community of teachers and researchers working on developing instructional materials to

introduce systems thinking and system dynamics concepts to K through 12 students. The

community was making efforts to use the Internet for engaging a wider audience in its

instructional material development and dissemination activities. Because I have interests

in both educational issues and Internet applications, I liked David’s idea quite a lot. When

I started my preliminary study about the community, I thought that what they were doing

was in many ways similar to what open source software developing communities were

doing. Here was a group of people using the Internet to work collaboratively on

developing and disseminating a freely available information product without direct

financial compensation, and with the option of building on one another’s work.

I started looking for a conceptual basis that would let me study open source

software development and collaborative instructional development through a single lens.

My search yielded two important findings. First, I found that there were many other

 3

communities using the open source model to develop and disseminate a variety of

information products. I heard and read about concepts like Internet-based collaborative

authoring and collaborative music making. These were basically newly emerging

concepts that had not become academic research topics, and in all honesty, not all of

them looked promising and convincing at first sight. However, some of them, such as

collaborative instructional development seemed to hold a potential for shaping the way

we will build, disseminate and access content in the near future. In particular, open

source software development and collaborative instructional material development

approaches seem to hold a considerable potential for combining the voluntary

contributions of thousands of people and putting the outcome to the use of all the people

on the world. If this vision becomes a reality, it can make a tremendous difference for all

mankind.

My second finding was the concept of online communities, which seemed fit to

define both open source software communities and instructional development

communities. In the general sense, an online community is a somewhat structured group

of people sharing work, ideas, or other aspects of life in Internet-based environments,

such as newsgroups, mailing lists, and message boards. An online community may

consist of employees of a corporation, customers of a company, members of a society, or

any group of people that shares a common interest in collaborating on the Internet around

a certain aspect of their lives (Williams and Cothrel 2000). Online communities have

recently attracted attention from both the academic and the corporate world (Preece 2000

pp.6-8). Online communities appeared soon after the Internet came into mainstream use

and have spread together with the Internet.

 4

As I studied online communities, I concluded that both open source software

communities and instructional development communities could be defined as online

communities, which are formed by loosely connected groups of people using the Internet

as a medium for carrying out collaborative projects for developing and disseminating a

variety of information products such as software, instructional materials, reports,

presentations and multimedia files. This type of online community generally involves

little or no barriers to entry and contribution. The information products produced by the

members of the community are generally open for use and modification by anybody. I

refer to such communities as “open online collaboration communities” throughout this

dissertation.

Research Purpose

The open source model and open online collaboration communities may

dramatically change the way we developed, disseminate and access digital content in the

near future. However, the dynamic interactions between the determinants of success in

open online collaboration communities such as barriers to entry, motivation,

participation, collaboration and the quality of products, have not been fully explored and

theorized. The stakeholders in such projects do not have the means to test policies to

improve performance. Instead, they rely on a combination of personal experience,

intuition and anecdotal guidelines derived from the experiences of other, similar projects.

As an example, the nature and level of motivation of contributors in an open

online collaboration community appears to be an important driving factor behind the

community’s growth and overall success. Accordingly, the leaders of an open online

collaboration community might be able to steer their community to success by managing

 5

the motivations of the contributors in an educated manner. However, it is not all that

obvious what would motivate or turn off contributors in an open online collaboration

community setting. Theoretical approaches provide vague or contradicting implications

about motivations factors in online communities, which makes it hard to develop

hypotheses about this factor. For example, based on the literature, we can argue that as

the collection or the product that is developed by an open online collaboration

community matures, contributors would be more motivated to participate in development.

We can also argue, again based on the literature, that as the collection or the product

matures, contributors would be less motivated due to decreasing opportunities for making

contributions. In fact, both of these arguments may hold for some open online

collaboration communities. The relationship between the quality of the collection or the

product, and the motivation level of the contributors is not clear either. We can argue that

contributors would be more motivated to work on a product that they considered to be of

high quality, since they would want to be among the developers of a reputable product.

On the other hand, contributors may be motivated more to contribute when they observe

that the quality of the product is low and their help is needed to make it better. Obviously,

more theoretical and empirical research is needed to learn about open online

collaboration communities, and how they can be made more successful.

One important reason for the existing void in the literature about open online

collaboration communities is that such communities have not been studied as a distinct

type of online communities. The general approach in the literature, as will be seen in the

literature review section, is either to study online communities as a homogenous group,

or to study just a limited group of communities that would fall into the definition of open

 6

online collaboration communities, as in the case of open source software development

communities.

As a consequence of all these considerations, this study has two main research

purposes:

1) to develop and establish a definition of open online collaboration

communities, supported by a dynamic feedback framework that is

applicable to a range of open online collaboration communities,

2) to outline and analyze several policy options for improving the

performance of open online collaboration communities.

Structure of the Study

This study analyzed and modeled a hypothetical case within the definition of open

online collaboration communities, and tested the applicability of the model to an

instructional material development community case, in order to posit a theory of open

online collaboration communities in the form of a dynamic feedback framework. The

study integrated several theoretical approaches to the study of online communities. A

review of online communities and open source software development literatures provided

implications for building an initial dynamic feedback simulation (system dynamics)

model of a hypothetical open source software development community. Implications of

several studies that had applied system dynamics to software project management were

also used in developing the initial model.

The initial open source software development (OSSD) model was simulated under

different external conditions and policy options in order to test whether it exhibited

 7

plausible behavior for a wide range of parametric conditions, and to observe the potential

consequences of different approaches to improving the system performance. The model

and its implications were also tested for applicability to a wider range of open online

collaboration communities through a series of interviews with the members of an actual

instructional material development community.

The implications of the initial model and the findings of the interviews were

integrated to build a dynamic feedback framework, which serves as a theoretical

foundation for studying phenomena related to open online collaboration communities.

The dynamic feedback framework has the potential for being further developed into a

dynamic feedback simulation model, which would serve as a platform for testing the

consequences of different external conditions and policy options in a wider range of open

online collaboration communities. The framework can also be used as a theoretical basis

for developing and articulating hypotheses for empirical studies on open online

collaboration communities.

The study contributed to online communities, open source software development

and system dynamics literatures. It also provided critical implications for practice,

including the potential consequences of several policy options for improving the

performance of open online collaboration communities in terms of product quality,

product functionality, community growth and participant talent. The study also laid out a

variety of topics for potential future research studies, including both theoretical and

empirical ones.

This dissertation is organized as follows: This chapter introduces the study and

sets forth the research purposes. Chapter 2 defines open online collaboration communities

 8

as a special type of online communities, summarizes the findings of the literature review,

and introduces a dynamic hypothesis based on these findings. Chapter 3 introduces the

methods used in this study and discusses the research design. Chapter 4 introduces a

system dynamics model of a hypothetical open source software development community.

Chapter 5 summarizes the tests and analyses done on the open source software

development model. Chapter 6 discusses the findings of a series interviews done with the

members of an instructional material development community in order to test the

applicability of the initial system dynamics model and its implications to other open

online collaboration communities. Chapter 7 introduces a dynamic feedback framework

for studying open online collaboration communities, which was based on the implications

of the initial system dynamics model and the interviews, and discusses the contributions

of this study, together with potential future research opportunities.

The next chapter introduces the concept of open online collaboration communities

and summarizes the findings of the literature review. The dynamic hypothesis that led to

the initial open source software development model is also introduced in the next chapter.

 9

CHAPTER 2 -- PROBLEM BACKGROUND AND LITERATURE

REVIEW

2.1. Online Communities

The emergence of online communities is a phenomenon that has attracted

attention from both the academic and the corporate world over the last ten years. Online

communities appeared soon after the Internet came into mainstream use, and have spread

together with the Internet. There are many definitions of an “online community,” and

each of these definitions draws a conceptual boundary that includes certain online

communities and excludes others (Preece 2000 pp.8-17). In the general sense, an online

community is a somewhat structured group of people sharing work, ideas, or other

aspects of life in Internet-based environments, such as newsgroups, mailing lists or

message boards. An online community may consist of employees of a corporation,

customers of a company, members of a society, or any group of people that shares a

common interest in collaborating on the Internet around a certain aspect of their lives

(Williams and Cothrel 2000).

There have been several attempts to classify online communities. Hagel and

Armstrong (1997 pp.18-23) suggested a classification based on the needs of the

community members:

(1) Communities of interest: These are online communities whose members are

gathered around a topic of shared interest or expertise that they discuss, such as Usenet

groups.

 10

(2) Communities of relationship: These communities bring together people with

similar experiences and personal agendas to build relationship and share their experiences

about the relevant topic.

(3) Communities of fantasy: These are communities where people come together

to play and entertain within a virtual world, such as multi-user dungeons.

(4) Communities of transaction: These are communities of people that come

together to perform economic exchange and produce economic value, such as business-

to-business market communities.

Hagel and Armstrong’s need-based criteria approach is a very broad way of

classifying online communities. Although it can be useful for classifying online

communities for certain purposes, it is not the only possible classification approach.

Other researchers suggested more detailed classification schema, using multiple criteria

as the basis for classification.

Lazar and Preece (1998) suggested a list of four classification criteria for online

communities. The authors argue that online communities can be classified based on:

(1) Attributes: This classification criterion is somewhat similar to Hagel and

Armstrong’s (1997) need-based classification. Some of the attributes Lazar and Preece

(1998 pp.84-85) suggested are existence of a shared goal or interest among the members,

intense interaction and emotional ties between members, existence of shared activities,

and support between members. Lazar and Preece suggested two other important

attributes, namely the population size of the community, and existence of social

conventions, language and protocols. They quoted Gates, arguing that the value of an

 11

online community for its members increases as the population size increases (Gates

1995). They also quoted Reid’s (1996) argument that an online community should have

social conventions so that the members can communicate as they intend.

(2) Supporting Software: This criterion is based on the premise that the software

used to facilitate interaction between the members affects the community to the point of

shaping it. Lazar and Preece mentioned listservs, newsgroup software, bulletin boards,

Internet Relay Chat (IRC) and multi-user dungeon software (MUD) as examples for

community supporting software; however, they did not give an explicit classification of

communities based on supporting software (1998 pp.85).

(3) Relationship to Physical Communities: Online communities can be classified

into three subsets based on this criterion. (i) Those based on physical communities, such

as online communities that serve the people of specific towns or counties; (ii) those

somewhat based on physical communities, such as the members of a professional society

who meet infrequently in a physical manner at conventions, and conferences; and (iii)

those not related to any physical community (1998 pp.85-86).

(4) Boundedness: This criterion is based on the proportion of social relationships

exclusively between the community members, and social relationships with people from

outside the community. According to this criterion, in a tightly bounded community most

of the social relationships take place among the members of the community as opposed to

a loosely bounded community, in which most of the social relationships take place

between the members and the outsiders (1998 pp.86).

 12

An alternative classification based on the purpose of the community and the types

of transactions required to realize that purpose was suggested by Stanoevska-Slabeva and

Schmid (2001):

(1) Discussion communities: These online communities are formed in order to

facilitate information exchange on a specific topic (2001 pp.5). Discussion communities

can be further divided into four sub-classes (2001 pp.5-6):

(a) Person-to-person discussion communities bring people together to

build direct relationships with other members.

(b) Topic-oriented discussion communities are formed to let members

discuss openly about a specific topic.

(c) Communities of practice emerge from within a specific organization in

order to facilitate know-how exchange.

(d) Indirect discussion communities provide more indirect discussion

among members, such as book or movie review sites, (e.g., amazon.com,

imdb.com.)

(2) Task-and-goal-oriented communities: These are online communities which are

formed in order to achieve a common goal of the members (2001 pp.5). They can be

grouped into three within themselves (2001 pp.6-8):

(a) Transaction communities let members get together in order to carry out

economic transactions, such as auction sites.

(b) Design communities are formed in order to carry out a specific design

and production task collaboratively.

 13

(c) Online learning communities are used for facilitating collaborative

online learning.

(3) Virtual worlds: These communities provide a virtual environment for

interaction between members, such as online gaming communities (2001 pp.5).

(4) Hybrid communities: These communities combine several functions that fall in

different online community classes. An example would be an online auction site where

members buy and sell baseball memorabilia among themselves, and also discuss the

recent baseball matches on a bulletin board. This would be a hybrid transaction-

discussion community (2001 pp.5).

2.2. Defining Open Online Collaboration Communities

2.2.1. A Working Definition of Open Online Collaboration Communities

We now can develop a working definition of open online collaboration

communities that is appropriate for this study. The definition is developed in two stages.

First, open online collaboration communities are positioned within the overall body of

online communities according to the classifications discussed in the literature review.

Then the characteristics of open online collaboration communities are outlined in contrast

to other online communities and traditional collaboration communities.

2.2.2. Positioning Open Online Collaboration Communities

Open online collaboration communities fit in the definition of transaction

communities, based on Hagel and Armstrong’s classification. From Stanoevska-Slabeva

and Schmid’s classification’s standpoint, they fall in the design communities sub-class

within the task-and-goal-oriented class. In fact, Stanoevska-Slabeva and Schmid

 14

mentioned open source software development communities as an example for design

communities (2001). For the purposes of this study open online collaboration

communities are defined as “online communities that are formed by loosely connected

groups of people, who use the Internet as a medium for carrying out collaborative

projects for producing and improving a wide range of information products.”

Probably the most widely known example that fits into the definition of open

online collaboration communities is the open source software movement. The open

source software movement is a collaborative software development model, which

involves online communities of computer programmers dispersed around the world.

These voluntary programmers use the Internet to collaboratively develop software

(O'Reilly 1999). Only a small fraction of these programmers gain direct tangible benefits

in return for their contributions. Most of the participating programmers are motivated by

indirect or intangible benefits, such as reputation among peers or a credential they can

add to their resumes (Raymond 2001). Despite the lack of monetary incentives, the open

source software movement has produced high quality free software that can compete with

leading proprietary software. An example is the Linux operating system (Torvalds 1999).

2.2.3. Characteristics of Open Online Collaboration Communities

There are several characteristics that distinguish open online collaboration

communities from other online communities, and traditional collaboration communities:

Internet-aided: The most obvious characteristic of these communities is that they

are Internet-aided. The members of the community may use other media or face-to-face

meetings to communicate and collaborate. However, the main medium of interaction is

the Internet.

 15

High number of participants: These communities involve a higher number of

participants compared to those of their traditional, face-to-face counterparts. The number

of participants may vary substantially between open online collaboration communities.

Spatially (geographically) dispersed participants: A certain portion of the

participants may have face-to-face interactions, however the overall community is

spatially dispersed.

High variation between expertise levels of participants: The expertise levels of

participants within a community may differ substantially.

Non-compensated participants: Participants are almost never directly

compensated. However, in many communities, the majority of the participants have

paying jobs related to the topic of the community (Bezroukov 1999, Markus, Manville

and Agres 2000, Raymond 2001).

Very low barriers to entry and contribution: Most of these communities accept

contributions from anyone interested in participating in community activities. People can

join the community and submit their contributions quickly and easily.

Digital end products: The end products produced by the members of the

community are digital, and thus can be stored on digital media and can be dispersed via

the Internet.

Self-contained end products: The end products are self-contained entities that can

be used outside of the context of the community, such as a computer program or a report.

This characteristic distinguishes open online collaboration communities from several

other kinds of online communities, such as discussion groups, chat groups or online game

 16

groups. The “products” of these communities, such as discussion threads, chat sessions,

and game sessions are useful only within the context of the community.

Open and free end products: The end products are “open” in the sense that their

sources are accessible; in certain cases to the point that they can be altered by other

participants and outsiders. They are generally free to use, at least for specific uses, such

as educational and non-profit applications. Project and product-specific licenses

determine the conditions and limits for end use and alterations.

Non-final end products: The end products are almost never totally final, since

they can be altered, improved, extended, and integrated with other products by other

parties in the future.

2.3. Theoretical Approaches to the Study of Online Communities

The literature on online communities includes several theoretical perspectives.

Most of the attention seems to be focused on the motivational elements that drive people

to participate in online communities. Many authors have tried to explain the phenomena

of voluntary participation in online community-related activities as opposed to

conventional economic activity, where participation is compensated by tangible benefits.

This section summarizes those different theoretical approaches.

2.3.1. Gift Economies

Several authors suggested studying online communities through the concept of

“gift economies” (Barbrook 1998, Ghosh 1998, Kollock 1999, Bays and Mowbray 2001).

Raymond (2001) argued that open source software development communities are gift

economies. Gift economies are based on “gift exchange” as opposed to “commodity

 17

exchange.” (Gregory 1982, Bell 1991, Carrier 1991) Commodity exchange takes place as

an instantaneous exchange of products or services of equivalent value (Bourdieu 1997).

In modern economies, this generally occurs in the form of transferring products or

services in return for money. The parties that are involved in a commodity exchange do

not necessarily have a previous or future relationship other than the specific transaction

that takes place. On the other hand, gift exchange takes place between parties who have

an existing relationship, or are aiming to build an ongoing relationship (Bell 1991,

Carrier 1991). Furthermore, a gift exchange is not instantaneous, in the sense that the gift

is not necessarily reciprocated by the giving of a “counter-gift” right away (Bourdieu

1997). However, the giving of a gift generally implies an unstated expectation of a

reciprocation at an indefinite time on the part of the giver (Carrier 1991).

Some authors argued that an inherent property of a gift is that it is tied to the giver

in an inalienable way, while “commodity” products or services exist and have a fixed

value for the buyer irrespective of who the seller was (Mauss 1990, Carrier 1991). As an

example for inalienability, a watch presented by someone to his/her spouse as an

anniversary gift becomes “the watch which is a gift from my spouse”, instead of just “a

watch”, and thus would have a value beyond the value of an ordinary watch. However,

others argued that alienation is not a fundamental difference between gifts and

commodities (Bell 1991). Bell defined barter exchange as a form of gift exchange, and

argues that alienation is a distinguishing factor between “ceremonial gifts” and “bartered

gifts,” rather than a distinguishing factor between gifts and commodities. From this

perspective, the watch in the previous example would still be linked to the giver in an

inalienable way, since it is a “ceremonial gift.” Bays and Mowbray (2001) drew parallels

 18

between online communities and the example of a cookie barter between women, where

each woman bakes a different type of cookie and trades them with others so that each

woman has a variety of cookies. In this example the maker of each cookie would not be

an essential characteristic of the cookies, thus they would be “impersonal”; however, they

are still gifts in the sense that they are not commodities that can be bought by anyone, but

instead exchanged between individuals who have on-going relationships. The argument

about the possibility of “impersonal gifts” is important for using gift exchange as a

theoretical framework for online communities, since the “products” or “services”

exchanged via online communities are generally of impersonal nature (Kollock 1999).

Including “inalienability” as an essential aspect of any gift would restrict the applicability

of the gift economies concept to online communities.

The impersonal characteristic is not the only intricacy encountered while applying

the gift concept to online communities. Most online communities are platforms for the

exchange of digital goods, e.g. textual information or information products such as

software, digital sounds and pictures. Digital goods can be reproduced rapidly in infinite

numbers without any loss in quality and with very low costs. In that sense, when a

“digital gift” is given, it can be given to a group of people instead of a single individual,

with no or a very small additional cost (Barbrook 1998, Ghosh 1998, Kollock 1999). This

sets “digital gifts” apart from “physical gifts.” Ghosh (1995) called this fact the “infinity

of information.”

A digital gift can be given to a predetermined group of people, e.g. members of a

membership-based online community which is closed to outsiders, as well as an

indefinite number of people, by placing the gift on a publicly open website. Considering

 19

that a digital gift can be given to an indefinite number of people, most of whom are

unknown to the giver, the issue of reciprocity poses yet another intricacy in defining

online communities as gift economies. If the takers of the gift are unknown to the giver,

they would be under no obligation to reciprocate the gift, and this would discourage the

giver from giving the gift in the first place. Kollock (1999) suggested the concept of

“generalized exchange” to overcome this problem. In a system of generalized exchange, a

gift or a favor is not necessarily reciprocated by the beneficiary, but by someone else

within the group that takes part in the generalized exchange. When people help a

complete stranger by giving directions or telling the time, they do not expect to get a

similar favor in return from the exact same person they help; however, they expect to get

similar help from some other person, should they need it.

When “infinity of information” comes together with “generalized exchange,” the

giver is better off by giving away more copies of the “gift” rather than fewer, because the

real cost associated with the digital product is the cost of producing the master copy, not

copying it. Once the product is produced, giving away many copies of it would not add to

the burden of the giver. On the other hand, generalized exchange would increase the

likelihood of reciprocation, since people would give away more copies with the

expectation of impersonal reciprocation from others (Ghosh 1998).

An important implication of the concept of gift economies applied to online

communities is that a larger community would motivate contributors to a greater extent,

since the probability of generalized reciprocation increases as the number of contributors

in the community increases. This is due to the fact that digital products are consumed in a

non-rival manner, which brings us to the concept of “public goods.”

 20

2.3.2. Public Goods

The concept of public goods is another theoretical framework suggested for

explaining phenomena related to online communities (Kollock 1999, Millen 2000, Wasko

and Teigland 2002). Several authors used the concept of public goods as a framework for

studying open source software development communities (Hawkins 2001, Bessen 2002).

Public goods (or collective goods, as they are sometimes called) have two aspects that

distinguish them from private goods. First, public goods are “non-excludable”; that is, it

would be too hard or too costly, if not impossible, to exclude the non-payers from

benefiting from a public good. Second, the consumption of public goods is on “non-rival”

basis; that is, the consumption of a public good by an individual does not hinder other

individuals’ consumption of the same good. Most public goods show these two

characteristics to different extents, rather than in an absolute manner. “Pure public

goods,” on the other hand, are totally non-excludable and non-rival (Cowen 1993). Widely

used examples of public goods are firework shows, lighthouses, public libraries, parks,

and traffic lights.

The provision of public goods is sometimes problematic. Since it is infeasible to

exclude non-payers from benefiting from public goods, it is also not feasible to charge for

their use. This brings about the problem of lack of interest in producing and distributing

public goods. Certain public goods, such as public education, national defense, and

highways are provided by the government, and paid for through taxes. Another array of

public goods is tied to private goods. These public goods are paid for through payments

for the private goods they are tied to, such as public services in a shopping mall, which

are paid for indirectly through private goods sold in the mall (Cowen 1993).

 21

The basic social dilemma about public goods is that the rational thing for each

individual is to “free ride”; that is, to benefit from public goods without participating in

their production or without even paying for them. Nonetheless, someone must produce

them or pay for them, just like private goods. Even if the members of a community know

that they would benefit from the production of public goods, their rational choice would

be not taking part in that production. This follows from the argument that the rational

members of a group would not act in favor of their common group interests, but their

own personal interests (Olson 1965). Take the example of a society with a high number

of members, where dues are not compulsory, but voluntary. A rational member would

choose not to pay dues, since that would not affect the overall revenue of the society

substantially, but the member would be better off financially by not paying dues. What

follows is that any rational member would choose not to pay dues for the same reason,

and the overall revenue of the society would be adversely affected. This problem can be

overcome when there is some form of coercion or incentive that would motivate

members of the group to act in favor of the common group interests (Olson 1965).

Another condition that would overcome this problem is the existence of altruistic

motivation; however, the body of literature discussed above is mostly from the field of

economics, and altruism is not generally treated as a viable motivation factor from the

mainstream economics standpoint, unless it is defined with respect to the utility it would

provide to the person acting upon altruism. The sociological perspective seems to be less

rigid in terms of accepting altruism as a motivation factor.

In the same vein as Olson and others, Kollock (1999) pointed out two challenges

for the provision of public goods. The first challenge is motivating individuals to

 22

participate in the production of, or to pay for public goods. The second is the issue of

coordinating motivated individuals in their efforts to produce public goods. Kollock

outlined the possible motivation factors for participation in the production of public

goods which are digital in nature. It is important for this research to examine how digital

products fit the definition of public goods.

Digital products are non-rival in consumption, since they are easy and cheap to

duplicate, and duplication does not reduce their quality. Especially, in the case of web-

based diffusion through FTP and HTTP, the marginal cost of each download on the

procurer’s part is almost zero. However, digital products are not necessarily non-

excludable. It is possible to restrict access to digital products, even though it is not always

simple and feasible to prevent circumvention by means like illegal copying. In that sense,

digital products are not pure public goods. Proprietary software or copyrighted musical

recordings are examples of digital products that are not public goods. However, there is a

wide variety of digital products which are public goods, such as free software, and web

pages open to public access. In this sense, if a digital product is available to the public

free of charge, it is a public good.

Kollock (1999) suggested four possible motivation factors for participating in the

production of digital public goods:

1) Individuals may contribute to the production of digital products with the

expectation that their efforts will be reciprocated in the form of contribution from other

individuals in the group or community. This factor is similar to the idea of a generalized

exchange within the group, as discussed above under the heading of “Gift Economies.”

Kollock argued that a system that identifies contributors and measures their contributions,

 23

at least in a rough manner, would increase the effect of this factor, since individuals will

feel obliged to contribute in order not to be shunned in the long run. Again, as discussed

within the context of gift economies, the probability of reciprocation would increase as

the audience grows larger, giving way to a higher level of motivation towards

contributing. This motivation factor has a direct implication for the open source software

development (OSSD) model, which was build in the first phase of this study: Participants

would be attracted to contribute to communities that offer a high level of utility in terms

of the products they are developing. Consequently, an open source software community

becomes more attractive to participants as the level of functionality and quality of its

product increases. An important component of the overall utility of a software product is

the number of its users. Several authors have argued that a software product would

become more attractive to users as its market share increases (Katz and Shapiro 1985,

Gallaugher and Wang 1999). This is called the positive network externalities effect. The

implication of this effect for the OSSD model is that a higher number of users would

make the community’s product more attractive for potential users.

2) Individuals may also be motivated by the expectation that their contributions

will earn them recognition and reputation among the members of the group or the

community. Reputation can be a motivating factor through two mechanisms: 1) ego

satisfaction due to being respected by the community, 2) professional and financial

opportunities that come with recognition. Programming skills proven through non-

compensated work may open doors into a compensated position in the area of one’s

expertise. Kollock argued that the effect of this factor would be directly correlated with

the visibility of contributions and the availability of some sort of a recognition

 24

mechanism. It can be argued that the existence of opportunities for material

compensation related to the voluntary work would increase the motivational effect of the

reputation factor. An important condition for this motivation factor to have an effect is

that programmers should be able to find adequate opportunities for contributing to a

project, which would demonstrate their skills. A mature project may fail to offer enough

opportunities for contribution. Raymond (2001) introduced the concept of

“homesteading” an open source software project. He argued that participants would claim

portions of a software project and build their reputations within and beyond the

community based on the functionality and quality of the portions that they work on, or in

other words, that they “own.” This argument has a direct implication for the open source

software development (OSSD) model: If an open source software product is in its

maturity stage and most of the potential functionality is already added, the product would

become less attractive for the contributors, since there would not be enough unachieved

functionality to be homesteaded.

3) Another motivation factor may be the feeling of self-efficacy that comes with

the perception that the individual has an effect on the community or the larger world by

his/her contributions. Kollock argued that the effect of this factor would increase as the

size of the community increases, since contributors will have the opportunity to affect the

lives of a larger audience by their contributions. However, it can also be argued that the

increasing community size would diminish the relative impact of the contributions of a

given individual, since there would be more contributions from a larger contributor base.

Distinguishing the contributors and the users who do not contribute as two separate

audiences can make it easier to theorize about the effect of this factor. A larger user

 25

audience given a fixed number of contributors would increase the effect of this factor,

while a greater number of contributors given a fixed user audience would decrease the

effect. A direct implication of this motivation factor for the OSSD model is that a larger

user pool would make the community more attractive for contributing participants.

Another implication of this factor is in parallel with the implications of the reputation

factor discussed above. Based on this motivation factor, an open source software

development community would become less attractive as its product reaches a very high

level of maturity, and thus fails to offer ample opportunities for contribution.

4) Finally, Kollock argued that contributors might be motivated in a purely

altruistic manner by the potential benefit to other members or the community as a whole.

Here again, a larger audience may mean a higher effect on motivation, due to the increase

in the cumulative benefit. It can also be argued that the existence of feedback channels,

which would inform the contributor about the realization of potential benefits to others,

would have a positive effect on this factor’s contribution in the level of motivation. This

motivation factor supported the implication that a larger user pool would increase the

attractiveness of the community for contributors.

2.3.3. Social Networks

Another theoretical framework suggested for studying online communities is

social network analysis (Garton, Haythornthwaite and Wellman 1997, Wellman 1997,

Wellman and Gulia 1999, Jones 2000). Social network analysis is a methodology widely

used for studying patterns of relationships among agents, which in many cases are

people. However agents can also be other social entities such as families, companies, or

states (Garton, Haythornthwaite and Wellman 1997).

 26

Social network analysis defines a given group of people (or other agents) as a

network, which is formed by the members of the group and the relationships between

these members. The members of the group are represented as nodes, and the relationships

as the links of the network. Social network analysis has been widely used to study the

exchange of resources among the members of social groups (Wellman and Berkowitz

1988, Wasserman and Faust 1994, Scott 2000, Rethemeyer 2002). It is possible to

approach information sharing from a social network analysis point of view by defining it

as a resource that is shared among people (Garton, Haythornthwaite and Wellman 1997,

Rethemeyer 2002).

The unit of analysis in social network analysis is a “relation.” Relations have

different characteristics. For instance, a relation can be directed or undirected (Garton,

Haythornthwaite and Wellman 1997). Friendship is an example of undirected relations,

since both agents are friends from each other’s point of view. On the other hand,

parenthood is a directed relation. Another characteristic that distinguishes relations is

their strengths. Relations may be strong or weak. Different types of relations would have

different operationalizations for defining their strengths (Garton, Haythornthwaite and

Wellman 1997). For example, the strength of friendships can be operationalized in terms

of the frequency and length of meetings among the friends, or the amount of self-sacrifice

they claim they would make for their friend.

One or more relations connecting two agents form a “tie.” A tie that involves

more than one relation is a “multiplex tie.” Ties also differ based on their strengths:

“strong ties” and “weak ties.” Strong ties are ties among agents that share many

resources, and in a more frequent, intimate and dependent manner, while weak ties are

 27

those between agents that share fewer resources, infrequently, and not in a dependent

manner. While strong ties are more crucial for an agent’s social existence and well being,

weak ties nevertheless may also play a crucial role in an agent’s social life, especially if

they are many in number and used efficiently. The concept of “networking” between

colleagues is an example of an effort to maintain and increase one’s weak ties.

A substantial portion of the social network studies done on online communities

focuses on the nature and usefulness of Internet based weak ties, and whether strong ties

are possible in online relationships (Wellman and Gulia 1999, Preece 2000 pp.177-178).

Another important question related to online communities, which several researchers

have tried to answer, is whether online communities support or hinder physical

communities (Wellman and Gulia 1999, Preece 2000 pp.182). Several authors have

suggested that online relationships and online communities may hinder relationships and

communities in the physical domain of everyday life (Fox 1995, Slouka 1995 pp.95-100).

A strong argument made by such authors is that online relations distance people from

non-crucial social interaction in the physical domain, and thus decrease the social capital

within the society. Social capital is defined as “capital captured through social relations”

(Lin 2001 pp.19). In that sense, social capital refers to the quantity and quality of social

ties within a community or a society. According to Putnam (1995) social capital “refers

to features of social organization such as networks, norms, and social trust that facilitate

coordination and cooperation for mutual benefit.” While some authors argue that online

life reduces the amount of time people spend building and maintaining social ties in their

physical life, some others suggest that online relationships and online communities may

 28

foster trust and cooperation between those who engage in online socialization and thus

help increase and improve social capital (Preece 2000 pp.22-24 and 182).

Social network analysis focuses on the relationships between individuals, and thus

differs from most other social science approaches that focus on individuals (Garton,

Haythornthwaite and Wellman 1997). This alternative way of looking at groups gives

way to critical findings, which might not reveal themselves through other approaches.

However, social network analysis provides only one part of the picture with respect to the

development of open online collaboration communities. The implications provided by

social network analysis do not lend themselves readily for translation into a dynamic

feedback model. Thus, the implications that this theoretical approach provides about

phenomena related to online communities were not as useful in conceptualizing the initial

system dynamics model as those provided with the other approaches discussed in this

literature review.

2.3.4. Social Informatics

Several authors approach the study of online communities from a perspective

which is interchangeably called “social informatics” or “social impacts” (Turoff and Hiltz

1982, Hiltz 1986 pp.151, 165, 191, Preece 2000 pp.194-196). Social informatics research

focuses on the social impacts of information systems (Preece 2000 pp.194-196). The

basic argument of the social informatics approach is that the design and use of

information systems have an impact on the social processes that govern the context in

which those information systems operate. Furthermore, information systems, together

with social processes, have an impact on social structures and relationships. Based on

these premises, several authors argue that while designing an information system, the

 29

effects on the social processes, structures and relationships should be taken into account,

and the information system should be designed as a part of the social process it will be

“embedded in” (Turoff 1997, Preece 2000 pp.194-196).

A certain array of research focusing on the organizational issues within the

Human-Computer Interaction field have roots in the social informatics approach (Eason

1997, Grudin and Markus 1997, Smith and Conway 1997). The social informatics

approach is also among the theoretical foundations upon which computer supported

cooperative work, and computer mediated communication fields are based (Applegate,

Ellis, Holsapple, Radermacher and Whinston 1991, Turoff 1991, Eason 1997, Grudin and

Markus 1997, Olson and Olson 1997, Smith and Conway 1997).

Preece explained the implications of the social informatics perspective through

examples of electronic journals (2000 pp.194-195). The first example, taken from Kling

(1999), is an electronic journal whose submission process is designed to let authors and

readers discuss online about submitted articles, before the articles are finalized and go

into the peer review stage. The submission process of the electronic journal discussed as

the counter example is designed more or less like a traditional peer reviewed journal,

which operated through an editorial board, without the opportunity of wide discussion.

Preece argued that the social process design and the related software (technological)

design of the first journal would generate more community involvement (2000 pp.195).

This argument brings about the general implication that the design of the social

processes and the software used for the operation of an online community may have

considerable impact on participation. The first example set forth by Preece is arguably

more “democratic,” or has a “flatter” hierarchy structure compared to the second

 30

example. Thus it can be argued as an implication that a more democratic or a

hierarchically flatter socio-technical design may increase participation, by decreasing the

barriers to contribution.

In reality, both journals in Preece’s examples use a peer review process as the

final stage, where the decision about whether a given article should be published, and in

what final form is made. However, the discussion stage in the case of the first journal

provides an opportunity to incorporate suggestions and other input from a wider body of

participants, which definitely would yield a different “final submission,” if not a better

one. A “final submission” shaped by a wide scope of contribution may be expected to

have a better chance of being accepted in the peer review process with a lower number of

revision suggestions for two reasons: First, it would probably have a higher quality since

it would incorporate suggestions and corrections from a wider audience. Also, since it

would reflect the consensus of a much wider portion of the community in question, it

may have an impact on the decision of the reviewers through the power of being a

socially negotiated and accepted “reality.” Clearly, this second effect, if present, is not a

necessarily positive one, since it may impose socially accepted errors, or mistakes on the

reviewers’ part.

The above outlined implications can also be drawn from the open source software

development literature. Raymond argued that the participation of a wider audience in an

open source software development project, especially in the testing and debugging

phases, has a positive effect on the overall quality of the software being developed.

Raymond argued that “[g]iven a large enough beta-tester and co-developer base, almost

 31

every problem will be characterized quickly and the fix obvious to someone” (2001

pp.30).

With respect to the relationship between barriers to contribution and participation,

Raymond implied that as barriers to contribution decrease, participation would increase.

Raymond argued that there is an inverse relationship between “the number of hoops” a

user needs to go through in order to contribute to a project and the number of

contributors. Raymond argued that the barriers to contribution may be “political” as well

as “mechanical” (Raymond 2001 pp.109). The “mechanical” component is mostly related

to the software, and partially to the technical dimension of the social processes that

govern the community, while the “political” component is related to the policy dimension

of the social processes, or in other words, the set of rules and policies with which

contributions are handled. Here, Raymond compared Linux and various BSD projects

from an organizational point of view. According to Raymond, the mechanical and

political components of barriers to contribution may explain why an “amorphous” open

source software development community such as the Linux community attracted far more

contributors than tightly organized and controlled BSD communities (Raymond 2001

pp.109).

Fogel and Barr set forth arguments along the same lines (2001 pp.10-11). They

argued that the convenience provided by an efficient system that makes contribution easy

is not a mere luxury, but a necessity for projects that run on volunteer efforts. The level

of convenience for making contributions may be the ultimate determinant of the number

of contributors, and the amount of their contributions to a project (Fogel and Bar 2001

pp.11).

 32

Fogel and Bar set forth another argument that is important with respect to the

concept of open online collaboration communities in general. They positioned the

problems posed by the physical and temporal separation between open source software

developers within the context of Computer Supported Collaborative [Cooperative] Work1

and argued that problem assessments and suggested solutions to these problems should

apply to other open source-style content development (Fogel and Bar 2001 pp.10). This

argument suggests that the implications of a social informatics approach that hold for

open source software development projects should also hold for other open online

collaboration projects. Clearly, Fogel and Bar viewed open source software development

and other digital content development efforts as examples of the same phenomenon,

which we define as open online collaboration in this study.

2.4. System Dynamics Approaches to Software Project Management

There is a substantial body of research that focuses on applying a system

dynamics modeling approach to software development-related problems (Abdel-Hamid

and Madnick 1991, Barlas and Bayraktutar 1992, Madachy 1994, Rodrigues and

Williams 1997, Bell and Jenkins 1998, Barros, Werner and Travassos 2000, Williams

2001, Rai and Mahanty 2002). Most prominent of these to date is a line of studies carried

out by Abdel-Hamid and other researchers who joined him during different stages of the

overall research project (Abdel-Hamid and Madnick 1983, Abdel-Hamid and Morecroft

1983, Abdel-Hamid 1984, Abdel-Hamid 1989, Abdel-Hamid and Madnick 1989, Abdel-

Hamid and Madnick 1991). The model Abdel-Hamid and Madnick (1991) discussed

1 The established name for that field is Computer Supported Cooperative Work. However, Fogel and Bar
preferred to use the term Computer Supported Collaborative Work in their book.

 33

throughout their book Software Project Dynamics is a good summary of the overall

research that was carried out over several years.

Abdel-Hamid’s model was based on software engineering literature, and 27

interviews held in 5 software development organizations to supplement the literature

wherever needed. The model and its managerial implications were tested through a series

of case studies.

Abdel-Hamid divided the software project model into four sub-models, or

“sectors” as they are called in system dynamics literature: human resource management,

software production, project control, and project planning (Abdel-Hamid and Madnick

1991 pp.13). The human resource management sector addresses the aspects related to the

hiring and turnover of the workforce, as well as the change in the experience level of the

workforce. A critical issue that this sector addresses is the rate at which an inexperienced

workforce is “assimilated,” or becomes experienced through training (Abdel-Hamid and

Madnick 1991 pp.63-68). The software production sector focuses on manpower

allocation, quality assurance and rework, and system testing, as well as the actual

software development itself (Abdel-Hamid and Madnick 1991 pp.69). This is the sector

that provided most of the implication for the open source software development model

built for the first phase of this dissertation study. Parameters such as productivity, error

generation rate, error detection rate, error fixing rate are based on assumptions derived

from this sector of Abdel-Hamid’s model. The project control sector represents

managerial functions related to measurement, evaluation and communication in an effort

to improve project performance (Abdel-Hamid and Madnick 1991 pp.117). The project

 34

planning sector is where decisions about key determinants such as scheduled completion

date and workforce level are made (Abdel-Hamid and Madnick 1991 pp.129).

Abdel-Hamid used the software project model to test various arguments that have

dominated the field of software project management, as well as alternative policy options

that were hypothesized to improve project performance. One such example is Brooks’

Law. According to Brooks, adding more people to the group working on a late project

would make it finish even later. In other words, the net impact of assigning more people

to a late project is negative (Brooks 1995). Abdel-Hamid argued that the behavior of his

software project model indicates that this does not hold at least for a certain range of

projects. He argued, based on findings from his simulations, that although assigning more

people to a late project always causes it to become more costly, it does not necessarily

push the completion date even later. He argued that Brooks’ Law would hold for cases

where the new workforce acquisition is made extremely close to the projected completion

date (Abdel-Hamid 1989).

Abdel-Hamid’s work remains the most comprehensive look at software project

management from a system dynamics perspective, and has been heavily cited throughout

software project management literature. The model and the overall study provide insights

into all aspects of software development phenomena in terms of policy implications. For

the purposes of this study however, the most useful implications were not the policy

implications, but rather the method of incorporating the mechanics and parameter of

software development into the model. This can be attributed to the fact that Abdel-

Hamid’s study focuses on “proprietary” software projects, while the software

development model built within the scope of study looks at a generic open source

 35

software project.2 Some key differences between proprietary and open source software

projects force the open source software development model to differ substantially from a

model of proprietary software projects such as Abdel-Hamid’s. Arguably the most

important difference is that proprietary software projects are run by a paid workforce,

while open source software projects are run by volunteers. It is possible to add new

people to the workforce in a proprietary software project at any given time, as long as the

budget provides the financial means. Open source software projects are not as flexible in

terms of recruiting a new qualified workforce, since they are run through motivation

factors other than direct financial compensation. Another important difference is that

proprietary software projects need to follow a more or less preset schedule with a

declared completion date. Open source software projects are more flexible in terms of

schedule and completion dates, as long as they do not fall too far behind their competition

in terms of delivering the product in a timely fashion.

Another notable application of system dynamics to software development issues

is a line of research by Madachy (Madachy 1994, Madachy 1996, Madachy 2000,

Madachy 2002, Madachy and Boehm 2003). Madachy’s study and his “inspection-based”

process model differ from Abdel-Hamid’s in certain aspects. Madachy focused on

inspection and rework related activities. In order to simplify the model he excluded

productivity determinants such as schedule pressure and manpower mix. For example,

instead of using two pools for workforce -- one experienced and another inexperienced,

Madachy used only one aggregate workforce pool. On the other hand Madachy’s model

is much more detailed with respect to inspection and rework related activities than Abdel-

2 Abdel-Hamid’s work predates the mass diffusion of the Internet, and consequently the conception and
application of open source software development as we know it today.

 36

Hamid’s model. For example, unlike Abdel-Hamid’s model, in Madachy’s model quality

assurance activities are not postponed or accelerated when schedule pressure sets in

(Madachy 1996).

Madachy advanced Abdel-Hamid’s work in certain aspects by applying a

contemporary look at the issue. There is about a decade between the span of Abdel-

Hamid’s and Madachy’s studies, and a decade is a considerably long time when it comes

to evolving practices like software project management. Having said that, Madachy’s

work did not provide further implications for the model built with this study beyond those

provided by Abdel-Hamid’s study for the same reasons discussed with respect to Abdel-

Hamid’s work. Just like Abdel-Hamid’s, Madachy’s model essentially represents

proprietary software project management.3

2.5. System Dynamics Approaches to Instructional Material Development

Application of system dynamics to the domain of instructional material

development has been piecemeal at best, and in the small number of cases where the

methodology is applied to related issues, instructional material development activities per

se is not the main focus of the study. One example of using system dynamics for studying

instructional material development was carried out by the “Grimstad Group.” Grimstad

Group is an international group of researchers who have studied the application of

contemporary technology to instructional design. The objective of the Grimstad Group’s

3 There have been other studies focusing on applying system dynamics to software development
phenomena (Barlas and Bayraktutar 1992; Rodrigues and Williams 1997; Barros, Werner and Travassos
2000; Donzelli and Iazeolla 2001; Kahen, Lehman, Ramil and Wernick 2001; Martin and Raffo 2001;
Pfahl, Klemm and Ruhe 2001; Ruiz, Ramos and Toro 2001; Stallinger and Gruenbacher 2001; Williams
2001; Rai and Mahanty 2002 .) However, these are not discussed in this literature review in depth, since
they add little to Abdel-Hamid’s and Madachy’s studies. These studies did not provide any additional
implications for the purposes of building the open source software development model.

 37

study was “to extend and validate system dynamics technologies for use in managing the

complexities and risks of large-scale courseware development projects” (Spector 1995).

While the main theme of the study was to introduce system dynamics and systems

thinking tools into instructional design, the researchers also worked on a system

dynamics model of the process of instructional planning and production. Though initial

steps of model development were reported (Spector 1995), the literature does not indicate

that the model was eventually completed. As far as the initial report goes, the researchers

aimed to build a model that would be used to test policies to improve courseware

development projects (Spector 1995).

A system dynamics model of the growth of the community of teachers and

researchers applying system dynamics concepts to K through 12 education is still in the

development phase. The model was initiated by a group of teachers and researchers

working within the said community, through a process facilitated by Dr. James Lyneis.

At the time this dissertation was written the model was still in development stage, and

thus had not been published.

Another study, which is rather tangential to the topic of this dissertation, focused

on the growth of the field of system dynamics (Andersen, Radzicki, Spencer and Trees

1997). This model has not been published in detail. However, one very brief conference

paper about it does exist (Andersen, Radzicki, Spencer and Trees 1997). The main focus

of the model is the process through which people are attracted to work in the field of

system dynamics. The model suggests that as more system dynamics based projects are

completed and published more people will become aware of system dynamics, and a

certain portion of those will chose to join the field and carry out more system dynamics-

 38

based projects. Word-of-mouth through newcomers will also increase the number of

people aware of system dynamics. The conception of new system dynamics projects is

not only contingent upon the existence of many people working on system dynamics

(namely the supply side), but also the quality of the existing projects, since the existing

quality would determine the level of demand for further system dynamics projects.

Growing too fast might bring about a problem of decreasing quality, since most of the

people working in the field would be newcomers. One way to overcome this, according

to the model, is to provide mentoring for newcomers by experienced system

dynamicsists.

The “growth of the field” model was not developed further by the original

authors, however the System Dynamics Society recently started an initiative to update

and extend the model with the participation of the executive director of the society and

several volunteer system dynamicists. As the updated version of the model is still in

development phase, no publications about it have been made so far.

2.6. Problem Statement and Dynamic Hypothesis

This section integrates the implications of the literature review in order to

introduce the problem statement and develop a dynamic hypothesis that will be the basis

for the open source software development model.

The level of success open online collaboration communities achieve varies

substantially. While some communities reach a wide audience and achieve considerable

success, others fail to reach critical threshold in terms of number of contributors, end

users, and product functionality (Bezroukov 1999, Preece 2000 pp.25-27, Raymond

2001, Sandred 2001 pp.81-92). Figure 2.1 and Figure 2.2 portray generic behaviors of

 39

successful and unsuccessful open online collaboration communities with respect to

product functionality, number of contributors, and users.

As seen in Figure 2.1 this research posits that the quantity of products developed

by a successful open online collaboration community keeps growing until it reaches a

point where it attract a sustainable audience of contributors and end users. After the

threshold is passed, a project may keep growing exponentially or linearly, or it may reach

a more or less fixed size. Generally, convergent products, such as software, tend to reach

a fixed size after a certain period, while the size of divergent products keep growing.

Figure 2.1 shows that the number of contributors and number of end users of

successful communities either continue to grow, exhibit a logarithmic growth and reach

an equilibrium, or overshoot and then decline to a sustainable equilibrium.

Figure 2.1. Generic Behavior of Successful Open Online Collaboration

Communities

On the other hand, Figure 2.2 shows that unsuccessful communities can never

reach the level of product functionality or number of contributors needed to reach a wide

audience and sustain the community. Product functionality grows too slowly and never

reaches a level where it could attract more active contributors and end users.

Time

Pr
od

uc
t F

un
ct

io
na

lit
y

Time

U
se

rs

Time

C
on

tr
ib

ut
or

s

 40

Consequently, the contributor and end user audiences either vanish, or stay at extremely

low figures, turning the community into a “cult,” which cannot grow.

Figure 2.2. Generic Behavior of Unsuccessful Open Online Collaboration

Communities

This study hypothesizes that success indicators of open online collaboration

communities with respect to product functionality, product quality, number of

contributors, and number of end users are determined by a complex system of

interactions between determinant factors such as participation, production, barriers to

entry and contribution, motivation, level of collaboration, and technology. Consequently,

this study addresses the problem of identifying the underlying dynamic feedback

structure among these elements and analyzing a set of policy option to improve the

overall performances of open online collaboration communities. The dynamic hypothesis

discussed below was the first step in identifying that dynamic feedback structure. The

dynamic hypothesis was used as a candidate to replicate and explain the phenomena

observed in open online collaboration communities. The open source software

development community model introduced in Chapter 4 was based on this dynamic

hypothesis.

Time

Pr
od

uc
t F

un
ct

io
na

lit
y

Time

C
on

tr
ib

ut
or

s
Time

U
se

rs

 41

The two reinforcing feedback loops shown in Figure 2.3 are the drivers behind the

growth of an open online collaboration community. Here, developers participate in

production, and add functionality and quality to the product. Product functionality and

product quality positively affect perceived success in achieving functionality and quality

respectively, which in turn affect attractiveness of the product positively. Finally,

attractiveness of the product has a positive effect on the number of developers, since it

attracts more developers into the community. This loop reflects the implication that an

open source software community becomes more attractive to participants as the level of

functionality and quality of its product increases, as discussed in the literature review

within the context of gift economies and public goods concepts.

 42

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
Added

Production

+

+

Developers

Participation

Average
Productivity +

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

R R

Figure 2.3. Two Reinforcing Feedback Loops Driving the Growth of an Open Online Collaboration Community.

 43

There are two additional positive loops that reinforce the effect of the main

driving loops, as shown in Figure 2.4. Attractiveness of the product has a positive effect

on the motivation of developers to participate, which in turn positively affects the number

of hours each developer spends on the project in a given time period; or in other words,

average participation. Average participation has a positive effect on total participation,

since a higher level of average participation would mean a higher level of total

participation given the same number of developers. It is important to understand that

while these four reinforcing loops have the potential of driving the growth of the

community, they also have the undesirable potential of shrinking the community in a self-

reinforcing manner, if the related variables show a decreasing behavior.

 44

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
Added

Production

+

+

Developers

Participation

Average
Productivity +

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

R R

Motivation for
Participation

Average
Participation

+

+

+

Figure 2.4. Two Reinforcing Feedback Loops, which work through Motivation for Participation.

 45

A hypothesis of this research is that while the above discussed reinforcing loops

drive the community toward growth, two important balancing loops restrict that growth,

as portrayed in Figure 2.5. Production adds to cumulative production, which represents

the accumulation of production efforts over time. As the cumulative production increases,

the developers expect more from the product in terms of both functionality and quality.

Thus, cumulative production has a positive effect on expected functionality and quality,

which in turn have a negative effect on perceived success in achieving functionality and

quality respectively. The two paths running from perceived success in achieving

functionality and quality to production complete the two balancing loops. These two

loops have the potential of restricting, and even reversing the reinforcing effects of the

four positive loops discussed above.

Figure 2.5 also shows a reinforcing loop that works through the size of the end

user audience. The attractiveness of the product has a positive effect on the number of

end users, which in turn has a positive effect on the attractiveness of the product. This

loop is based on the implications of the positive network externalities concept, as

discussed in the literature review.

 46

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
Added

Developers

Participation

Average
Productivity

+
+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality Perceived Success in

Achieving Quality

+
+

+

+

+
Net Increase in

Developers
+

R

B

Motivation for
Participation

Average
Participation

+

+

+

End Users +
Net Increase in

End Users

+

+

Cumulative
Production

+

Production

+

+

Expected
Functionality

Expected
Quality

+

+

-
-

B

Figure 2.5. Two Balancing Feedback Loops which Restrict the Growth of the Community and the Reinforcing Loop which

Works through End Users.

 47

Many open online collaboration communities have mechanisms for checking and

approving the proposed contributions from developers, in order to maintain a desirable

quality level for the products (Browne 1998, O'Reilly 1999, Dempsey, Weiss, Jones and

Greenberg 2002). Figure 2.6 shows the hypothesized feedback structure under the

condition of inclusion of such a mechanism. Here production adds to the backlog of

contributed items to be checked, which implies a need for quality checking activity. The

need for quality checking would cause pressure on the system after a certain point and

decrease the quality of the quality checking activities, thus, having a negative effect on it.

Quality checking activities have a positive effect on product quality, which in turn has a

positive effect on the perceived success in achieving quality. Perceived success in

achieving quality affects quality standard for contributions positively. Quality standard

for contribution affects barriers to contribution positively, as well. Barriers to entry have

a positive effect on rejections, and negative effect on acceptances. Both rejections and

acceptances subtract from the backlog.

The structure in Figure 2.6 is based on three additional feedback loops, two of

which are balancing, and one reinforcing. An increase in the attractiveness of the product

will bring more developers, and consequently increase participation, and thus production.

More production generates more need for quality checking, which decreases the quality

of quality checking and consequently the quality of the product. Decreased product

quality means decreased perceived success in achieving quality, and therefore a decrease

in the attractiveness of the product.

The other balancing loop in this structure implies that acceptance decreases the

probability of future acceptances. Each acceptance subtracts from the backlog of items to

 48

be checked, and therefore decreases the need for quality checking. This increases the

quality of quality checking, since it removes pressure from the system, and consequently

increases product quality and the perception of quality achievement. Increased perception

of quality achievement causes an increase in quality standards for contributions, and thus

increases the barriers to contribution, which decreases the likelihood of acceptances.

Through the same mechanism, rejections increase the probability of further rejections,

since they increase the quality of the product, and consequently the barriers to

contribution by removing pressure from the system. That is the reinforcing loop in this

structure.

 49

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
AddedProduction

+

+

Developers

Participation

Average
Productivity

+

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

R

B

Quality Standard for
Contributions

+
+

Barriers to
Contribution +

Accepted
Items

Rejected
Items

-

+

Backlog of
Items to be
Checked

Need for Quality
Checking

Quality of Quality
Checking

+

-

-
Checked

Items
+ +

+

+
New Items to
be Checked

+

B

Figure 2.6. Feedback Loops Related to Product Quality Checking Mechanism.

 50

The two feedback loops shown in Figure 2.7 have balancing effects on the

product quality checking mechanism. Backlog of items to be checked generates need for

quality checking, which in turn causes leading developers to spend more time on quality

checking. More quality checking increases both acceptances and rejections, since more

items are checked, and increased acceptance and rejection rates subtract relatively more

from the backlog.

 51

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
AddedProduction

+

+

Developers

Participation

Average
Productivity

+

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

B

Quality Standard for
Contributions

+
+

Barriers to
Contribution +

Accepted
Items

Rejected
Items

-

+

Backlog of
Items to be
Checked

Need for Quality
Checking

Quality of Quality
Checking

+

-

-
Checked

Items
+ +

+

+
New Items to
be Checked

+

B

Leader Time for
Quality Checking

+

Quality
Checking

+

+

+

Figure 2.7. Two Feedback Loops Balancing the Product Quality Checking Mechanism.

 52

In addition to its effect through the product quality checking mechanism, barriers

to contribution have a balancing effect on the overall framework through motivation for

participation. Figure 2.8 shows the two balancing loops that are driven by the negative

effect of barriers to contribution on motivation for participation. As discussed in the

literature review within the context of social informatics, motivation for participation

would decrease as barriers to contribution increase. (This follows from the arguments

made by Raymond (2001) and Fogel and Bar (2001). See section 2.3.4 for a detailed

discussion.)

 53

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
Added

Production

+

+

Developers

Participation

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

B
B

Motivation for
Participation

Average
Participation

+

+

+

Quality Standard for
Contributions

Barriers to
Contribution

+

-

+

+

Figure 2.8. Two Balancing Feedback Loops that are Driven by the Negative Effect of Barriers to Contribution on Motivation

for Participation

 54

An extension of the arguments made by Raymond (2001) and Fogel and Bar

(2001) within the context of barriers to contribution is the concept of barriers to entry,

which represents the difficulty of getting accepted to the community as a new developer.

Barriers to entry have a balancing effect on the overall structure through the two negative

loops shown in Figure 2.9. An increase in the number of developers means more

participation, and thus more production, which in turn increases the product functionality

and quality. Product functionality and quality increase perceived success in achieving

functionality and quality respectively, and those in turn increase the barriers to entry,

which has a negative effect on the number of developers.

 55

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
Added

Production

+

+

Developers

Participation

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

B
B

Barriers to
Entry

-

+
+

Figure 2.9. Two Balancing Feedback Loops which Work through Barriers to Entry.

 56

Several authors argued that coaching of inexperienced contributors helps increase

both the productivity of the inexperienced contributors and the quality of the work they

do in the long run (Cox 1998, Fogel and Bar 2001). Accordingly, coaching probably has

a positive effect on average developer skill level, and therefore on average productivity.

However, in the short run coaching has a negative effect on productivity, since time

dedicated to coaching decreases participation dedicated to production. Figure 2.10 shows

the changes after adding coaching to the preliminary framework in bold.

 57

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
Added

Production

+

+

Developers

Participation in
Production

Average
Productivity +

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

Developer
Skill Level

Coaching

+

+
-

Total
Participation

+

Figure 2.10. Changes in Structure after Adding Coaching to the Preliminary Framework.

 58

According to several authors, technology is the most important driving force

behind open online collaboration (Fogel and Bar 2001, Raymond 2001). Here

“technology” means a combination of a communication channel, and a collaboration

platform. The main and most important communication channel in the context of open

online collaboration is the Internet. The Internet makes open online collaboration

between project contributors, and dissemination to end-users a truly open and global

undertaking. In order to involve and manage mass participation by a high number of

contributors, a structured collaboration platform is needed in addition to the

communication channel. Fogel and Bar (2001) argue that it is crucial to implement a

system which makes collaboration and contribution simple and convenient in order to be

able to attract and retain contributors. Raymond (2001) argues that the number of

contributors, and consequently the success of the project, is inversely correlated with the

difficulty of making contributions. Thus, technology has a positive influence on

participation, coaching, and the size of both developer and end user audiences. Figure

2.11 shows the changes after adding technology to the preliminary framework.

 59

Product
Functionality

Product
Quality

+
New Functionality

Added

+
Quality
Added

Production

+

+

Developers

Participation in
Production

Average
Productivity +

+

+

Attractiveness of
Product

Perceived Success in
Achieving Functionality

Perceived Success in
Achieving Quality+

+

+

+

+
Net Increase in

Developers
+

Developer
Skill Level

Coaching

+

+
-

Total
Participation

+

Motivation for
Participation

+

Average
Participation

+

+

Technology

+

+

+

End Users +
Net Increase in

End Users

+

+

+

Figure 2.11. Changes in Structure after Adding Technology to the Preliminary Framework.

 60

The dynamic hypothesis discussed in this chapter acted as the basis for the initial

system dynamics model of a hypothetical open source software development community.

Some other feedback loops and variables, which were not conceptualized as part of the

dynamic hypothesis, were also added to the structure of the open source software

development (OSSD) model as needed. In the end, the OSSD model successfully

replicated the reference behavior patterns of both successful and unsuccessful open

online collaboration communities. The detailed structure of the OSSD model, and its

behavior under a variety of conditions are discussed in Chapter 4 and Chapter 5,

respectively. However, before those, Chapter 3 introduces the methods and the research

design used in this study.

 61

CHAPTER 3 -- METHODOLOGY

3.1. Overview

The ultimate goal of this study was to posit a theory of open online collaboration

communities in the form of a dynamic feedback framework. A multi-method approach

combining qualitative social research methods and system dynamics modeling method

was used to achieve this goal. The study began with the building of a system dynamics

model of a hypothetical open source software development community. The model was

based on three streams of literature: literature on theoretical approaches to the study of

online communities, literature on open source software development, and literature on

application of system dynamics method to software project management. The second

stage of the study involved a series of interviews with the members of a specific

community that focused on building instructional materials for introducing system

dynamics concepts to K through 12 students. The interviews were used as an instrument

to test the applicability of the dynamics that govern the open source software

development model to the instructional material development community. The final stage

of the study involved the outlining of a theoretical framework that can be applied to

studying a range of open online collaboration communities.

Brewer and Hunter (1989 pp.17) define multi-method research strategy as

“attack[ing] a research problem with an arsenal of methods that have non-overlapping

weaknesses in addition to their complementary strengths.” In this study, system dynamics

modeling and structured interviews complement each other. The initial system dynamics

model acted as an overarching hypothesis for representing open online collaboration

 62

communities. The interviews tested the applicability of the model to an actual community

that fits the definition of an open online collaboration community.

3.2. System Dynamics

System dynamics is a methodology for building causal feedback models of

complex, large-scale, non-linear, dynamic socio-economic and natural systems. A group

of researchers led by Jay W. Forrester introduced the methodology in the early 1960s.

Forrester (1961) outlined the methodology and the underlying philosophy behind it in his

book Industrial Dynamics. The two main assumptions of the system dynamics

methodology are:

(1) direct causal relationships between variables that form the model, and

(2) interdependence of causal factors through feedback loops.

Feedback refers to a two-way causal relationship between variables, where

variable X influences variable Y, and after a delay, and perhaps through a series of other

variables, Y influences X. This mutual causal influence structure is called a feedback

loop. The most basic feedback loop structure consists of two variables. Multiplying the

polarities of the causal relationships that form a feedback loop gives the polarity of the

overall feedback loop. Positive feedback loops are also called “reinforcing loops,” since

there is a mutual reinforcing effect between the variables of a positive loop as it operates.

Negative feedback loops are also called “balancing loops,” since the opposite polarities

of the causal relationships that form a negative loop force it toward a balance.

Most system dynamics models include a number of both negative and positive

feedback loops, which interact and operate simultaneously. Large-scale models include

 63

large numbers of variables, and as a result of that a large number of feedback loops. The

lengths of feedback loops vary from two variables to tens of variables within large-scale

models; but generally, as the length of the feedback loop increases, its impact decreases.

A complete system dynamic model consists of a diagram that depicts the variables

of the model and the causal relationships between them, and the underlying mathematical

equations, which represent the algebraic relationships among the variables. Since a

system dynamic model is built with the ultimate aim of carrying out dynamics analyses

by using computer simulations, a model without a complete set of equations would be

incomplete. As stated earlier in this text, system dynamics methodology is used to

analyze dynamic systems, in which the variables change through time. Thus, difference

equations are the main mathematical structures underlying system dynamics models.

A system dynamics model may be represented by causal loop diagrams, which

show the causal relationships between variables without making any distinctions based

on their mathematical characteristics. Another way of representing a system dynamics

model is using structure diagrams, which depict both the causal relationships and the

mathematical characteristics of the variables.

The variables are grouped into three, based on their mathematical characteristics:

(1) Stock (level) variables,

(2) Flow (rate) variables, and

(3) Converters (auxiliaries).

 64

Stock variables represent values that accumulate or decay through time. The value

of a stock variable, at a given time, depends on its initial value, and the sum of inflows

and outflows over time until the given period.

Flow variables represent the changes in stock variables through time, and they are

connected directly to stocks that they change. Stock-flow relationships correspond to

differential equations whereby the flows represent the derivatives of stock variables.

Converters represent quantities that are determined at every time increment only

by the variables that affect them and not by their previous values. In that sense, a

converter simply represents the values of a variable at a given point in time, based on the

value of the variables that influence it.

Several authors outlined different procedure to carry out a system dynamics

modeling study. Although they are different articulations, most of these approaches map

onto the same general procedural outline (Luna and Andersen 2002). Furthermore, each

modeler brings personal nuances to system dynamics model building; however, there are

general procedures or “best practices” that most modelers follow (Martinez-Moyano and

Richardson 2002). System dynamics modeling can be done by a group of people as well

as by individual modelers. The last decade witnessed the development of procedures for

system dynamics modeling in group settings (Andersen and Richardson 1997, Andersen,

Richardson and Vennix 1997).

The system dynamics modeling procedure begins with the problem identification

and model conceptualization phase. This stage involves the representation of the key

variables of the problem in terms of their behaviors over time. The overall collection of

the behaviors of key variables over time is referred to as the “reference mode.” The time

 65

horizon over which the problem plays itself out is also defined in this phase. The problem

identification and model conceptualization phase also involves the articulation of the

system boundary to be modeled. System boundary is drawn by defining the variables that

will be included in the model (Richardson and Pugh 1981, Sterman 2000).

Next comes the model formulation phase, where the structure diagram is built and

the equations for variables are defined. In most cases, the modeler needs to go back and

forth between the problem identification and model conceptualization phase, and the

model formulation phase in an iterative fashion in order to revise the problem definition,

and the system boundary (Richardson and Pugh 1981, Sterman 2000).

The following phase is model testing, which aims to determine the validity of the

model. “All models are wrong” is an axiomatic statement that can be heard frequently in

the context of system dynamics modeling. The statement means that any given model is a

limited representation of a given portion of the real world, and is prone to be inaccurate.

Nonetheless, some models are “more wrong” than the others. The modeler strives to

make the model at hand “less wrong.” In that sense, testing involves finding out how

wrong the model is, and iteratively making it less wrong. It can be argued that no model

can be totally “validated,” and thus “confidence building” is a better phrase to call the

testing stage of a system dynamics study.

Validity (or confidence building) tests can be grouped according to their purpose,

and their focus. The purpose of a given test may be to assess:

(1) the suitability of the model to the modeling purpose,

(2) the consistency of the model with reality, or

 66

(3) the usefulness and effectiveness of the model in terms of achieving its

purpose.

The focus of the test can be either the structure or the behavior of the system

(Richardson and Pugh 1981 pp.314). The modeler frequently goes back to the previous

stages of the modeling process in order to refine and reformulate the model. The overall

modeling procedure is carried out in an iterative fashion.

The final phase of the system dynamics modeling procedure is the policy analysis

and model use phase. This is the stage where alternative policies that address the problem

at hand are tested by making use of simulations. The policies that stand out as adequate

solutions to the problem are communicated and implemented.

3.3. Structured Interviews

Interviews are an alternative data collection method within the general class of

surveys (Babbie 1998 pp.264). Interviews provide an interactive, synchronous data

collection process between the data collectors and the subjects. Structured interviews are

a variety of the interview method, which involve asking the same set of predetermined

questions to all subjects that take part in the research.

Kvale (1996 pp.88) defines seven stages for administering an interview study.

The stages are:

Thematizing: This is the stage where the purpose and the topic of the interview are

determined.

 67

Designing: This stage involves planning how the interview will be carried out,

analyzed and reported. The interview questions are determined and the interview protocol

is developed in this stage.

Interviewing: This is the stage where the actual interviews are carried out.

Transcribing: This stage involves preparing the interview data for analysis,

generally by typing the notes and the recordings of the interviews in a format that is

suitable for analysis.

Analyzing: This is the stage where the interview data are analyzed with the chosen

method.

Verifying: This is where the findings of the analyses are verified in terms of

generalizability, reliability and validity. Generalizability refers to whether the findings of

the study can be used to explain the research phenomena about a wider population, and a

wider variety of cases than just those used in the research. Reliability refers to whether

the results are consistent, while validity refers to whether the study investigates what is

intended to be investigated.

Reporting: This is the stage where the findings are communicated, mostly in

written form.

3.4. Research Design

This study was carried out in three phases:

(1) Modeling of a hypothetical open source software development community.

(2) Administration and analysis of interviews with the members of a specific

instructional material development community in order to test the applicability of a

 68

generalized version of the open source software development model as a representation

of the general dynamics that govern open online collaboration communities.

(3) Positing a theory of open online collaboration communities in the form of a

dynamic feedback framework, based on the open source software development (OSSD)

model and the findings of the interviews.

3.4.1. Analysis and Modeling of Open Source Software Development

The case of open source software development was analyzed and modeled based

on three streams of literature. The analysis of these literature streams roughly maps to the

problem identification and model conceptualization stages of the system dynamics

modeling process. The literature on the theoretical approaches to the study of online

communities and the literature on the theory and practice of open source software

development were used as bases for conceptualizing the portions of the model that

pertain to the social and psychological aspects of the open source software development

phenomenon. Parallels were drawn between the two literature bodies in order to

conceptualize variables and the causal relationships between those variables. The

literature on application of system dynamics method to software project manageme nt,

together with the practitioner segment of the literature on open source software

development was used in conceptualizing the technical and project management related

aspects of the model.

The open source software development (OSSD) model was built through several

iterations. Each iteration produced a self-contained, running dynamic feedback

simulation model, which is referred to here as a “version” of the model. Each version

involves more structure than the previous version, and can explain more about the system

 69

of the hypothetical open source software development community when compared to

previous versions. The structure of the model, and the versions are discussed in detail in

Chapter 4.

The OSSD model has the potential to test policies that would improve overall

system performance, including success factors such as product functionality, product

quality, developer talent, and community size in terms of developers and end users.

Policy implications of the model, along with the findings of a set of confidence building

tests are discussed in Chapter 5.

3.4.2. Interviews with the Members of an Instructional Material

Development Community

The second stage of the research involved the development, administration and

analysis of a series of structured interviews with the members of a specific instructional

material development community, in order to test the applicability of the OSSD model

and its policy implications to other open online collaboration communities. The specific

community in question is a group of teachers and researchers who develop and

disseminate instructional materials for introducing system dynamics concept to K through

12 students.

3.4.2.1. Population

The system dynamics K through 12 instructional materials development

community has gathered around four main organizations or groups. Two of these are non-

profit organizations propagating systems thinking and system dynamics in K through 12

education. The other two are research and practice groups working on developing

 70

instructional materials for introducing system dynamics concept to K through 12

students. The interviewees were affiliated with the two organizations and one of the

research and practice groups. Namely, the Creative Learning Exchange, the Waters

Foundation, and CC-STADUS. No subjects affiliated with the System Dynamics in

Education Project could be recruited for the interviews.

The Creative Learning Exchange (CLE) is a non-profit organization that

propagates systems thinking and system dynamics approaches in K through 12 education.

The CLE has two main functions that are aimed at fulfilling its mission. The first is a

biannual conference that brings together teachers, mentors, researchers and activists who

work on applying systems thinking and system dynamics concept to K through 12

education. The other main function of the CLE is to act as a clearinghouse and outlet for

K through 12 instructional materials that use systems thinking and system dynamics as

teaching tools. The CLE has an active website (clexchange.org) for gathering and

disseminating such materials. Submissions are open to all. The website includes materials

submitted by the affiliates of other K through 12 education organizations focusing on

systems thinking/system dynamics, such as the Waters Foundation, CC-STADUS and

MIT System Dynamics in Education Project, as well as individual authors who are not

affiliated with such organizations. Consequently, the CLE website is the main repository

of instructional materials for introducing system dynamics concepts to K through 12

education. The materials go through a volunteer-based review process before being

posted on the website.

The Waters Foundation is non-profit organization that maintains a network of

educators who do research and develop instructional materials related to systems

 71

thinking/system dynamics for application in K through 12 education. The Waters

Foundation network consists of “sites,” which actually are school districts. Currently,

there are 12 sites in the network: Carlisle Public Schools (Carlisle, MA), Catalina

Foothills School District (Tucson, AZ), Chittenden South Supervisory Union (Chittenden

County, VT), College Community School District (Cedar Rapids, IA), Glynn County

Schools (Brunswick, GA), Greater Tucson Area (Tucson, AZ), Harvard Public Schools

(Harvard, MA), James Bennett High School (Salisbury, MD), LaSalle College

Preparatory High School (Milwaukie, OR), Murdoch Middle School (Chelmsford, MA),

Portland Public Schools (Portland, OR.), Salvadori Education Center (New York City,

NY). Every site has one or more mentors who assist educators in developing systems

thinking/system dynamics based instructional materials, and apply these concepts to their

classes. The mentors also train administrators and other staff in several sites. Instructional

material develop at the sites are disseminated through the Waters Foundation website.

CC-STADUS (Cross-Curricular Systems Thinking and Dynamics Using

STELLA) was a project supported by a National Science Foundation (NSF) grant, which

had the purpose of training high school teachers for applying systems thinking/system

dynamics concepts in the classroom. CC-STADUS had a website for disseminating

instructional materials that were built as part of the project; however, the website went

off-line after the project was completed. Most of the CC-STADUS materials now reside

on the CLE website.

MIT System Dynamics in Education Project (SDEP) is a project aimed at

developing a collection of self-study materials that introduce system dynamics. The

collection is called Road Maps, and is developed by a group of MIT students under the

 72

guidance of Professor Jay W. Forrester. The Road Maps collection was disseminated

through SDEP’s own website, until it was moved to the CLE website.

The rationale for choosing this specific community for study was twofold. First,

the community was highly accessible for the researcher due to personal links between the

members of the dissertation advisement committee and the members of the community.

This fact made the selection and recruitment of the interviewees considerably easier.

Also, since the members of the community were knowledgeable about system dynamics

method, assessment of their opinions about the applicability of the model to their

community was substantially easier than it would be with subjects who were not

knowledgeable about system dynamics. These subjects could comprehend system

dynamics diagrams fast and accurately, as well as being able to articulate their views

using system dynamics terminology, making use of graphs over time, feedback loops,

and stock-and-flow diagrams.

3.4.2.2. Sample Method and Rationale

A purposive, snowball sample of 10 experts from the overall population of system

dynamics K through 12 teachers and researchers were used for the interviews. Kvale

(1996 pp.102) found that the number of interviews in current qualitative interview studies

tend to be between 5 and 25, with an average of roughly 15. Kvale attributed this to two

factors. One is the fact that the time and resources available for carrying out the

interviews are limited. The second factor is the law of diminished returns, which suggests

that each additional interview will add less to the findings, and the contribution of an

additional interview will be negligible once a certain number is reached.

 73

The snowball sampling process was initiated with a list of 21 individuals that

were involved in the system dynamics K through 12 community. The initial list was

compiled with the help of George Richardson, who was very knowledgeable about the

said community and its members. Based on George Richardson’s suggestion, two key

individuals on the list, who have ample connections within the community, were also

contacted to ask for additional names to be added to the list of potential subjects. The

suggestions of those two individuals did not add any more names to the list, since all the

individuals they suggested as potential subjects were already on the list. Furthermore, the

interviewees were asked at the end of the interviews for additional names to be contacted

as potential subjects. However, the answers to that question did not add any names to the

list either, since all the suggested individuals were already on the list. In summary, the

snowballing process started and ended with the same list of individuals as potential

subjects.

An important limitation of the specific community studied was the low number of

potential interview subjects for a research of this detail. Although the numbers of

contributors and end users within the community were reasonably high, the number of

individuals who could provide the level of information asked through the interviews was

quite low. The list of 21 potential subjects was a very optimistic list in terms of

accessibility and knowledge level about the detailed working of the community. The

initial assessment of the list of potential subjects suggested that their level of familiarity

with the detailed workings of the community was highly variable. Also, it became clear

that not all of the potential subjects were accessible, and willing to participate. In the end,

the group of interviewees included most of the key people from the main centers

 74

described above, who have considerably long experience in the field, and a good

understanding of how the community works. Five of the interviewees were mentors, three

were educational researchers, and two were community leaders/activists. One of the

mentors was retired, while all other interviewees were active. One of the mentors focused

mostly on kindergarten through elementary education, while the others worked in middle

and high school settings. One of the researchers had worked as a principal at one time.

Four interviewees were male, and six were female. Nine interviewees worked in the

United States -- four in the northeast, three in the northwest, one in the southeast, and one

in the southwest -- while one interviewee worked outside of U.S, in a predominantly

English-speaking country. Consequently, all interviewees were from English-speaking

countries.

3.4.2.3. Data Collection

The potential subjects were initially contacted by e-mail (See Appendix A.1 --

Initial E-mail Request) to ask whether they would participate in the interviews. Follow-

up e-mail messages (See Appendix A.2 -- Follow-up E-mail Messages) were sent to

potential subjects according to whether they agreed to participate or not. Potential

subjects who agreed to participate received a packet containing a cover letter (See

Appendix A.3 -- Interview Packet Cover Letter), a consent form (See Appendix A.4 --

Particiaption in Research Consent Form), reference mode worksheets to be used during

the uninformed portion (See Appendix A.5 -- Reference Mode Worksheets), model

sketches to be used during the informed portion (See Appendix A.6 -- Model Sketches),

and return envelopes for the consent form and the reference mode worksheets. The

interviews were administered over the telephone, and the conversations were recorded on

 75

audiotape, with the approval of the interviewees. One interview was administered face-

to-face at the request of one of the subjects, and that interview, too, was recorded on

audiotape. The phone interviews lasted an average of 119.3 minutes, with a maximum of

137 minutes and a minimum of 101 minutes. The standard deviation was 11.1 minutes.

The face-to-face interview lasted 135 minutes.

The interview consisted of two parts. (See Appendix A.7 -- Interview Protocol.)

The first, uninformed part was aimed at obtaining information about the specific

community before exposing the subjects to the generalized OSSD model. The second,

informed part involved exposing the subjects to diagrams from a generalized version of

the OSSD model and obtaining their opinions about the applicability of the generalized

model and its policy implications to their community.

The uninformed portion of the interview was developed based on a list of

variables derived form the dynamic hypothesis. Each variable corresponded to one or

more questions that aimed to measure it. A list of the variables used for the development

of the uninformed part of the interview is given in Table 3.1. The first two question of the

uninformed part were designed to ask how the interviewees got involved in the

community and their roles within the community. The third question was about the

interviewees’ general observation about the efforts within the community to develop and

disseminate instructional materials. The first three questions also served the purpose of

“warming up” the interviewees and focusing their attention on the topic to be discussed.

The following 12 questions, Questions 4 through 15 were designed to measures the

variables derived from the dynamic hypothesis, as listed in Table 3.1. The uninformed

portion of the interview protocol included four more questions aimed at assessing the

 76

views of the interviewees about the policy problems within the community, and possible

scenarios about the future of the community. These questions also involved assessing the

interviewees’ observations and expectations about the existing and future behaviors of

key performance measures and determinants of success within the community. The

questions in the uninformed portion were refined through several iterations based on

discussion with my advisors Deborah Andersen and Karl Rethemeyer.

 77

Table 3.1. List of Variables and Corresponding Measures for the Uninformed

Portion of the Interview

Variable Name Definition Interview Question for

Measurement of Variable

Motivation The level of motivation

developers feel to participate in

the project.

Questions 4c-7b.

Coaching The level of coaching among

developers.

Questions 8a-8c-8e.

Participation The amount of time spent by

developers on the project.

Question 4b.

Barriers to Entry Scrutiny level for accepting new

developers.

Questions 5-6

Barriers to

Contribution

Scrutiny level for approving

proposed contributions.

Question 10.

Product Quality The quality of products produced. Questions 9-10-11.

Product

Functionality

The functionality of products

produced.

Question 14

Attractiveness of

Product

The attractiveness of products for

developers and end users.

Questions 7a-15.

Production The amount of production effort

per time period.

Question 12.

Technology Availability of effective mass

digital communication.

Questions 8b-8d.

End Users The number of users of the

products.

Question 13.

Developers The number and skill levels of

developers.

Question 4a.

 78

The informed portion of the interview was developed based on the Iteration V

version of the OSSD model. The focus of the informed part was on the main loops that

reinforce and limit the growth and the overall success of the community, as well as a

series of policy interventions. The major reinforcing and limiting loops in the OSSD

model were represented in a series of simplified stock-and-flow diagrams in order to be

shown to the interviews and ask whether they observed similar dynamics at work in their

community. The sketches included only the variables that are crucial for understanding

the basic structure of the model and revealed each loop gradually. Many converter type

variables were hidden in the diagrams in order not to complicate communicating the

model to the interviewees. Furthermore, certain outflows and loops were omitted from

the diagrams in order to simplify communication and comprehension of the model. The

variable names used in the sketches were different than those in the OSSD model in order

to represent concepts that would fit the case of the instructional materials development

community. For example, the variable name “developers” became “authors,” “bugs”

became “errors,” and “product functionality” became “ functionality of materials.”

Printed diagrams were sent to interviewees in sealed envelopes. Interviewees opened the

sealed envelopes at the beginning of the second, informed portion of the interviews upon

a prompt from the interviewer. A narrative was also developed to accompany the

sketches. The narrative was read to the subjects while they studied the sketches.

Four possible policy intervention options were also discussed with the

interviewees. These were:

- Filtering materials produced by inexperienced authors,

- Reviewing and editing existing materials in the collection,

 79

- Selecting new inexperienced authors based on their talent level, and

- Coaching inexperienced authors.

These policy options were represented as “pure” interventions in the sense that

they were represented singly and in a totally separate fashion. For example, the filtering

option was represented as a pure, flat “accept or reject” policy without rework or review.

On the other hand, the reviewing and editing option involved solely rework on existing

material, without elimination of poor material. The rationale behind this approach was to

expose the interviewees to simple policy options that are easier to communicate and

comprehend. Another important reason for this approach was to elicit the observations

and mental models of the interviewees in an indirect manner, with the least amount of

interference by exposing them to existing model structure.

The four policy options were also represented in four series of sketches and

supporting narratives. These sketches and narratives were developed to explain the four

policy options with their potential positive and negative consequences to the interviewees

and ask whether they observed any of those policies being implemented in their

community. The informed portion concluded with four additional questions that asked

whether the interviewees had anything to add to the discussion at the end of the

interviews, additional potential subjects, and the interviewees’ suggestion for additional

questions for future interviews. The questions in the informed portion were refined

through several iterations based on discussion with my advisors Karl Rethemeyer and

George Richardson.

The interview protocol was piloted with a Ph.D. student from the University at

Albany’s Information Science doctoral program The Ph.D. student was knowledgeable

 80

about system dynamics in general and the topic of this study in particular. The pilot

interview was done face-to-face. Due to the small number of potential subjects no

piloting was done with individuals from the subject pool.

3.4.2.4. Interview Data Analysis

The interview data were analyzed in a qualitative and exploratory fashion. This

approach was mostly driven by the nature of the interview protocol. (See Appendix A.7

for the complete interview protocol, and Appendix A.5 and Appendix A.6 for the

worksheets and the sketches used during the interview.) The interview protocol was

designed in order to foster wider interaction between the interviewer and the interviewee.

This provided deeper information about the interviewee’s observations and mental

models with limited interference from the interviewer. The interviewees were encouraged

to talk freely about their experiences, and to explore and discover their own mental

models. This approach provided thick, rich qualitative data, which was much more

adequate for a qualitative analysis approach than a quantitative one. Another important

reason for using a qualitative approach to the analysis of the interview data was the

limited sample size, which did not allow for plausible quantitative analysis. Further

details about the analysis stage are given in Chapter 6.

3.4.3. Development of a General Dynamic Feedback Framework for Open

Online Collaboration Communities

The final phase of the study involved the development of a theory of open online

collaboration communities in the form of a dynamic feedback framework. The findings

of the interviews were used to refine the generalized OSSD model to reach a general

 81

dynamic feedback framework that is applicable to a wider range of open online

collaboration cases.

The main approach was to review the reinforcing and limiting loops and policy

intervention options based on information gathered from the interviewees. If many

interviewees argued strongly against a loop, that loop was removed or changed based on

interviewees’ suggestions. If a few interviewees argued against a loop, and not forcefully,

the loop was marked suspicious, and revised. Changes might or might not be made on

such loops. Loops that were confirmed or at least not challenged by interviewees were

kept as they were, unless a causal link on them was challenged. If a specific causal link

was challenged on a loop, only that link was revised.

The final dynamic feedback framework is a simplified causal loop/stock-and-flow

diagram that represents the basic dynamic feedback structure of an open online

collaboration community in terms of causal relationships and loops. The framework is

further discussed in Chapter 7.

The first step toward developing the framework was the open source software

development model. The next chapter discusses in detail the structure of the model and

how it was built.

 82

CHAPTER 4 -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL

4.1. Process of Building the OSSD Model

The open source software development (OSSD) model was based on the dynamic

hypothesis introduced in Section 2.6, which, in turn, was based on the implication of the

literature review summarized in Sections 2.3 through 2.5. Additional structures, which

were conceptualized after the dynamic hypothesis development phase, were also

integrated to the OSSD model. The OSSD model evolved through several iterations. Each

iteration produced a self-contained system dynamics model, and each iteration added

more explanatory power to the overall model. Structurally, each version was built by

adding more structure to the version that preceded it. In that sense, each version contains

the previous version, and some additional structure. Versions were finalized as self-

contained units at critical stages of development; such as adding the notion of product

quality or adding the concept of coaching and its effect on average developer talent. The

following sections describe the five versions of the model in the order of development.

4.2. Iteration I: Functionality

This initial iteration is focused on the dynamics of building product functionality,

and developer and user pools. Here, the functionality of the product is a construct that

reflects the general usefulness of the product for the intended tasks. The functionality of a

given software product can be defined in numerous ways. One way is to define it as all

the tasks that can be done using the software. There can be different definitions for

different kinds of software products, and even for the same kind of product, depending on

the type of the users in question. For example, in the case of a spreadsheet program, the

functionality can be defined as the editing and formatting features for one group of users,

 83

while for another group of users it might be defined as the number of built-in functions.

Another way is to define the functionality as the combination of these two definitions.

For the purposes of this study product functionality is defined as the general level of

usefulness of a software product for a wide array of users.

The Iteration I version of the OSSD model consists of two sectors: Developers

Sector and Users Sector. These two sectors are explained below, followed by how they

are related in order to form the overall model.

The Developers Sector of the model represents the casual relationships between

the developers’ production effort and the product functionality level. Developers produce

code, adding functionality to the product, and in turn the level of product functionality

affects the developer population.

 84

Developers

Average
Participation

Production

Average
Productivity+

Product
Functionality

+
New Product

Functionality Added

+

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

+ +

Figure 4.1. OSSD Model (Iteration I) Developers Sector

 85

As demonstrated in Figure 4.1, an initial group of developers participate in code

production and add functionality to the product. As new functionality is added to the

product the overall product functionality increases, and so does Achieved Functionality

Ratio, which is defined as the ratio between the actual Product Functionality and Limit on

Product Functionality. Limit on Product Functionality is the maximum possible level of

functionality that can be expected from a software product comparable to the product in

question. Limit on Product Functionality is not a fixed ceiling since technology changes

over time, and the level of functionality for a given kind of software product increases

over the years (See Figure 4.2).

 86

Developers

Average
Participation

Production

Average
Productivity+

Product
Functionality

+
New Product

Functionality Added

+

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

+ +

Increase in Limit on
Product Functionality

+
Increase in Limit on Product

Functionality Coefficient

+

Figure 4.2. OSSD Model (Iteration I) Developers Sector

 87

There are two potential mechanisms that may slow the process of adding

functionality to the product (See Figure 4.3). First is the potential decline in average

productivity of the developers as the developer population increases. As the number of

developers increases and approaches the Productive Developer Population Limit, the

average productivity of the developers would decline, due to the diminishing returns on

marginal addition of contributors. Average Production is defined as the average number

of lines of code written per hour by a developer. As such, this first mechanism limits the

basic code writing productivity. The second potential limiting mechanism works through

the achieved functionality ratio. As the product functionality approaches the limit on

product functionality, it becomes more difficult to add marginal functionality to the

product. Thus each unit of code adds less functionality to the product.

 88

Developers

Average
Participation

Production

Average
Productivity+

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

Product Functionality
Adding Efficiency

Normal

+ +

<Average Productivity
Normal>+

Developer
Population Intensity

-

+ <Productive
Developer Population

Limit>

-

Increase in Limit on
Product Functionality

+
Increase in Limit on Product

Functionality Coefficient

+

Figure 4.3. OSSD Model (Iteration I) Developers Sector

 89

As Figure 4.4 shows, the number of developers increases as new developers join

the community. New developers come from the pool of potential developers as a normal

fraction of that pool at any given time period. This fraction is an ideal number, which is

limited by the relative attractiveness of the product for developers (See Figure 4.5).

 90

Developers

Average
Participation

Production

Average
Productivity+

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

Product Functionality
Adding Efficiency

Normal

Normal Time to Attract
All Potential Developers

-Potential
Developers +

+ +

<Average Productivity
Normal>+

Developer
Population Intensity

-

+ <Productive
Developer Population

Limit>

-

Increase in Limit on
Product Functionality

+
Increase in Limit on Product

Functionality Coefficient

+

Figure 4.4. OSSD Model (Iteration I) Developers Sector

 91

Developers

Average
Participation

Production

Average
Productivity+

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

+

Product Functionality
Adding Efficiency

Normal

Normal Time to Attract
All Potential Developers

-Potential
Developers +

+ +

<Average Productivity
Normal>+

Developer
Population Intensity

-

+ <Productive
Developer Population

Limit>

-

Increase in Limit on
Product Functionality

+
Increase in Limit on Product

Functionality Coefficient

+

Figure 4.5. OSSD Model (Iteration I) Developers Sector

 92

An important component of the attractiveness of a product for developers is the

amount of unachieved functionality. This follows from Raymond’s (2001) concept of

“homesteading” as discussed in the literature review section. (See Section 2.3.3.)

Raymond suggested that among other things, developers are attracted to participate in an

open source software project if they can “homestead” and claim a certain segment of the

project to themselves. If an open source software product is in its maturity stage and most

of the potential functionality is already added, the product would become less attractive

for the developers, because there would not be enough unachieved functionality to be

homesteaded. Accordingly in the model, attractiveness of the project for developers

decreases as the product functionality approaches the limit on product functionality. This

is also in accord with the motivation factors discussed under the public goods section of

the literature review. We can argue that developers would be attracted to projects that

provide substantial opportunities for contributions whether they are motivated by

reputation, self-efficacy or even altruism. If the opportunities for contribution are scarce,

they would not be attracted.

Just as there are new developers that join the community, there are developers that

leave the community (See Figure 4.6). Developers leave the community at a normal rate,

which accelerates as the opportunities for contribution decrease (See Figure 4.7).

Towards the end of the project, product functionality approaches the limit on product

functionality. This means that most of the potential functionality is already added to the

product, and most of the developers have completed their parts within the project. These

developers would want to move on to other software projects or alternative activities, and

that would accelerate the rate of developer departure substantially. At the end of the

 93

project, only a small number of developers would stay for maintenance purposes to keep

the product up-to-date as the general level of technology develops and the limit on

product functionality increases slowly over time.

 94

Developers

Average
Participation

Production

Average
Productivity+

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

+

+ -
Leaving

Developers

+

Normal Time for
Developers to Leave

+

Product Functionality
Adding Efficiency

Normal

Normal Time to Attract
All Potential Developers

-Potential
Developers +

+ +

<Average Productivity
Normal>+

Developer
Population Intensity

-

+ <Productive
Developer Population

Limit>

-

Increase in Limit on
Product Functionality

+
Increase in Limit on Product

Functionality Coefficient

+

Figure 4.6. OSSD Model (Iteration I) Developers Sector

 95

Developers

Average
Participation

Production

Average
Productivity+

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

+

+ -
Leaving

Developers

+

Normal Time for
Developers to Leave

+

Leaving Acceleration
Due to Functionality

+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-Potential
Developers +

+ +

<Average Productivity
Normal>+

Developer
Population Intensity

-

+ <Productive
Developer Population

Limit>

-

Increase in Limit on
Product Functionality

+
Increase in Limit on Product

Functionality Coefficient

+

Figure 4.7. OSSD Model (Iteration I) Developers Sector

 96

The Users Sector is the other main part of the Iteration I version of the model.

This sector represents the causal relationships between the level of achieved product

functionality and the growth of the product’s user pool. The Users Sector also represents

the effects of the number of users of the product on attracting potential users and

developers.

New users are added to the product’s user pool as potential users adopt the

product. New users are attracted at a normal rate, which is a fraction of the potential user

pool. This fraction is an ideal number, which is limited by the relative attractiveness of

the product for users. The attractiveness of the product for users is influenced positively

by the level of achieved product functionality (See Figure 4.8).

 97

Users
New Users

Achieved
Functionality Ratio

Attractiveness of
Product for Users

+

+

Normal Time to
Attract All Potential

Users

-

Potential
Users

+

Figure 4.8. OSSD Model (Iteration I) Users Sector

 98

The flow of new users into the product’s user pool accelerates as the level of

success in attracting users increases. The success in attracting users is based on the

relative number of users of the product, with respect to the total user population (See

Figure 4.9).

 99

Users
New Users

Achieved
Functionality Ratio

Attractiveness of
Product for Users

+

+

Normal Time to
Attract All Potential

Users

-

Potential
Users

Success in
Attracting Users

+
+

Users Acceleration Due
to Success in Attracting

+

+

Total User
Population+

+
-

Figure 4.9. OSSD Model (Iteration I) Users Sector

 100

Success in attracting users influences the attractiveness of the product for

developers positively, as well. Attractiveness of Product for Developers Due to Users and

Attractiveness of Product for Developers Due to Functionality together determine the

Overall Attractiveness of Product for Developers (Figure 4.10), which in turn influences

the number of new developers.

 101

Users
New Users

Achieved
Functionality Ratio

Attractiveness of
Product for Users

+

+

Normal Time to
Attract All Potential

Users

-

Attractiveness of
Product for Developers

Due to Users

Potential
Users

Success in
Attracting Users

+

+

Overall Attractiveness
of Product for

Developers

+

Attractiveness of Product
for Developers Due to

Functionality -

+

+

Users Acceleration Due
to Success in Attracting

+

+

Total User
Population+

+
-

Figure 4.10. OSSD Model (Iteration I) Users Sector

 102

The main feedback loops governing the Iteration I version of the model can be

analyzed by putting the two sectors together, as shown in Figure 4.11. Besides several

minor (two-variable) loops, the Iteration I version has five major loops that determine the

overall model behavior. Three of these loops are balancing (negative) loops, while the

other two are reinforcing (positive) loops.

 103

Developers

Production

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-
New

Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

Attractiveness of Product
for Developers Due to

Users

+

Success in
Attracting Users

+

+
+ -

Leaving
Developers

+

Leaving Acceleration
Due to Functionality

+

+

Potential
Developers

+

Users

+

Potential
Users

Attractiveness of
Product for Users

+ Users Acceleration Due
to Success in Attracting

+

+-
New Users

+

+

+

Increase in Limit on
Product Functionality

Increase in Limit on Product
Functionality Coefficient

+ +

Figure 4.11. OSSD Model (Iteration I) Overview

 104

The first balancing loop, as portrayed in Figure 4.12, limits the number of new

developers that join the community, as product functionality increases and approaches the

limit on product functionality. This is due to the decrease in the opportunities to

contribute to the project, as discussed earlier in this section. As product functionality

approaches the saturation point, potential developer see that there are not enough

opportunities to claim a certain portion of the project. Thus, they refrain from joining the

community, diverting their attention to alternative open source communities, where they

can find more opportunities to “homestead” portions of the project. As the number of

new developers decline, the developer pool first starts to grow at a slower rate, and after a

point starts to decline. That tipping point is when the number of leaving developers

becomes larger than the number of new developers.

 105

Developers

Production

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers

+
Attractiveness of Product

for Developers Due to
Users

+

Success in
Attracting Users

+

+
+ -

Leaving
Developers

+

Leaving Acceleration
Due to Functionality

+

+

Potential
Developers

+

Users

+

Potential
Users

Attractiveness of
Product for Users

+ Users Acceleration Due
to Success in Attracting

+

+-
New Users

+

+

+

Increase in Limit on
Product Functionality

Increase in Limit on Product
Functionality Coefficient

+ +

Figure 4.12. OSSD Model (Iteration I) Balancing Loop 1: “Fewer Opportunities for Contribution Attract Fewer New

Developers.”

 106

The second negative feedback loop limits the growth of the developer pool due to

the increase in product functionality. (See Figure 4.13). However, it works through

leaving developers, rather than new developers. When developers finish their portions of

the project they tend to leave and move on to other projects, unless they stay within the

community to maintain the product. Towards the end of the project, when product

functionality approaches the limit on product functionality, many developers have done

their share, so the number of leaving developers increases substantially. The increase in

leaving developers, coupled with the decrease in the number of new developers, causes

the developer pool first to grow more slowly and then to decline, as the tipping point

discussed above is reached.

 107

Developers

Production

Product
Functionality

+

New Product
Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

Attractiveness of Product
for Developers Due to

Users

+

Success in
Attracting Users

+

+
+ -

Leaving
Developers

+

Leaving Acceleration
Due to Functionality

+

+

Potential
Developers

+

Users

+

Potential
Users

Attractiveness of
Product for Users

+ Users Acceleration Due
to Success in Attracting

+

+-

New Users

+

+

+

Increase in Limit on
Product Functionality

Increase in Limit on Product
Functionality Coefficient

+ +

Figure 4.13. OSSD Model (Iteration I) Balancing Loop 2: “Fewer Opportunities for Contribution Retain Fewer Existing

Developers.”

 108

The third balancing loop is the one that limits the new product functionality added

per line of code produced. As the product functionality approaches the limit on product

functionality, it becomes harder to add a marginal unit of functionality to the product.

Accordingly, the same number of lines of code yields less functionality, as the achieved

functionality ratio increases (See Figure 4.14).

 109

Developers

Production

Product
Functionality

+

New Product
Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

Attractiveness of Product
for Developers Due to

Users

+

Success in
Attracting Users

+

+
+ -

Leaving
Developers

+

Leaving Acceleration
Due to Functionality

+

+

Potential
Developers

+

Users

+

Potential
Users

Attractiveness of
Product for Users

+ Users Acceleration Due
to Success in Attracting

+

+-

New Users

+

+

+

Increase in Limit on
Product Functionality

Increase in Limit on Product
Functionality Coefficient

+ +

Figure 4.14. OSSD Model (Iteration I) Balancing Loop 3: “More Functionality Makes It Harder to Add Further Functionality.”

 110

The first major reinforcing loop is local to the users sector (See Figure 4.15). This

loop works according to the positive network externalities principle. As new users join

the community by starting to use the product, the number of users increases. A higher

number of users is perceived as a higher success in attracting users, and the higher

success accelerates the rate of new users joining the community.

 111

Developers

Production

Product
Functionality

+

New Product
Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

Attractiveness of Product
for Developers Due to

Users

+

Success in
Attracting Users

+

+
+ -

Leaving
Developers

+

Leaving Acceleration
Due to Functionality

+

+

Potential
Developers

+

Users

+

Potential
Users

Attractiveness of
Product for Users

+ Users Acceleration Due
to Success in Attracting

+

+-

New Users

+

+

+

Increase in Limit on
Product Functionality

Increase in Limit on Product
Functionality Coefficient

+ +

Figure 4.15. OSSD Model (Iteration I) Reinforcing Loop 1: “Positive Network Externalities Effect Attracts More Users.”

 112

The second reinforcing loop is a model-wide one within the boundary of the

Iteration I version. (See Figure 4.16.) This loop ultimately explains how a given

community succeeds or fails in terms of overall growth. As developers participate in

production and build product functionality, the achieved functionality ratio increases. A

high functionality achievement attracts a higher number of new users, thus increasing the

user pool rapidly. This is perceived as a success in attracting users. A considerable

success in attracting users attracts more new developers, who in turn generate more

production which helps build functionality faster. On the other hand, if existing

developers fail to build functionality comparable with the increase in the limit on product

functionality, the product fails to attract the critical level of users. That in turn decreases

the attractiveness of the product for developers, decreasing the number of new

developers, which would further decelerate the progress of the project. This loop is not as

dominant in the Iteration I version as it is in the subsequent versions of the model. The

reason for that is the exclusion of the time pressure factor in the Iteration I version. Time

pressure is added to the model in the Iteration II version, which increases the effect of

this reinforcing loop on the model behavior.

 113

Developers

Production

Product
Functionality

+

New Product
Functionality Added

+

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

-

Overall Attractiveness
of Product for

Developers
+

Attractiveness of Product
for Developers Due to

Users

+

Success in
Attracting Users

+

+
+ -

Leaving
Developers

+

Leaving Acceleration
Due to Functionality

+

+

Potential
Developers

+

Users

+

Potential
Users

Attractiveness of
Product for Users

+ Users Acceleration Due
to Success in Attracting

+

+-

New Users

+

+

+

Increase in Limit on
Product Functionality

Increase in Limit on Product
Functionality Coefficient

+ +

Figure 4.16. OSSD Model (Iteration I) Reinforcing Loop 2: “More Functionality Attracts More New Users, and That Attracts

More New Developers.”

 114

The base run of the Iteration I version involves a project with an initial product

functionality limit of 400 Units of Functionality (UF). Figure 4.17 shows the behavior of

product functionality for this base run. Product functionality increases almost in a linear

fashion, seeking to reach the functionality limit after about month 55. After that point the

rate of increase in product functionality drops since most of the potential functionality

has been added to the product. Functionality limit, too, increases, as the general level of

technology grows. However the increase in functionality limit is slower than that in

product functionality.

Product Functionality

600

450

300

150

0 1
1

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_1_base UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.17. OSSD Model (Iteration I) Base Run - Product Functionality

Figure 4.18 displays the behavior of achieved functionality ratio, which in fact is

the ratio between actual product functionality achieved and functionality limit. Here,

achieved product functionality increases in a linear fashion until it reaches an equilibrium

value a little below 1. After that point, achieved product functionality does not increase

 115

any further due to the lag between the increase in the general level of technology and the

actual maintenance improvements in the product in question.

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1

1

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_1_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.18. OSSD Model (Iteration I) Base Run - Achieved Functionality Ratio

The behavior of the number of developers in the base run for the Iteration I

version is shown in Figure 4.19. The number of developers increases as the project

unfolds because the overall attractiveness of the product keeps the rate of new developers

above the rate of leaving developers. At around month 43, the rate of leaving developers

surpasses the number new developers. This is caused by (a) decreases in attractiveness

due to decreasing opportunities for making contributions and (b) the acceleration of

developer departures due to the fact that many developers have completed their

contribution to the product at that stage of the project. After that point the number of

developers continues to decline until an equilibrium just below 10 is reached. These are

 116

the developers that stay in the community for maintenance and updating purposes, in an

effort to keep the product current with respect to the general level of technology.

Developers

20

15

10

5

0

1

1

1
1

1 1 1 1 1 1
1

1

1

1
1

1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_1_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.19. OSSD Model (Iteration I) Base Run - Number of Developers

The number of users of the product exhibits an S-shaped growth pattern as shown

in Figure 4.20. The growth of the number of users is driven by the achieved functionality

ratio through the attractiveness of the product for users, and the success in attracting users

through positive network externalities. As the achieved functionality ratio and success in

attracting users increase, the rate of new users increases faster and the number of users

exhibit an exponential growth pattern until around month 33. After that point, the

increase changes shape and becomes sub-linear because the pool of potential users

becomes too small. Finally, the number of users converges to the absolute number of

potential users at 20,000 people. This, of course, is based on the assumption that there are

 117

a fixed number of potential users that would be interested in a given product and that that

number would not increase over time.

Users

20,000

15,000

10,000

5,000

0 1 1 1 1
1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_1_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.20. OSSD Model (Iteration I) Base Run - Number of Users

Another simulation is run with the initial limit on product functionality set to

4000 UF, and the potential user population set to 200,000 people. As Figure 4.21 shows,

product functionality exhibits a behavior that is very close to linear. This behavior covers

roughly 80% of the development period of the product. As Figure 4.22 shows, achieved

productivity ratio reaches a little higher than 0.8 by the end of month 100. The number of

developers increases until month 80, since there is still a considerable amount of

functionality to be added until that stage in the project. After month 80, the number of

developers starts to decrease (See Figure 4.23). The number of users reaches the

saturation point around month 95 (See Figure 4.24).

 118

Product Functionality

6,000

4,500

3,000

1,500

0 1 1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_1_hi_pot UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.21. OSSD Model (Iteration I) High Functionality Potential Run - Product

Functionality

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_1_hi_pot Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.22. OSSD Model (Iteration I) High Functionality Potential Run -

Achieved Functionality Ratio

 119

Developers

100

75

50

25

0

1

1

1

1

1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_1_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.23. OSSD Model (Iteration I) High Functionality Potential Run -

Developers

Users

200,000

150,000

100,000

50,000

0 1 1 1 1 1 1 1 1
1

1

1

1

1

1

1

1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_1_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.24. OSSD Model (Iteration I) High Functionality Potential Run - Users

 120

A range of simulation runs with the Iteration I version under different initial

conditions and parameter settings points out the importance of time pressure, which is

addressed by the Iteration II version of the model. An example is a group of simulations

run by setting average participation to lower values than the original value of 20 hours

per person per month. Figure 4.25 through Figure 4.28 shows the behavior of the

Iteration I version with Average Participation set arbitrarily to seven hours per person per

month, as a lower participation level. While the growth of product functionality and the

number of users slow down considerably, the community still succeeds in terms of

retaining a critical mass of developers that continue to work on the product. Eventually,

both product functionality and the number of users reach healthy levels. When average

participation is decreased even further, the growth slows down even more; however,

given enough time, product functionality and the number of users always reach healthy

levels. This is a critical problem about the Iteration I version. The Iteration I version can

replicate the behavior of successful communities, but not those of unsuccessful

communities. Changing other parameters that have a decreasing effect on the overall

production triggers the same problems. For example, decreasing average productivity,

decreasing the normal (base) rate of new developers, or increasing the normal rate of

leaving developers all directly or indirectly decrease overall production. As production

decreases, the growth of the product and the community slow down, however the

community never fails to reach a healthy level in terms of product functionality and the

number of users, given enough time. This problem is addressed by the Iteration II version

of the model, which includes the time pressure factor and replicates a wider range of

situations more accurately.

 121

Product Functionality

600

450

300

150

0 1 1 1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_1_lo_part UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.25. OSSD Model (Iteration I) Low Participation Run - Product

Functionality

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_1_lo_part Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.26. OSSD Model (Iteration I) Low Participation Run - Achieved

Functionality Ratio

 122

Developers

20

15

10

5

0

1

1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_1_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.27. OSSD Model (Iteration I) Low Participation Run - Developers

Users

20,000

15,000

10,000

5,000

0 1 1 1 1 1 1 1 1 1
1

1

1

1

1

1

1

1

1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_1_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.28. OSSD Model (Iteration I) Low Participation Run - Users

 123

4.3. Iteration II: Adding Time Pressure

The aim of the second iteration of the model-building phase is to capture the time

pressure factor on the community while developing a product. The Iteration I version of

the model cannot explain cases where a community ceases to grow and eventually

declines because the product is not delivered in a timely fashion. Under the assumption

that there are other proprietary and open source alternatives for the product being

developed by the community, it is crucial to deliver the product within the time frame

expected by the users.

As portrayed in Figure 4.29, the Iteration II model assumes the existence of a

general level of patience on the part of the potential members of the community, both

developers and users. The initial limit on product functionality determines the speed with

which that patience will run out, and how fast the community will expect the product to

mature.. It is assumed that a larger product in terms of the limit on product functionality

will bring about a slower rate at which patience runs out. In other words, the community

will expect a bigger project to mature over a longer period of time, so they will lose

patience more slowly.

 124

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

Product Functionality
Adding Efficiency

Normal

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Production

Patience
Patience Lost

+

Normal Time to
Lose Patience

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Figure 4.29. OSSD Model (Iteration II) Developers Sector

 125

The level of patience at a given time determines the functionality expectation of

the community (See Figure 4.30). The expected functionality ratio would constitute a

mental benchmark for community members when they assess the success of the project in

terms of delivering functionality in a timely manner. It is assumed that during the initial

phases of a project, community members would not focus too much on the actual level of

achieved functionality, and give the project a chance even if the achieved functionality

ratio is very low. Rather, they would focus on their expectations for a period of time in

the hope that the achieved functionality level would approach those expectations in time.

As the project unfolds, their focus would shift toward achieved functionality ratio. This

shift in the focus for assessment is represented by the operative functionality ratio.

Operative functionality ratio is a weighted average of achieved and expected

functionality ratios (See Figure 4.30). The weights are determined by the expected

functionality ratio. As expectation builds, the weight shifts to the achieved functionality

ratio. It is assumed that at the beginning of the project the weight on expected

functionality ratio is 1, and it remains 1 until the expected functionality ratio reaches 0.1.

From that point on the weight on expected functionality ratio declines, the weight on

expected functionality ratio grows, and they both become 0.5 when expected

functionality ratio reaches 0.2. By the time expected functionality ratio reaches 0.3, the

weight on achieved functionality ratio reaches 1.

 126

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-

Product Functionality
Adding Efficiency

Normal

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Operative
Functionality Ratio

+
+

Production

Patience
Patience Lost

+

Normal Time to
Lose PatienceExpected

Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Operative/Expected
Functionality Ratio

- +

Figure 4.30. OSSD Model (Iteration II) Developers Sector

 127

The success of the community in terms of accommodating the functionality

expectation is represented as a ratio between the operative and expected functionality

ratios. On the part of the developers, operative vs. expected functionality ratio has two

motivational effects. On the positive side, a high operative vs. expected functionality

ratio would increase the overall attractiveness of the product for developers, and thus

increase the number of new developers joining the community (See Figure 4.31). On the

negative side, a low operative vs. expected functionality ratio would discourage the

existing developers, and increase the rate of leaving developers (See Figure 4.32).

 128

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to
Potential Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-
-

Overall Attractiveness of
Product for Developers

+

Attractiveness of Product
for Developers Due to

Users

+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Attractiveness of Product for
Developers Due to Achieved

Functionality

+

<Success in
Attracting Users>

+

+

Operative
Functionality Ratio

+
+

Production

Patience
Patience Lost

+

Normal Time to
Lose PatienceExpected

Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Operative/Expected
Functionality Ratio

- ++

Figure 4.31. OSSD Model (Iteration II) Developers Sector

 129

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to
Potential Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-
-

Overall Attractiveness of
Product for Developers

+

Attractiveness of Product
for Developers Due to

Users

+Normal Time
for Developers

to Leave

Leaving Acceleration
Due to Potential

Functionality
+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Attractiveness of Product for
Developers Due to Achieved

Functionality

+

Leaving Accelaration
Due to Low Achieved

Functionality

-
Leaving

Developers

+

+
+-

<Success in
Attracting Users>

+

+

Operative
Functionality Ratio

+
+

Production

Patience
Patience Lost

+

Normal Time to
Lose PatienceExpected

Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Operative/Expected
Functionality Ratio

-

- ++

Figure 4.32. OSSD Model (Iteration II) Developers Sector

 130

Another concept that is introduced with the Iteration II version is the pool of

developers working on similar projects. These projects are rivals to the community in the

sense that they focus on developing similar, alternative products. As shown in Figure

4.33 developers would join and leave the other projects with certain rates, thus adding to

and taking from the pool of potential developers. This is a more accurate representation

of the competition for developer resources as it happens in open source software

development.

 131

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to
Potential Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-
-

Overall Attractiveness of
Product for Developers

+

Attractiveness of Product
for Developers Due to

Users

+Normal Time
for Developers

to Leave

Leaving Acceleration
Due to Potential

Functionality
+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Attractiveness of Product for
Developers Due to Achieved

Functionality

+

Leaving Accelaration
Due to Low Achieved

Functionality

-
Leaving

Developers

+

+
+-

Developers on
Other Projects

Leaving Developers
from Other Projects

Potential Developers
Choosing Other Projects

+

Normal Time to Lose All
Potential Developers to

Other Projects

+

-

+

<Success in
Attracting Users>

+

+

Operative
Functionality Ratio

+
+

Production

Patience
Patience Lost

+

Normal Time to
Lose PatienceExpected

Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Operative/Expected
Functionality Ratio

-

- ++

Figure 4.33. OSSD Model (Iteration II) Developers Sector

 132

Leaving users is another concept that is added to the Iteration II version.

Operative/Expected Functionality Ratio affects the rate of leaving users. It is assumed

that the users would leave the users pool at a certain rate, which is accelerated by low

levels of operative/expected functionality ratio. (See Figure 4.34.) It is important to note

that while new users are attracted to the product based on the absolute level of achieved

functionality ratio, leaving users are influenced by the achieved/expected functionality

ratio. The assumption here is new users do not pay attention to how the functionality of

the product has increased over time while they are deciding whether to shift to the

product. They only look at the absolute functionality level at the time they are making

their decision, and base their decision on that.

 133

Users

Potential
Users

Attractiveness of
Product for Users

+

Normal Time to
Attract All Potential

Users

-

+
+-

New Users

Normal Time to
Lose All Users

Leaving Users Acceleration
Due to Low Achieved

Functionality

Leaving
Users

+-

+

<Achieved
Functionality

Ratio>

<Expected
Funtionality Ratio>

<Operative
Functionality Ratio>

Operative/Expected
Functionality Ratio

+

-

+

Figure 4.34. OSSD Model (Iteration II) Users Sector

 134

Users

Potential
Users

Attractiveness of
Product for Users

+

Normal Time to
Attract All Potential

Users

-

+
+-

New Users

Normal Time to
Lose All Users

Leaving Users Acceleration
Due to Low Achieved

Functionality

Potential Users
Choosing Competitor

Products

+

Normal Time to Lose All
Potential Users to

Competitor Products
-

Users Using
Competitor

Products

Leaving
Users

+-

+

Leaving Users from
Competitor Products

+ -

<Achieved
Functionality

Ratio>

<Expected
Funtionality Ratio>

<Operative
Functionality Ratio>

Operative/Expected
Functionality Ratio

+

-

+

Figure 4.35. OSSD Model (Iteration II) Users Sector

 135

On the other hand, existing users’ expectations for functionality grow as the

project unfolds, and if achieved functionality does not match their expectations at a given

time, they may become impatient and quit using the product. The option of users

switching to competing products is also added to the model with the Iteration II version.

Potential users may choose to adopt competing products and existing users of competing

products may adopt the open source option at certain rates, as shown in Figure 4.35.

As shown in Figure 4.36, success in attracting users is still determined by the ratio

between the number of users of the product and the number of total users. Number of

total users includes the number of users of the product, number of users of competing

products, and number of potential users, in Iteration II model. Success in attracting users

influences the number of new users and the attractiveness of the product for developers

positively, as in the Iteration I version (See Figure 4.36.)

 136

Attractiveness of
Product for Developers

Due to Users

Success in
Attracting Users

+

Total User
Population

-

Users

+

Potential
Users

+

Attractiveness of
Product for Users

+

Normal Time to
Attract All Potential

Users

-

+

New Users
Acceleration Due to
Success in Attracting

+
+-

New Users
+

+

Normal Time to
Lose All Users

Leaving Users Acceleration
Due to Low Achieved

Functionality

Potential Users
Choosing Competitor

Products

+

Normal Time to Lose All
Potential Users to

Competitor Products
-

Users Using
Competitor

Products

+

Leaving
Users

+-

+

Leaving Users from
Competitor Products

+ -

<Achieved
Functionality

Ratio>

<Expected
Funtionality Ratio>

<Operative
Functionality Ratio>

Operative/Expected
Functionality Ratio

+

-

+

Figure 4.36. OSSD Model (Iteration II) Users Sector

 137

Including time pressure in the model introduces three more major reinforcing

loops. The first of the new reinforcing loops (Reinforcing Loop 3) works through the

overall attractiveness of the product for developers. As developers participate in

production and add functionality to the product operative/expected functionality ratio

increases. A higher operative/expected functionality ratio increases the attractiveness of

the product for the developers, thus the rate of new developers joining the project

increases. (See Figure 4.37.)

 138

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to
Potential Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-
-

Overall Attractiveness of
Product for Developers

+

Attractiveness of Product
for Developers Due to

Users

+Normal Time
for Developers

to Leave

Leaving Acceleration
Due to Potential

Functionality
+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Attractiveness of Product for
Developers Due to Achieved

Functionality

+

Leaving Accelaration
Due to Low Achieved

Functionality

-Leaving
Developers

+

+
+-

Developers on
Other Projects

Leaving Developers
from Other Projects

Potential Developers
Choosing Other Projects

+

Normal Time to Lose All
Potential Developers to

Other Projects

+

-

+

<Success in
Attracting Users>

+

+

Operative
Functionality Ratio

+

+

Production

Patience
Patience

Lost+

Normal Time to
Lose PatienceExpected

Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Operative/Expected
Functionality Ratio

-

- +
+

Figure 4.37. OSSD Model (Iteration II) Reinforcing Loop 3: “More Functionality Attracts More New Developers.”

 139

The second newly introduce loop (Reinforcing Loop 4) works through the

acceleration of leaving developers due to low achieved functionality. As the

operative/expected functionality ratio decreases more developers are inclined to leave the

project. This would slow down the growth of the developer pool if the rate of new

developers is higher than the rate of leaving developers. If the rate of leaving developers

is faster than the rate of new developers it would decrease the number of developers

faster. This in turn would affect the production and functionality growth negatively. (See

Figure 4.38.)

 140

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to
Potential Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-
-

Overall Attractiveness of
Product for Developers

+

Attractiveness of Product
for Developers Due to

Users

+Normal Time
for Developers

to Leave

Leaving Acceleration
Due to Potential

Functionality
+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Attractiveness of Product for
Developers Due to Achieved

Functionality

+

Leaving Accelaration
Due to Low Achieved

Functionality

-Leaving
Developers

+

+

+-

Developers on
Other Projects

Leaving Developers
from Other Projects

Potential Developers
Choosing Other Projects

+

Normal Time to Lose All
Potential Developers to

Other Projects

+

-

+

<Success in
Attracting Users>

+

+

Operative
Functionality Ratio

+

+

Production

Patience
Patience

Lost+

Normal Time to
Lose PatienceExpected

Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Operative/Expected
Functionality Ratio

-

- +
+

Figure 4.38. OSSD Model (Iteration II) Reinforcing Loop 4: “More Functionality Retains More Existing Developers.”

 141

Reinforcing Loop 5 is the third one of the newly introduced reinforcing loops.

(See Figure 4.39.) This loop works through the accelerating effect of low

operative/expected ratio values on the leaving users. If operative/expected ratio falls

below a certain level, more users would quit using the product in favor of a competing

product. This would either decrease the number of users -- or at least keep it from

increasing faster -- and ultimately have a negative effect on the rate of user adoption and

consequently on the attractiveness of the product for developers, thus slowing down the

rate of new developers.

 142

Developers

Average
Participation

Average
Productivity

Product
Functionality

+
New Product

Functionality Added

Product Functionality
Adding Efficiency

+

Attractiveness of Product
for Developers Due to
Potential Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+

-
-

Overall Attractiveness of
Product for Developers

+

Attractiveness of Product
for Developers Due to

Users

+Normal Time
for Developers

to Leave

Leaving Acceleration
Due to Potential

Functionality
+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

Average Productivity
Normal

+

Developer
Population Intensity

-

+ Productive Developer
Population Limit

-

Attractiveness of Product for
Developers Due to Achieved

Functionality

+

Leaving Accelaration
Due to Low Achieved

Functionality

-Leaving
Developers

+

+
+-

Developers on
Other Projects

Leaving Developers
from Other Projects

Potential Developers
Choosing Other Projects

+

Normal Time to Lose All
Potential Developers to

Other Projects

+

-

+

Success in
Attracting Users

+

+

Operative
Functionality Ratio

+

+

Production

Patience
Patience

Lost+

Normal Time to
Lose Patience

Expected
Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient +

+

Time to Lose
Patience

+
+

-

+

+

Operative/Expected
Functionality Ratio

-

- +
+

Leaving Users Acceleration
Due to Low Achieved

Functionality

Users
Sector

Figure 4.39. OSSD Model (Iteration II) Reinforcing Loop 5: “More Functionality Retains More Existing Users.”

 143

The Iteration II version displayed a behavior that is very similarly to that of the

Iteration I version in terms of the main indicators under the base run conditions. The base

run is again based on a project with an initial product functionality limit of 400 Units of

Functionality (UF). Here again product functionality increases almost linearly until it

reaches about 97% of the limit on product functionality (See Figures 6.40 and 6.41).

From there on, the rate of increase in product functionality drops, since a healthy level of

achieved functionality ratio is reached. As can be observed in Figure 4.41, achieved

functionality begins to decrease after reaching a peak around month 65.

Product Functionality

600

450

300

150

0 1

1

1

1

1

1

1

1

1

1

1
1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_2_base UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.40. OSSD Model (Iteration II) Base Run - Product Functionality

 144

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1

1

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_2_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.41. OSSD Model (Iteration II) Base Run - Achieved Functionality Ratio

When the model is run for 200 months instead of 100, achieved functionality ratio

decreases for a while and than increases again to reach an equilibrium, which is lower

than its peak value. (See Figure 4.42.) This again is attributable to the fact that the

maintenance efforts within the community in order to keep the product up-to-date have to

follow the improvement of the general level of technology with a certain delay, as was

discussed within the context of the Iteration I version. In fact, looking closely at the

behavior of achieved functionality ratio under the base run of the Iteration I version

reveals that it decreases slightly after its peak at around month 75 due to the same reason.

(Refer to Figure 4.18.)

 145

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Achieved Functionality Ratio : iter_2_base_200 Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.42. OSSD Model (Iteration II) Base Run - Achieved Functionality Ratio

- Time Horizon Doubled

The number of developers under the base run conditions exhibits a behavior that

is similar to that under Iteration I version in general terms. The number of developers first

increases in a sub-linear fashion, reaches a peak level, and then exhibits a reversed-S-

shaped decline. The major difference of the two behavior patterns is that the number of

developers reaches it s peak earlier under the Iteration II version conditions. (See Figure

4.43.)

 146

Developers

20

15

10

5

0

1

1

1 1 1 1 1 1 1
1

1

1

1

1

1

1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_2_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.43. OSSD Model (Iteration II) Base Run - Number of Developers

As Figure 4.44 shows, the number of users exhibit an S-shaped growth pattern in

general terms; however, that pattern is different than that under the Iteration I conditions.

(See Figure 4.20.) Under Iteration II conditions, the growth in number of users does not

reach the level of full potential user population by the end of the simulation horizon. ,

Instead, it continues to grow in a sub-linear fashion. This is due to the existence of

competing products, which constitutes another user pool into which potential users may

flow. Being successful in terms of operative/expected functionality ratio, the product

continues to attract more users; however, the process is slower compared to the Iteration I

case, since some potential users are currently using competing products. They have to

decide giving up those products before they shift to the open source option. Another

important point is that the users pool of the product in question will never reach the full

number of potential users, as in the case of the Iteration I version, because there will

 147

always be a portion of users who will chose to use competing products, no matter how

successful the open source option is.

Users

20,000

15,000

10,000

5,000

0 1 1 1 1 1 1
1

1

1

1

1
1

1
1

1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_2_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.44. OSSD Model (Iteration II) Base Run - Number of Users

Running the Iteration II version for a bigger project yields behaviors similar to

those observed under Iteration I version, in general terms (see Figures 6.45 through

6.48.). The initial limit on product functionality is set to 4000 UF for that run. The

behaviors of the number of developers and the number of users are somewhat different in

terms of the details, and that is attributable to the inclusion of other products competing

for developers and users as discussed above about the base case run.

 148

Product Functionality

6,000

4,500

3,000

1,500

0 1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_2_hi_pot UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.45. OSSD Model (Iteration II) High Potential Functionality Run -

Product Functionality

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_2_hi_pot Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.46. OSSD Model (Iteration II) High Potential Functionality Run -

Achieved Functionality Ratio

 149

Developers

200

150

100

50

0
1

1

1

1
1

1
1

1
1

1
1 1 1 1 1 1 1 1

1
1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_2_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.47. OSSD Model (Iteration II) High Potential Functionality Run -

Number of Developer

Users

200,000

150,000

100,000

50,000

0 1 1 1 1 1 1 1 1 1 1 1
1

1

1

1

1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_2_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.48. OSSD Model (Iteration II) High Potential Functionality Run -

Number of Users

 150

The critical runs for Iteration II version are those that are based on conditions that

would slow the functionality growth substantially. The working dynamic hypothesis in

this new version is that critically lower levels of average participation, or average

production, as well as critically slower recruitment of new developers would generate too

slow a functionality growth, and that would limit the community’s growth in terms of

both developers and users. To explore this case, a simulation was run with average

participation set to seven hours per month per person, instead of the original value of 20

hours per month per person. As Figures 6.49 and 6.50 show, product functionality does

not grow beyond a very low level, and the achieved functionality ratio barely reaches

13%, and then starts to decline.

Product Functionality

600

450

300

150

0 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_2_lo_part UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.49. OSSD Model (Iteration II) Low Participation Run - Product

Functionality

 151

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_2_lo_part Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.50. OSSD Model (Iteration II) Low Participation Run - Achieved

Functionality Ratio

The number of developers increases for the first 10 months, driven by the

expectations of the existing and incoming developers. However, as it becomes obvious

that the achieved functionality ratio is far from the expected level the developer pool

starts to decline. (See Figure 4.51.) The number of users increases slightly for a while,

but does not go beyond the level of that of a “cult product,” used only by an extremely

small number of users for non-mainstream reasons. (See Figure 4.52.) The lack of

success in attracting users is another reason that causes the developer pool to decline.

 152

Developers

20

15

10

5

0

1

1

1

1

1

1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : iter_2_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.51. OSSD Model (Iteration II) Low Participation Run - Number of

Developers

Users

20

15

10

5

0 1
1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_2_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.52. OSSD Model (Iteration II) Low Participation Run - Number of Users

 153

This second iteration of the model building process provided a version that can

explain failed communities and projects as well as those that succeed. As such, it has

more explanatory power than the previous version. However, the Iteration II version does

not include product quality, which is an important factor in terms of attracting and

retaining developers and users. Quality control and maintenance is also important for the

purposes of the model, since it occupies a certain portion of developers’ time spent on the

project. The Iteration III version is developed to address these concerns.

4.4. Iteration III: Adding Quality

The Iteration III version of the model involves major changes over the previous

version, including the addition of three new sectors (Quality, Developer Time Allocation,

Leader Time Allocation), and the separation of the developer population into two

conceptual groups. The developer population is grouped under regular developers and

leaders. Regular developers are called “Developers” for the purposes of the model.

“Developers” are conceptualized as participants who have more moderate levels of talent

and participation compared to those of the leaders. While each leader spends 30 hours per

month on the project, developers spend 20 hours per month per person. Though the talent

factor is taken into account while conceptualizing the two participant populations, it is

not addressed with this version of the model. For the purposes of the Iteration III version,

there is no difference between the talent levels of developers and leaders. The talent

factor is addressed with the Iteration IV version. Developer and leader populations

together form the “Participants” population.

Figure 4.53 shows the changes in the developers sector due to adding the concept

of Leaders to the model. Total production is divided into two -- production by developers

 154

and production by leaders. Another change in the developers sector, which is caused by

adding quality control and maintenance functions to the model, is that production by

developers is not based on the total time developers spend on the project, but on the

number of total developers hours allocated to production.

 155

Developers

Average Developer
Participation

Total
Production

Average Developer
Productivity

Product
Functionality

+

New Product
Functionality Added

+

Product Functionality
Adding Efficiency

+

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+
-

Product
Functionality Adding

Efficiency Normal

+

+

+ Average Developer
Productivity Normal

+

Participant
Population
Intensity

-

+
Productive Participant

Population Limit
-

Total Developer
Hours Available

Developer Hours
Allocated to
Production

+
<Leaders>

Production by
Developers

<Production by
Leaders>

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient

Figure 4.53. OSSD Model (Iteration III) Changes in the Developers Sector due to Adding Leaders to the Model

 156

One of the three sectors added to the model with this iteration is the quality sector.

As shown in Figure 4.54, production by developers and leaders add to the size of the

product, which is defined as lines of code. Production generates new functionality, which

adds to product functionality and new bugs in the code. This, in turn, adds to the pool of

unknown bugs in the code. Developers and leaders work on detecting the unknown bugs

in the code and move the ones they detect to the pool of known bugs in the code. (See

Figure 4.54.)

 157

Project Size
+

Total Production

Product
Functionality

<Product
Functionality

Adding Efficiency>
+

+
New Product

Functionality Added

Unknown
Bugs in Code

Known Bugs
in Code

Bugs Found
+

New Bugs Added
by Production

Developer Bug
Generating Rate

+

Developer Bug
Discovery Rate

+

<Developer Hours
Allocated to Bug

Detection>

+

<Production by
Developers>

<Production by
Leaders>

Leader Bug
Generating Rate

<Leader Hours
Allocated to Bug

Detection>
Leader Bug

Discovery Rate

Figure 4.54. OSSD Model (Iteration III) Quality Sector

 158

Project Size
+

Total Production

Product
Functionality

<Product
Functionality

Adding Efficiency>
+

+
New Product

Functionality Added

Unknown
Bugs in Code

Known Bugs
in Code

Bugs Found
+

New Bugs Added
by Production

Developer Bug
Generating Rate

+

Developer Bug
Discovery Rate

+

Unknown Bugs
per Code

+
Bug Discovery
Rate Normal

Unknown Bug
Density

+
+

+
<Developer Hours
Allocated to Bug

Detection>

+

Bug Generating
Rate Normal

<Production by
Developers>

<Production by
Leaders>

Leader Bug
Generating Rate

<Project Size>

<Leader Hours
Allocated to Bug

Detection>
Leader Bug

Discovery Rate

Figure 4.55. OSSD Model (Iteration III) Quality Sector

 159

Several factors affect the number of unknown bugs developers and leaders

discover in a given month. The main factor is the time developers and leaders spend on

detecting bugs. The other factor that determines the rate of bug discovery is the density of

unknown bugs in the code (Abdel-Hamid and Madnick 1991 pp.105). It is assumed that

as the unknown bug density increases, it becomes easier, and consequently faster to

discover unknown bugs. Unknown bug density is defined as a normalized ratio of relative

number of unknown bugs per line of code. The benchmark used for normalization is the

normal rate of bugs generated by participants. (See Figure 4.55.)

 160

Project Size
+

Total Production

Product
Functionality

<Product
Functionality

Adding Efficiency>
+

+
New Product

Functionality Added

Unknown
Bugs in Code

Known Bugs
in Code

Bugs Found
+

New Bugs Added
by Production

Bugs Fixed

Developer Bug
Generating Rate

+

Developer Bug
Discovery Rate

+

Bugs Added per
Bug Fixed

+

New Bugs Added
by Bug Fixes

+

+

Unknown Bugs
per Code

+
Bug Discovery
Rate Normal

Unknown Bug
Density

+
+

+

Developer Bug
Fixing Rate

+

<Developer Hours
Allocated to Bug

Detection>

+

<Developer Hours
Allocated to Bug

Fixing>

+

Bugs Added
per Bug Fixed

Normal

Bug Generating
Rate Normal

<Production by
Developers>

<Production by
Leaders>

Leader Bug
Generating Rate

<Project Size>

<Leader Hours
Allocated to Bug

Detection>
Leader Bug

Discovery Rate

Leader Bug
Fixing Rate

<Leader Hours
Allocated to Bug

Fixing>

Figure 4.56. OSSD Model (Iteration III) Quality Sector

 161

Developers and leaders also spend time on fixing the known bugs in the code. The

number of known bugs developers and leaders fix in a given month is a function of

allocated time developers and leaders spend on the specific activity of bug fixing. The

other factor that determines the number of bugs fixed per month is the base rates at which

developers and leaders fix bugs. These are defined as constants for the purposes of the

Iteration II version of the model. Bug fixing is an activity that is known to generate bugs

itself (Abdel-Hamid and Madnick 1991 pp.108). Developers and leaders add new bugs to

the pool of unknown bugs as they fix known bugs. (See Figure 4.56.) The rate at which

new bugs are added during bug fixing is determined by the quality of the bug fixing

activity. Quality of bug fixing is defined as a constant for the purposes of the Iteration III

version. (See Figure 4.57.)

 162

Project Size
+

Total Production

Product
Functionality

<Product
Functionality

Adding Efficiency>
+

+
New Product

Functionality Added
Functionality Lost

by Debugging

Unknown
Bugs in Code

Known Bugs
in Code

Bugs Found
+

New Bugs Added
by Production

Bugs Fixed

Developer Bug
Generating Rate

+

+

Bug Fixing
Quality

-

Developer Bug
Discovery Rate

+

Functionality
Lost per Bug

Fixed

Code Added
per Bug Fixed -+

Patched
Code

+

Bugs Added per
Bug Fixed

+

New Bugs Added
by Bug Fixes

+

+

+

+

Unknown Bugs
per Code

+
Bug Discovery
Rate Normal

Unknown Bug
Density

+
+

+

Developer Bug
Fixing Rate

+

<Developer Hours
Allocated to Bug

Detection>

+

<Developer Hours
Allocated to Bug

Fixing>

+

Bugs Added
per Bug Fixed

Normal

Bug Generating
Rate Normal

<Production by
Developers>

<Production by
Leaders>

Leader Bug
Generating Rate

<Project Size>

<Leader Hours
Allocated to Bug

Detection>
Leader Bug

Discovery Rate

Leader Bug
Fixing Rate

<Leader Hours
Allocated to Bug

Fixing>

Figure 4.57. OSSD Model (Iteration III) Quality Sector

 163

Figure 4.57 shows two more adverse effects of bug fixing. As developers and

leaders fix bugs they add extra code, and thus increase the project size without adding

any functionality. Furthermore, they inadvertently lose existing functionality as they fix

bugs. Both the amount of code added and the amount of functionality lost per bug fix

depends on the bug fixing quality.

 164

Project Size
+

Total Production

Product
Functionality

<Product
Functionality

Adding Efficiency>
+

+
New Product

Functionality Added
Functionality Lost

by Debugging

Unknown
Bugs in Code

Known Bugs
in Code

Bugs Found
+

New Bugs Added
by Production

Bugs Fixed

Developer Bug
Generating Rate

+

+

Total Bugs in
Code

Perceived
Product Quality

Total Bugs per
Functionality

+

+

+

Functionality
per Code

-

+

Bug Fixing
Quality

-

Developer Bug
Discovery Rate

+

Functionality
Lost per Bug

Fixed

Code Added
per Bug Fixed -+

Patched
Code

+

Bugs Added per
Bug Fixed

+

New Bugs Added
by Bug Fixes

+

+

+

+
-

Bugs per
Code

Unknown Bugs
per Code

+
Bug Discovery
Rate Normal

Unknown Bug
Density

+
+

+

Developer Bug
Fixing Rate

+

<Developer Hours
Allocated to Bug

Detection>

+

<Developer Hours
Allocated to Bug

Fixing>

+

Known Bugs per
Functionality

-

+

Known Bugs
per Code

-

+

Severity of Total
Bugs Problem

<Acceptable Level
of Total Bugs per

Functionality>

Severity of Known
Bugs Problem

<Acceptable Level of
Known Bugs per

Functionality>

Bugs Added
per Bug Fixed

Normal

Bug Generating
Rate Normal

<Production by
Developers>

<Production by
Leaders>

Leader Bug
Generating Rate

<Project Size>

<Leader Hours
Allocated to Bug

Detection>
Leader Bug

Discovery Rate

Leader Bug
Fixing Rate

<Leader Hours
Allocated to Bug

Fixing>

Figure 4.58. OSSD Model (Iteration III) Quality Sector

 165

Brooks (1995 pp.121) argues that the longer users use a software product, the

further they push the product to the limits of its capabilities. Thus they increase the

probability of bugs manifesting themselves through use. Consequently, this study

assumes that the bugs in the code would manifest themselves as the product is used and

pushed toward its limits of functionality. Under this assumption, the probability of bugs

manifesting themselves becomes greater as the number of bugs per unit of functionality

increases, and this ultimately decreases the perceived quality of the product. As shown in

Figure 4.58 the number of total bugs per functionality induces a relative severity level,

with respect to an acceptable level of bugs per functionality. The severity of the total

bugs problem determines the perceived quality of the product. Severity of the level of

known bugs in the code is another manifestation of the bugs problems, which is assessed

by the participants. This ratio affects the level of concern about fixing bugs, and

ultimately determines the participant time allocated to bug fixing activity.

Figure 4.59 shows how the perceived quality level of the product affects the

developer sector. Perceived quality level has a negative effect on the rate of leaving

developers. Everything else being equal, as the quality increases fewer developers will be

inclined to leave the community.

 166

Developers

Average Developer
Participation

Total
Production

Average Developer
Productivity

Product
Functionality

+

New Product
Functionality Added

+

Product Functionality
Adding Efficiency

+

Attrractiveness of Product for
Developers Due to Potential

Functionality

+-

New
Developers

Limit on Product
Functionality

-

Achieved
Functionality Ratio

+
-

-

Overall Attractiveness of
Product for Developers

+

Attrractiveness of Product
for Developers Due to Users

+
Normal Time for

Developers to Leave

Leaving Acceleration Due
to Potential Functionality

+

Product
Functionality Adding

Efficiency Normal

+

Normal Time to Attract
All Potential Developers -

Potential
Developers

+ +

+ Average Developer
Productivity Normal

+

Participant
Population
Intensity

-

+
Productive Participant

Population Limit
-

Operative/Expected
Functionality Ratio

-

Attrractiveness of Product
for Developers Due to
Achieved Functionality +

+

Leaving Accelaration Due to
Low Achieved Functionality

-

-
Leaving

Developers

+

+ +

-

Developers on
Other Projects

Leaving Developers
from Other Projects

Potential Developers
Choosing Other Projects

+

Normal Time to Lose
All Potential Developers

to Other Projects

+

-

+

<Success in
Attracting Users>

+

Operative Functionality
Ratio

+

+

+

Total Developer
Hours Available

Developer Hours
Allocated to
Production

+

Leaving Accelaration
Due to Low Quality

+

<Perceived
Product Quality>

<Leaders>

Production by
Developers

<Production by
Leaders>

Patience
Patience Lost

Normal Time to
Lose Patience

Expected Funtionality
Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient

Time to Lose
Patience

Figure 4.59. OSSD Model (Iteration III) Changes in the Developers Sector due to Adding Quality Factor to the Model

 167

Attrractiveness of Product
for Developers Due to Users

Success in
Attracting Users

+

Total User
Population

-

Users

+

Potential
Users

+

Attrractiveness of
Product for Users

+

Normal Time to Attract
All Potential Users

-

+

New Users
Acceleration Due to
Success in Attracting

+

+-
New Users

+

+

Normal Time to
Lose All Users

Leaving Users
Acceleration Due to Low
Achieved Functionality

Potential Users Choosing
Competitor Products

+

Normal Time to Lose All
Potential Users to Competitor

Products

-

Users Using
Competitor

Products

+

Leaving
Users +
-

+
Leaving Users from
Competitor Products

+
-

<Achieved
Functionality Ratio>

Operative/Expected
Functionality Ratio

<Expected Funtionality
Ratio>

<Operative Functionality
Ratio>

Leaving Users
Acceleration Due to

Low Quality

+

<Perceived
Product Quality>

Figure 4.60. OSSD Model (Iteration III) Changes in the Users Sector due to Adding Quality Factor to the Model

 168

Perceived quality level has a similar effect on the users sector, as shown in Figure

4.60. As the quality level increases fewer users will want to quit using the product. The

addition of these effects introduces two important balancing loops to the model. (See

Figure 4.61.) In balancing loop 4, as developers participate in the production and produce

functionality they add new bugs to the product. Everything else being equal, new bugs

increase the number of total bugs and this decreases the perceived quality, which in turn

accelerate the rate of leaving developers. In balancing loop 5, as perceived quality

decreases, more users quit using the product, and that negatively affects success in

attracting users. This, in turn, decreases the attractiveness of the product for developers

(because the number of users is lower), and decreases the number of new developers.

 169

Developers

Total
Production

Product
Functionality

+
New Product

Functionality Added

+

Achieved
Functionality Ratio

+

Attrractiveness of
Product for Developers

Due to Users
-Leaving

Developers

Success in
Attracting Users

+

+

+Bugs
New Bugs

Perceived
Product Quality

-

-

Users

+

-Leaving
Users

-

+
New

Developers
+

Figure 4.61. OSSD Model (Iteration III) Balancing Loop 4 and Balancing Loop 5: “More Production Causes More Bugs, and

That Retains Fewer Existing Developers,” and “More Production Causes More Bugs, That Retains Fewer Existing Users, and Attracts

Fewer New Developers.”

 170

The second sector added to the model in Iteration III is the developer time

allocation. Here, the total developer hours available are allocated to production, bug

detection, and bug fixing. The severity levels of the total bugs problem, and the known

bugs problem indicate certain levels of pressure for bug detection and bug fixing

respectively. These pressures in turn determine the developer hours needed for bug

detection and bug fixing. Developer hours needed for these two activities constitute the

total developer hours needed for non-production tasks, which together with developer

hours planned for production constitute total developer hours needed. (See Figure 4.62.)

 171

<Developers>

Total Developer
Hours Available

Average Developer
Participation

Perceived
Product Quality

<Total Bugs per
Functionality>

<Known Bugs per
Functionality>

Developer Hours
Needed for Bug

Detection

Developer Hours
Needed for Bug

Fixing

Total Developer
Hours Needed for

Non-Production Tasks

<Known Bugs
in Code>

<Developer Bug
Fixing Rate>

Pressure for
Bug Fixing

Acceptable Level of Total
Bugs per Functionality

Severity of
Known Bugs

Problem

Severity of Total
Bugs Problem

Pressure for Bug
Detection

<Unknown
Bugs in Code>

<Developer Bug
Discovery Rate>Developer Hours

Planned for Production

Total Developer
Hours Needed

Desired Time to
Discover All Bugs

Desired Time to
Fix All Known

Bugs

Acceptable Level
of Known Bugs
per Functionality

Figure 4.62. OSSD Model (Iteration III) Developer Time Allocation Sector

 172

<Developers>

Total Developer
Hours Available

Average Developer
Participation

Perceived
Product Quality

<Total Bugs per
Functionality>

<Known Bugs per
Functionality>

Developer Hours
Needed for Bug

Detection

Developer Hours
Needed for Bug

Fixing

Total Developer
Hours Needed for

Non-Production Tasks

<Known Bugs
in Code>

<Developer Bug
Fixing Rate>

Pressure for
Bug Fixing

Acceptable Level of Total
Bugs per Functionality

Severity of
Known Bugs

Problem

Severity of Total
Bugs Problem

Pressure for Bug
Detection

<Unknown
Bugs in Code>

<Developer Bug
Discovery Rate>Developer Hours

Planned for Production

Total Developer
Hours Needed

Developer Hours
Coverage Ratio

Desired Time to
Discover All Bugs

Desired Time to
Fix All Known

Bugs

Developer Hours
Allocation Factor

Indicated Developer
Hours Revised

Allocation Factor

Pressure for
Production

<Operative/Expected
Functionality Ratio>

Acceptable Level
of Known Bugs
per Functionality

Developer Hours
Revised

Allocation FactorDeveloper Hours Revised
Allocation Factor Adjustment Developer Hours Revised

Allocation Factor Adjustment Time

Developer Hours Revised
Allocation Factor

Adjustment Discrepancy

Figure 4.63. OSSD Model (Iteration III) Developer Time Allocation Sector

 173

The ratio of developer hours available and developer hours needed indicates the

developer hours allocation factor, which determines what percentage of the needed time

is actually allocated to non-production tasks. If the operative/expected functionality ratio

is too low, this allocation factor decreases further. This revised factor is assumed to

change gradually over time, and is consequently represented as a smooth, or in other

words a historical average of the indicated revised allocation factor. (See Figure 4.63.)

As Figure 4.64 shows, the revised allocation factor determines the actual hours

allocated to each non-production task. The difference between the total developer hours

available and the total developer hours allocated to non-production tasks is the number of

actual developer hours allocated to production.

 174

Developer Hours
Allocated to Bug

Detection

Developer Hours
Allocated to Bug

Fixing

<Developers>

Developer Hours
Allocated to
Production

Total Developer
Hours Available

Average Developer
Participation

Perceived
Product Quality

<Total Bugs per
Functionality>

<Known Bugs per
Functionality>

Developer Hours
Needed for Bug

Detection

Developer Hours
Needed for Bug

Fixing

Total Developer
Hours Needed for

Non-Production Tasks

<Known Bugs
in Code>

<Developer Bug
Fixing Rate>

Pressure for
Bug Fixing

Acceptable Level of Total
Bugs per Functionality

Severity of
Known Bugs

Problem

Severity of Total
Bugs Problem

Pressure for Bug
Detection

<Unknown
Bugs in Code>

<Developer Bug
Discovery Rate>Developer Hours

Planned for Production

Total Developer
Hours Needed

Developer Hours
Coverage Ratio

Desired Time to
Discover All Bugs

Desired Time to
Fix All Known

Bugs

Developer Hours
Allocation Factor

Indicated Developer
Hours Revised

Allocation Factor

Pressure for
Production

<Operative/Expected
Functionality Ratio>

Acceptable Level
of Known Bugs
per Functionality

Total Developer Hours
Allocated for

Non-Production Tasks

Developer Hours
for Bug

Detection Gap

Developer
Hours for Bug

Fixing Gap

Developer
Hours for

Production Gap

Developer Hours
Revised

Allocation FactorDeveloper Hours Revised
Allocation Factor Adjustment Developer Hours Revised

Allocation Factor Adjustment Time

Developer Hours Revised
Allocation Factor

Adjustment Discrepancy

Figure 4.64. OSSD Model (Iteration III) Developer Time Allocation Sector

 175

The leader time allocation sector is the third sector added to the model in Iteration

III. Here, the total leader hours available are allocated to production and non-production

tasks in more or less the same way as in the developer time allocation sector. Leader

hours needed for bug detection and bug fixing are determined by the respective gaps

between the needed and allocated developer hours for each task. Leader hours needed for

bug detection, leader hours needed for bug fixing and leader hours planned for production

together constitute the total leader hours needed. (See Figure 4.65.)

 176

Leaders
Average Leader

Participation

Total Leader
Hours Available

Leader Hours Needed
for Bug Detection

Leader Hours
Needed for Bug

Fixing

Leader/Developer
Bug Discovery
Efficiency Ratio

<Developer Bug
Discovery Rate>

Leader Bug
Discovery Rate

Leader/Developer Bug
Fixing Efficiency Ratio

<Developer Bug
Fixing Rate>

Leader Bug
Fixing Rate

<Bug Discovery
Rate Normal>

<Unknown Bug
Density>

Leader Hours
Planned for
Production

Total Leader
Hours Needed

Total Leader Hours
Needed for

Non-Production Tasks

Leader Hours
Coverage Ratio

<Developer Hours for
Bug Detection Gap>

<Developer Hours for
Bug Fixing Gap>

Total
Participants

<Developers>

Leaving
Leaders

<Operative/Expected
Functionality Ratio>

Leaving Leaders
Coefficient

Figure 4.65. OSSD Model (Iteration III) Leaders Time Allocation Sector

 177

Leader hours coverage ratio, which is the ratio of leader hours available and

leader hours needed, indicates the leader hours allocation factor. Under production

pressure conditions, this factor decreases further, and indicates a revised allocation factor

just like the one in the developer time allocation sector. (See Figure 4.66.)

 178

Leaders
Average Leader

Participation

Total Leader
Hours Available

Leader Hours Needed
for Bug Detection

Leader Hours
Needed for Bug

Fixing

Leader/Developer
Bug Discovery
Efficiency Ratio

<Developer Bug
Discovery Rate>

Leader Bug
Discovery Rate

Leader/Developer Bug
Fixing Efficiency Ratio

<Developer Bug
Fixing Rate>

Leader Bug
Fixing Rate

<Bug Discovery
Rate Normal>

<Unknown Bug
Density>

Leader Hours
Planned for
Production

Total Leader
Hours Needed

Total Leader Hours
Needed for

Non-Production Tasks

Leader Hours
Coverage Ratio

Leader Hours
Allocation Factor

Indicated Leader
Hours Revised

Allocation Factor

<Developer Hours for
Bug Detection Gap>

<Developer Hours for
Bug Fixing Gap>

Total
Participants

<Developers>

Leader Hours
Revised Allocation

FactorLeader Hours Revised
Allocation Factor

Adjustment

Leader Hours Revised
Allocation Factor Adjustment

Discrepancy

Leader Hours Revised Allocation
Factor Adjustment Time

Pressure for
Production on

Leaders

<Achieved/Expected
Functionality Ratio>

Leaving
Leaders

<Operative/Expected
Functionality Ratio>

Leaving Leaders
Coefficient

Figure 4.66. OSSD Model (Iteration III) Leaders Time Allocation Sector

 179

Leader hours revised allocation factor determines what percentage of the needed

hours for non-production tasks will be allocated. Actual leader hours allocated to

production is determined by the difference between the total leader hours available and

the total leader hours allocated to non-production tasks. (See Figure 4.67.)

 180

Leaders
Average Leader

Participation

Total Leader
Hours Available

Leader Hours Needed
for Bug Detection

Leader Hours
Needed for Bug

Fixing

Leader/Developer
Bug Discovery
Efficiency Ratio

<Developer Bug
Discovery Rate>

Leader Bug
Discovery Rate

Leader/Developer Bug
Fixing Efficiency Ratio

<Developer Bug
Fixing Rate>

Leader Bug
Fixing Rate

<Bug Discovery
Rate Normal>

<Unknown Bug
Density>

Leader Hours
Planned for
Production

Total Leader
Hours Needed

Total Leader Hours
Needed for

Non-Production Tasks

Leader Hours
Coverage Ratio

Leader Hours
Allocation Factor

Indicated Leader
Hours Revised

Allocation Factor

Leader Hours
Allocated to Bug

Detection

Leader Hours
Allocated to Bug

Fixing

<Developer Hours for
Bug Detection Gap>

<Developer Hours for
Bug Fixing Gap>

Total Leader Hours
Allocated for

Non-Production Tasks

Leader Hours
Allocated to
Production

Production by
Leaders

Average Leader
Productivity

<Participant Population
Intensity>

Average Leader
Productivity Normal

Total
Participants

<Developers>

Leader Hours
Revised Allocation

FactorLeader Hours Revised
Allocation Factor

Adjustment

Leader Hours Revised
Allocation Factor Adjustment

Discrepancy

Leader Hours Revised Allocation
Factor Adjustment Time

Pressure for
Production on

Leaders

<Achieved/Expected
Functionality Ratio>

Leaving
Leaders

<Operative/Expected
Functionality Ratio>

Leaving Leaders
Coefficient

Figure 4.67. OSSD Model (Iteration III) Leaders Time Allocation Sector

 181

Under the base case conditions, Iteration III version displays behaviors similar to

those of the previous versions in terms of the main indicators such as product

functionality, number of developers, and number of users. (See Figures 4.68 through

4.71.)

Product Functionality

600

450

300

150

0 1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_3_base UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.68. OSSD Model (Iteration III) Base Run - Product Functionality

 182

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_3_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.69. OSSD Model (Iteration III) Base Run - Achieved Functionality Ratio

Developers

20

15

10

5

0

1

1

1
1 1 1 1

1

1

1

1

1
1

1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : iter_3_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.70. OSSD Model (Iteration III) Base Run - Developers

 183

Users

20,000

15,000

10,000

5,000

0 1 1 1 1 1
1

1

1

1
1

1
1

1
1

1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_3_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.71. OSSD Model (Iteration III) Base Run - Users

As discussed before, maintaining plausible behaviors with respect to those

indicators is considered critical while adding more structure to the model. This way,

confidence in the model is maintained while adding more explanatory power to it. An

important indicator added to the model is the number of total participants, which is the

total of number of developers and number of leaders. The behavior of this indicator under

the base conditions is shown in Figure 4.72. Here, the number of participants increase

during the initial stages of the project, reaching its peak around month 20, and start to

decrease from there on, to reach an equilibrium around month 85.

 184

Total Participants

20

15

10

5

0

1

1

1
1 1 1 1

1

1

1

1

1
1

1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : iter_3_base people1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.72. OSSD Model (Iteration III) Base Run - Total Participants

Figure 4.73 shows the behavior of total bugs per functionality. This variable

increases during the very early stages of the project when a lot of bugs are introduced to

the code along with the functionality added to the product. At around month 10, total

bugs per functionality starts to decrease, as the developers and leaders start to find and fix

many of the bugs, thus bringing the speed of the increase in the number of bugs below the

speed of the increase in functionality. That way, even though the total number of bugs

continues to increase as shown in Figure 4.74, bugs per functionality decreases,

approaching the acceptable level of bugs per functionality. (See Figure 4.73.)

Consequently, the severity of the total bugs problem starts to decrease and the perceived

quality of the product starts to increase around month 10. (See Figure 4.75 and Figure

4.76.)

 185

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_3_base bugs/UF1 1 1 1 1 1 1 1 1 1

Acceptable Level of Total Bugs per Functionality : iter_3_base bugs/UF2 2 2 2 2 2

Figure 4.73. OSSD Model (Iteration III) Base Run - Total Bugs per Functionality

Total Bugs in Code

400

300

200

100

0 1

1

1

1

1

1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs in Code : iter_3_base bugs1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.74. OSSD Model (Iteration III) Base Run - Total Bugs in Code

 186

Severity of Total Bugs Problem

4

3

2

1

0

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_3_base Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.75. OSSD Model (Iteration III) Base Run - Severity of Total Bugs

Problem

Perceived Product Quality

1

0.75

0.5

0.25

0

1

1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_3_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.76. OSSD Model (Iteration III) Base Run - Perceived Product Quality

 187

The behavior of the Iteration III version when the initial limit on product

functionality is set high is not different than was found in the previous versions, except

that the changes happen much more slowly, and thus the general behavior pattern are

“stretched” in time. The main reason for that is that the contributors (developers and

leaders) spend a considerable portion of their project time on non-production tasks,

namely bug discovery and bug fixing, while the average participation stays the same

among versions of the model. This causes the total time allocated to production to

decrease in this version of the model, and as a result the functionality growth slows down

considerably. Figure 4.77 through Figure 4.80 show the behaviors of product

functionality, achieved functionality ratio, number of developers and number of users,

respectively, when initial limit on product functionality is set to 4000 UF. By comparing

these figures with those of the previous versions, it can be seen that the general behavior

patterns stay the same between versions of the model. Figure 4.81 displays the behavior

of the number of users under high initial limit on product functionality condition when

the simulation horizon is increased to 200 months. It can be seen that the growth pattern

is “stretched” over time.

 188

Product Functionality

6,000

4,500

3,000

1,500

0 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_3_hi_pot UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.77. OSSD Model (Iteration III) High Potential Run - Product

Functionality

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1
1

1
1

1
1

1
1

1 1
1

1 1
1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_3_hi_pot Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.78. OSSD Model (Iteration III) High Potential Run - Achieved

Functionality Ratio

 189

Developers

200

150

100

50

0 1

1
1 1

1
1

1
1

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_3_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.79. OSSD Model (Iteration III) High Potential Run - Developers

Users

200,000

150,000

100,000

50,000

0 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_3_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.80. OSSD Model (Iteration III) High Potential Run - Users

 190

Users

200,000

150,000

100,000

50,000

0 1 1 1 1 1 1 1 1 1
1

1
1

1
1

1
1

1
1

1
1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Users : iter_3_hi_pot_200 people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.81. OSSD Model (Iteration III) High Potential Run - Users - Time

Horizon Doubled

Figure 4.82 shows that total bugs per functionality increases faster and reaches a

higher peak under high initial limit on product functionality conditions than it does under

the base condition. Also, under this condition total bugs per functionality does not

decrease as much as it does under the base case condition, though it decreases faster so

the equilibrium it reaches in the long run is higher than that under the base case

condition.

 191

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2

2
2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_3_base bugs/UF1 1 1 1 1 1 1 1 1 1

Total Bugs per Functionality : iter_3_hi_pot bugs/UF2 2 2 2 2 2 2 2 2 2

Figure 4.82. OSSD Model (Iteration III) High Potential Run - Total Bugs per

Functionality

The severity of total bugs problem too, increases faster, reaches a higher peak,

and settles on a higher equilibrium than that under the base case condition. (See Figure

4.83.) Consequently, perceived quality decreases faster, reaches a lower minimum, and

converges to a lower equilibrium value than that under the base case condition. (See

Figure 4.84.) The main reason for this is the higher developers per leader ratio under the

high initial limit on product functionality condition than that under the base case

condition. The number of leaders stays the same (three people, in both cases), though the

number of developers reaches much higher levels in the high initial limit on product

functionality condition.

 192

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
2 Dmnl

1 Dmnl
1 Dmnl

0 Dmnl
0 Dmnl

2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_3_base Dmnl1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : iter_3_hi_pot Dmnl2 2 2 2 2 2 2 2 2 2

Figure 4.83. OSSD Model (Iteration III) High Potential Run - Severity of Total

Bugs Problem

Perceived Product Quality
1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

2

2
2

2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2

1

1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_3_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : iter_3_hi_pot Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.84. OSSD Model (Iteration III) High Potential Run - Perceived Product

Quality

 193

A low participation simulation is also run with the Iteration III version of the

model. Once again average developer participation is set to 7 hours per month, and the

average leader participation is set to 10 hours per month. As observed in Figure 4.85

through Figure 4.90, the community fails to grow under this condition in the Iteration III

version, as well. The newly introduced stock of leaders also decline during this run, as the

leaders decide to leave the community due to the low achieved functionality ratio. (See

Figure 4.90.)

Product Functionality

600

450

300

150

0 1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_3_lo_part UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.85. OSSD Model (Iteration III) Low Participation Run - Product

Functionality

 194

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_3_lo_part Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.86. OSSD Model (Iteration III) Low Participation Run - Achieved

Functionality Ratio

Developers

20

15

10

5

0

1

1
1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_3_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.87. OSSD Model (Iteration III) Low Participation Run - Developers

 195

Users

20

15

10

5

0 1

1

1

1

1

1
1 1

1
1

1
1

1
1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_3_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4. 88. OSSD Model (Iteration III) Low Participation Run - Users

Total Participants

20

15

10

5

0

1

1
1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : iter_3_lo_part people1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.89. OSSD Model (Iteration III) Low Participation Run - Total

Participants

 196

Leaders

4

3

2

1

0

1 1 1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : iter_3_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4. 90. OSSD Model (Iteration III) Low Participation Run - Leaders

Quality-related variables like total bugs per functionality, severity of the total

bugs problem and perceived product quality exhibit behaviors very close to those under

the base case conditions during the initial stages of the project. However, as developers

and leaders start to leave the community in greater numbers, quality related functions

suffer just like production, and this causes the quality related variables to reach premature

equilibriums which are worse than those under the base case conditions. (See Figure 4.91

through Figure 4.93.)

 197

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_3_base bugs/UF1 1 1 1 1 1 1 1 1 1

Total Bugs per Functionality : iter_3_lo_part bugs/UF2 2 2 2 2 2 2 2 2 2

Figure 4.91. OSSD Model (Iteration III) Low Participation Run - Total Bugs per

Functionality

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
2 Dmnl

1 Dmnl
1 Dmnl

0 Dmnl
0 Dmnl

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_3_base Dmnl1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : iter_3_lo_part Dmnl2 2 2 2 2 2 2 2 2 2

Figure 4.92. OSSD Model (Iteration III) Low Participation Run - Severity of

Total Bugs Problem

 198

Perceived Product Quality

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1

1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_3_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : iter_3_lo_part Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.93. OSSD Model (Iteration III) Low Participation Run - Perceived

Product Quality

4.5. Iteration IV: Adding Developer Talent

The main change the Iteration IV version of the model introduces is the addition

of the Developer Talent sector. Average developer talent is a relative indicator of the

overall talent level of the developers with respect to the overall talent level of the leaders,

which is defined as an absolute ceiling of talent for the purposes of the model. Average

developer talent is conceptualized as a variable that varies between zero and one, zero

being the lowest, and one being the highest possible talent level for a developer. The

arbitrary name Relative Talent Units is used as the unit for this variable. One RTU

represent a talent level that is equal to that of an average leader, thus representing the

ceiling for developer talent. As shown in Figure 4.94, average developer talent is in fact

an average of the total developer talent pool with respect to the number of developers.

 199

Developer
Talent Pool

Developers

Initial
Developers

<Leaving
Developers>

<New
Developers>

Average
Developer TalentAverage Incoming

Developer Talent

Initial Developer
Talent Pool

Figure 4.94. OSSD Model (Iteration IV) Developer Talent Sector

 200

As developers join the community their relative talents are added to the developer

talent pool through the developer talent gained inflow. It is assumed that each new

developer has a relative talent level of 0.5 RTU, at the time of joining. A certain amount

of developer talent is lost as developers leave the community. It is assumed that a leaving

developer will take away an amount of talent that is equal to the average developer talent

at the time of leaving. That is represented with the developer talent lost outflow. (See

Figure 4.95.)

 201

Developer
Talent Pool

Developer Talent
Gained

Developer
Talent Lost

Developers

Initial
Developers

<Leaving
Developers>

<New
Developers>

Average
Developer TalentAverage Incoming

Developer Talent

Initial Developer
Talent Pool

Figure 4.95. OSSD Model (Iteration IV) Developer Talent Sector

 202

It is also possible to build developer talent by coaching developers, which is

added to the developer talent pool through the developer talent built inflow. Coaching

takes place as leaders train developers. As Figure 4.96 shows, the difference between the

actual average developer talent and the maximum developer talent level indicates an

average developer talent building opportunity. Here the maximum developer talent is

assumed to be equal to average leader talent, which is 1 RTU. So in effect, average

developer talent building opportunity is equal to the difference between the actual

average developer talent and the average leader talent. Average developer talent building

opportunity indicates a pressure for talent building. A higher developer talent building

opportunity indicates a higher pressure for talent building, and that in turn indicates a

certain number of coaching hours per developer, which is the basis for the total number

of developer hours needed for coaching. (See Figure 4.96.)

 203

Developer
Talent Pool

Developer Talent
Gained

Developer
Talent Lost

Developers

Initial
Developers

<Leaving
Developers>

<New
Developers>

Average
Developer TalentAverage Incoming

Developer Talent

Initial Developer
Talent Pool

Developer
Talent Built

Average Developer
Talent Built

Average Developer
Talent Building

Opportunity

Maximum
Developer Talent

Maximum Coaching
Hours Needed per

Developer

Coaching Hours
Needed per
Developer

Pressure for
Talent Building

Maximum Talent
Building Opportunity

Relative Average
Talent Building

Opportunity

Developer Hours
Needed for Coaching

Figure 4.96. OSSD Model (Iteration IV) Developer Talent Sector

 204

Leader hours allocated to coaching sets an upper limit for available coaching

hours. Developer hours needed for coaching translates into developer hours planned for

coaching as much as the coaching hours availability ratio permits. Developer hours

allocation factor indicates what percentage of coaching hours planned is actually

allocated for coaching. Allocated coaching hours per developer indicates the amount of

talent built per developer, which when multiplied by the number of developers gives the

total developer talent built in a given period. (See Figure 4.97.)

 205

Developer
Talent Pool

Developer Talent
Gained

Developer
Talent Lost

Developers

Initial
Developers

<Leaving
Developers>

<New
Developers>

Average
Developer TalentAverage Incoming

Developer Talent

Initial Developer
Talent Pool

Developer
Talent Built

Average Developer
Talent Built

Average Developer
Talent Building

Opportunity

Average Developer
Talent Building Ratio

Maximum
Developer Talent

Coaching Hours
per Developer

Maximum Coaching
Hours Needed per

DeveloperCoaching Hours
Coverage

<Total Coaching
Hours Available>

Coaching Hours
Needed per
Developer

Developer Hours
Planned for Coaching

Pressure for
Talent Building

Maximum Talent
Building Opportunity

Relative Average
Talent Building

Opportunity

Developer Hours
Allocated to

Coaching

Maximum Developer
Talent Building Ratio

Coaching Hours
Availability Ratio

Developer Hours
Needed for Coaching

<Developer Hours
Revised Allocation

Factor>

Figure 4.97. OSSD Model (Iteration IV) Developer Talent Sector

 206

The behavior of the Iteration IV model under base case conditions is mostly

similar to the behavior of the previous version. Once again, more explanatory power is

added to the model with new structure, without losing plausible behavior. As Figures

4.98 through 4.104 demonstrate, the behaviors of the main indicators have stayed roughly

the same from Iteration III to Iteration IV.

Product Functionality

600

450

300

150

0 1

1

1

1

1

1

1

1

1

1
1

1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_4_base UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.98. OSSD Model (Iteration IV) Base Run - Product Functionality

 207

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1

1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.99. OSSD Model (Iteration IV) Base Run - Achieved Functionality Ratio

Developers

20

15

10

5

0

1

1
1 1 1 1 1 1 1

1

1

1

1

1
1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_4_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.100. OSSD Model (Iteration IV) Base Run - Developers

 208

Users

20,000

15,000

10,000

5,000

0 1 1 1 1 1 1
1

1

1

1
1

1
1

1
1

1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_4_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.101. OSSD Model (Iteration IV) Base Run - Users

Total Bugs per Functionality

1

0.75

0.5

0.25

0

1
1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_4_base bugs/UF1 1 1 1 1 1 1 1 1 1

Figure 4.102. OSSD Model (Iteration IV) Base Run - Total Bugs per

Functionality

 209

Severity of Total Bugs Problem

4

3

2

1

0

1
1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.103. OSSD Model (Iteration IV) Base Run - Severity of Total Bugs

Problem

Perceived Product Quality

1

0.75

0.5

0.25

0

1

1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.104. OSSD Model (Iteration IV) Base Run - Perceived Product Quality

 210

The behavior of the newly introduced variable Average Developer Talent is

portrayed in Figure 4.105. The average talent of the developers starts at .5 RTU, since

that is the default talent for incoming developers, and all the developers are considered

newcomers at the beginning of the project. The average talent gradually increases

throughout the project as the leaders coach developers thus adding new talent to the

overall talent pool. Average Developer Talent reaches .75 RTU by the end of the

simulation horizon of 100 months.

Average Developer Talent

1

0.75

0.5

0.25

0

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4_base RTU/people1 1 1 1 1 1 1 1 1

Figure 4.105. OSSD Model (Iteration IV) Base Run - Average Developer Talent

The behavior of the Iteration IV model is similar to that of the previous version

under the two alternative conditions, high initial limit on product functionality, and low

participation. Figures 4.106 through 4. 113 portray the model behavior under high initial

limit on product functionality condition, while Figures 4.114 through 4.123 show the

behavior of the model under low participation condition. The behavior of the newly

 211

introduced variable Average Developer Talent is different under the two alternative

conditions then that under the base condition. (See Figures 4.113 and 4.123.) In both

cases, average developer talent remains almost flat throughout the simulation horizon of

100 months, but due to different reason in each case. In the high initial limit on product

functionality case, the number of developers becomes too many for the available number

of leaders for effective coaching. Therefore each developer gets an almost negligible

amount of coaching, and that does not produce considerable improvement in developer

talent. On the other hand, under low participation condition, the available developer

hours are so low that they can only cover the basic development needs, leaving

developers a negligible amount of time for coaching, which results in practically no

improvement in the average developer talent.

Product Functionality

6,000

4,500

3,000

1,500

0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1

1 1 1
1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_4_hi_pot UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.106. OSSD Model (Iteration IV) High Potential Run - Product

Functionality

 212

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1 1
1

1
1 1

1
1

1
1

1
1

1
1

1
1

1
1

1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_4_hi_pot Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.107. OSSD Model (Iteration IV) High Potential Run - Achieved

Functionality Ratio

Developers

200

150

100

50

0 1

1
1 1

1
1

1
1

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_4_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.108. OSSD Model (Iteration IV) High Potential Run - Developers

 213

Users

200,000

150,000

100,000

50,000

0 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_4_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.109. OSSD Model (Iteration IV) High Potential Run - Users

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2

2

2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 21
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_4_base bugs/UF1 1 1 1 1 1 1 1 1 1

Total Bugs per Functionality : iter_4_hi_pot bugs/UF2 2 2 2 2 2 2 2 2 2

Figure 4.110. OSSD Model (Iteration IV) High Potential Run - Total Bugs per

Functionality

 214

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
2 Dmnl

1 Dmnl
1 Dmnl

0 Dmnl
0 Dmnl

2

2
2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 21
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : iter_4_hi_pot Dmnl2 2 2 2 2 2 2 2 2 2

Figure 4.111. OSSD Model (Iteration IV) High Potential Run - Severity of Total

Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

2

2

2

2

2

2
2

2
2 2 2 2 2 2 2 2 2 2 21

1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : iter_4_hi_pot Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.112. OSSD Model (Iteration IV) High Potential Run - Perceived Product

Quality

 215

Average Developer Talent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people

0.5 RTU/people
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4_base RTU/people1 1 1 1 1 1 1 1 1

Average Developer Talent : iter_4_hi_pot RTU/people2 2 2 2 2 2 2 2 2

Figure 4.113. OSSD Model (Iteration IV) High Potential Run - Average

Developer Talent

Product Functionality

600

450

300

150

0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_4_lo_part UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.114. OSSD Model (Iteration IV) Low Participation Run - Product

Functionality

 216

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_4_lo_part Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.115. OSSD Model (Iteration IV) Low Participation Run - Achieved

Functionality Ratio

Developers

20

15

10

5

0

1

1
1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_4_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.116. OSSD Model (Iteration IV) Low Participation Run - Developers

 217

Total Participants

20

15

10

5

0

1

1
1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : iter_4_lo_part people1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.117. OSSD Model (Iteration IV) Low Participation Run - Total

Participants

Leaders

4

3

2

1

0

1 1 1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : iter_4_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.118. OSSD Model (Iteration IV) Low Participation Run - Leaders

 218

Users

20

15

10

5

0 1
1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_4_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.119. OSSD Model (Iteration IV) Low Participation Run - Users

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_4_base bugs/UF1 1 1 1 1 1 1 1 1 1

Total Bugs per Functionality : iter_4_lo_part bugs/UF2 2 2 2 2 2 2 2 2 2

Figure 4.120. OSSD Model (Iteration IV) Low Participation Run - Total Bugs per

Functionality

 219

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
2 Dmnl

1 Dmnl
1 Dmnl

0 Dmnl
0 Dmnl

2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : iter_4_lo_part Dmnl2 2 2 2 2 2 2 2 2 2

Figure 4.121. OSSD Model (Iteration IV) Low Participation Run - Severity of

Total Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21

1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : iter_4_lo_part Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.122. OSSD Model (Iteration IV) Low Participation Run - Perceived

Product Quality

 220

Average Developer Talent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people

0.5 RTU/people
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4_base RTU/people1 1 1 1 1 1 1 1 1

Average Developer Talent : iter_4_lo_part RTU/people2 2 2 2 2 2 2 2 2

Figure 4.123. OSSD Model (Iteration IV) Low Participation Run - Average

Developer Talent

4.6. Iteration V: Adding Barriers to Entry and Contribution

With the Iteration V version, barriers to entry to the community and barriers to

making contributions are added to the model. Barriers to entry are realized through a

process of selecting new developers that will join the community. (See Figure 4.124.) In

this version of the model the incoming developers are not added directly to the developer

pool. Instead they are selected from a pool of candidates. The selection is carried out with

a selecting rate. A refusal ratio determines the percentage of the candidates that are

denied entry to the community. The rest of the candidates are selected as new developers.

Refusal ratio also determines the average talent of the incoming developers. A higher

refusal ratio would mean a higher level of scrutiny while selecting new developers.

 221

Consequently, as the refusal ratio increases, so does the average incoming developer

talent.

Developers

+

-

Candidates
Applying

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

Developer
Candidates

Candidates Selected
as New Developers

Candidates
Refused

Refusal Ratio

-

Selecting
Rate +

+ +

+

+

+

Average Incoming
Developer Talent

+

Figure 4.124. OSSD Model (Iteration V) Changes in the Developers Sector due to

Adding Barriers to Entry to the Model

A filtering process provides the mechanism for barriers to making contributions.

Production effort is divided between developers and leaders, as discussed earlier in this

chapter. The leaders review the code produced by the developers. Reviewed code is

accepted or rejected based on its quality. The quality of the code in this context means the

number of bugs per unit functionality, as discussed earlier in this chapter. Code produced

by developers is added to a backlog to be filtered, and the leaders filter the backlog with a

filtering rate. Code is accepted or rejected based on a rejection ratio. The rejection ratio

has a negative effect on average developer participation. As a greater portion of

production is rejected, the developers would be less motivated to produce further code,

thus their participation level would decrease. (See Figure 4.125.)

 222

Average Developer
Participation

Total
Production

Average Developer
Productivity

+

Total Developer
Hours Available

Developer Hours
Allocated to
Production

+

++

<Production by
Leaders>

+

Production to
be FilteredRejected

Production

Production by
Developers

Accepted
Production

+

Rejection
Ratio

Filtering
Rate

+

-

+ + +

+

-

Figure 4.125. OSSD Model (Iteration V) Changes in the Developers Sector due to

Adding Barriers to Contribution to the Model

A new Filtering Sector is also added to the model with the Iteration V version. As

developers produce code they also generate bugs, and these bugs are added to a “backlog

of bugs” just as production is added to the backlog of production. (See Figure 4.126.)

When the backlog of production is reviewed and some of the code is accepted and added

to the overall product, a certain number of the bugs are also introduced to the product.

This is represented by the outflow Bugs in Accepted Code. Another group of bugs,

represented by the outflow Bugs in Rejected Code, also flow out of the “backlog of bugs”

with the rejected code. (See Figure 4.127.)

 223

Bugs in
Production to be

Filtered

+New Bugs in
Production to be

Filtered

<Developer Bug
Generating Rate>

++

Production to be
Filtered+Production by

Developers

Figure 4.126. OSSD Model (Iteration V) Filtering Sector

 224

Bugs in
Production to be

Filtered

+New Bugs in
Production to be

Filtered

<Developer Bug
Generating Rate>

++

+

+

- Bugs in
Rejected Code

-
Bugs in

Accepted Code

Production to be
Filtered+Production by

Developers

-
Accepted

Production

- Rejected
Production

+

+

-

Filtering
Rate

+
+

Rejection
Ratio

+

Figure 4.127. OSSD Model (Iteration V) Filtering Sector

 225

The filtering process aims to decrease the number of bugs in new code that is

added to the product. Thus, it is expected that the bug density of the accepted portion of

the code will be less than that of the production backlog. The assumption here is that the

worst case of filtering would yield the same number of bugs per functionality as the

original production. Any case better than the worst case would bring a quality

improvement, which will yield a lower bug density for the accepted code and a higher

bug density for the rejected code. The level of quality improvement is determined by the

quality of filtering. (See Figure 4.128.)

 226

Bugs in
Production to be

Filtered

+New Bugs in
Production to be

Filtered

<Developer Bug
Generating Rate>

++

+

Bugs per Code in
Production to be

Filtered

+

+ +

- Bugs in
Rejected Code

-
Bugs in

Accepted Code

+

Production to be
Filtered

+

+Production by
Developers

-
Accepted

Production

- Rejected
Production

+

+

-

Filtering
Rate

+
+

Rejection
Ratio

+

Quality of
Filtering

Quality
Improvement by

Filtering
+

-

+

Figure 4.128. OSSD Model (Iteration V) Filtering Sector

 227

The quality of filtering depends on the relative rate at which the leaders filter the

production backlog. The model assumes a fixed filtering rate, which is set to .5 for the

base case. This means that the leaders would filter .5 of the backlog at a given month,

regardless of the size of the backlog. However, there would be an optimal filtering rate

for a given amount of code filtered by a given number of leaders, and as the actual

filtering rate goes above that optimal rate the quality of filtering decreases. The optimal

filtering rate depends on the optimal filtering horizon, which is the amount of time the

leaders can filter the existing backlog without compromising the quality of filtering. (See

Figure 4.129.)

 228

Bugs in
Production to be

Filtered

+New Bugs in
Production to be

Filtered

<Developer Bug
Generating Rate>

++

+

Bugs per Code in
Production to be

Filtered

+

+ +

- Bugs in
Rejected Code

-
Bugs in

Accepted Code

+

Production to be
Filtered

+

+Production by
Developers

-
Accepted

Production

- Rejected
Production

+

+

-

Filtering
Rate

+
+

Rejection
Ratio

+

Quality of
Filtering

Optimal Filtering
Horizon

Relative
Filtering Rate

+

Optimal Filtering
Amount

+ Leaders

+

Optimal Filtering
Amount per Leader

+

-

-

Optimal
Filtering Rate-

-

Quality
Improvement by

Filtering
+

-

+

Figure 4.129. OSSD Model (Iteration V) Filtering Sector

 229

Once again, the general behavior of the model is mostly preserved from the

Iteration IV version to the Iteration V version, while adding new structure and

consequently more explanatory power to the model. Figures 4.130 through 4.134

demonstrate the behaviors of the main indicators under base case conditions.

Product Functionality

600

450

300

150

0 1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_5_base UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.130. OSSD Model (Iteration V) Base Run - Product Functionality

 230

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_5_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.131. OSSD Model (Iteration V) Base Run - Achieved Functionality

Ratio

Developers

20

15

10

5

0

1

1

1
1 1 1 1 1

1

1

1

1
1

1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : iter_5_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.132. OSSD Model (Iteration V) Base Run - Developers

 231

Users

20,000

15,000

10,000

5,000

0 1 1 1 1 1 1

1

1

1

1
1

1
1

1
1

1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_5_base people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.133. OSSD Model (Iteration V) Base Run - Users

Average Relative Developer Talent

1

0.75

0.5

0.25

0

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Relative Developer Talent : iter_5_base Dmnl1 1 1 1 1 1 1 1 1

Figure 4.134. OSSD Model (Iteration V) Base Run - Average Relative Developer

Talent

 232

One important behavior difference between the Iteration V version and the

previous versions is observed in the behavior of Total Bugs per Functionality and other

variables that are affected by it, namely Severity of Total Bugs Problem and Perceived

Product Quality. In the Iteration V version, Total Bugs per Functionality starts at a lower

level than it does in the previous versions of the model. Also it does not reach as high a

peak as in the previous versions. (See Figure 4.135.) Severity of Total Bugs Problem, too,

starts lower, and reaches a lower peak than in the previous versions. (See Figure 4.136.)

Consequently, Perceived Product Quality starts at a higher level, and does not reach as

low a level as it does in the previous versions. (See Figure 4.137.)

Total Bugs per Functionality

1

0.75

0.5

0.25

0

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_5_base bugs/UF1 1 1 1 1 1 1 1 1 1

Figure 4.135. OSSD Model (Iteration V) Base Run - Total Bugs per Functionality

 233

Severity of Total Bugs Problem

4

3

2

1

0
1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_5_base Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.136. OSSD Model (Iteration V) Base Run - Severity of Total Bugs

Problem

Perceived Product Quality

1

0.75

0.5

0.25

0

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_5_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Figure 4.137. OSSD Model (Iteration V) Base Run - Perceived Product Quality

 234

However, a closer comparison of the behaviors of these variables in the Iteration

IV and Iteration V models show that they demonstrate almost the same behaviors after

about month 25 in both versions. (See Figure 4.138 through Figure 4.140.)

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_4_base bugs/UF1 1 1 1 1 1 1 1 1 1

Total Bugs per Functionality : iter_5_base bugs/UF2 2 2 2 2 2 2 2 2 2

Figure 4.138. OSSD Model (Iteration V compared with Iteration IV) Base Run -

Total Bugs per Functionality

 235

Severity of Total Bugs Problem

4

3

2

1

0

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : iter_5_base Dmnl2 2 2 2 2 2 2 2 2 2

Figure 4.139. OSSD Model (Iteration V compared with Iteration IV) Base Run -

Severity of Total Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1 1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : iter_5_base Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.140. OSSD Model (Iteration V compared with Iteration IV) Base Run -

Perceived Product Quality

 236

The initial differences between the behaviors are attributable to the addition of the

filtering process to the model. Production by developers involves a higher number of

bugs per functionality compared to production by leaders. The filtering process delays the

inclusion of production by developers in the overall product pool. So, in the Iteration V

version most of the early production comes from the leaders, and thus has a lower bugs

per functionality ratio. As more production by developers is added to the product the

bugs per functionality ratio increases. Though the leaders eliminate a portion of the bugs

through the filtering process, there are still bugs from production by developers that go

into the product. The number of bugs in the later stages of the project depends on the rate

of debugging rather than filtering, because debugging is driven by the assessment of the

severity of the total bugs problem. As a consequence, the number of bugs does not

decrease in the Iteration V version, more than it does in the Iteration IV version, because

the pressure for debugging is the same in both versions. However, since there are fewer

bugs to fix throughout the entire project in the Iteration V version, a certain amount of

time is saved. That time is used for production and coaching, and consequently the

achieved functionality ratio and average developer talent increase faster in the Iteration V

version. (See Figure 4.141. and Figure 4.142.)

 237

Achieved Functionality Ratio

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl 2

2

2

2

2

2

2

2

2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_4_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : iter_5_base Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.141. OSSD Model (Iteration V compared with Iteration IV) Base Run -

Achieved Functionality Ratio

Average Developer Talent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people

0.5 RTU/people
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_4_base RTU/people1 1 1 1 1 1 1 1 1

Average Developer Talent : iter_5_base RTU/people2 2 2 2 2 2 2 2 2

Figure 4.142. OSSD Model (Iteration V compared with Iteration IV) Base Run -

Average Developer Talent

 238

The behaviors of the Iteration V model under the two alternative conditions do

not exhibit substantial differences than those found in previous versions with the

exception of the behaviors of Total Bugs per Functionality and the variables affected by

it. These differences are attributable to the inclusion of the filtering process as discussed

above. Figures 4.143 through 4.150 portray the behavior of the Iteration V version under

high initial limit on product functionality condition, while Figures 4.151 through 4.160

show the behavior of the model under low participation condition.

Product Functionality

6,000

4,500

3,000

1,500

0 1 1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_5_hi_pot UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.143. OSSD Model (Iteration V) High Potential Run - Product

Functionality

 239

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_5_hi_pot Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.144. OSSD Model (Iteration V) High Potential Run - Achieved

Functionality Ratio

Developers

200

150

100

50

0 1

1

1
1

1
1

1
1

1 1
1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_5_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.145. OSSD Model (Iteration V) High Potential Run - Developers

 240

Users

200,000

150,000

100,000

50,000

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

1
1

1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_5_hi_pot people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.146. OSSD Model (Iteration V) High Potential Run - Users

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2

2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_5_base bugs/UF1 1 1 1 1 1 1 1 1 1

Total Bugs per Functionality : iter_5_hi_pot bugs/UF2 2 2 2 2 2 2 2 2 2

Figure 4.147. OSSD Model (Iteration V) High Potential Run - Total Bugs per

Functionality

 241

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
2 Dmnl

1 Dmnl
1 Dmnl

0 Dmnl
0 Dmnl

2

2

2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_5_base Dmnl1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : iter_5_hi_pot Dmnl2 2 2 2 2 2 2 2 2 2

Figure 4.148. OSSD Model (Iteration V) High Potential Run - Severity of Total

Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

2

2

2
2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_5_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : iter_5_hi_pot Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.149. OSSD Model (Iteration V) High Potential Run - Perceived Product

Quality

 242

Average Developer Talent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people

0.5 RTU/people
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_5_base RTU/people1 1 1 1 1 1 1 1 1

Average Developer Talent : iter_5_hi_pot RTU/people2 2 2 2 2 2 2 2 2

Figure 4.150. OSSD Model (Iteration V) High Potential Run - Average Developer

Talent

Product Functionality

600

450

300

150

0 1 1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : iter_5_lo_part UF1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.151. OSSD Model (Iteration V) Low Participation Run - Product

Functionality

 243

Achieved Functionality Ratio

1

0.75

0.5

0.25

0 1
1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : iter_5_lo_part Dmnl1 1 1 1 1 1 1 1 1 1

Figure 4.152. OSSD Model (Iteration V) Low Participation Run - Achieved

Functionality Ratio

Developers

20

15

10

5

0

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : iter_5_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.153. OSSD Model (Iteration V) Low Participation Run - Developers

 244

Total Participants

20

15

10

5

0

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : iter_5_lo_part people1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.154. OSSD Model (Iteration V) Low Participation Run - Total

Participants

Leaders

4

3

2

1

0

1 1 1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : iter_5_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.155. OSSD Model (Iteration V) Low Participation Run - Leaders

 245

Users

20

15

10

5

0 1
1

1

1

1

1
1

1
1

1
1

1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : iter_5_lo_part people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.156. OSSD Model (Iteration V) Low Participation Run - Users

Total Bugs per Functionality

1 bugs/UF
1 bugs/UF

0.75 bugs/UF
0.75 bugs/UF

0.5 bugs/UF
0.5 bugs/UF

0.25 bugs/UF
0.25 bugs/UF

0 bugs/UF
0 bugs/UF

2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : iter_5_base bugs/UF1 1 1 1 1 1 1 1 1 1

Total Bugs per Functionality : iter_5_lo_part bugs/UF2 2 2 2 2 2 2 2 2 2

Figure 4.157. OSSD Model (Iteration V) Low Participation Run - Total Bugs per

Functionality

 246

Severity of Total Bugs Problem

4 Dmnl
4 Dmnl

3 Dmnl
3 Dmnl

2 Dmnl
2 Dmnl

1 Dmnl
1 Dmnl

0 Dmnl
0 Dmnl

2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Severity of Total Bugs Problem : iter_5_base Dmnl1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : iter_5_lo_part Dmnl2 2 2 2 2 2 2 2 2 2

Figure 4.158. OSSD Model (Iteration V) Low Participation Run - Severity of

Total Bugs Problem

Perceived Product Quality

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl

2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : iter_5_base Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : iter_5_lo_part Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 4.159. OSSD Model (Iteration V) Low Participation Run - Percevied

Product Quality

 247

Average Developer Talent

1 RTU/people
1 RTU/people

0.75 RTU/people
0.75 RTU/people

0.5 RTU/people
0.5 RTU/people

0.25 RTU/people
0.25 RTU/people

0 RTU/people
0 RTU/people

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : iter_5_base RTU/people1 1 1 1 1 1 1 1 1

Average Developer Talent : iter_5_lo_part RTU/people2 2 2 2 2 2 2 2 2

Figure 4.160. OSSD Model (Iteration V) Low Participation Run - Avergae

Developer Talent

With the Iteration V version, the OSSD model reached a maturity level that

provides adequate explanatory power for the purposes of this study. The model replicated

product functionality accumulation, and growth of developer and user populations in

successful, as well as unsuccessful open source software development communities. The

model also replicated the effects of time pressure and quality on community growth. With

the Iteration V version, four policy leverage points, namely debugging, coaching, barriers

to entry and barriers to contribution were integrated into the model.

A small number of simulation runs under a limited variety of conditions were

done during the model development stage. These runs showed that the model exhibited

plausible and consistent behavior under normal conditions at each iteration. However, a

more comprehensive model testing and analysis phase was needed to build confidence in

 248

the model and to explore its behavior under different conditions and policy options before

reaching a substantial set of both theoretical and practical implications. Chapter 5

summarizes the findings of the model testing and analysis phase, which built confidence

in the model and provided critical implications about the model.

 249

CHAPTER 5 -- MODEL TESTING AND ANALYSIS

5.1. Model Testing and Analysis Overview

The open source software development (OSSD) model reached its final stage of

evolution within the scope of this study with the Iteration V version. Each iteration

involved aspects of model evaluation and testing as well as the adding of new structure.

As discussed in the methodology chapter, the process of testing a system dynamics model

is generally referred to as “confidence building,” rather than “validation.” The rationale is

that a model cannot be identified as either “valid” or “invalid,” but rather there is a level

of validity, or better yet, a confidence level for a given model. Also, “validation” is a

static activity in its plain “pass or fail” mode. However, “confidence building” implies an

iterative process of improving the model based on the model analysis findings.

Several authors suggested slightly different sets of tests for analyzing system

dynamics models (Richardson and Pugh 1981 pp.313-318, Barlas 1989, Forrester and

Senge 1996 pp.414-434, Sterman 2000). Some of the tests are common to all the

suggested sets. A “complete” set of confidence building tests consists of many types of

tests. Forrester and Senge (1996 pp.414-434) alone suggest 17 types of tests for analyzing

a system dynamics model. Some of these tests involve comparing the behavior of the

model to real data generated by the actual system to test whether the model replicates the

real world behavior of the system it represents. Not all of the suggested tests were

performed on the OSSD model. The rationale for that was that the OSSD model was not

envisioned as an end product of this study. The model was used as a tool to integrate the

implications of relevant literature with the observations and mental models of the

members of an actual open online collaboration community in order to reach a dynamic

 250

feedback framework, which serves as a theoretical basis for future research on the topic.

Thus, applying an exhaustive set of tests to the model in an effort to refine it beyond a

certain point was not considered relevant within the scope of this study. However, a

future study that focuses mostly on the OSSD model itself should include a more

exhaustive set of confidence building tests. This chapter summarizes the findings of three

common tests applied to the model: extreme condition tests, sensitivity analysis tests, and

policy analysis tests. The empirical component of this study, which involved interviews

with system dynamics K through 12 instructional material development community

members, can also be viewed as a test for building confidence in the model and

improving it. The findings of the interviews are discussed in Chapter 6.

5.2. Base-Case Run

The base-case run of the model involves the simulation of the model with the

default, or most likely parameter values. The base-case run mainly serves two purposes.

Its first purpose is to test whether the model generates plausible behavior under default

conditions. The base-case also serves as a reference, against which the non-default runs

such as extreme condition and policy analysis runs can be compared.

The base case of the open source software development (OSSD) model was a run

that represents a project for a software product with an initial limit of 400 units of

functionality (UF.) The initial number of developers on the project is seven, and the

number of leaders is three, creating 10 total participants in the projects. The initial

number of users of the software is zero.

After the project starts, a number of developers join the project, increasing the

total number of developers up to 14 people at around month 17 of the project. (See Figure

 251

5.1.) The number of developers stays almost the same until around month 30. After that

the number of developers starts to decline due to decreasing opportunities for

contribution. Note that at around month 30 product functionality reaches almost 70% of

the limit on product functionality. (See Figure 5.2.) The decrease in the number of

developers continues until month 80, when all the developers have left the project.

The number of users starts to increase visibly after month 15, when the achieved

functionality ratio reaches 0.3. The increase happens in an exponential fashion until about

month 35, when the achieved functionality ratio reaches 0.75, and continues in an

asymptotic fashion after that point (See Figure 5.1.)

Leaders - Developers - Users

4 people
20 people
20 people

20,000 people

2 people
10 people
10 people

10,000 people

0 people
0 people
0 people
0 people 4 4 4

4

4

4

4
4

4
4

4
4 4

3

3
3 3 3

3

3

3
3 3 3 3 3

2

2
2 2 2

2

2

2
2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : base_case people1 1 1 1 1 1 1 1 1 1 1 1

Developers : base_case people2 2 2 2 2 2 2 2 2 2

Total Participants : base_case people3 3 3 3 3 3 3 3 3 3

Users : base_case people4 4 4 4 4 4 4 4 4 4 4 4

Figure 5.1. Leaders, Developers and Users under Base Case Conditions

 252

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2

2

2

2

2

2

2

2

2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : base_case Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 5.2. Functionality Achievement under Base Case Conditions

In the first quarter of the base case run, the product quality exhibits a decline, due

to an increase in the number of bugs per unit of functionality. (See Figure 5.3.) The

number of bugs per functionality increases until about month 25 as new bugs are

introduced by production. During that period the participants (leaders and developers)

focus mostly on adding functionality to the product, rather than maintaining its quality.

As the severity of the total bugs problem increases, the participants feel an increased

pressure for bug detection and bug fixing. After month 25 debugging efforts reach a point

where the number of bugs per functionality starts to decrease, thus improving the

perceived product quality. (See Figure 5.3.)

 253

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : base_case bugs/UF1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : base_case Dmnl2 2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : base_case Dmnl3 3 3 3 3 3 3 3 3 3 3

Figure 5.3. Product Quality under Base Case Conditions

Average Developer Talent steadily increases until around month 80, as new

developer talent is built through coaching. (See Figure 5.4.) The increase stops after

month 80, since almost all the developers have left the project as it reached a

functionality saturation point, and there is no more coaching taking place within the

community. (See Figure 5.4.)

 254

Coaching and Developer Talent

1 RTU/people
40 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
20 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4

4
4 4

4

4

4
4 4 4 4

3

3

3 3 3 3
3

3
3

3 3

2

2

2 2 2

2

2

2 2 2 2 2

1
1

1 1 1 1
1

1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : base_case hours/Month2 2 2 2 2

Average Developer Talent Built : base_case RTU/(Month*people)3 3 3 3 3

Developer Talent Pool : base_case RTU4 4 4 4 4 4 4 4 4

Figure 5.4. Coaching and Developer Talent under Base Case Conditions

5.3. Extreme Condition Runs

Extreme condition runs test whether the model behaves as expected under

conditions that deviate extremely from normal conditions. The idea that lies behind the

extreme condition tests is that model behavior under extreme conditions is far more

predictable that under normal conditions. As a trivial example, the behavior of any given

human body under extreme temperature conditions such as below the freezing point or

above the boiling point is far more predictable than its behavior under normal conditions,

i.e. between 60° to 80° Fahrenheit. The model of a human body may exhibit a

“shivering,” “sweating” or “total comfort” behavior between 60° to 80° Fahrenheit; and

all of these behaviors can be argued to be plausible for some actual human bodies.

Therefore, it may not be possible to refute the model based on its behavior under such

conditions. However, the model should exhibit a distinctive “dying” behavior under

 255

freezing, or boiling conditions. If the model does not exhibit that distinctive behavior, it

should be refuted in its current state. Some of the most insightful extreme condition runs

performed on the OSSD model are discussed below.

5.3.1. No Developers

The model was run under the condition of no developers throughout the project

lifetime. The initial number of developers was set to zero. Also, the refusal ratio was set

to 1 to ensure no incoming developers. The run yielded expected results under the given

condition. The number of developers stayed at zero throughout the project. (See Figure

5.5.) Due to lack of developers, only leaders built product functionality under this

extreme condition run, and consequently the achieved functionality ratio could not reach

a point that could sustain the community. (See Figure 5.6.) The very limited amount of

achieved functionality attracts an extremely small number of users, and the number of

users increases until month 72. However, after that point even that small number of users

starts to decline, as the relative functionality of the product decreases. (See Figure 5.5.)

The failure to achieve a viable amount of product functionality caused leaders to leave

the community starting at around month 13. By month 70 all the leaders had left the

community. (See Figure 5.5.)

 256

Leaders - Developers - Users

4 people
20 people
4 people

400 people

2 people
10 people
2 people

200 people

0 people
0 people
0 people
0 people 4

4
4

4

4

4

4
4

4 4 4 4
4

3 3

3

3

3

3
3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1
1

1

1

1
1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : ext_no_dev people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_no_dev people2 2 2 2 2 2 2 2 2 2

Total Participants : ext_no_dev people3 3 3 3 3 3 3 3 3

Users : ext_no_dev people4 4 4 4 4 4 4 4 4 4 4

Figure 5.5. Leaders, Developers and Users under “No Developers” Extreme Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_no_dev UF1 1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_no_dev Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 5.6. Functionality Achievement under “No Developers” Extreme Case

 257

The OSSD model assumes that production by leaders introduces a much smaller

number of bugs compared to production by developers, as discussed in the model

description in Chapter 5. Since no production by developers took place under this

extreme condition, the product quality stayed very high throughout the simulation run.

The small number of bugs introduced by leaders could be held under control through a

limited debugging effort. (See Figure 5.7.)

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : ext_no_dev bugs/UF1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_no_dev Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_no_dev Dmnl3 3 3 3 3 3 3 3 3 3 3

Figure 5.7. Product Quality under “No Developers” Extreme Case

Since there were no developers in the community, the overall developer talent

pool and average developer talent stayed at zero throughout this run. Also, no coaching

took place in this run, as expected. (See Figure 5.8.)

 258

Coaching and Developer Talent

1 RTU/people
0.2 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
0.1 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4 4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Average Developer Talent : ext_no_dev RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_no_dev hours/Month2 2 2 2 2

Average Developer Talent Built : ext_no_dev RTU/(Month*people)3 3 3 3 3

Developer Talent Pool : ext_no_dev RTU4 4 4 4 4 4 4 4 4

Figure 5.8. Coaching and Developer Talent under “No Developers” Extreme Case

5.3.2. No Leaders

Another extreme condition applied to the model was the case with no leaders in

the community. The number of developers increased slightly at the beginning, but started

to decline rapidly after month 10, dissolving the community within the first 25 months

under this condition (See Figure 5.9.)

The product could attract an extremely small number of 13 users by month 18,

which started to decrease after that point. (See Figure 5.9.) This was due to the very

limited level of functionality achievement, which was caused by the lack of development

by leaders. (See Figure 5.10.)

 259

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people
10 people
10 people
10 people

0 people
0 people
0 people
0 people

4

4

4

4

4
4 4 4 4 4 4 4 4 4

3 3

3

3 3 3 3 3 3 3 3 3 3 3

2 2

2

2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Leaders : ext_no_lead people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_no_lead people2 2 2 2 2 2 2 2 2 2

Total Participants : ext_no_lead people3 3 3 3 3 3 3 3 3

Users : ext_no_lead people4 4 4 4 4 4 4 4 4 4 4

Figure 5.9. Leaders, Developers and Users under “No Leaders” Extreme Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_no_lead UF1 1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_no_lead Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 5.10. Functionality Achievement under “No Leaders” Extreme Case

 260

Product quality started at a considerably low level and decreased even further at

the beginning of the project. That was due to the lower average quality of the production,

which was done solely by the developers. The OSSD model assumes that the bug

detection and bug fixing skills of developers are lower than those of leaders. The already

bad bugs-per-functionality problem was worsened by the lack of effective debugging by

leaders. (Figure 5.11.)

Product Quality

2 bugs/UF
6 Dmnl
1 Dmnl

1 bugs/UF
3 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : ext_no_lead bugs/UF1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_no_lead Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_no_lead Dmnl3 3 3 3 3 3 3 3 3 3 3

Figure 5.11. Product Quality under “No Leaders” Extreme Case

Relatively low and stagnant developer talent was another factor that worsened the

quality problem in this run. The average developer talent started lower, due to the lack of

a selecting process, which is normally carried out by leaders. Also, the average developer

talent did not increase at all, since there were no leaders to coach the developers. (Figure

5.12.)

 261

Coaching and Developer Talent

1 RTU/people
0.2 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
0.1 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4

4

4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_no_lead RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_no_lead hours/Month2 2 2 2 2

Average Developer Talent Built : ext_no_lead RTU/(Month*people)3 3 3 3 3

Developer Talent Pool : ext_no_lead RTU4 4 4 4 4 4 4 4 4

Figure 5.12. Coaching and Developer Talent under “No Leaders” Extreme Case

5.3.3. No Participants

The “no developers” and “no leaders” extreme cases were combined in another

extreme condition run. This time, the community started with no participants at all, no

developers and no leaders. Also the incoming developers flow was set to zero. All the

population stayed at zero throughout the run (See Figure 5.13.) As expected, no

production, no debugging and no coaching took place. Functionality stayed at zero. (See

Figure 5.14.) The number of users stayed at zero, too, since there could be no users for a

non-existent product (See Figure 5.13.) Only the product quality stayed at 1, since there

were no bugs, and consequently no bugs problem. (See Figure 5.15.) Average developer

talent, too, stayed at zero, since there were no developers. (See Figure 5.16.)

 262

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people
10 people
10 people
10 people

0 people
0 people
0 people
0 people

4 4 4 4 4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Leaders : ext_no_part_s people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_no_part_s people2 2 2 2 2 2 2 2 2 2

Total Participants : ext_no_part_s people3 3 3 3 3 3 3 3 3

Users : ext_no_part_s people4 4 4 4 4 4 4 4 4 4 4

Figure 5.13. Leaders, Developers and Users under “No Participants” Extreme

Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_no_part_s UF1 1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_no_part_s Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.14. Functionality Achievement under “No Participants” Extreme Case

 263

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Bugs per Functionality : ext_no_part_s bugs/UF1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_no_part_s Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_no_part_s Dmnl3 3 3 3 3 3 3 3 3 3

Figure 5.15. Product Quality under “No Participants” Extreme Case

Coaching and Developer Talent

1 RTU/people
0.2 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
0.1 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4 4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Average Developer Talent : ext_no_part_s RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_no_part_s hours/Month2 2 2 2

Average Developer Talent Built : ext_no_part_s RTU/(Month*people)3 3 3 3 3

Developer Talent Pool : ext_no_part_s RTU4 4 4 4 4 4 4 4

Figure 5.16. Coaching and Developer Talent under “No Participants” Extreme

Case

 264

5.3.4. No Developer Participation

“No developer participation” was a slightly different variant of the “no

developers” extreme case. Here the community has an initial body of developers, and

continues to recruit developers, but the developers do not participate in any activities

within the community. The results of this run were very close to the results of the “no

developers” run, with the exception of the behaviors of the number of developers, the

overall developer talent pool and the average developer talent. (Compare Figures 5.5 - 5.8

and Figures 5.17 - 5.20.) The number of developers continued to increase until the

community starts to dissolve at around month 13, and started to decrease after that until it

reached zero at around month 80. (See Figure 5.17.) The average developer talent did

increase, since the developers did not participate in coaching. (See Figure 5.20.)

Leaders - Developers - Users

4 people
20 people
20 people

400 people

2 people
10 people
10 people

200 people

0 people
0 people
0 people
0 people 4

4
4

4

4

4

4
4

4 4 4 4
43

3

3

3

3

3
3

3 3 3 3 3 3 3

2

2 2

2

2

2
2

2 2 2 2 2 2 2

1 1
1

1

1

1
1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : ext_no_dev_part people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_no_dev_part people2 2 2 2 2 2 2 2 2

Total Participants : ext_no_dev_part people3 3 3 3 3 3 3 3 3

Users : ext_no_dev_part people4 4 4 4 4 4 4 4 4 4 4

Figure 5.17. Leaders, Developers and Users under “No Developer Participation”

Extreme Case

 265

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_no_dev_part UF1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_no_dev_part Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.18. Functionality Achievement under “No Developer Participation”

Extreme Case

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : ext_no_dev_part bugs/UF1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_no_dev_part Dmnl2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_no_dev_part Dmnl3 3 3 3 3 3 3 3 3 3

Figure 5.19. Product Quality under “No Developer Participation” Extreme Case

 266

Coaching and Developer Talent

1 RTU/people
0.2 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
0.1 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4

4

4

4

4
4

4 4 4 4 43 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_no_dev_part RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_no_dev_part hours/Month2 2 2 2

Average Developer Talent Built : ext_no_dev_part RTU/(Month*people)3 3 3 3

Developer Talent Pool : ext_no_dev_part RTU4 4 4 4 4 4 4 4

Figure 5.20. Coaching and Developer Talent under “No Developer Participation”

Extreme Case

5.3.5. No Participation

In another extreme case applied to the model the community had both developers

and leaders, but neither developers nor leaders participated in any activities within the

community. Since there was no participation, no production was created and thus no

functionality growth was achieved. (See Figure 5.21.)

 267

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_no_part_ion UF1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_no_part_ion Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.21. Functionality Achievement under “No Participation” Extreme Case

Due to the lack of functionality achievement, both leaders and developers started

to leave the community rapidly after approximately month 10. The number of developers

continued to increase until that time, since new developers continued to join the

community based on the expectations for future functionality growth. (For a discussion

about the expected and achieved functionality ratios, and how they affect the

attractiveness of the product for developers and users see Section 4.3, “Iteration II:

Adding Time Pressure.”) The number of users stayed at zero since there was no

functionality, and consequently no product to use. (See Figure 5. 22.) Product quality

stayed at one since no bugs were introduced, and no bugs problem existed. (See Figure

5.23.) No coaching took place, since there was no participation; and consequently the

average developer talent did not change at all. (See Figure 5.24.)

 268

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people
10 people
10 people
10 people

0 people
0 people
0 people
0 people

4 4 4 4 4 4 4 4 4 4 4 4 4 4

3
3

3

3
3 3 3 3 3 3 3 3 3 3

2

2

2

2

2
2 2 2 2 2 2 2 2 2

1 1

1

1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Leaders : ext_no_part_ion people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_no_part_ion people2 2 2 2 2 2 2 2 2

Total Participants : ext_no_part_ion people3 3 3 3 3 3 3 3 3

Users : ext_no_part_ion people4 4 4 4 4 4 4 4 4 4 4

Figure 5.22. Leaders, Developers and Users under “No Participation” Extreme

Case

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Bugs per Functionality : ext_no_part_ion bugs/UF1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_no_part_ion Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_no_part_ion Dmnl3 3 3 3 3 3 3 3 3 3

Figure 5.23. Product Quality under “No Participation” Extreme Case

 269

Coaching and Developer Talent

1 RTU/people
0.2 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
0.1 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4

4

4

4
4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_no_part_ion RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_no_part_ion hours/Month2 2 2 2

Average Developer Talent Built : ext_no_part_ion RTU/(Month*people)3 3 3 3

Developer Talent Pool : ext_no_part_ion RTU4 4 4 4 4 4 4 4

Figure 5.24. Coaching and Developer Talent under “No Participation” Extreme

Case

5.3.6. Extremely High Participation

The opposite of the “ no participation” case, “extremely high participation” was

also applied to the model. In this run, both developer participation and leader

participation were set to 10 times their normal level of 30 hours per month per person. As

expected, the product functionality increased rapidly and reached the saturation point

within the first 5 months. (See Figure 5.25.) This rapid growth in product functionality

caused a fast decrease in opportunities for contribution, and thus the developers started to

leave the community very early. The number of users increased rapidly, also due to the

fast growth in product functionality. (See Figure 5.26.)

 270

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_hi_part_ion UF1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_hi_part_ion Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.25. Functionality Achievement under “Extremely High Participation”

Case

Leaders - Developers - Users

4 people
20 people
20 people

20,000 people

2 people
10 people
10 people

10,000 people

0 people
0 people
0 people
0 people 4

4

4

4
4

4
4

4
4 4 4 4 4

3

3 3 3 3 3 3 3 3 3 3 3 3

2

2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : ext_hi_part_ion people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_hi_part_ion people2 2 2 2 2 2 2 2 2

Total Participants : ext_hi_part_ion people3 3 3 3 3 3 3 3 3

Users : ext_hi_part_ion people4 4 4 4 4 4 4 4 4 4 4

Figure 5.26. Leaders, Developers and Users under “Extremely High Participation”

Case

 271

The rapid growth in product functionality generated an equally rapid increase in

the number of bugs per functionality. Due to the delay between the assessment of the

bugs problem and reallocation of hours for debugging, and another delay between the

detection and fixing of the bugs, the bugs problem increased considerably at the

beginning of the run before it was under control. That caused the product quality to drop

to a very low level during the first 10 months of the project. Eventually the product

quality increased to an acceptable level. However, it stayed at an equilibrium that was

lower than that in the base case. (See Figure 5.27.)

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3

3

3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2

2

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : ext_hi_part_ion bugs/UF1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_hi_part_ion Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_hi_part_ion Dmnl3 3 3 3 3 3 3 3 3 3

Figure 5.27. Product Quality under “Extremely High Participation” Extreme Case

The overall developer talent pool grew rapidly during the first five month of this

run; however it decreased equally rapidly as the developers left the community. Average

developer talent increased for the first 10 months as more developer talent was built

 272

through coaching, but as experienced developers left the community it dropped back to

its normal level. (See Figure 5.28.)

Coaching and Developer Talent

1 RTU/people
40 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
20 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4

4 4 4 4 4 4 4 4 4 4

3

3 3 3 3 3 3 3 3 3 3

2

2 2 2 2 2 2 2 2 2 2 2

1

1

1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_hi_part_ion RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_hi_part_ion hours/Month2 2 2 2

Average Developer Talent Built : ext_hi_part_ion RTU/(Month*people)3 3 3 3

Developer Talent Pool : ext_hi_part_ion RTU4 4 4 4 4 4 4 4

Figure 5.28. Coaching and Developer Talent under “Extremely High

Participation” Case

5.3.7. Zero Productivity

An extreme case somewhat similar to “no participation” was “zero productivity.”

Here, both leaders and developers participate, but their productivity is zero. The results of

this run showed similarities with the results of the “no participation” run. There was no

increase in product functionality, since the participants could not produce. (See Figure

5.29.) Leaders and developers left the community very early on, and there were no users

throughout the run. (See Figure 5.30.)

 273

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_zero_prod UF1 1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_zero_prod Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.29. Functionality Achievement under “Zero Productivity” Extreme Case

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people
10 people
10 people
10 people

0 people
0 people
0 people
0 people

4 4 4 4 4 4 4 4 4 4 4 4 4 4

3
3

3

3
3 3 3 3 3 3 3 3 3 3

2

2

2

2

2
2 2 2 2 2 2 2 2 2

1 1

1

1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Leaders : ext_zero_prod people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_zero_prod people2 2 2 2 2 2 2 2 2 2

Total Participants : ext_zero_prod people3 3 3 3 3 3 3 3 3

Users : ext_zero_prod people4 4 4 4 4 4 4 4 4 4 4

Figure 5.30. Leaders, Developers and Users under “Zero Productivity” Extreme

Case

 274

Product quality stayed at one, again, since there was no production to introduce

any bugs. (See Figure 5.31.)

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Bugs per Functionality : ext_zero_prod bugs/UF1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_zero_prod Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_zero_prod Dmnl3 3 3 3 3 3 3 3 3 3

Figure 5.31. Product Quality under “Zero Productivity” Extreme Case

One notable difference from the “no participation” run was the existence of

coaching in the “zero production” run, since developers and leaders participated in

coaching as well as other activities in this run. Consequently, the average developer talent

increased slightly while the participants stayed in the community. That growth stopped,

however, as both the leaders and developers started to leave the community. (See Figure

5.32.)

 275

Coaching and Developer Talent

1 RTU/people
20 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
10 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4

4

4

4
4 4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3

2

2
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_zero_prod RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_zero_prod hours/Month2 2 2 2

Average Developer Talent Built : ext_zero_prod RTU/(Month*people)3 3 3 3 3

Developer Talent Pool : ext_zero_prod RTU4 4 4 4 4 4 4 4

Figure 5.32. Coaching and Developer Talent under “Zero Productivity” Extreme

Case

5.3.8. Extremely High Productivity

“Extremely high productivity” represents the opposite of the “zero productivity”

case. In this run both the leaders’ and developers’ productivity levels were set to 10 times

their normal values of 10 lines/hour and 5 lines/hour respectively. The results were very

similar to those in the “extremely high participation” case. (Compare Figures 5.25 - 5.28

and Figures 5.33 - 5.36.) In this case, the rapid growth was driven by the extremely high

productivity yield per hour of participation, as opposed to the extremely high level of

participation as the driving factor in the earlier case. One notable difference was the

behavior of the average developer talent. Since the level of participation was not as high

in this case as in the “extremely high participation” case, there was not as much coaching,

and consequently average developer talent did not increase as much as in the earlier case.

 276

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_hi_prod UF1 1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_hi_prod Dmnl2 2 2 2 2 2 2 2 2 2 2

Figure 5.33. Functionality Achievement under “Extremely High Productivity”

Case

Leaders - Developers - Users

4 people
20 people
20 people

20,000 people

2 people
10 people
10 people

10,000 people

0 people
0 people
0 people
0 people 4

4

4

4
4

4
4

4 4 4 4 4 4

3

3 3 3 3 3 3 3 3 3 3 3 3

2

2
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : ext_hi_prod people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_hi_prod people2 2 2 2 2 2 2 2 2 2

Total Participants : ext_hi_prod people3 3 3 3 3 3 3 3 3

Users : ext_hi_prod people4 4 4 4 4 4 4 4 4 4 4

Figure 5.34. Leaders, Developers and Users under “Extremely High Productivity”

Case

 277

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3

3 3

3

3
3 3 3 3 3 3 3 3 3 3 3 3 3

2

2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : ext_hi_prod bugs/UF1 1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_hi_prod Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_hi_prod Dmnl3 3 3 3 3 3 3 3 3 3 3

Figure 5.35. Product Quality under “Extremely High Productivity” Case

Coaching and Developer Talent

1 RTU/people
40 hours/Month

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
20 hours/Month

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/Month
0 RTU/(Month*people)
0 RTU

4

4 4 4 4 4 4 4 4 4 4

3

3 3 3 3 3 3 3 3 3 3

2

2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_hi_prod RTU/people1 1 1 1 1 1 1

Developer Hours Allocated to Coaching : ext_hi_prod hours/Month2 2 2 2 2

Average Developer Talent Built : ext_hi_prod RTU/(Month*people)3 3 3 3 3

Developer Talent Pool : ext_hi_prod RTU4 4 4 4 4 4 4 4 4

Figure 5.36. Coaching and Developer Talent under “Extremely High

Productivity” Case

 278

5.3.9. Zero Bug Generation

In another extreme condition run, the generating rate was set to zero, which meant

that leaders and developers did not introduce any bugs while producing functionality. The

behavior of the model under this condition was very close to its behavior under the base

case condition with respect to functionality achievement and leader, developer and user

populations. (Compare Figures 5.1 - 5.2 and Figures 5.37 - 5.38.) The expected behavior

under this condition would be a faster growth in product functionality and the user

population. This expectation was based on the rationale that no bug generation would

save the participants considerable debugging time, which could be channeled to faster

production. Figure 5.39 and 5.40 show that achieved functionality ratio and the number

of users exhibited essentially the same behaviors under the base and the “zero bug

generation” cases. One possible explanation for the small increase in the speed of

functionality growth is that the participants worked under a considerably high pressure

for production even in the base case, and the lack of debugging duties did not prompt

them to achieve an ever faster production schedule in the “zero bug generation.” This

finding caused some doubt about the confidence in the model, and was noted as a

potential analysis point for possible future extensions of this study.

 279

Leaders - Developers - Users

4 people
20 people
20 people

20,000 people

2 people
10 people
10 people

10,000 people

0 people
0 people
0 people
0 people 4 4 4

4

4

4

4
4

4
4

4
4 4

3

3
3 3 3

3

3

3
3 3 3 3 3

2

2
2 2 2

2

2

2
2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : ext_zero_bug_gen people1 1 1 1 1 1 1 1 1 1

Developers : ext_zero_bug_gen people2 2 2 2 2 2 2 2 2

Total Participants : ext_zero_bug_gen people3 3 3 3 3 3 3 3

Users : ext_zero_bug_gen people4 4 4 4 4 4 4 4 4 4

Figure 5.37. Leaders, Developers and Users under “Zero Bug Generation” Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2

2

2

2

2

2

2

2

2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_zero_bug_gen UF1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_zero_bug_gen Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.38. Functionality Achievement under “Zero Bug Generation” Case

 280

Achieved Functionality Ratio

1 Dmnl
1 Dmnl

0.75 Dmnl
0.75 Dmnl

0.5 Dmnl
0.5 Dmnl

0.25 Dmnl
0.25 Dmnl

0 Dmnl
0 Dmnl 2

2

2

2

2

2

2

2

2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Achieved Functionality Ratio : base_case Dmnl1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_zero_bug_gen Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.39. Achieved Functionality Ratio under Base Case and “Zero Bug

Generation” Case

Users

20,000

15,000

10,000

5,000

0 2 2 2 2 2
2

2

2

2
2

2
2

2
2 2 2 2 2 2 2

1 1 1 1 1 1

1

1

1

1
1

1
1

1
1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Users : ext_zero_bug_gen people2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 5.40. Users under Base Case and “Zero Bug Generation” Case

 281

Some of the behaviors yielded by this run were within the expected ranges. For

example, product quality stayed at one, since no bugs were introduce to the product. (See

Figure 3.41.)

Product Quality

1 bugs/UF
4 Dmnl
1 Dmnl

0.5 bugs/UF
2 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Bugs per Functionality : ext_zero_bug_gen bugs/UF1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_zero_bug_gen Dmnl2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_zero_bug_gen Dmnl3 3 3 3 3 3 3 3 3 3

Figure 5.41. Product Quality under “Zero Bug Generation” Case

Another expected behavior was the increase in the average developer talent level.

(See Figure 3.42) A portion of the time saved from debugging was channeled to more

coaching, and that yielded a higher increase in the long run than that under the base case

conditions. (See Figure 5.43.)

 282

Coaching and Developer Talent

1 RTU/people
4 hours/(Month*people)

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
2 hours/(Month*people)

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/(Month*people)
0 RTU/(Month*people)
0 RTU

4

4
4 4

4

4

4
4 4 4 4

3

3

3 3 3 3 3
3

3
3

3

2
2

2 2 2 2
2 2

2
2

2

2

1
1

1 1 1 1
1

1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_zero_bug_gen RTU/people1 1 1 1 1 1

Coaching Hours per Developer : ext_zero_bug_gen hours/(Month*people)2 2 2 2

Average Developer Talent Built : ext_zero_bug_gen RTU/(Month*people)3 3 3 3

Developer Talent Pool : ext_zero_bug_gen RTU4 4 4 4 4 4 4 4

Figure 5.42. Coaching and Developer Talent under “Zero Bug Generation” Case

Average Developer Talent

1

0.75

0.5

0.25

0

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1 1

Average Developer Talent : ext_zero_bug_gen RTU/people2 2 2 2 2 2 2 2

Figure 5.43. Average Developer Talent under Base Case and “Zero Bug

Generation” Case

 283

5.3.10. Extremely High Bug Generation

Another extreme condition run was done by setting the bug generating rate to 20

times its normal value of 0.01 bugs per line. As expected, the number of bugs per

functionality turned out extremely high under this case, rendering an extremely low

product quality. (See Figure 5.44.)

Product Quality

8 bugs/UF
40 Dmnl

1 Dmnl

4 bugs/UF
20 Dmnl

0.5 Dmnl

0 bugs/UF
0 Dmnl
0 Dmnl 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : ext_hi_bug_gen bugs/UF1 1 1 1 1 1 1 1 1

Severity of Total Bugs Problem : ext_hi_bug_gen Dmnl2 2 2 2 2 2 2 2 2 2

Perceived Product Quality : ext_hi_bug_gen Dmnl3 3 3 3 3 3 3 3 3 3

Figure 5.44. Product Quality under “Extremely High Bug Generation” Case

The extremely low level of product quality caused the number of developers to

decrease right from the start of the run, and that decrease became sharper when the

leaders started to leave the community for quality reasons as well. Also, the product

could not attract a notable pool of users due to quality problems. (See Figure 5.45.)

Functionality achievement stagnated due to the rapidly decreasing number of developers

and leaders. (See Figure 5.46.)

 284

Leaders - Developers - Users

4 people
20 people
20 people
20 people

2 people
10 people
10 people
10 people

0 people
0 people
0 people
0 people

4

4
4 4

4 4
4

4
4

4
4

4 4 4

3 3

3

3
3 3 3 3 3 3 3 3 3 3

2 2

2

2 2 2 2 2 2 2 2 2 2 2

1 1
1

1

1

1
1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Leaders : ext_hi_bug_gen people1 1 1 1 1 1 1 1 1 1 1

Developers : ext_hi_bug_gen people2 2 2 2 2 2 2 2 2

Total Participants : ext_hi_bug_gen people3 3 3 3 3 3 3 3 3

Users : ext_hi_bug_gen people4 4 4 4 4 4 4 4 4 4 4

Figure 5.45. Leaders, Developers and Users under “Extremely High Bug

Generation” Case

Functionality Achievement

600 UF
1 Dmnl

450 UF
0.75 Dmnl

300 UF
0.5 Dmnl

150 UF
0.25 Dmnl

0 UF
0 Dmnl 2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : ext_hi_bug_gen UF1 1 1 1 1 1 1 1 1 1 1

Achieved Functionality Ratio : ext_hi_bug_gen Dmnl2 2 2 2 2 2 2 2 2 2

Figure 5.46. Functionality Achievement under “Extremely High Bug Generation”

Case

 285

Developer talent increased only until the leaders started to leave the community.

After that point it started to decrease until it reached its original value of 0.5 relative

talent units per person by month 40, since the talent built through the limited coaching

efforts did not compensate for the decrease caused by the developer turnover. (See Figure

5.47.)

Coaching and Developer Talent

1 RTU/people
4 hours/(Month*people)

0.02 RTU/(Month*people)
8 RTU

0.5 RTU/people
2 hours/(Month*people)

0.01 RTU/(Month*people)
4 RTU

0 RTU/people
0 hours/(Month*people)
0 RTU/(Month*people)
0 RTU

4

4

4 4 4 4 4 4 4 4 4

3

3 3 3 3 3 3 3 3 3 3

2

2

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : ext_hi_bug_gen RTU/people1 1 1 1 1 1 1

Coaching Hours per Developer : ext_hi_bug_gen hours/(Month*people)2 2 2 2

Average Developer Talent Built : ext_hi_bug_gen RTU/(Month*people)3 3 3 3 3

Developer Talent Pool : ext_hi_bug_gen RTU4 4 4 4 4 4 4 4

Figure 5.47. Coaching and Developer Talent under “Extremely High Bug

Generation” Case

The extreme condition runs yielded mostly expected results, thus building a

certain confidence for the model. Some results were outside the expected ranges;

however the deviations were not so high as to refute the model altogether. The

unexpected deviations can be used as analysis foci for possible future studies based on

the model.

 286

5.3.11. Implications of the Extreme Condition Runs

The extreme condition run performed on the OSSD model showed that the model

exhibited expected behaviors under a substantial number of conditions that deviate

extremely from normal conditions. Thus, the results of the extreme condition runs

contributed to building confidence in the OSSD model. A limitation of extreme condition

runs in general is that while they provide very useful information for confidence building,

they do not provide much information for decision making based on the model. The

reason for that is that decision making involves setting policy parameters to a choice of

normal values under normal conditions, while extreme condition runs focus on abnormal

conditions. Sensitivity runs, another type of model tests, provide important information

for decision making as well as for building confidence in the model. The application of

sensitivity runs to the OSSD model is discussed below.

5.4. Sensitivity Runs

Sensitivity runs are done in order to test whether the model exhibits the expected

range of behavior under a range of parameter values. The model should not be

abnormally sensitive to parameter changes. Substantial changes in model behavior for

relatively small changes in parameter values would decrease the confidence in model. On

the other hand, the model should exhibit the expected variety of behavior for relatively

large changes in parameter values.

Sensitivity analysis has another important role beyond its function as a model-

testing tool. It is possible to use sensitivity runs as preliminary analysis tools for policy

analysis. Sensitivity runs done for policy variables, which can be controlled by decision

and policy makers, may give initial hints about what policy variables yield the greatest

 287

improvement, and what values of these variables yield results that are better than the base

case.

Many sensitivity runs were performed on the OSSD model. Several sensitivity

runs, which yielded the most critical findings, are discussed below. Among these are runs

that served as preliminary policy runs, such as the runs for refusal rate and rejection rate.

(See Section 5.4.7 and Section 5.4.8.)

5.4.1. Average Developer Participation

The model was run for different values of average developer participation. The

runs yielded results that are within a reasonable range. The runs where average developer

participation was set to 5, 10, 45 and 60 hours/(month*person) are discussed below,

along with the base case, where average developer participation was 30

hours/(month*person.) Figure 5.48 displays the behaviors of product functionality for

different values of average developer participation. As the average participation increased

so did the speed of product functionality growth. In the runs where average participation

was set to 10 and 5 hours/(month*person) the product functionality level did not reach

the saturation point during the 100-month simulation horizon. (See Figure 5.48.) In fact,

under a 5 hours/(month*people) average participation condition product functionality

reached a low equilibrium of around 125 UF, which indicates that all the participants

have left the community.

 288

Product Functionality

600

450

300

150

0

5

5

5

5 5 5 5 5 5 5 5 5

4

4

4

4

4 4 4 4 4 4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2
2

2 2 2 2 2 2 2 2

1
1

1
1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_dev_part_5 UF1 1 1 1 1 1 1

Product Functionality : sen_dev_part_10 UF2 2 2 2 2 2 2

Product Functionality : base_case_30 UF3 3 3 3 3 3 3 3

Product Functionality : sen_dev_part_45 UF4 4 4 4 4 4

Product Functionality : sen_dev_part_60 UF5 5 5 5 5 5 5

Figure 5.48. Product Functionality for Different Values of Average Developer

Participation

The number of total participants showed different behaviors for different values

of average developer participation as well. Figure 5.49 shows that as average

participation increased, the change in the number of developers happened more quickly.

As the speed of functionality growth increased, opportunities for contribution got scarcer

faster. That caused the developers to leave the community earlier for higher values of

average participation. (See Figure 5.49.) Figure 5.49 shows that all the participants left

the community by month 75 for the run where average participation was set to 5

hours/(month*person.)

 289

Total Participants

20

15

10

5

0

5
5 5

5

5
5 5 5 5 5 5 5

4

4 4
4

4

4
4 4 4 4 4 4

3

3 3 3
3

3

3

3 3 3 3 3

2

2
2

2

2

2
2 2 2 2 2 2 2

1

1

1

1

1

1
1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : sen_dev_part_5 people1 1 1 1 1 1 1

Total Participants : sen_dev_part_10 people2 2 2 2 2 2

Total Participants : base_case_30 people3 3 3 3 3 3 3

Total Participants : sen_dev_part_45 people4 4 4 4 4 4 4

Total Participants : sen_dev_part_60 people5 5 5 5 5 5 5

Figure 5.49. Total Participants for Different Values of Average Developer

Participation

Figure 5.50 shows the behaviors of the number of users under different average

participation values. Here again, as the average participation increased, the growth of the

number of users became faster. Decreasing the average participation value impeded the

growth of the user population.

 290

Users

20,000

15,000

10,000

5,000

0 5 5

5

5

5
5

5
5

5
5 5

4 4
4

4

4
4

4
4

4
4 4 4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users : sen_dev_part_5 people1 1 1 1 1 1 1 1 1

Users : sen_dev_part_10 people2 2 2 2 2 2 2 2

Users : base_case_30 people3 3 3 3 3 3 3 3 3

Users : sen_dev_part_45 people4 4 4 4 4 4 4 4

Users : sen_dev_part_60 people5 5 5 5 5 5 5 5 5

Figure 5.50. Users for Different Values of Average Developer Participation

The analysis indicated that there is a critical value of average developer

participation for the given model, below which the community would not be able to

sustain itself. Running the model for 200 months instead of the original 100 months

revealed that the critical value lies between 10 and 11 hours/(month*person). Figure 5.51

shows that the number of participants decreased early on after a short period of increase

for both cases where average participation was set to 10 and 11 hours/(month*person).

However, in the case where average participation was 11 hours/(month*person), the

number of participants started to increase once again, due to increasing interest among

potential developers, since the product had reached a critical level of functionality, and

continued with healthy growth. (See Figure 5.52.) Such an increase does not happen in

the case where average participation was 10 hours/(month*person), indicating that the

community would eventually cease to exist.

 291

Total Participants

20

15

10

5

0

3

3 3
3

3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Total Participants : sen_dev_part_10_200 people1 1 1 1 1 1 1 1 1 1 1

Total Participants : sen_dev_part_11_200 people2 2 2 2 2 2 2 2 2 2

Total Participants : base_case_30_200 people3 3 3 3 3 3 3 3 3 3 3

Figure 5.51. Total Participants for Different Values of Average Developer

Participation

Product Functionality

600

450

300

150

0
3

3

3

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2

2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Product Functionality : sen_dev_part_10_200 UF1 1 1 1 1 1 1 1 1 1

Product Functionality : sen_dev_part_11_200 UF2 2 2 2 2 2 2 2 2 2

Product Functionality : base_case_30_200 UF3 3 3 3 3 3 3 3 3 3 3

Figure 5.52. Product Functionality for Different Values of Average Developer

Participation

 292

Figure 5.53 shows that the number of users started to decrease after a certain point

for 10 hours/(month*people) average developer participation, thus confirming that the

community would dissolve under that condition. Meanwhile, the number of users

continued to increase under the condition of 11 hours/(month*people).

Users

20,000

15,000

10,000

5,000

0
3 3

3

3

3

3
3

3
3

3
3 3 3 3 3 3 3 3 3

2 2 2 2 2
2

2
2

2
2

2
2

2
2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Users : sen_dev_part_10_200 people1 1 1 1 1 1 1 1 1 1 1 1 1

Users : sen_dev_part_11_200 people2 2 2 2 2 2 2 2 2 2 2 2 2

Users : base_case_30_200 people3 3 3 3 3 3 3 3 3 3 3 3 3 3

Figure 5.53. Users for Different Values of Average Developer Participation

Perceived product quality exhibited larger decreases at the beginning of the

project for higher values of average developer participation. (See Figure 5.54.) This is

attributable to the fact that the proportion of code produced by developers was higher for

higher values of average developer participation, and developers introduced more bugs

per functionality compared to leaders. However it can also be seen in Figure 5.54 that the

perceived product quality improved faster as the average participation level increased,

due to more developer hours available for debugging. Perceived product quality stayed

considerably high for very low average participation levels, due to the limited amount of

 293

code produced by developers. However, higher quality did not help the community in

those cases, since the quality of a product that is not functional would be irrelevant for

users.

Perceived Product Quality

1

0.75

0.5

0.25

0

5 5

5 5
5

5
5 5 5 5 5 5

4

4
4

4 4
4

4 4 4 4 4 43

3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_dev_part_5 Dmnl1 1 1 1 1 1

Perceived Product Quality : sen_dev_part_10 Dmnl2 2 2 2 2 2

Perceived Product Quality : base_case_30 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_dev_part_45 Dmnl4 4 4 4 4 4

Perceived Product Quality : sen_dev_part_60 Dmnl5 5 5 5 5 5

Figure 5.54. Product Quality for Different Values of Average Developer

Participation

Developer talent increased faster for higher values of average participation, since

more developer hours were available for coaching. However, the average talent reached

lower equilibriums for higher values of average participation, since developers left the

community earlier in those runs, and did not have the time to have more coaching. (See

Figure 5.55.)

 294

Average Developer Talent

0.8

0.7

0.6

0.5

0.4

5

5
5

5

5
5

5 5 5 5 5 5

4

4
4

4

4

4
4

4 4 4 4 4

3

3
3

3
3

3

3

3
3 3 3 3

2

2 2 2 2 2 2 2 2 2 2 21
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : sen_dev_part_5 RTU/people1 1 1 1 1

Average Developer Talent : sen_dev_part_10 RTU/people2 2 2 2 2

Average Developer Talent : base_case_30 RTU/people3 3 3 3 3

Average Developer Talent : sen_dev_part_45 RTU/people4 4 4 4 4

Average Developer Talent : sen_dev_part_60 RTU/people5 5 5 5 5

Figure 5.55. Average Developer Talent for Different Values of Average

Developer Participation

5.4.2. Average Developer Productivity

Another set of sensitivity runs was done for different values of average developer

productivity. Average developer productivity in the base case run was 5 lines/hour. The

results of the runs where average developer productivity was set to 1, 2.5, 7.5 and 10

lines/hour are discussed below. As expected, higher average developer productivity

yielded faster product functionality growth. (See Figure 5.56.)

 295

Product Functionality

600

450

300

150

0

5

5

5

5 5 5 5 5 5 5 5 5

4

4

4

4

4 4 4 4 4 4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2

2

2
2

2
2

2
2

2

1
1

1
1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_dev_prod_1 UF1 1 1 1 1 1 1

Product Functionality : sen_dev_prod_2-5 UF2 2 2 2 2 2 2

Product Functionality : base_case_5 UF3 3 3 3 3 3 3 3

Product Functionality : sen_dev_prod_7-5 UF4 4 4 4 4 4

Product Functionality : sen_dev_prod_10 UF5 5 5 5 5 5 5

Figure 5.56. Product Functionality for Different Values of Average Developer

Productivity

Higher values of average developer productivity also caused the number of total

participants to exhibit its fundamental behavior pattern and reach equilibrium earlier.

(See Figure 5.57.) Total participants decreased early on in the case where the average

developer productivity was set to 1 lines/hour, since many developers left the community

due to very low product functionality levels. The leaders followed the developers, thus

bringing the total number of participants to zero by the end of the simulation horizon for

that run. An interesting alternative behavior pattern was observed when average

developer productivity was set to 2.5 lines/hour. In that run the number of total

participants decreased early on as well, due to the low product functionality level.

However, that decrease slowed down as the developer interest in the project was

rekindled due to improving functionality achievement. Finally the decrease accelerated

 296

again due to scarce contribution opportunities as the product functionality approached the

saturation point. (See Figure 5.57.)

Total Participants

20

15

10

5

0

5
5 5

5

5
5 5 5 5 5 5 5

4

4 4
4

4

4
4 4 4 4 4 4

3

3 3 3
3

3

3

3 3 3 3 3

2

2 2

2
2 2 2 2 2

2

2

2

2

1

1
1

1

1

1
1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : sen_dev_prod_1 people1 1 1 1 1 1 1

Total Participants : sen_dev_prod_2-5 people2 2 2 2 2 2

Total Participants : base_case_5 people3 3 3 3 3 3 3

Total Participants : sen_dev_prod_7-5 people4 4 4 4 4 4 4

Total Participants : sen_dev_prod_10 people5 5 5 5 5 5 5

Figure 5.57. Total Participants for Different Values of Average Developer

Productivity

Figure 5.58 shows how the behaviors of the number of users unfolded under

different average productivity conditions. Basically, as the average productivity

increased, the growth of the number of users became faster, as expected. The behavior of

number of users for very low average productivity values, together with the behaviors of

the number of total participants, indicated that there should be a critical value for average

developer productivity below which the community would not be able to sustain itself.

Further analysis revealed that the critical value lies between 1.6 and 1.7 lines/hour. (See

Figures 5.59 - 5.61.)

 297

Users

20,000

15,000

10,000

5,000

0 5 5

5

5

5
5

5
5

5
5 5

4 4 4

4

4

4
4

4
4

4 4 4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2 2 2

2

2

2

2
2

2
2

1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users : sen_dev_prod_1 people1 1 1 1 1 1 1 1 1

Users : sen_dev_prod_2-5 people2 2 2 2 2 2 2 2

Users : base_case_5 people3 3 3 3 3 3 3 3 3

Users : sen_dev_prod_7-5 people4 4 4 4 4 4 4 4

Users : sen_dev_prod_10 people5 5 5 5 5 5 5 5

Figure 5.58. Users for Different Values of Average Developer Productivity

Total Participants

20

15

10

5

0

3 3

3

3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21

1
1 1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Total Participants : base_case_5_200 people1 1 1 1 1 1 1 1 1 1 1 1

Total Participants : sen_dev_prod_1-7_200 people2 2 2 2 2 2 2 2 2 2

Total Participants : sen_dev_prod_1-6_200 people3 3 3 3 3 3 3 3 3 3

Figure 5.59. Total Participants for Different Values of Average Developer

Productivity

 298

Product Functionality

600

450

300

150

0 3

3

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2

2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Product Functionality : base_case_5_200 UF1 1 1 1 1 1 1 1 1 1 1

Product Functionality : sen_dev_prod_1-7_200 UF2 2 2 2 2 2 2 2 2 2

Product Functionality : sen_dev_prod_1-6_200 UF3 3 3 3 3 3 3 3 3 3

Figure 5.60. Product Functionality for Different Values of Average Developer

Productivity

Users

20,000

15,000

10,000

5,000

0
3 3 3 3 3

3
3

3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2
2

2
2

2
2

2
2

2 2 2 2 2 2 2 2

1 1 1

1

1

1

1
1

1
1

1
1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Users : base_case_5_200 people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Users : sen_dev_prod_1-7_200 people2 2 2 2 2 2 2 2 2 2 2 2

Users : sen_dev_prod_1-6_200 people3 3 3 3 3 3 3 3 3 3 3 3 3

Figure 5.61. Users for Different Values of Average Developer Productivity

 299

Like the case with average developer participation, higher values of average

developer productivity yielded larger decreases in perceived product quality at the

beginning of the project. (See Figure 5.62.) This is again attributable to the increased

portion of code produced by developers in the overall code base as average developer

productivity increased. The improvement in perceived product quality was faster as the

average production level increased. Perceived product quality stayed high for very low

average developer productivity levels, again due to the limited amount of code produced

by developers. (See Figure 5.62.)

Perceived Product Quality

1

0.75

0.5

0.25

0

5
5

5 5
5

5
5 5 5 5 5 5

4

4
4

4 4 4
4 4 4 4 4 43

3 3 3 3 3 3 3 3 3 3 3
2

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_dev_prod_1 Dmnl1 1 1 1 1 1

Perceived Product Quality : sen_dev_prod_2-5 Dmnl2 2 2 2 2 2

Perceived Product Quality : base_case_5 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_dev_prod_7-5 Dmnl4 4 4 4 4 4

Perceived Product Quality : sen_dev_prod_10 Dmnl5 5 5 5 5 5

Figure 5.62. Users for Different Values of Average Developer Productivity

 300

5.4.3. Bug Generating Rate Normal

The model was also run under different values of bug generating rate normal,

namely 0.002, 0.005, 0.020, 0.050 bugs/line. The base case value of bug generating rate

normal was 0.010 bugs/line.

As expected, higher values of bug generating rate normal caused higher levels of

total bugs per functionality, and consequently, lower levels of perceived product quality.

(See Figure 5.63. and Figure 5.64.) Perceived product quality improved after a decline in

most runs, but it failed to do so in some runs with very high values of bug generating rate

normal. The run where the rate was set to 0.050 bugs/line was one of those cases, as seen

in Figure 5.64. This indicated that bug generating rate normal should also have a critical

value, above which the community would fail due to low product quality.

Total Bugs per Functionality

2

1.5

1

0.5

0

5

5

5
5

5 5 5 5 5 5 5 5

4 4
4 4 4 4 4 4 4 4 4 43

3 3 3 3 3 3 3 3 3 3 3

2
2 2 2 2 2 2 2 2 2 2 2

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Bugs per Functionality : sen_bug_gen_rate_0-002 bugs/UF1 1 1 1

Total Bugs per Functionality : sen_bug_gen_rate_0-005 bugs/UF2 2 2 2

Total Bugs per Functionality : base_case_0-010 bugs/UF3 3 3 3 3

Total Bugs per Functionality : sen_bug_gen_rate_0-020 bugs/UF4 4 4 4 4

Total Bugs per Functionality : sen_bug_gen_rate_0-050 bugs/UF5 5 5 5 5

Figure 5.63. Total Bugs per Functionality for Different Values of Bug Generating

Rate Normal

 301

Perceived Product Quality

1

0.75

0.5

0.25

0 5 5 5 5 5 5 5 5 5 5 5 5

4
4

4
4

4
4 4 4 4

4 4 43

3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_bug_gen_rate_0-002 Dmnl1 1 1 1 1

Perceived Product Quality : sen_bug_gen_rate_0-005 Dmnl2 2 2 2 2

Perceived Product Quality : base_case_0-010 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_bug_gen_rate_0-020 Dmnl4 4 4 4 4

Perceived Product Quality : sen_bug_gen_rate_0-050 Dmnl5 5 5 5 5

Figure 5.64. Perceived Product Quality for Different Values of Bug Generating

Rate Normal

The behaviors of product functionality, number of users, and number of total

participants in the run where the rate was set to 0.050 bugs/line supported the idea about

the existence of a critical value for bug generating rate normal. (See Figures 5.65 through

5.67.) Based on further runs, the critical value for bug generating rate normal was found

to lie between 0.025 and 0.030 bugs/line. (See Figures 5.68 through 5.70)

 302

Product Functionality

600

450

300

150

0
5

5
5

5 5 5 5 5 5 5 5 5

4

4

4

4

4

4

4

4
4 4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2

2

2
2 2 2 2 2 2

1

1

1

1

1

1
1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_bug_gen_rate_0-002 UF1 1 1 1 1 1

Product Functionality : sen_bug_gen_rate_0-005 UF2 2 2 2 2 2

Product Functionality : base_case_0-010 UF3 3 3 3 3 3 3

Product Functionality : sen_bug_gen_rate_0-020 UF4 4 4 4 4

Product Functionality : sen_bug_gen_rate_0-050 UF5 5 5 5 5 5

Figure 5.65. Product Functionality for Different Values of Bug Generating Rate

Normal

Users

20,000

15,000

10,000

5,000

0 5 5 5 5 5 5 5 5 5 5 54 4 4 4

4

4

4

4
4

4
4

4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2
2

2

2
2

2
2

2
2

2

1 1 1 1

1

1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : sen_bug_gen_rate_0-002 people1 1 1 1 1 1 1 1

Users : sen_bug_gen_rate_0-005 people2 2 2 2 2 2 2

Users : base_case_0-010 people3 3 3 3 3 3 3 3

Users : sen_bug_gen_rate_0-020 people4 4 4 4 4 4 4

Users : sen_bug_gen_rate_0-050 people5 5 5 5 5 5 5 5

Figure 5.66. Users for Different Values of Bug Generating Rate Normal

 303

Total Participants

20

15

10

5

0

5
5

5

5
5 5 5 5 5 5 5 5

4
4 4 4 4 4 4

4

4

4
4 4

3

3 3 3
3

3

3

3 3 3 3 3

2

2
2 2 2

2

2

2
2 2 2 2 2

1

1

1 1 1

1

1

1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : sen_bug_gen_rate_0-002 people1 1 1 1 1 1

Total Participants : sen_bug_gen_rate_0-005 people2 2 2 2 2 2

Total Participants : base_case_0-010 people3 3 3 3 3 3 3

Total Participants : sen_bug_gen_rate_0-020 people4 4 4 4 4 4

Total Participants : sen_bug_gen_rate_0-050 people5 5 5 5 5 5

Figure 5.67. Total Participants for Different Values of Bug Generating Rate

Normal

Product Functionality

600

450

300

150

0 3

3
3

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2
2

2
2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case_0-010 UF1 1 1 1 1 1 1 1 1 1 1

Product Functionality : sen_bug_gen_rate_0-025 UF2 2 2 2 2 2 2 2 2 2

Product Functionality : sen_bug_gen_rate_0-030 UF3 3 3 3 3 3 3 3 3 3

Figure 5.68. Product Functionality for Different Values of Bug Generating Rate

Normal

 304

Users

20,000

15,000

10,000

5,000

0
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2

2
2

2
2

2 2 2 2 2 2

1 1 1 1 1 1

1

1

1

1
1

1
1

1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case_0-010 people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Users : sen_bug_gen_rate_0-025 people2 2 2 2 2 2 2 2 2 2 2 2

Users : sen_bug_gen_rate_0-030 people3 3 3 3 3 3 3 3 3 3 3 3

Figure 5.69. Users for Different Values of Bug Generating Rate Normal

Total Participants

20

15

10

5

0

3
3

3

3

3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2
2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1
1 1 1 1 1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Participants : base_case_0-010 people1 1 1 1 1 1 1 1 1 1 1 1

Total Participants : sen_bug_gen_rate_0-025 people2 2 2 2 2 2 2 2 2 2

Total Participants : sen_bug_gen_rate_0-030 people3 3 3 3 3 3 3 3 3 3

Figure 5.70. Total Participants for Different Values of Bug Generating Rate

Normal

 305

5.4.4. Normal Time to Attract Developers

Normal time to attract developers was the basis for another set of sensitivity runs.

In the base case the value of the normal time to attract developers was 10 months. The

runs where normal time to attract developers was set to 2, 5, 20 and 30 months are

discussed below.

As expected, lower values of normal time to attract developers caused the number

of developers to increase faster. Also, the decline in the number of developers happened

earlier for runs with lower normal times to attract developers, since the limit on product

functionality was achieved earlier due to a larger developer population. (See Figure 5.71

and Figure 5.72.) As a consequence of faster functionality growth, number of users grew

faster under higher values of normal time to attract developers. (See Figure 5.73.)

Developers

20

15

10

5

0

5 5 5
5

5
5

5

5
5 5 5 5

4
4 4 4

4

4

4

4
4 4 4 4

3

3 3 3
3

3

3

3 3 3 3 3

2

2

2 2
2

2

2
2 2 2 2 2 2

1

1

1
1

1

1

1
1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : sen_att_dev_2 people1 1 1 1 1 1 1 1

Developers : sen_att_dev_5 people2 2 2 2 2 2 2 2

Developers : base_case_10 people3 3 3 3 3 3 3 3

Developers : sen_att_dev_20 people4 4 4 4 4 4 4 4

Developers : sen_att_dev_50 people5 5 5 5 5 5 5 5

Figure 5.71. Developers for Different Values of Normal Time to Attract

Developers

 306

Product Functionality

600

450

300

150

0
5

5

5

5

5

5

5
5 5 5 5 5

4

4

4

4

4

4
4 4 4 4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2

2

2 2 2 2 2 2 2

1

1

1

1

1
1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_att_dev_2 UF1 1 1 1 1 1 1

Product Functionality : sen_att_dev_5 UF2 2 2 2 2 2 2

Product Functionality : base_case_10 UF3 3 3 3 3 3 3 3

Product Functionality : sen_att_dev_20 UF4 4 4 4 4 4 4

Product Functionality : sen_att_dev_50 UF5 5 5 5 5 5 5

Figure 5.72. Product Functionality for Different Values of Normal Time to Attract

Developers

Users

20,000

15,000

10,000

5,000

0 5 5 5
5

5

5

5
5

5
5

5

4 4 4
4

4

4

4
4

4
4

4 4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2
2

2

2
2

2
2

2
2 2

1 1 1
1

1

1
1

1
1

1
1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : sen_att_dev_2 people1 1 1 1 1 1 1 1 1

Users : sen_att_dev_5 people2 2 2 2 2 2 2 2

Users : base_case_10 people3 3 3 3 3 3 3 3 3

Users : sen_att_dev_20 people4 4 4 4 4 4 4 4 4

Users : sen_att_dev_50 people5 5 5 5 5 5 5 5 5

Figure 5.73. Users for Different Values of Normal Time to Attract Developers

 307

Perceived product quality decreased faster and reached a lower level for runs with

higher values of normal time to attract developers. This was due to the higher portions of

code produced in these runs due to higher numbers of developers. However, perceived

product quality improved and reached to about the same level by the end of the

simulation horizon in all the runs. (See Figure 5.74.)

Perceived Product Quality

1

0.75

0.5

0.25

0

5 5 5 5 5 5 5 5 5 5 5 54
4 4 4 4 4 4 4 4 4 4 43

3 3 3 3 3 3 3 3 3 3 3
2

2
2 2 2 2 2

2 2 2 2 2
1

1

1

1 1 1
1

1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_att_dev_2 Dmnl1 1 1 1 1 1 1

Perceived Product Quality : sen_att_dev_5 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : base_case_10 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_att_dev_20 Dmnl4 4 4 4 4 4

Perceived Product Quality : sen_att_dev_50 Dmnl5 5 5 5 5 5

Figure 5.74. Users for Different Values of Normal Time to Attract Developers

Average developer talent increased faster and reached higher equilibriums for

higher values of normal time to attract developers, since the developers stayed in the

community longer, and thus had a longer period of coaching than in the runs with lower

normal times to attract developers. (See Figure 5.75.)

 308

Average Developer Talent

1

0.75

0.5

0.25

0

5
5 5 5 5 5 5 5 5 5 5 5

4
4 4 4 4 4

4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3 3

2
2 2 2 2 2

2 2 2 2 2 2

1
1 1 1 1 1

1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : sen_att_dev_2 RTU/people1 1 1 1 1 1

Average Developer Talent : sen_att_dev_5 RTU/people2 2 2 2 2 2

Average Developer Talent : base_case_10 RTU/people3 3 3 3 3

Average Developer Talent : sen_att_dev_20 RTU/people4 4 4 4 4

Average Developer Talent : sen_att_dev_50 RTU/people5 5 5 5 5

Figure 5.75. Users for Different Values of Normal Time to Attract Developers

It can be argued that the model did not yield the expected diversity of behavior for

different values of normal time to attract developers. It was expected that the community

would fail to grow to a sustainable level for very high values of this variable. However,

even five times the base case value did not yield such as result. This fact was noted as an

opportunity for a future model refinement study, where this and other variables would be

revised in order to improve the model.

5.4.5. Normal Time for Developers to Leave

Another set of sensitivity runs was based on different values of normal time for

developers to leave, namely 16, 48, 144 and 198 months. The value of normal time for

developers to leave was 96 months in the base case. The findings of these runs were not

too different than those of the runs under different values of normal time to attract

 309

developers, except for the fact that the diversity of behavior was even smaller in this case.

Hence, this variable was noted as a candidate for a future model refinement study, as

well.

Although the behavioral differences among the runs were not substantial, the

number of developer started to decrease earlier for runs with lower values of normal time

for developers to leave, as expected. That was due to the increased number of leaving

developers in these runs. (See Figure 5.76.)

Developers
20

15

10

5

0

5

5
5 5 5

5

5

5

5

5
5 5 5 5 5

4

4
4 4 4

4

4

4

4

4
4 4 4 4 4

3

3
3 3 3

3

3

3

3

3 3 3 3 3 3 3

2

2

2 2
2

2

2

2

2
2 2 2 2 2 2 2

1

1

1
1

1

1

1

1

1

1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Time (Month)

Developers : sen_dev_leav_16 people1 1 1 1 1 1 1 1 1 1 1
Developers : sen_dev_leav_48 people2 2 2 2 2 2 2 2 2 2 2
Developers : base_case_96 people3 3 3 3 3 3 3 3 3 3 3
Developers : sen_dev_leav_144 people4 4 4 4 4 4 4 4 4 4

Developers : sen_dev_leav_192 people5 5 5 5 5 5 5 5 5 5 5

Figure 5.76. Developers for Different Values of Normal Time for Developers to

Leave

Since the developers left the community earlier, causing the number of developers

to stay lower, product functionality growth under lower values of normal time for

developers to leave was slower. However, the differences in the pace of functionality

 310

growth were far from being substantial. (See Figure 5.77.) That was another fact that cast

doubt on the validity of the way this variable was included in the model.

Product Functionality

600

450

300

150

0
5

5

5

5

5
5 5 5 5 5 5 5

4

4

4

4

4

4 4 4 4 4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2

2

2
2 2 2 2 2 2

1

1

1

1

1

1

1
1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_dev_leav_16 UF1 1 1 1 1 1 1

Product Functionality : sen_dev_leav_48 UF2 2 2 2 2 2 2

Product Functionality : base_case_96 UF3 3 3 3 3 3 3 3

Product Functionality : sen_dev_leav_144 UF4 4 4 4 4 4

Product Functionality : sen_dev_leav_192 UF5 5 5 5 5 5

Figure 5.77. Product Functionality for Different Values of Normal Time for

Developers to Leave

Since the differences in the pace of product functionality growth across the runs

were very small, the differences between the behaviors of the number of users in each run

were also small, contrary to the expectation. Nevertheless, the number of users increased

more slowly under lower values of normal time for developers to leave, due to slower

product functionality growth. (See Figure 5. 78.)

 311

Users

20,000

15,000

10,000

5,000

0 5 5 5

5

5

5
5

5
5

5 5

4 4 4

4

4

4
4

4
4

4
4 4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2
2

2

2

2
2

2
2

2
2

1 1 1 1

1

1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : sen_dev_leav_16 people1 1 1 1 1 1 1 1 1

Users : sen_dev_leav_48 people2 2 2 2 2 2 2 2

Users : base_case_96 people3 3 3 3 3 3 3 3 3

Users : sen_dev_leav_144 people4 4 4 4 4 4 4 4

Users : sen_dev_leav_192 people5 5 5 5 5 5 5 5

Figure 5.78. Users for Different Values of Normal Time for Developers to Leave

Perceived product functionality exhibited behaviors which were essentially the

same for different for different values of normal time for developers to leave, again

contrary to expectation. However, it should be noted that the product quality was slightly

better for runs with lower values of normal time for developers to leave. (See Figure 5.

79.) This can be attributed to the lower portion of code produced by developers within the

overall code base in these runs.

Average developer talent increased slightly faster and reached higher equilibriums

for runs with higher values of normal time for developers to leave, as expected. This was

due to developers staying in the community longer, and thus having a longer period of

coaching. (See Figure 5.80.)

 312

Perceived Product Quality

1

0.75

0.5

0.25

0

5
5 5 5 5 5 5 5 5 5 5 54

4 4 4 4 4 4 4 4 4 4 43

3 3 3 3 3 3 3 3 3 3 3
2

2
2 2 2 2 2 2 2 2 2 2

1

1
1 1 1 1

1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_dev_leav_16 Dmnl1 1 1 1 1 1

Perceived Product Quality : sen_dev_leav_48 Dmnl2 2 2 2 2 2

Perceived Product Quality : base_case_96 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_dev_leav_144 Dmnl4 4 4 4 4 4

Perceived Product Quality : sen_dev_leav_192 Dmnl5 5 5 5 5 5

Figure 5.79. Perceived Product Quality for Different Values of Normal Time for

Developers to Leave

Average Developer Talent

1

0.75

0.5

0.25

0

5
5 5 5 5 5 5 5 5 5 5 5

4
4 4 4 4 4 4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3 3

2
2 2 2 2 2

2 2 2 2 2 2

1
1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : sen_dev_leav_16 RTU/people1 1 1 1 1

Average Developer Talent : sen_dev_leav_48 RTU/people2 2 2 2 2

Average Developer Talent : base_case_96 RTU/people3 3 3 3 3

Average Developer Talent : sen_dev_leav_144 RTU/people4 4 4 4 4

Average Developer Talent : sen_dev_leav_192 RTU/people5 5 5 5 5

Figure 5.80. Average Developer Talent for Different Values of Normal Time for

Developers to Leave

 313

5.4.6. Normal Time to Attract Users

Another set of sensitivity runs was done for different values of normal time to

attract users. The runs where the variable was set to 6, 18, 72 and 108 months are

discussed below. As expected, the growth in the number of users was slower for runs

with higher value of normal time to attract users. (See Figure 5.81.)

Users

20,000

15,000

10,000

5,000

0 5 5 5 5

5

5

5
5

5
5 5

4 4 4 4

4

4

4
4

4
4

4 4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2

2

2

2
2

2
2

2
2 2

1 1
1

1

1

1
1

1
1

1
1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : sen_att_users_6 people1 1 1 1 1 1 1 1 1

Users : sen_att_users_18 people2 2 2 2 2 2 2 2

Users : base_case_36 people3 3 3 3 3 3 3 3 3

Users : sen_att_users_72 people4 4 4 4 4 4 4 4

Users : sen_att_users_108 people5 5 5 5 5 5 5 5

Figure 5.81. Users for Different Values of Normal Time to Attract Users

The number of users was modeled as a critical motivation factor for the

developers to join the community. Consequently, it was expected that the number of

developers would increase considerably faster in cases where the number of users

increased faster. However, the change in the behavior of the number of developers as the

normal time to attract users changed was smaller than expected. (See Figure 5.82.)

 314

Developers

20 people
20 people
20 people
20 people
20 people

0 people
0 people
0 people
0 people
0 people

5

5 5 5

5

5

5 5 5 5 5

4

4 4 4

4

4

4 4 4 4 4

3

3 3 3
3

3

3
3 3 3 3

2

2
2 2

2

2

2
2 2 2 2

1

1
1 1 1

1

1

1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : sen_att_users_6 people1 1 1 1 1 1 1 1

Developers : sen_att_users_18 people2 2 2 2 2 2 2

Developers : base_case_36 people3 3 3 3 3 3 3 3

Developers : sen_att_users_72 people4 4 4 4 4 4 4 4

Developers : sen_att_users_108 people5 5 5 5 5 5 5 5

Figure 5.82. Developers for Different Values of Normal Time to Attract Users

Further analysis revealed that the attractiveness of joining the project due to the

number of users changed considerably for different values of normal time to attract users.

(See Figure 5.83.) However, overall attractiveness of joining the project did not change as

much, except for very low values of normal time to attract users. (See Figure 5.84.) Even

in such cases the difference occurred over a limited period. For example, for the run

where normal time to attract users was set to 6 months, the difference was limited to the

period between months 20 and 40, and it was not large enough to change the behavior of

the number of developers substantially. (See Figure 5.84.) Product functionality growth

was not accelerated, due to the limited acceleration in the growth of the number of

developers. (See Figure 5.85) Normal time to attract users, too, was noted as a candidate

for a future model improvement study, since it caused suspicion about the confidence

level of the model.

 315

Attrractiveness of Product for Developers Due to Users

4 Dmnl
4 Dmnl
4 Dmnl
4 Dmnl
4 Dmnl

0 Dmnl
0 Dmnl
0 Dmnl
0 Dmnl
0 Dmnl

5 5 5 5 5 5
5

5
5

5
5

4 4 4 4 4
4

4
4

4
4

4

3 3 3 3
3

3

3

3

3

3
3

3

2 2 2 2

2

2

2

2

2
2 2 2

1 1 1

1

1

1

1

1
1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Attrractiveness of Product for Developers Due to Users : sen_att_users_6 Dmnl1 1 1

Attrractiveness of Product for Developers Due to Users : sen_att_users_18 Dmnl2 2 2

Attrractiveness of Product for Developers Due to Users : base_case_36 Dmnl3 3

Attrractiveness of Product for Developers Due to Users : sen_att_users_72 Dmnl4 4

Attrractiveness of Product for Developers Due to Users : sen_att_users_108 Dmnl5 5

Figure 5.83. Attractiveness of Product for Developers Due to Users for Different

Values of Normal Time to Attract Users

Overall Attractiveness of Product for Developers

1 Dmnl
1 Dmnl
1 Dmnl
1 Dmnl
1 Dmnl

0 Dmnl
0 Dmnl
0 Dmnl
0 Dmnl
0 Dmnl

5

5
5

5

5
5 5 5 5 5 5

4

4

4

4

4

4 4 4 4 4 4

3

3

3
3

3

3 3 3 3 3 3 3

2
2

2 2

2

2 2 2 2 2 2 2

1 1

1

1

1

1
1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Overall Attractiveness of Product for Developers : sen_att_users_6 Dmnl1 1 1 1

Overall Attractiveness of Product for Developers : sen_att_users_18 Dmnl2 2 2 2

Overall Attractiveness of Product for Developers : base_case_36 Dmnl3 3 3

Overall Attractiveness of Product for Developers : sen_att_users_72 Dmnl4 4 4

Overall Attractiveness of Product for Developers : sen_att_users_108 Dmnl5 5 5

Figure 5.84. Overall Attractiveness of Product for Developers for Different

Values of Normal Time to Attract Users

 316

Product Functionality

600 UF
600 UF
600 UF
600 UF
600 UF

0 UF
0 UF
0 UF
0 UF
0 UF

5

5

5

5

5
5 5 5 5 5 5

4

4

4

4

4

4 4 4 4 4 4

3

3

3

3

3

3 3 3 3 3 3 3

2

2

2

2

2

2 2 2 2 2 2 2

1

1

1

1

1

1
1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_att_users_6 UF1 1 1 1 1 1 1

Product Functionality : sen_att_users_18 UF2 2 2 2 2 2 2

Product Functionality : base_case_36 UF3 3 3 3 3 3 3 3

Product Functionality : sen_att_users_72 UF4 4 4 4 4 4

Product Functionality : sen_att_users_108 UF5 5 5 5 5 5

Figure 5.85. Product Functionality for Different Values of Normal Time to Attract

Users

5.4.7. Refusal Ratio

Refusal ratio was the basis for another set of sensitivity runs. In the base case run

refusal rate was set to 0.1. The sensitivity runs where the refusal rate was set to 0.02,

0.05, 0.3 and 0.8 are discussed below.

Refusal ratio directly affects two things: the number of incoming developers and

the average talent level of those incoming developers. As refusal ratio increases, a

smaller number of developers with a higher average talent level join the community.

Accordingly, higher values of refusal ratio were expected to decrease the number of

developers, and increase the average developer talent. As expected, higher refusal ratios

decreased the number of incoming developers, and consequently the number of

developers. (See Figure 5.86 and Figure 5.87.)

 317

Candidates Selected as New Developers

0.8

0.6

0.4

0.2

0 5 5 5 5 5 5 5 5 5 5 5 5

4

4

4 4
4

4 4 4 4 4 4 4

3

3

3 3
3

3
3 3 3 3 3 3

2

2

2 2 2

2

2 2 2 2 2 2

1

1

1
1 1 1 1

1

1
1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Candidates Selected as New Developers : sen_ref_rat_0-02 people/Month1 1 1

Candidates Selected as New Developers : sen_ref_rat_0-05 people/Month2 2 2

Candidates Selected as New Developers : base_case_0-1 people/Month3 3 3

Candidates Selected as New Developers : sen_ref_rat_0-3 people/Month4 4 4

Candidates Selected as New Developers : sen_ref_rat_0-8 people/Month5 5 5

Figure 5.86. Candidates Selected as New Developers for Different Values of

Refusal Ratio

Developers

20

15

10

5

0

5 5 5 5
5

5

5
5 5 5 5 5

4
4 4 4

4

4

4

4 4 4 4 4

3

3 3 3
3

3

3

3 3 3 3 3

2

2
2 2 2

2

2

2
2 2 2 2 2

1

1
1 1 1 1 1

1

1

1

1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : sen_ref_rat_0-02 people1 1 1 1 1 1 1 1

Developers : sen_ref_rat_0-05 people2 2 2 2 2 2 2

Developers : base_case_0-1 people3 3 3 3 3 3 3 3

Developers : sen_ref_rat_0-3 people4 4 4 4 4 4 4 4

Developers : sen_ref_rat_0-8 people5 5 5 5 5 5 5 5

Figure 5.87. Developers for Different Values of Refusal Ratio

 318

However, when the refusal ratio was set to 0.02, a very low level, the initial

increase in the number of developers was followed by an earlier decrease. This was

attributed to the large decrease in perceived product quality, which itself was a

consequence of code produced by developers with a very low talent level. (See Figure

5.88.) In general, perceived product quality decreased less in runs with higher refusal

ratios, as expected. (See Figure 5.88.) This is attributable to the fact that average

developer talent started at higher levels and increased even higher in runs with higher

refusal ratios. (See Figure 5.89.) Basically, better developers produced better code.

Perceived Product Quality

1

0.75

0.5

0.25

0

5 5 5 5 5 5 5 5 5 5 5 54 4 4 4 4 4 4 4 4 4 4 4
3

3 3 3 3 3 3 3 3 3 3 32

2 2

2 2 2 2 2
2 2 2 2

1

1
1

1
1

1 1 1 1 1
1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_ref_rat_0-02 Dmnl1 1 1 1 1 1

Perceived Product Quality : sen_ref_rat_0-05 Dmnl2 2 2 2 2 2

Perceived Product Quality : base_case_0-1 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_ref_rat_0-3 Dmnl4 4 4 4 4 4

Perceived Product Quality : sen_ref_rat_0-8 Dmnl5 5 5 5 5 5

Figure 5.88. Perceived Product Quality for Different Values of Refusal Ratio

 319

Average Developer Talent

1

0.75

0.5

0.25

0

5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3 3

2
2

2 2 2 2
2

2 2 2 2 2

1

1
1 1 1 1 1 1

1
1

1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : sen_ref_rat_0-02 RTU/people1 1 1 1 1

Average Developer Talent : sen_ref_rat_0-05 RTU/people2 2 2 2 2

Average Developer Talent : base_case_0-1 RTU/people3 3 3 3 3

Average Developer Talent : sen_ref_rat_0-3 RTU/people4 4 4 4 4

Average Developer Talent : sen_ref_rat_0-8 RTU/people5 5 5 5 5

Figure 5.89. Average Developer Talent for Different Values of Refusal Ratio

Higher refusal ratios impede the increase of the number of developers. Since a

smaller number of developers would produce a smaller amount of product functionality,

it was expected that the growth of product functionality would be slower under higher

refusal ratios. However, higher refusal ratios did not always yield slower functionality

growths. (See Figure 5.90.) In fact, the slowest functionality growth among the runs in

the exhibited set took place under a very low refusal ratio level. Although the number of

developers was higher for a longer period of time in that run, a lot of the available

developer time had to be channeled to debugging and coaching activities, instead of

production. On the other hand, increasing the refusal ratio beyond a point yielded slower

functionality growth. (See Figure 5.90.) Since the marginal quality gain by increasing the

refusal ratio became very small in such runs, it was concluded that there should be a

 320

critical value of refusal ratio that would yield an optimal combination of higher quality

and faster functionality growth. This critical value was found to be around 0.3.

Product Functionality

600

450

300

150

0
5

5

5

5

5

5
5 5 5 5 5 5

4

4

4

4

4

4 4 4 4 4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2

2

2
2 2 2 2 2 2

1

1

1

1

1

1

1

1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_ref_rat_0-02 UF1 1 1 1 1 1 1

Product Functionality : sen_ref_rat_0-05 UF2 2 2 2 2 2 2

Product Functionality : base_case_0-1 UF3 3 3 3 3 3 3 3

Product Functionality : sen_ref_rat_0-3 UF4 4 4 4 4 4 4

Product Functionality : sen_ref_rat_0-8 UF5 5 5 5 5 5 5

Figure 5.90. Product Functionality for Different Values of Refusal Ratio

Although the sensitivity runs based on different refusal ratios provided valuable

insights about the model, the range of behaviors observed in these runs was smaller than

expected. It was expected that the community would not be able to sustain itself with the

limited number of developers under very high refusal ratios. However, it was found that

the initial group of seven developers was enough to bring the product functionality above

the critical level before they left the community, even if no new developers were

accepted into the community. This was noted as a point to consider for future model

improvement.

 321

5.4.8. Rejection Ratio

Rejection ratio, too, was used as the basis for a set of sensitivity runs. The base

case value of rejection ratio was 0.2. The sensitivity runs where the rejection ratio was set

to 0.05, 0.1, 0.4 and 0.8 are discussed below.

Rejection ratio determines both the amount and the quality of the code added to

the overall code base by developers. It also affects the level of average developer

participation. A higher rejection ratio yields a smaller amount of code, which is of higher

quality. A higher rejection ratio also yields a lower level of average developer

participation. In the actual sensitivity runs, lower rejection ratios caused the total

production to increase faster at the beginning of the project due to a greater amount of

accepted code by developers, and a higher level of developer participation. (See Figure

5.91 and Figure 5.92.) For refusal ratios below 0.3, the fundamental behavior pattern of

total production stayed the same; however it unfolded faster as the refusal ratio

decreased. In other words, total production increased more slowly, but started to decrease

later due to product functionality saturation, as the refusal ratio increased up to 0.3. The

behavior pattern was different in runs with refusal ratios above 0.3. The initial increase

continued to slow down as refusal ratio increased; however, the decrease started earlier,

rather than later, under higher refusal ratios. The reason for the decrease in those runs

was low functionality achievement, rather than the depletion of opportunities for

contribution due to functionality saturation. This can be observed better in Figure 5.93,

which displays the behaviors of the number of developers under different refusal ratios.

 322

Total Production

4,000

3,000

2,000

1,000

0

5 5

5
5 5 5 5 5 5 5 5 5

4
4 4

4 4 4 4 4 4 4 4 4

3

3
3 3 3

3

3
3 3 3 3 3

2

2
2 2

2

2

2 2 2 2 2 21

1
1 1

1

1

1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Production : sen_rej_rat_0-05 lines/Month1 1 1 1 1 1

Total Production : sen_rej_rat_0-1 lines/Month2 2 2 2 2 2 2

Total Production : base_case_0-2 lines/Month3 3 3 3 3 3 3

Total Production : sen_rej_rat_0-4 lines/Month4 4 4 4 4 4

Total Production : sen_rej_rat_0-8 lines/Month5 5 5 5 5 5

Figure 5.91. Total Product for Different Values of Rejection Ratio

Total Developer Hours Available

600

450

300

150

0

5 5

5
5

5 5 5 5 5 5 5 5

4

4 4 4 4 4 4
4

4

4

4 4

3

3 3 3
3

3

3

3 3 3 3 3

2

2
2 2

2

2

2
2 2 2 2 2

1

1
1 1

1

1

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Total Developer Hours Available : sen_rej_rat_0-05 hours/Month1 1 1 1

Total Developer Hours Available : sen_rej_rat_0-1 hours/Month2 2 2 2 2

Total Developer Hours Available : base_case_0-2 hours/Month3 3 3 3

Total Developer Hours Available : sen_rej_rat_0-4 hours/Month4 4 4 4

Total Developer Hours Available : sen_rej_rat_0-8 hours/Month5 5 5 5

Figure 5.92. Total Developer Hours Available for Different Values of Rejection

Ratio

 323

Developers

20

15

10

5

0

5 5

5

5

5
5 5 5 5 5 5 5

4

4 4 4 4 4 4
4

4

4

4
4

3

3 3 3
3

3

3

3 3 3 3 3

2

2
2 2

2

2

2 2 2 2 2 2 2

1

1
1 1

1

1

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : sen_rej_rat_0-05 people1 1 1 1 1 1 1 1

Developers : sen_rej_rat_0-1 people2 2 2 2 2 2 2

Developers : base_case_0-2 people3 3 3 3 3 3 3 3

Developers : sen_rej_rat_0-4 people4 4 4 4 4 4 4 4

Developers : sen_rej_rat_0-8 people5 5 5 5 5 5 5 5

Figure 5.93. Developers for Different Values of Rejection Ratio

Functionality growth was slower for higher rejection ratios, as expected. (See

Figure 5.94.) Observing the behaviors of the number of users under different rejection

ratios indicated that rejection ratios above a critical value would cause the community to

fail to sustain itself in the long run. (See Figure 5. 95) The critical value was found to lie

between 0.50 and 0.55.

 324

Product Functionality

600

450

300

150

0 5
5

5 5 5 5 5 5 5 5 5 5

4

4

4

4

4

4

4

4
4

4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2

2
2 2 2 2 2 2 2

1

1

1

1

1
1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_rej_rat_0-05 UF1 1 1 1 1 1 1

Product Functionality : sen_rej_rat_0-1 UF2 2 2 2 2 2 2

Product Functionality : base_case_0-2 UF3 3 3 3 3 3 3 3

Product Functionality : sen_rej_rat_0-4 UF4 4 4 4 4 4 4

Product Functionality : sen_rej_rat_0-8 UF5 5 5 5 5 5 5

Figure 5.94. Product Functionality for Different Values of Rejection Ratio

Users

20,000

15,000

10,000

5,000

0 5 5 5 5 5 5 5 5 5 5 54 4 4 4
4

4

4

4
4

4
4

4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2

2

2

2
2

2
2

2
2 2

1 1 1

1

1

1
1

1
1

1
1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : sen_rej_rat_0-05 people1 1 1 1 1 1 1 1 1

Users : sen_rej_rat_0-1 people2 2 2 2 2 2 2 2

Users : base_case_0-2 people3 3 3 3 3 3 3 3

Users : sen_rej_rat_0-4 people4 4 4 4 4 4 4 4

Users : sen_rej_rat_0-8 people5 5 5 5 5 5 5 5 5

Figure 5.95. Users for Different Values of Rejection Ratio

 325

An important finding was that the improvements in perceived product

functionality caused by higher rejection rates were not as large as the improvements by

higher rejection rates. (Compare Figure 5.88 and Figure 5.96) This was noted as an

important implication for policy analysis runs, which followed the sensitivity analysis

phase.

Perceived Product Quality

1

0.75

0.5

0.25

0

5 5 5 5 5 5 5 5 5 5 5 54 4 4 4 4 4 4 4 4 4 4 43

3 3 3 3 3 3 3 3 3 3 32

2 2
2 2 2

2
2 2 2 2 2

1

1 1

1 1 1
1

1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_rej_rat_0-05 Dmnl1 1 1 1 1 1

Perceived Product Quality : sen_rej_rat_0-1 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : base_case_0-2 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_rej_rat_0-4 Dmnl4 4 4 4 4 4

Perceived Product Quality : sen_rej_rat_0-8 Dmnl5 5 5 5 5 5

Figure 5.96. Perceived Product Quality for Different Values of Rejection Ratio

5.4.9. Implications of the Sensitivity Runs

Sensitivity runs provided critical insights about the OSSD model. An important

finding was about variables that determine the amount of functionality added to the

product within a given period of time. These variables, such as average developer

participation and average developer productivity, have critical values below which an

open source software community fails to sustain product functionality and community

 326

growth. The critical value for a given variable can differ from community to community,

but the fact that there are such critical values for these variables would hold for any open

source software community.

Variables that eventually determine the level of perceived product quality also

have critical values. One such variable, which emerged from the sensitivity analysis, was

bug generating rate normal. Above a critical value of bug generating rate normal, the

number of bugs per functionality becomes so overwhelmingly high that the participants

fail to maintain an acceptable level of product quality and consequently the community

dissolves.

The model did not show a wide variety of behaviors under different values of

some variables. For example, running the model for different values of normal time to

attract developers, normal time for developers to leave, and normal time to attract all

users yielded different model behaviors, but the variety of behavior was not very wide.

That finding indicated that the model might be improved by refining the equations

involving these variables. This was noted as a potential future research opportunity.

Sensitivity runs also provided some important implications for the policy runs.

Running the model under different values of refusal ratio and rejection ratio showed that

there are optimal values for these variables that are high enough to improve the product

quality substantially, but still low enough to sustain functionality and community growth.

Increasing refusal ratio and rejection ratio above those values did not yield a considerable

marginal improvement in product quality, but impeded product functionality and

community growth. In fact, the community failed to sustain itself above a certain value of

rejection ratio. The sensitivity analysis did not reveal such a critical value for refusal

 327

ratio, since the highest possible value for refusal ratio could be 1 and even that value did

not fail the community. However, it can be argued that a very high refusal ratio combined

with low average developer participation or average developer productivity value could

fail the community in sustaining itself.

5.5. Policy Runs

Policy runs involve simulating a model under a set of policy settings. Policy

settings apply to parameters that can be determined by the policy or decision makers of

the real system the model represents. Policy runs basically have two purposes. First, they

are used to test whether the model exhibits a plausible variety of behavior under different

policy options. In that sense they are close to sensitivity tests. Second, they are used to

simulate the consequences of different policy options in order to evaluate and compare

them. In this study, policy runs were used both to build confidence in the OSSD model,

and to analyze a set of policy options before they were discussed with interview subjects

in the empirical component of the study.

5.5.1. Higher Barriers to Entry

A set of policy runs was done on the model to see the consequences of different

levels of barriers to entry to the community. The barriers to entry policies were

conceptualized as a combination of different refusal ratios and initial number of

developers, since a higher barrier to entry would mean a higher scrutiny level for

accepting developer into the community. Table 5.1 summarizes the conditions of the

three policy runs along with the base case conditions.

 328

Table 5.1. Barriers to Entry Policy Settings

Run Refusal Ratio Initial Number of
Developers

Base Case 0.10 7

Higher Barriers to Entry 1 0.35 5

Higher Barriers to Entry 2 0.60 3

Higher Barriers to Entry 3 0.80 1

Figure 5.97 shows that the number of developers started at a lower level and

increased less under higher barriers to entry settings.

Developers

20

15

10

5

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2
2

2 2 2 2 2
2

2

2
2 2 2 2 2 2

1

1

1 1 1 1
1

1

1

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : base_case people1 1 1 1 1 1 1 1 1 1 1

Developers : pol_hi_barr_entry_01 people2 2 2 2 2 2 2 2

Developers : pol_hi_barr_entry_02 people3 3 3 3 3 3 3 3 3

Developers : pol_hi_barr_entry_03 people4 4 4 4 4 4 4 4 4

Figure 5.97. Developers under Different Barriers to Entry Policy Settings

Figure 5.98 shows that product functionality growth was slower under higher

barriers to entry settings. In fact, under very high barriers to entry settings the community

 329

failed to achieve a viable level of product functionality and to sustain itself in the long

run. (See Figure 5.98 and Figure 5.99.)

Product Functionality

600

450

300

150

0 4

4
4

4
4 4 4 4 4 4 4 4 4 4 4

3

3

3

3

3
3

3
3

3
3

3
3 3 3 3

2

2

2

2

2

2

2

2
2 2 2 2 2 2 2

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_entry_01 UF2 2 2 2 2 2 2 2

Product Functionality : pol_hi_barr_entry_02 UF3 3 3 3 3 3 3 3

Product Functionality : pol_hi_barr_entry_03 UF4 4 4 4 4 4 4

Figure 5.98. Product Functionality under Different Barriers to Entry Policy

Settings

 330

Users

20,000

15,000

10,000

5,000

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3
3

3

3

3
3

3
3

3 3
3

2 2 2 2
2

2

2

2
2

2
2

2
2 2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_entry_01 people2 2 2 2 2 2 2 2 2

Users : pol_hi_barr_entry_02 people3 3 3 3 3 3 3 3 3 3

Users : pol_hi_barr_entry_03 people4 4 4 4 4 4 4 4 4 4

Figure 5.99. Users under Different Barriers to Entry Policy Settings

It is obvious from these figures that there has to be a trade-off in terms of product

functionality and community growth whenever a higher barriers to entry policy is

implemented to improve quality. The critical question then becomes what level of this

policy would yield the most quality increase per decrease in the pace of functionality and

community growth? Figure 5.100 shows that all three policy settings provided substantial

increases in perceived product quality over the base case conditions. Furthermore, the

differences between the levels of perceived product quality under the three policy settings

were not large. Hence we may conclude that the first policy setting yields the greatest

product quality payoff, while compromising relatively small in terms of functionality and

community growth.

 331

Perceived Product Quality

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 21

1
1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_entry_01 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_barr_entry_02 Dmnl3 3 3 3 3 3

Perceived Product Quality : pol_hi_barr_entry_03 Dmnl4 4 4 4 4 4 4

Figure 5.100. Perceived Product Quality under Different Barriers to Entry Policy

Settings

Furthermore, the first policy setting provided a large increase in average

developer talent. (See Figure 5.101.) While the two higher policy settings provided even

higher developer talent levels, the marginal gains might not be deemed enough to justify

the compromises in functionality and community growth.

 332

Average Developer Talent

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_entry_01 RTU/people2 2 2 2 2

Average Developer Talent : pol_hi_barr_entry_02 RTU/people3 3 3 3 3

Average Developer Talent : pol_hi_barr_entry_03 RTU/people4 4 4 4 4 4

Figure 5.101. Average Developer Talent under Different Barriers to Entry Policy

Settings

The barriers to entry policy option was introduced as the “Selecting New

Inexperienced Authors” policy option to the subjects during the interview done with the

members of the system dynamics K through 12 instructional material development

community. (See Section 6.3.4.)

5.5.2. Higher Barriers to Contribution

“Barriers to contribution” was conceptualized as another important policy option

for improving product quality, while maintaining functionality and community growth.

The barriers to entry policy option was based on applying different rejection ratios to

code produced by developers. Table 5.2 summarizes the conditions of the three policy

runs along with the base case condition.

 333

Table 5.2. Barriers to Contribution Policy Settings

Run Rejection Ratio

Base Case 0.20

Higher Barriers to Contribution 1 0.40

Higher Barriers to Contribution 2 0.50

Higher Barriers to Contribution 3 0.60

The implications of the barriers to entry policy option were similar to the

implications of the sensitivity runs done with different rejection ratios. Basically, higher

barriers to contribution settings improved product quality by ensuring that the better

portions of the code produced by developers were added to the overall code base, while

low quality code was discarded. Hence higher barriers to contributions settings yielded

initially better perceived product quality levels. However, the quality levels tended to

decrease in the later stages of the project. (See Figure 5.102.) This was caused by the

multiple effects of decreased developer participation. As discussed earlier in this chapter,

the OSSD model assumes that developer participation decreases as rejection ratio

increases due to decreased developer motivation. Decreased developer participation

causes fewer developer hours available for debugging, which worsens the quality

problem over time. Also, decreased participation limits developer talent growth,

impeding the potential improvement in product quality.

 334

Perceived Product Quality

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_contr_01 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_barr_contr_02 Dmnl3 3 3 3 3 3

Perceived Product Quality : pol_hi_barr_contr_03 Dmnl4 4 4 4 4 4 4

Figure 5.102. Perceived Product Quality under Different Barriers to Contribution

Policy Settings

Another adverse effect of higher barriers to contribution through decreased

developer participation is the decrease in the level of total production. (See Figure 5.103.)

Product functionality grows more slowly as total production decreases. (See Figure

5.104.)

 335

Total Production

2,000

1,500

1,000

500

0

4
4

4

4

4

4
4 4 4 4 4 4 4 4 4

3
3

3

3

3
3

3 3 3 3 3 3 3 3 3

2

2

2 2
2

2
2 2 2 2 2

2
2

2 2

1

1

1
1 1 1

1

1

1

1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Total Production : base_case lines/Month1 1 1 1 1 1 1 1 1

Total Production : pol_hi_barr_contr_01 lines/Month2 2 2 2 2 2 2 2

Total Production : pol_hi_barr_contr_02 lines/Month3 3 3 3 3 3 3

Total Production : pol_hi_barr_contr_03 lines/Month4 4 4 4 4 4 4

Figure 5.103. Total Production under Different Barriers to Contribution Policy

Settings

Product Functionality

600

450

300

150

0 4
4

4
4

4 4 4 4 4 4 4 4 4 4 4

3
3

3

3
3

3
3

3
3

3
3

3 3
3

3

2

2

2

2

2

2

2
2

2
2

2
2 2 2 2

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_contr_01 UF2 2 2 2 2 2 2 2

Product Functionality : pol_hi_barr_contr_02 UF3 3 3 3 3 3 3 3

Product Functionality : pol_hi_barr_contr_03 UF4 4 4 4 4 4 4

Figure 5.104. Product Functionality under Different Barriers to Contribution

Policy Settings

 336

User community growth follows functionality growth, and thus a slower

functionality growth brings about a slower community growth. (See Figure 5.104.)

Extremely high barriers to contribution may cause the community to fail to reach a viable

product functionality level and to sustain itself in the long run, leading the community to

extinction. Policy setting three, where the rejection rate was set to 0.60 is an example of

such an extreme policy. Under that policy setting user and developer populations fail to

reach sustainable levels (See Figure 5.105 and Figure 5.106.)

Users

20,000

15,000

10,000

5,000

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3
3

3

3
3

3
3

3
3

2 2 2 2 2
2

2

2

2

2
2

2
2

2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_contr_01 people2 2 2 2 2 2 2 2 2

Users : pol_hi_barr_contr_02 people3 3 3 3 3 3 3 3 3 3

Users : pol_hi_barr_contr_03 people4 4 4 4 4 4 4 4 4 4

Figure 5.105. Users under Different Barriers to Contribution Policy Settings

 337

Developers

20

15

10

5

0

4

4
4

4

4

4
4 4 4 4 4 4 4 4 4

3

3 3
3

3
3 3 3 3 3 3 3 3 3 3

2

2
2 2 2 2 2 2 2

2

2

2

2

2
2 2

1

1

1 1 1 1
1

1

1

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : base_case people1 1 1 1 1 1 1 1 1 1 1

Developers : pol_hi_barr_contr_01 people2 2 2 2 2 2 2 2

Developers : pol_hi_barr_contr_02 people3 3 3 3 3 3 3 3 3

Developers : pol_hi_barr_contr_03 people4 4 4 4 4 4 4 4 4

Figure 5.106. Developers under Different Barriers to Contribution Policy Settings

Once again, the fundamental question about the usefulness of this policy option

was whether it provided a large enough quality improvement for a considerably small

trade-off in terms of functionality and community growth. The answer to this question

was not positive. The quality improvements in the policy runs were relatively small

considering the substantial decrease in functionality and community growth rates.

Furthermore, the quality improvement eroded after the initial improvement, thus

rendering the policy totally unfavorable. A smaller, but nevertheless notable consequence

of this policy option, which supported the unfavorable position, was the decreases in the

rate of average developer talent growth due to decreased developer participation. (See

Figure 5.107.)

 338

Average Developer Talent

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 43
3 3 3 3 3 3 3 3 3 3 3 3 3 32

2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_contr_01 RTU/people2 2 2 2 2

Average Developer Talent : pol_hi_barr_contr_02 RTU/people3 3 3 3 3

Average Developer Talent : pol_hi_barr_contr_03 RTU/people4 4 4 4 4 4

Figure 5.107. Average Developer Talent under Different Barriers to Contribution

Policy Settings

Barriers to contribution was introduced as the “Filtering New Material” policy

option to the interview subjects. (See Section 6.3.2.)

5.5.3. Higher Barriers to Entry and Contribution

Comparing the consequences of higher barriers to entry and higher barriers to

contribution policy options revealed that higher barriers to entry option was the better

choice between the two. Another policy run was done in order to test whether a

combination of the two policies would yield better results than only the higher barriers to

entry option. Table 5.3 summarizes the conditions of the two policy runs along with the

base case condition.

 339

Table 5.3. Barriers to Entry and Barriers to Entry and Contribution Policy Settings

Run Refusal Ratio Initial Number of
Developers

Rejection Ratio

Base Case 0.10 7 0.20

Higher Barriers
to Entry 1

0.35 5 0.20

Higher Barriers
to Entry and
Contribution 1

0.30 5 0.30

A comparison of the results of the two policy options revealed that the barriers to

entry option performed better than the combination policy option in all main criteria. The

barriers to entry option yielded a faster production growth (See Figure 5.108), which led

to a faster user community growth (See Figure 5.109). This policy option also yielded a

higher average developer talent (Figure 5.110.) and a better product quality, although the

difference in product quality between the two policy options was very small. (See Figure

5. 111.)

 340

Product Functionality

600

450

300

150

0 3
3

3

3

3

3

3
3

3
3

3
3

3 3 3 3 3 3 3 3

2

2

2

2

2

2

2

2

2
2

2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_entry_01 UF2 2 2 2 2 2 2 2 2 2

Product Functionality : pol_hi_barr_entry_contr_01 UF3 3 3 3 3 3 3 3 3

Figure 5.108. Product Functionality under Barriers to Entry and Combination

Policy Settings

Users

20,000

15,000

10,000

5,000

0
3 3 3 3 3 3

3

3

3

3

3
3

3
3

3
3 3 3 3

2 2 2 2 2 2
2

2

2

2
2

2
2

2 2 2 2 2 2 2

1 1 1 1 1 1

1

1

1

1
1

1
1

1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_entry_01 people2 2 2 2 2 2 2 2 2 2 2 2 2

Users : pol_hi_barr_entry_contr_01 people3 3 3 3 3 3 3 3 3 3 3 3

Figure 5.109. Users under Barriers to Entry and Combination Policy Settings

 341

Average Developer Talent

1

0.75

0.5

0.25

0

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_entry_01 RTU/people2 2 2 2 2 2 2

Average Developer Talent : pol_hi_barr_entry_contr_01 RTU/people3 3 3 3 3 3

Figure 5.110. Average Developer Talent under Barriers to Entry and Combination

Policy Settings

Perceived Product Quality

1

0.95

0.9

0.85

0.8

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1
1 1 1

1

1
1 1

1

1

1

1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_entry_01 Dmnl2 2 2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_barr_entry_contr_01 Dmnl3 3 3 3 3 3 3

Figure 5.111. Perceived Product Quality under Barriers to Entry and Combination

Policy Settings

 342

5.5.4. Higher Debugging Emphasis

Another important policy option applied to the model was higher debugging

emphasis. This option is conceptualized as increases in the relative pressures for bug

detection and bug fixing within the community. As these relative pressures increase, the

same number of known and/or unknown bugs generate relatively higher amounts of

developer and leader time allocated for bug detection and bug fixing activities. Table 5.4

summarizes the conditions of the three policy runs as well as the base case conditions.

Table 5.4. Higher Debugging Emphasis Policy Settings

Run Pressure for Bug
Detection

Pressure for Bug
Fixing

Base Case Base Case Level*1 Base Case Level*1

Higher Debugging Emphasis 1 Base Case Level*5 Base Case Level*5

Higher Debugging Emphasis 2 Base Case Level*8 Base Case Level*8

Higher Debugging Emphasis 3 Base Case Level*10 Base Case Level*10

As expected, higher debugging emphasis yielded higher levels of perceived

product quality. (See Figure 5.112) However, the marginal quality improvement by the

second and third level policy settings did not yield as large a difference as the first policy

setting yielded over the base case conditions. (See Figure 5.113.) This was noted as a

potential limiting factor on the policy level, in case of a large functionality or community

growth trade-off for higher levels of the policy.

 343

Perceived Product Quality

1

0.95

0.9

0.85

0.8

4

4

4
4

4
4

4 4
4 4 4 4 4 4 4

3

3

3

3
3

3
3 3

3
3 3 3 3 3 3

2

2
2

2

2

2
2 2

2
2

2
2 2 2 2

1

1

1

1 1
1

1
1 1

1

1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_debug_emph_01 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_debug_emph_02 Dmnl3 3 3 3 3 3

Perceived Product Quality : pol_hi_debug_emph_03 Dmnl4 4 4 4 4 4

Figure 5.112. Perceived Product Quality under Different Debugging Emphasis

Policy Settings

Perceived Product Quality

1

0.75

0.5

0.25

0

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4

3

3
3 3 3 3 3 3 3 3 3 3 3 3 32

2 2
2 2 2 2 2 2 2 2 2 2 2 21

1
1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_debug_emph_01 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_debug_emph_02 Dmnl3 3 3 3 3 3

Perceived Product Quality : pol_hi_debug_emph_03 Dmnl4 4 4 4 4 4

Figure 5.113. Perceived Product Quality under Different Debugging Emphasis

Policy Settings

 344

Further analysis revealed that substantially higher debugging emphasis did not

necessitate large trade-offs in terms of product functionality and community growth or

developer talent improvement. (See Figure 5.114 through Figure 5.116.) Therefore, it was

concluded that higher levels of debugging emphasis would be favorable until further

increases in the policy level yielded a negligibly small quality improvement.

Product Functionality

600

450

300

150

0 4

4

4

4

4

4

4
4 4 4 4 4 4 4 4

3

3

3

3

3

3

3
3 3 3 3 3 3 3 3

2

2

2

2

2

2

2
2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_debug_emph_01 UF2 2 2 2 2 2 2 2

Product Functionality : pol_hi_debug_emph_02 UF3 3 3 3 3 3 3 3

Product Functionality : pol_hi_debug_emph_03 UF4 4 4 4 4 4 4

Figure 5.114. Product Functionality under Different Debugging Emphasis Policy

Settings

 345

Developers

20

15

10

5

0

4

4
4 4 4 4

4

4

4
4 4 4 4 4 4

3

3
3 3 3 3

3

3

3

3 3 3 3 3 3

2

2
2 2 2 2

2

2

2

2
2 2 2 2 2 2

1

1

1 1 1 1
1

1

1

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : base_case people1 1 1 1 1 1 1 1 1 1 1

Developers : pol_hi_debug_emph_01 people2 2 2 2 2 2 2 2

Developers : pol_hi_debug_emph_02 people3 3 3 3 3 3 3 3

Developers : pol_hi_debug_emph_03 people4 4 4 4 4 4 4 4 4

Figure 5.115. Developers under Different Debugging Emphasis Policy Settings

Average Developer Talent

1

0.75

0.5

0.25

0

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_debug_emph_01 RTU/people2 2 2 2 2

Average Developer Talent : pol_hi_debug_emph_02 RTU/people3 3 3 3 3

Average Developer Talent : pol_hi_debug_emph_03 RTU/people4 4 4 4 4

Figure 5.116. Average Developers Talent under Different Debugging Emphasis

Policy Settings

 346

Higher debugging emphasis option was introduced as the “Reviewing and Editing

Existing Material” policy option to the interview subjects. (See Section 6.3.3.)

5.5.5. Higher Coaching Emphasis

Higher coaching emphasis was another policy option applied to the model. This

option is conceptualized as increased levels of pressure for talent building. As this

pressure increases, the same level of average developer talent generates a relatively

higher amount of developer and leader time allocated for coaching. Table 5.5 summarizes

the conditions of the three policy runs as well as the base case conditions.

Table 5.5. Higher Coaching Emphasis Policy Settings

Run Pressure for Talent Building

Base Case Base Case Level*1

Higher Coaching Emphasis 1 Base Case Level*2

Higher Coaching Emphasis 2 Base Case Level*3

Higher Coaching Emphasis 3 Base Case Level*4

Average developer talent increased faster and reached higher equilibriums for

higher coaching emphasis levels. (See Figure 5.117.) The decrease in the pace of product

functionality growth was not substantial for higher policy settings. (See Figure 5.118.)

 347

Average Developer Talent

1

0.75

0.5

0.25

0

4
4 4 4 4 4

4
4

4
4 4 4 4 4 4

3

3 3 3 3 3 3
3

3
3 3 3 3 3 3

2

2
2 2 2 2 2 2

2
2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_coach_emph_01 RTU/people2 2 2 2 2

Average Developer Talent : pol_hi_coach_emph_02 RTU/people3 3 3 3 3

Average Developer Talent : pol_hi_coach_emph_03 RTU/people4 4 4 4 4

Figure 5.117. Average Developers Talent under Different Coaching Emphasis

Policy Settings

Product Functionality

600

450

300

150

0 4

4

4

4

4

4

4
4 4 4 4 4 4 4 4

3

3

3

3

3

3

3

3
3 3 3 3 3 3 3

2

2

2

2

2

2

2

2
2 2 2 2 2 2 2

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_coach_emph_01 UF2 2 2 2 2 2 2 2

Product Functionality : pol_hi_coach_emph_02 UF3 3 3 3 3 3 3 3

Product Functionality : pol_hi_coach_emph_03 UF4 4 4 4 4 4 4

Figure 5.118. Product Functionality under Different Coaching Emphasis Policy

Settings

 348

However, the improvements in perceived product quality under higher coaching

emphasis policy options were not satisfactory. (See Figure 5.119.)

Perceived Product Quality

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 43
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_coach_emph_01 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_coach_emph_02 Dmnl3 3 3 3 3 3

Perceived Product Quality : pol_hi_coach_emph_03 Dmnl4 4 4 4 4 4

Figure 5.119. Perceived Product Quality under Different Coaching Emphasis

Policy Settings

Further analysis identified the lower levels of pressures for bug detection and bug

fixing as the causes behind the lack of sustained quality improvement under higher

coaching emphasis policy options. Pressures for bug detection and bug fixing remained

considerably lower under higher coaching policy conditions compared to the figures

under the base case conditions. That was due to the initially fewer number of bugs in the

product under higher coaching conditions. (See Figure 5.120 and Figure 5.121.) By the

time debugging came into focus, the developers had left the community, and the lack of

manpower slowed down the quality improvement process. (See Figure 5.122.)

 349

Pressure for Bug Detection

0.2

0.15

0.1

0.05

0

4

4

4
4 4 4 4 4 4 4 4 4 4 4 43

3

3
3 3 3 3 3 3 3 3 3 3 3 3

2

2
2

2

2
2 2 2 2 2 2 2 2 2 2

1

1

1

1 1

1

1
1

1

1

1
1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Pressure for Bug Detection : base_case Dmnl1 1 1 1 1 1 1 1 1

Pressure for Bug Detection : pol_hi_coach_emph_01 Dmnl2 2 2 2 2 2 2

Pressure for Bug Detection : pol_hi_coach_emph_02 Dmnl3 3 3 3 3 3

Pressure for Bug Detection : pol_hi_coach_emph_03 Dmnl4 4 4 4 4 4

Figure 5.120. Pressure for Bug Detection under Different Coaching Emphasis

Policy Settings

Pressure for Bug Fixing

0.2

0.15

0.1

0.05

0
4 4 4 4 4 4 4 4 4 4 4

4

4
4

4

3 3 3 3 3 3 3 3 3 3 3 3

3
3

3

2 2 2 2 2 2 2 2 2
2

2

2
2 2 2

1 1 1 1

1

1

1

1

1 1

1

1

1
1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Pressure for Bug Fixing : base_case Dmnl1 1 1 1 1 1 1 1 1

Pressure for Bug Fixing : pol_hi_coach_emph_01 Dmnl2 2 2 2 2 2 2

Pressure for Bug Fixing : pol_hi_coach_emph_02 Dmnl3 3 3 3 3 3 3

Pressure for Bug Fixing : pol_hi_coach_emph_03 Dmnl4 4 4 4 4 4 4

Figure 5.121. Pressure for Bug Fixing under Different Coaching Emphasis Policy

Settings

 350

Developers

20 people
20 people
20 people
20 people

10 people
10 people
10 people
10 people

0 people
0 people
0 people
0 people

4

4 4 4 4
4

4

4

4
4 4 4 4 4

3

3 3 3 3 3

3

3

3
3 3 3 3 3

2

2
2 2 2 2

2

2

2
2 2 2 2 2

1

1

1 1 1
1

1

1

1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : base_case people1 1 1 1 1 1 1 1 1 1 1

Developers : pol_hi_coach_emph_01 people2 2 2 2 2 2 2 2

Developers : pol_hi_coach_emph_02 people3 3 3 3 3 3 3 3

Developers : pol_hi_coach_emph_03 people4 4 4 4 4 4 4 4 4

Figure 5.122. Developers under Different Coaching Emphasis Policy Settings

The higher coaching emphasis option was introduced as the “Coaching Existing

Inexperienced Authors” policy option to the interview subjects. (See Section 6.3.5.)

5.5.6. Higher Debugging and Coaching Emphases

Another policy option was conceptualized after identifying the lack of debugging

pressures as the main reason behind the unsatisfactory quality improvement under higher

coaching emphasis policy option. The new policy option combined the higher debugging

emphasis and higher coaching emphasis options. Table 5.6 summarizes the policy

settings for the cases that were compared.

 351

Table 5.6. Higher Debugging Emphasis, Higher Coaching Emphasis, and Higher

Debugging and Coaching Emphases Policy Settings

Run Pressure for Bug
Detection

Pressure for Bug
Fixing

Pressure for
Talent Building

Base Case Base Case Level*1 Base Case Level*1 Base Case Level*1

Higher
Debugging
Emphasis 3

Base Case Level*10 Base Case Level*10 Base Case Level*1

Higher Coaching
Emphasis 3

Base Case Level*1 Base Case Level*1 Base Case Level*4

Higher
Debugging and
Coaching
Emphases 1

Base Case Level*10 Base Case Level*10 Base Case Level*4

The combination policy option yielded a higher and more sustained quality

improvement than those yielded by both the higher debugging emphasis and the higher

coaching emphasis options. (See Figure 5.123.) Also, the increase in average developer

talent under the combination policy was much higher than that under the higher

debugging emphasis option, and very close to that under the higher coaching emphasis

option. (See Figure 5.124.) Furthermore, the decrease in the pace of both product

functionality growth and community growth (in terms of developers and users) was very

small under the combination policy option. (See Figures 5.125 through 5.127.)

 352

Perceived Product Quality

1

0.95

0.9

0.85

0.8

4 4

4
4

4
4

4 4 4 4 4 4 4 4 4

3

3

3

3
3 3 3 3 3 3 3 3 3 3 3

2

2

2

2
2

2
2 2

2
2 2 2 2 2 2

1

1

1

1 1
1

1
1 1

1

1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_debug_emph_03 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_coach_emph_03 Dmnl3 3 3 3 3 3

Perceived Product Quality : pol_hi_debug_coach_emph_01 Dmnl4 4 4 4 4

Figure 5.123. Perceived Product Quality under Higher Debugging Emphasis,

Higher Coaching Emphasis, and Combination Policy Settings

Average Developer Talent
1

0.75

0.5

0.25

0

4
4 4 4 4 4

4
4

4
4 4 4 4 4 4

3
3 3 3 3 3

3
3

3
3 3 3 3 3 3

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1
1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_debug_emph_03 RTU/people2 2 2 2 2
Average Developer Talent : pol_hi_coach_emph_03 RTU/people3 3 3 3 3

Average Developer Talent : pol_hi_debug_coach_emph_01 RTU/people4 4 4 4

Figure 5.124. Average Developer Talent under Higher Debugging Emphasis,

Higher Coaching Emphasis, and Combination Policy Settings

 353

Product Functionality
600

450

300

150

0 4

4

4

4

4

4

4

4 4 4 4 4 4 4 4

3

3

3

3

3

3

3

3
3 3 3 3 3 3 3

2

2

2

2

2

2

2

2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_debug_emph_03 UF2 2 2 2 2 2 2 2
Product Functionality : pol_hi_coach_emph_03 UF3 3 3 3 3 3 3 3

Product Functionality : pol_hi_debug_coach_emph_01 UF4 4 4 4 4 4

Figure 5.125. Product Functionality under Higher Debugging Emphasis, Higher

Coaching Emphasis, and Combination Policy Settings

Developers

20

15

10

5

0

4

4 4 4 4 4
4

4

4

4
4 4 4 4 4

3

3
3 3 3 3

3

3

3

3
3 3 3 3 3

2

2
2 2 2 2

2

2

2

2
2 2 2 2 2 2

1

1

1 1 1 1
1

1

1

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : base_case people1 1 1 1 1 1 1 1 1 1 1

Developers : pol_hi_debug_emph_03 people2 2 2 2 2 2 2 2

Developers : pol_hi_coach_emph_03 people3 3 3 3 3 3 3 3

Developers : pol_hi_debug_coach_emph_01 people4 4 4 4 4 4 4 4

Figure 5.126. Developers under Higher Debugging Emphasis, Higher Coaching

Emphasis, and Combination Policy Settings

 354

Users

20,000

15,000

10,000

5,000

0 4 4 4 4
4

4

4

4
4

4
4

4 4 4

3 3 3 3
3

3

3

3
3

3
3

3
3 3 3

2 2 2 2
2

2

2

2
2

2
2

2
2 2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_debug_emph_03 people2 2 2 2 2 2 2 2 2

Users : pol_hi_coach_emph_03 people3 3 3 3 3 3 3 3 3

Users : pol_hi_debug_coach_emph_01 people4 4 4 4 4 4 4 4

Figure 5.127. Users under Higher Debugging Emphasis, Higher Coaching

Emphasis, and Combination Policy Settings

5.5.7. Higher Barriers to Entry, and Higher Debugging and Coaching

Emphases

Higher barriers to entry and a combination of higher debugging and higher

coaching emphases were found to be the two best policy options during the earlier policy

runs. An overall combination policy run combining these two options was also tested on

the model. Table 5.7 summarizes the policy settings for the compared runs.

 355

Table 5.7. Higher Barriers to Entry, Higher Debugging and Coaching Emphases,

and Combination Policy Settings

Run Refusal
Ratio

Initial
Number of
Developers

Pressure
for Bug
Detection

Pressure
for Bug
Fixing

Pressure
for Talent
Building

Base Case 0.10 7 Base Case
Level*1

Base Case
Level*1

Base Case
Level*1

Higher
Barriers to
Entry 1

0.35 5 Base Case
Level*1

Base Case
Level*1

Base Case
Level*1

Higher
Debugging
and
Coaching
Emphases 1

0.10 7 Base Case
Level*10

Base Case
Level*10

Base Case
Level*4

Higher
Barriers to
Entry and
Higher
Debugging
and
Coaching
Emphases 1

0.35 5 Base Case
Level*10

Base Case
Level*10

Base Case
Level*4

The analysis of the model behaviors under these three policy runs demonstrated

that the overall combination policy yielded higher improvements in both perceived

product quality and average developer talent than the two alternatives. (See Figure 5.128

and Figure 5.129.) However, the product functionality growth and community growth

became much slower under the overall combination policy conditions. (See Figures 5.130

through 5.132.)

Another finding of the comparison of these three policy options was that the

specific higher barriers to entry, and higher debugging and coaching emphases policy

 356

settings caused almost the same amount of loss in product functionality and community

growth. However, while higher barriers to entry yielded a faster and larger quality

improvement, higher debugging and coaching emphases yielded a higher average

developer talent in the long run. Furthermore, higher debugging and coaching emphases

achieved the same quality level with higher barriers to entry toward the end of the

simulation horizon of 100 months.

Perceived Product Quality

1

0.95

0.9

0.85

0.8

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3

3

3
3

3
3

3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1 1
1

1
1 1

1

1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_entry_01 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_debug_coach_emph_01 Dmnl3 3 3 3 3

Perceived Product Quality : pol_hi_barr_entry_hi_debug_coach_emph_01 Dmnl4 4 4

Figure 5.128. Perceived Product Quality under Higher Barriers to Entry, Higher

Debugging and Coaching Emphases, and Overall Combination Policy Settings

 357

Average Developer Talent

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3
3 3 3 3 3

3
3

3
3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_entry_01 RTU/people2 2 2 2 2

Average Developer Talent : pol_hi_debug_coach_emph_01 RTU/people3 3 3 3

Average Developer Talent : pol_hi_barr_entry_hi_debug_coach_emph_01 RTU/people4 4

Figure 5.129. Average Developer Talent under Higher Barriers to Entry, Higher

Debugging and Coaching Emphases, and Overall Combination Policy Settings

Product Functionality

600

450

300

150

0 4

4

4

4

4

4

4

4

4
4 4 4 4 4 4

3

3

3

3

3

3

3

3
3 3 3 3 3 3 3

2

2

2

2

2

2

2

2
2 2 2 2 2 2 2

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_entry_01 UF2 2 2 2 2 2 2 2

Product Functionality : pol_hi_debug_coach_emph_01 UF3 3 3 3 3 3 3

Product Functionality : pol_hi_barr_entry_hi_debug_coach_emph_01 UF4 4 4 4

Figure 5.130. Product Functionality under Higher Barriers to Entry, Higher

Debugging and Coaching Emphases, and Overall Combination Policy Settings

 358

Users

20,000

15,000

10,000

5,000

0 4 4 4 4 4

4

4

4

4
4

4
4

4 4

3 3 3 3
3

3

3

3
3

3
3

3 3 3 3

2 2 2 2
2

2

2

2
2

2
2

2
2 2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_entry_01 people2 2 2 2 2 2 2 2 2

Users : pol_hi_debug_coach_emph_01 people3 3 3 3 3 3 3 3

Users : pol_hi_barr_entry_hi_debug_coach_emph_01 people4 4 4 4 4 4

Figure 5.131. Users under Higher Barriers to Entry, Higher Debugging and

Coaching Emphases, and Overall Combination Policy Settings

Developers

20

15

10

5

0

4
4 4 4 4 4 4 4

4

4

4
4 4 4 4

3

3
3 3 3 3

3

3

3

3
3 3 3 3 3

2
2

2 2 2 2 2
2

2

2
2 2 2 2 2 2

1

1

1 1 1 1
1

1

1

1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Developers : base_case people1 1 1 1 1 1 1 1 1 1 1

Developers : pol_hi_barr_entry_01 people2 2 2 2 2 2 2 2

Developers : pol_hi_debug_coach_emph_01 people3 3 3 3 3 3 3

Developers : pol_hi_barr_entry_hi_debug_coach_emph_01 people4 4 4 4 4

Figure 5.132. Developers under Higher Barriers to Entry, Higher Debugging and

Coaching Emphases, and Overall Combination Policy Settings

 359

5.5.8. Higher Barriers to Contribution and Higher Debugging Emphasis

During one of the interviews done with the members of the system dynamics K

through 12 community, the interviewee argued that a combination of the higher barriers

to contribution and the higher debugging emphasis options would be the most beneficial

policy. This combination policy option, which was not in the original policy run set, was

then performed on the OSSD model. (See Section 6.3.6 for an analysis of policy

comparisons by the interviewees.) Table 5.8 summarizes the policy settings for the

compared runs.

Table 5.8. Higher Barriers to Contribution and Higher Debugging Emphasis

Policy Settings

Run Rejection
Ratio

Pressure for Bug
Detection

Pressure for Bug
Fixing

Base Case 0.20 Base Case Level*1 Base Case Level*1

Higher Barriers to
Contribution 1

0.40 Base Case Level*1 Base Case Level*1

Higher Debugging
Emphasis 1

0.20 Base Case Level*10 Base Case Level*10

Higher Barriers to
Contribution and
Higher Debugging
Emphasis 1

0.40 Base Case Level*10 Base Case Level*10

The combination of higher barriers to contribution and higher debugging

emphasis yielded a faster product quality improvement than both of the pure policy

options. (See Figure 5.133.) Higher debugging emphasis caught the combination policy

in terms of product quality improvement by month 75, or in other words, by the three

quarters of the simulation horizon.

 360

On the other hand, the combination policy yielded the slowest product

functionality growth among the three policy options. (See Figure 5.134) While the

difference between the behaviors of product functionality under the combination policy

and the pure barriers to contribution policy was not too large, the combination policy

performed much worse than the pure higher debugging emphasis option in terms of

product functionality. Community growth under the combination policy was also much

slower than that under the pure higher debugging emphasis option. (See Figure 5.135.)

The combination policy option yielded a much slower average developer talent growth

than that under the pure higher debugging emphasis option, as well. (See Figure 5.136.)

However, the behaviors of average developer talent under the combination and the pure

higher barriers to contribution options were not too different.

The overall comparison of the three policy runs revealed that a pure higher

debugging emphasis policy would yield better overall results than a combination of

higher debugging emphasis and higher barriers to entry. On the other hand, the

combination policy might be more favorable than a pure higher barriers to contribution

policy, since it yields a substantially faster product quality improvement with relatively

small marginal losses in functionality and community growth on top of the losses caused

by the pure higher barriers to contribution option.

 361

Perceived Product Quality

1

0.95

0.9

0.85

0.8

4

4
4 4 4

4
4

4 4 4 4 4 4 4 4

3

3

3

3
3

3
3 3

3
3

3
3 3 3 3

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1 1
1

1
1 1

1

1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case Dmnl1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_contr_01 Dmnl2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_debug_emph_01 Dmnl3 3 3 3 3 3

Perceived Product Quality : pol_hi_barr_contr_hi_debug_emph_01 Dmnl4 4 4 4

Figure 5.133. Perceived Product Quality under Higher Barriers to Contribution,

Higher Debugging Emphasis, and Combination Policy Settings

Product Functionality

600

450

300

150

0 4

4

4

4

4
4

4
4

4
4

4
4

4 4 4

3

3

3

3

3

3

3
3 3 3 3 3 3 3 3

2

2

2

2

2

2

2
2

2
2

2
2 2 2 2

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_contr_01 UF2 2 2 2 2 2 2 2

Product Functionality : pol_hi_debug_emph_01 UF3 3 3 3 3 3 3 3

Product Functionality : pol_hi_barr_contr_hi_debug_emph_01 UF4 4 4 4 4

Figure 5.134. Product Functionality under Higher Barriers to Contribution, Higher

Debugging Emphasis, and Combination Policy Settings

 362

Users

20,000

15,000

10,000

5,000

0 4 4 4 4 4
4

4

4

4
4

4
4

4
4

3 3 3 3

3

3

3
3

3
3

3
3

3 3 3

2 2 2 2 2
2

2

2

2

2
2

2
2

2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_contr_01 people2 2 2 2 2 2 2 2 2

Users : pol_hi_debug_emph_01 people3 3 3 3 3 3 3 3 3

Users : pol_hi_barr_contr_hi_debug_emph_01 people4 4 4 4 4 4 4

Figure 5.135. Users under Higher Barriers to Contribution, Higher Debugging

Emphasis, and Combination Policy Settings

Average Developer Talent

1

0.75

0.5

0.25

0

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_contr_01 RTU/people2 2 2 2 2

Average Developer Talent : pol_hi_debug_emph_01 RTU/people3 3 3 3 3

Average Developer Talent : pol_hi_barr_contr_hi_debug_emph_01 RTU/people4 4 4

Figure 5.136. Average Developer Talent under Higher Barriers to Contribution,

Higher Debugging Emphasis, and Combination Policy Settings

 363

5.5.9. Implications of the Policy Runs

The policy runs demonstrated that the OSSD model has the potential to replicate a

variety of behaviors within expected limits under different policy conditions. In that

sense, the policy runs helped build confidence in the model, from both internal validity

and usefulness perspectives.

The policy runs also provided insight about the effectiveness of different policy

options under the existing structure and parameters of the OSSD model. As a general

finding, the policy runs showed that any quality improvement policy has the potential of

slowing product functionality and community growth beyond a certain level.

Furthermore, the marginal quality improvement may decrease substantially as the policy

level increases. These two findings together imply smaller quality gains at expense of

larger functionality losses as the policy level increases.

Specifically, the two pure-policy runs focusing on barriers to entry and barriers to

contribution showed that any quality increase that is gained through these policy options

would come at the expense of functionality growth. Furthermore, while the quality gains

for relatively lower levels of these policy options are substantial and thus justify the

functionality and community growth losses, marginal quality gains for higher policy

levels are very small.

The barriers to contribution runs showed that there is a critical level for that

policy, where the functionality loss becomes so substantial that the community fails to

sustain itself in the long run. Although the barriers to entry runs did not show such a

critical level, higher levels of that policy combined with conditions such as low developer

 364

participation, or low productivity may also cause large functionality loses which would

fail the community in the long run.

The comparison of the pure-policy options showed that the barriers to entry policy

yielded higher and more sustained quality gains for lower functionality loses than the

barriers to contribution option. A comparison of the pure barriers to entry policy with a

combined barriers to entry and contribution policy showed that the pure barriers to entry

policy performed better both in terms of quality gain and functionality loss. However, it

should be pointed out that the performances of these three policy options were not

dramatically different, and barriers to contribution policy appeared to be an acceptable

policy for communities that cannot implement other quality improvement policies for a

variety of reasons.

Policy runs under higher debugging emphasis yielded substantial quality

improvements with very small losses in product functionality, developer talent and

community growth. Although very high levels of this policy option did not impede

community growth substantially, marginal improvements by higher levels became very

small beyond a point.

Another set of policy runs under higher coaching emphasis conditions provided

substantial improvements in average developer talent. However, these runs did not yield

the expected levels of product quality improvement, and the limited improvements were

not sustained throughout the runs. The cause for limited quality improvement under

higher coaching emphasis was found to be a lack of debugging emphasis that would

couple the increase in coaching emphasis. It was as if the large improvements in

 365

developer talent achieved in these runs were not being put to use due to low debugging

emphasis.

Based on the finding that higher debugging and higher coaching emphases

improve the system in different ways, a combination of these two policy options was also

put to the test with the expectation that substantial improvements would be achieved both

in product quality and average developer talent. As expected, the combination policy

option provided better overall results than both pure policy options. It yielded a quality

improvement higher than that under the higher debugging emphasis option, and a

developer talent improvement almost as high as that under the higher coaching emphasis

option. Furthermore, the losses in product functionality and community growths were not

critically different than those under the two pure policy options. Thus, the combination

policy proved to be a better choice than the two pure policy options.

Another set of policy runs was performed under an overall combination of the two

best policy options of the earlier runs: higher barriers to entry, and higher debugging and

coaching emphases. The product quality and developer talent improvements under the

overall combination policy were higher than those under the two alternative options.

However, the product functionality and community growth losses were also greater under

the combination policy conditions. Furthermore, comparing the pure higher barriers to

entry option with the combined higher debugging and coaching emphases option revealed

that the first option yielded a faster and larger quality improvement, while the second

yielded a higher average developer talent in the long run.

The final policy run combining higher barriers to contribution and higher

debugging emphasis policies yielded a very fast product quality improvement, but caused

 366

the product functionality and community growths slow down substantially. The

combination policy option was found to be more favorable than the pure higher barriers

to contribution option, since it yielded a much faster and larger product quality

improvement in expense of a relatively small additional loss in product functionality and

community growth. However, the overall performance of the combination policy was not

better than that of the pure higher debugging emphasis policy, since the marginal

improvement in product quality was not high enough to justify the marginal loss in

product functionality and community growth.

These findings clearly showed that an open source software community has to

consider the trade-off between building functionality and improving quality while

developing policies. Based on these findings, this study defines the underlying policy

problem in an open source software development community as the tension between

building product functionality and improving product quality while sustaining

community growth. Furthermore, there are several ways to achieve quality improvement,

including policies such as setting barriers to entry or contribution, putting more emphasis

on debugging or coaching, or a combination of these and other policies.

5.6. Analysis of Bifurcation Behavior

An important observation during the sensitivity and policy runs was the existence

of behavioral bifurcation points that separated successful and unsuccessful cases under

different parametric conditions. For example, when average developer participation was

set to values below a certain point, the community could not sustain itself in the long run.

The same behavior was observed for values of average developer productivity below a

certain point. (See Section 5.4.1 and Section 5.4.2.) Also, policy runs such as those for

 367

higher barriers to contribution indicated the existence of bifurcation points for some

policy options. (See Section 5.5.2.) These observations indicated an underlying cause that

drives the community to failure under a set of parametric conditions.

An analysis of the model structure revealed that the cause behind the bifurcation

behavior is the patience factor. As discussed in Section 4.3, the OSSD model assumes a

general level of patience that determines the expectations of the users and the developers

related to product functionality. Patience runs out as time passes, and thus the expectation

about the functionality of the product increases. When the real functionality achievement

is below the expected level, the attractiveness of the community for both users and

developers decreases. On the other hand, a functionality achievement above the expected

level attracts users and developers more.

As a starting point, a set of sensitivity runs was done with different values of

normal time to lose patience -- the rate with which patience diminishes. The results

reveled that the model is sensitive to changes in the value of this variable, especially if

the value is below 25 months. A decreased normal time to lose patience causes the

expectations about product functionality to increase faster (See Figure 5.137.) When the

achieved level of functionality cannot match the fast increase in expectations, a large

number of developers lose their motivations and leave the community. (See Figure

5.138.) This further decreases the community’s ability to achieve a functionality level

that can match the expectations. As a consequence, product functionality stagnates, and

this decreases the number of new users, slowing down community growth. (See Figure

5.139 and Figure 5.140.) For values of normal time to lose patience that are below a

certain level community fails to sustain product functionality and community growth, and

 368

disintegrates. Further analysis indicated that the critical value is between 12 and 13

months. Perceived product quality and average developer talent were also lower for lower

values of normal time to lose patience. (See Figure 5.141 and Figure 5.142.)

Expected Funtionality Ratio

1

0.75

0.5

0.25

0 5
5

5

5

5

5

5

5

5
5

5
5

4

4

4

4

4

4

4
4

4 4 4 4

3

3

3

3

3
3 3 3 3 3 3 3

2

2

2

2
2 2 2 2 2 2 2 2

1

1
1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Expected Funtionality Ratio : sen_time_lose_pat_5 Dmnl1 1 1 1 1 1

Expected Funtionality Ratio : sen_time_lose_pat_15 Dmnl2 2 2 2 2 2

Expected Funtionality Ratio : base_case_25 Dmnl3 3 3 3 3 3

Expected Funtionality Ratio : sen_time_lose_pat_45 Dmnl4 4 4 4 4

Expected Funtionality Ratio : sen_time_lose_pat_75 Dmnl5 5 5 5 5

Figure 5.137. Expected Product Functionality Ratio for Different Values of

Normal Time to Lose Patience

 369

Developers

20

15

10

5

0

5

5
5 5

5

5

5
5 5 5 5 5

4

4
4 4

4

4

4
4 4 4 4 4

3

3 3 3
3

3

3

3 3 3 3 3

2

2

2
2 2 2 2 2 2 2 2 2

2

1

1

1
1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : sen_time_lose_pat_5 people1 1 1 1 1 1 1 1

Developers : sen_time_lose_pat_15 people2 2 2 2 2 2 2

Developers : base_case_25 people3 3 3 3 3 3 3 3

Developers : sen_time_lose_pat_45 people4 4 4 4 4 4 4

Developers : sen_time_lose_pat_75 people5 5 5 5 5 5 5

Figure 5.138. Developers for Different Values of Normal Time to Lose Patience

Product Functionality

600

450

300

150

0
5

5

5

5

5
5 5 5 5 5 5 5

4

4

4

4

4

4 4 4 4 4 4 4

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2
2

2
2

2
2

2
2

2

1

1
1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_time_lose_pat_5 UF1 1 1 1 1 1

Product Functionality : sen_time_lose_pat_15 UF2 2 2 2 2 2

Product Functionality : base_case_25 UF3 3 3 3 3 3 3 3

Product Functionality : sen_time_lose_pat_45 UF4 4 4 4 4 4

Product Functionality : sen_time_lose_pat_75 UF5 5 5 5 5 5

Figure 5.139. Product Functionality for Different Values of Normal Time to Lose

Patience

 370

Users

20,000

15,000

10,000

5,000

0 5 5 5

5

5

5
5

5
5

5 5

4 4 4

4

4

4
4

4
4

4
4 4

3 3 3
3

3

3
3

3
3

3 3
3

2 2 2 2
2

2

2

2

2
2

2
2

1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Users : sen_time_lose_pat_5 people1 1 1 1 1 1 1 1

Users : sen_time_lose_pat_15 people2 2 2 2 2 2 2

Users : base_case_25 people3 3 3 3 3 3 3 3 3

Users : sen_time_lose_pat_45 people4 4 4 4 4 4 4 4

Users : sen_time_lose_pat_75 people5 5 5 5 5 5 5 5

Figure 5.140. Users for Different Values of Normal Time to Lose Patience

Perceived Product Quality

1

0.75

0.5

0.25

0

5
5 5 5 5 5 5 5 5 5 5 54

4 4 4 4 4 4
4 4 4 4 43

3 3 3 3 3 3 3 3 3 3 3
2

2
2

2 2
2 2 2 2 2 2 2

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : sen_time_lose_pat_5 Dmnl1 1 1 1 1 1

Perceived Product Quality : sen_time_lose_pat_15 Dmnl2 2 2 2 2 2

Perceived Product Quality : base_case_25 Dmnl3 3 3 3 3 3

Perceived Product Quality : sen_time_lose_pat_45 Dmnl4 4 4 4 4

Perceived Product Quality : sen_time_lose_pat_75 Dmnl5 5 5 5 5

Figure 5.141. Perceived Product Quality for Different Values of Normal Time to

Lose Patience

 371

Average Developer Talent

1

0.75

0.5

0.25

0

5
5 5 5 5 5 5 5 5 5 5 5

4
4 4 4 4 4

4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : sen_time_lose_pat_5 RTU/people1 1 1 1 1

Average Developer Talent : sen_time_lose_pat_15 RTU/people2 2 2 2 2

Average Developer Talent : base_case_25 RTU/people3 3 3 3 3

Average Developer Talent : sen_time_lose_pat_45 RTU/people4 4 4 4

Average Developer Talent : sen_time_lose_pat_75 RTU/people5 5 5 5

Figure 5.142. Average Developer Talent for Different Values of Normal Time to

Lose Patience

These results revealed that the bifurcation is caused fundamentally by the

discrepancy between the expectations about functionality growth and the actual growth in

functionality. If functionality growth cannot measure up to expectations due to low

participation, low productivity or a similar factor, or if the expectations grow far faster

than the actual functionality growth the community fails to sustain itself and

disintegrates.

Several additional sensitivity and policy runs were made to analyze the

importance of the patience factor within the overall model structure, and its effects on

model behavior under different parametric conditions and policy settings. These runs

revealed that the patience factor is indeed an important determinant of model behavior,

and that it has a large effect on the outcomes of policy options.

 372

As a starting point the base case was run under the condition of infinite patience.

For this run, normal time to lose patience was set to a very high number, which kept the

patience level constant throughout the run. There behaviors of product functionality and

the number of users were almost indentical to their behaviors in the original base case

run. (See Figure 5.143 and Figure 5.144.)

Product Functionality

600

450

300

150

0 2

2

2

2

2

2

2

2

2
2 2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case UF1 1 1 1 1 1 1 1 1 1 1 1

Product Functionality : base_case_inf_pat UF2 2 2 2 2 2 2 2 2 2 2

Figure 5.143. Product Functionality under Base Case Conditions and under

Infinite Patience Assumption

 373

Users

20,000

15,000

10,000

5,000

0 2 2 2 2 2
2

2

2

2
2

2
2

2
2 2 2 2 2 2 2

1 1 1 1 1 1

1

1

1

1
1

1
1

1
1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case people1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Users : base_case_inf_pat people2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 5.144. Users under Base Case Conditions and under Infinite Patience

Assumption

The behavior of the number of developers was slightly different than its behavior

in the original base case run. (See Figure 5.145.) This is attributable to the change in the

behavior of attractiveness of product for developers due to achieved functionality, which,

in turn, was caused by the change in the behavior of operative functionality versus

expected functionality. (See Figure 5.146 and Figure 5.147.)

 374

Developers

20

15

10

5

0

2

2

2
2 2 2 2

2

2

2

2

2
2 2 2 2 2 2 2 2 2

1

1

1
1 1 1 1 1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Developers : base_case people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Developers : base_case_inf_pat people2 2 2 2 2 2 2 2 2 2 2 2

Figure 5.145. Developers under Base Case Conditions and under Infinite Patience

Assumption

Attrractiveness of Product for Developers Due to Achieved Functionality

1

0.85

0.7

0.55

0.4

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Attrractiveness of Product for Developers Due to Achieved Functionality : base_case Dmnl1 1

Attrractiveness of Product for Developers Due to Achieved Functionality : base_case_inf_pat Dmnl2

Figure 5.146. Attractiveness of Product for Developers Due to Achieved

Functionality under Base Case Conditions and under Infinite Patience Assumption

 375

Operative/Expected Functionality Ratio

1.5

1.25

1

0.75

0.5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1
1

1
1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

"Operative/Expected Functionality Ratio" : base_case Dmnl1 1 1 1 1 1 1 1

"Operative/Expected Functionality Ratio" : base_case_inf_pat Dmnl2 2 2 2 2 2 2

Figure 5.147. Operative/Expected Functionality Ratio under Base Case

Conditions and under Infinite Patience Assumption

A number of the runs involved the replication of the sensitivity runs that indicated

bifurcation points. One group of such runs was done for different values of average

developer participation. The sensitivity runs under the original diminishing patience

assumption of the model indicated that there is a bifurcation point somewhere between 10

to 11 hours per month average developer participation. (See Section 5.4.1.)

Consequently, the original sensitivity runs with values of average developer participation

below 11 hours/month portrayed behaviors where the community failed to sustain itself

and disintegrated. On the other hand, the sensitivity runs for different values of average

developer participation under the “infinite patience” assumption rendered a completely

different picture. As Figure 5.148 shows, product functionality grew and approached the

limit on product functionality for even very low values of average developer

 376

participation. Product functionality grew considerably slower for lower values of average

developer participation, but the community was able to sustain the functionality growth.

Product Functionality

600

450

300

150

0 4

4

4

4

4

4

4 4 4 4 4 4 4 4 4

3
3

3
3

3
3

3
3

3
3

3
3

3 3 3

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_dev_part_1_inf_pat UF1 1 1 1 1 1 1

Product Functionality : sen_dev_part_5_inf_pat UF2 2 2 2 2 2 2 2

Product Functionality : sen_dev_part_10_inf_pat UF3 3 3 3 3 3 3 3

Product Functionality : base_case_30_inf_pat UF4 4 4 4 4 4 4

Figure 5.148. Product Functionality for Different Values of Average Developer

Participation under Infinite Patience Assumption

Community growth could also be sustained for even extremely low values of

average developer participation. Figure 5.149 shows that although the number of users

grew slower for lower values of average developer participation, the growth could be

sustained in all of the runs.

 377

Users

20,000

15,000

10,000

5,000

0 4 4 4 4

4

4

4
4

4
4

4
4 4 4

3 3 3 3 3 3
3

3

3

3

3
3

3
3

3

2 2 2 2 2 2 2 2
2

2

2

2

2

2
2

1 1 1 1 1 1 1
1

1

1

1

1

1
1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : sen_dev_part_1_inf_pat people1 1 1 1 1 1 1 1 1 1

Users : sen_dev_part_5_inf_pat people2 2 2 2 2 2 2 2 2

Users : sen_dev_part_10_inf_pat people3 3 3 3 3 3 3 3 3

Users : base_case_30_inf_pat people4 4 4 4 4 4 4 4 4 4

Figure 5.149. Users for Different Values of Average Developer Participation

under Infinite Patience Assumption

Average developer productivity was another variable, the lower values of which

led the community to fail in the original sensitivity runs. The bifurcation point for this

variable was somewhere between 1.6 and 1.7 lines/hour. (See Section 5.4.2.) Under the

infinite patience assumption, no bifurcation was observed for this variable, as well.

Figure 5.150 and Figure 5.151 show that product functionality and community growth

could be sustained for even very low values of average developer productivity. Again,

product functionality and community growth were slower for lower values of average

developer productivity, as expected.

 378

Product Functionality

600

450

300

150

0 4

4

4

4

4

4

4 4 4 4 4 4 4 4 4

3

3

3

3

3

3

3

3

3
3 3 3 3 3 3

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : sen_dev_prod_0-2_inf_pat UF1 1 1 1 1 1 1

Product Functionality : sen_dev_prod_1_inf_pat UF2 2 2 2 2 2 2

Product Functionality : sen_dev_prod_2-5_inf_pat UF3 3 3 3 3 3 3

Product Functionality : base_case_5_inf_pat UF4 4 4 4 4 4 4 4

Figure 5.150. Product Functionality for Different Values of Average Developer

Productivity under Infinite Patience Assumption

Users

20,000

15,000

10,000

5,000

0 4 4 4 4

4

4

4
4

4
4

4
4 4 4

3 3 3 3 3
3

3

3

3
3

3
3

3 3 3

2 2 2 2 2 2 2
2

2

2

2

2
2

2
2

1 1 1 1 1 1 1 1 1
1

1
1

1

1

1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : sen_dev_prod_0-2_inf_pat people1 1 1 1 1 1 1 1 1

Users : sen_dev_prod_1_inf_pat people2 2 2 2 2 2 2 2 2

Users : sen_dev_prod_2-5_inf_pat people3 3 3 3 3 3 3 3 3

Users : base_case_5_inf_pat people4 4 4 4 4 4 4 4 4 4

Figure 5.151. Users for Different Values of Average Developer Productivity

under Infinite Patience Assumption

 379

Some of the policy runs were replicated under the infinite patience assumption, as

well. One such policy runs was higher barriers to entry. In the original set of policy runs,

the community failed to sustain its growth under very high level of he barriers to entry

option. (See Section 5.5.1.) However, under the infinite patience assumption, product

functionality and community growth could be sustained even for very high levels of the

barriers to entry option. (See Figure 5.152 and Figure 5.153.) The behaviors of perceived

product quality and average developer talent were not different than those in the original

set of higher barriers to entry policy runs. (See Figure 5.154 and Figure 5.155.)

Product Functionality

600

450

300

150

0 4

4
4

4

4
4

4
4

4
4

4
4

4 4 4

3

3

3

3

3

3

3

3

3
3 3 3 3 3 3

2

2

2

2

2

2

2

2
2 2 2 2 2 2 2

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case_inf_pat UF1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_entry_01_inf_pat UF2 2 2 2 2 2 2

Product Functionality : pol_hi_barr_entry_02_inf_pat UF3 3 3 3 3 3 3

Product Functionality : pol_hi_barr_entry_03_inf_pat UF4 4 4 4 4 4

Figure 5.152. Product Functionality for Different Barriers to Entry Policy Settings

under Infinite Patience Assumption

 380

Users

20,000

15,000

10,000

5,000

0 4 4 4 4 4 4

4

4

4

4
4

4
4

4

3 3 3 3 3
3

3

3

3
3

3
3

3
3 3

2 2 2 2
2

2

2

2
2

2
2

2
2 2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case_inf_pat people1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_entry_01_inf_pat people2 2 2 2 2 2 2 2

Users : pol_hi_barr_entry_02_inf_pat people3 3 3 3 3 3 3 3

Users : pol_hi_barr_entry_03_inf_pat people4 4 4 4 4 4 4 4 4

Figure 5.153. Users for Different Barriers to Entry Policy Settings under Infinite

Patience Assumption

Perceived Product Quality

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 21

1
1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case_inf_pat Dmnl1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_entry_01_inf_pat Dmnl2 2 2 2 2 2

Perceived Product Quality : pol_hi_barr_entry_02_inf_pat Dmnl3 3 3 3 3

Perceived Product Quality : pol_hi_barr_entry_03_inf_pat Dmnl4 4 4 4 4

Figure 5.154. Perceived Product Quality for Different Barriers to Entry Policy

Settings under Infinite Patience Assumption

 381

Average Developer Talent

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case_inf_pat RTU/people1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_entry_01_inf_pat RTU/people2 2 2 2

Average Developer Talent : pol_hi_barr_entry_02_inf_pat RTU/people3 3 3 3

Average Developer Talent : pol_hi_barr_entry_03_inf_pat RTU/people4 4 4 4

Figure 5.155. Average Developer Talent for Different Barriers to Entry Policy

Settings under Infinite Patience Assumption

Higher barriers to contribution option was another policy, very high levels of

which caused the community to fail to sustain itself in the long run under the original

diminishing patience assumption. (See Section 5.5.2.) Higher barriers to contribution

policy did not cause such a failure under the infinite patience assumption. Even for the

highest setting of this policy option the community could sustain product functionality

and community growth. (See Figure 5.156 and Figure 5.157.) The behavior of perceived

product quality was not critically different than that in the original set of higher barriers

to contribution policy runs. (See Figure 5.158.) Average developer talent was higher for

the same level of higher barriers to contribution under the infinite patience assumption

than its level under the original assumption, due to the decreased number of leaving

developers under the infinite patience assumption. A smaller number of leaving

 382

developers decreases the talent loss, and thus yields a higher average developer talent.

(See Figure 5.159.)

Product Functionality

600

450

300

150

0 4
4

4
4

4
4

4
4

4
4

4
4

4
4 4

3
3

3

3

3

3

3

3

3

3
3

3 3 3 3

2

2

2

2

2

2

2

2

2
2 2 2 2 2 2

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case_inf_pat UF1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_contr_01_inf_pat UF2 2 2 2 2 2 2

Product Functionality : pol_hi_barr_contr_02_inf_pat UF3 3 3 3 3 3 3

Product Functionality : pol_hi_barr_contr_03_inf_pat UF4 4 4 4 4 4

Figure 5.156. Product Functionality for Different Barriers to Contribution Policy

Settings under Infinite Patience Assumption

 383

Users

20,000

15,000

10,000

5,000

0 4 4 4 4 4 4
4

4

4

4

4
4

4
4

3 3 3 3 3 3
3

3

3

3
3

3
3

3
3

2 2 2 2 2
2

2

2

2
2

2
2

2
2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case_inf_pat people1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_contr_01_inf_pat people2 2 2 2 2 2 2 2

Users : pol_hi_barr_contr_02_inf_pat people3 3 3 3 3 3 3 3

Users : pol_hi_barr_contr_03_inf_pat people4 4 4 4 4 4 4 4 4

Figure 5.157. Users for Different Barriers to Contribution Policy Settings under

Infinite Patience Assumption

Perceived Product Quality

1

0.75

0.5

0.25

0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1

1
1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case_inf_pat Dmnl1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_contr_01_inf_pat Dmnl2 2 2 2 2 2

Perceived Product Quality : pol_hi_barr_contr_02_inf_pat Dmnl3 3 3 3 3

Perceived Product Quality : pol_hi_barr_contr_03_inf_pat Dmnl4 4 4 4 4

Figure 5.158. Perceived Product Quality for Different Barriers to Contribution

Policy Settings under Infinite Patience Assumption

 384

Average Developer Talent

1

0.75

0.5

0.25

0

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case_inf_pat RTU/people1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_contr_01_inf_pat RTU/people2 2 2 2

Average Developer Talent : pol_hi_barr_contr_02_inf_pat RTU/people3 3 3 3

Average Developer Talent : pol_hi_barr_contr_03_inf_pat RTU/people4 4 4 4

Figure 5.159. Average Developer Talent for Different Barriers to Contribution

Policy Settings under Infinite Patience Assumption

The original policy analyses under the diminishing patience assumption included

a comparison of the pure higher barriers to entry option with a combination of higher

barriers to entry and higher barriers to contribution options. (See Section 5.5.3.)

Replicating those runs under the infinite patience assumption yielded findings similar to

those under the original diminishing patience assumption. Here again, the pure higher

barriers to entry option performed better than the combination policy in terms of product

functionality, community and average developer talent growth. (See Figures 5.160

through 5.162.) Once again, there was virtually no difference between the quality

improvements yielded by these two policy options. (See Figure 5.163.)

 385

Product Functionality

600

450

300

150

0 3
3

3

3

3

3

3

3

3

3
3

3 3 3 3 3 3 3 3 3

2

2

2

2

2

2

2

2

2

2
2 2 2 2 2 2 2 2 2 2

1

1

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case_inf_pat UF1 1 1 1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_entry_01_inf_pat UF2 2 2 2 2 2 2 2 2

Product Functionality : pol_hi_barr_entry_contr_01_inf_pat UF3 3 3 3 3 3 3 3

Figure 5.160. Product Functionality for Barriers to Entry and Combination Policy

Settings under Infinite Patience Assumption

Users

20,000

15,000

10,000

5,000

0
3 3 3 3 3 3

3

3

3

3
3

3
3

3
3 3 3 3 3

2 2 2 2 2 2
2

2

2

2
2

2
2

2 2 2 2 2 2 2

1 1 1 1 1 1

1

1

1
1

1
1

1
1

1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case_inf_pat people1 1 1 1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_entry_01_inf_pat people2 2 2 2 2 2 2 2 2 2 2

Users : pol_hi_barr_entry_contr_01_inf_pat people3 3 3 3 3 3 3 3 3 3

Figure 5.161. Users for Barriers to Entry and Combination Policy Settings under

Infinite Patience Assumption

 386

Average Developer Talent

1

0.75

0.5

0.25

0

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case_inf_pat RTU/people1 1 1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_entry_01_inf_pat RTU/people2 2 2 2 2 2

Average Developer Talent : pol_hi_barr_entry_contr_01_inf_pat RTU/people3 3 3 3 3

Figure 5.162. Average Developer Talent for Barriers to Entry and Combination

Policy Settings under Infinite Patience Assumption

Perceived Product Quality

1

0.95

0.9

0.85

0.8

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1
1 1 1

1

1 1 1
1

1

1

1
1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case_inf_pat Dmnl1 1 1 1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_entry_01_inf_pat Dmnl2 2 2 2 2 2 2 2

Perceived Product Quality : pol_hi_barr_entry_contr_01_inf_pat Dmnl3 3 3 3 3 3

Figure 5.163. Perceived Product Quality for Barriers to Entry and Combination

Policy Settings under Infinite Patience Assumption

 387

Another combination policy option compared with its pure counterparts under the

original diminishing patience assumption was the combination of higher debugging and

higher coaching emphases options. (See Section 5.5.6.) Comparing the pure higher

debugging and higher coaching emphases options with the combination option under

infinite patience assumption yielded results that were similar to those under the original

diminishing patience assumption. Once again, the combination policy performed better

than the two pure options in the overall. The behaviors of the key variables were not

critically different than those under the original diminishing patience assumption. (See

Figures 5.164 through 5.167.)

Perceived Product Quality

1

0.95

0.9

0.85

0.8

4

4

4
4

4
4 4 4 4 4 4 4 4 4 4

3

3

3

3
3 3 3 3 3 3 3 3 3 3 3

2

2

2

2
2

2
2 2

2
2 2 2 2 2 2

1

1

1

1 1
1

1 1
1

1

1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case_inf_pat Dmnl1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_debug_emph_03_inf_pat Dmnl2 2 2 2 2 2

Perceived Product Quality : pol_hi_coach_emph_03_inf_pat Dmnl3 3 3 3 3

Perceived Product Quality : pol_hi_debug_coach_emph_01_inf_pat Dmnl4 4 4 4

Figure 5.164. Perceived Product Quality for Higher Debugging, Higher Coaching,

and Combination Policy Settings under Infinite Patience Assumption

 388

Average Developer Talent

1

0.75

0.5

0.25

0

4
4 4 4 4 4 4

4
4

4 4 4 4 4 4

3
3

3 3 3 3 3
3

3
3 3 3 3 3 3

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case_inf_pat RTU/people1 1 1 1 1 1

Average Developer Talent : pol_hi_debug_emph_03_inf_pat RTU/people2 2 2 2

Average Developer Talent : pol_hi_coach_emph_03_inf_pat RTU/people3 3 3 3

Average Developer Talent : pol_hi_debug_coach_emph_01_inf_pat RTU/people4 4 4

Figure 5.165. Average Developer Talent for Higher Debugging, Higher Coaching,

and Combination Policy Settings under Infinite Patience Assumption

Product Functionality

600

450

300

150

0 4

4

4

4

4

4

4
4 4 4 4 4 4 4 4

3

3

3

3

3

3

3

3 3 3 3 3 3 3 3

2

2

2

2

2

2

2
2 2 2 2 2 2 2 2

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case_inf_pat UF1 1 1 1 1 1 1 1

Product Functionality : pol_hi_debug_emph_03_inf_pat UF2 2 2 2 2 2

Product Functionality : pol_hi_coach_emph_03_inf_pat UF3 3 3 3 3 3 3

Product Functionality : pol_hi_debug_coach_emph_01_inf_pat UF4 4 4 4 4

Figure 5.166. Product Functionality for Higher Debugging, Higher Coaching, and

Combination Policy Settings under Infinite Patience Assumption

 389

Users

20,000

15,000

10,000

5,000

0 4 4 4 4
4

4

4

4
4

4
4

4 4 4

3 3 3 3
3

3

3

3
3

3
3

3
3 3 3

2 2 2 2
2

2

2

2
2

2
2

2
2 2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case_inf_pat people1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_debug_emph_03_inf_pat people2 2 2 2 2 2 2 2

Users : pol_hi_coach_emph_03_inf_pat people3 3 3 3 3 3 3 3

Users : pol_hi_debug_coach_emph_01_inf_pat people4 4 4 4 4 4 4

Figure 5.167. Users for Higher Debugging, Higher Coaching, and Combination

Policy Settings under Infinite Patience Assumption

Just like under the original diminishing patience assumption, the best policy

alternatives under the infinite patience assumption were the pure higher barriers to entry

and the combination of higher debugging and higher coaching emphases options. (See

Section 5.5.7.) The combination of these two policy options was also replicated under

infinite patience assumption. Once again, the overall combination policy yielded better

results in terms of both perceived product quality and average developer talent than those

of its components. (See Figure 5.168 and Figure 5.169.) The product functionality and

community growth were slower under the combination policy, just like they were under

the original diminishing patience assumption. (See Figure 5.170 and Figure 5.171.)

 390

Perceived Product Quality

1

0.95

0.9

0.85

0.8

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3

3

3

3
3

3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

1

1 1
1

1 1
1

1

1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Perceived Product Quality : base_case_inf_pat Dmnl1 1 1 1 1 1 1

Perceived Product Quality : pol_hi_barr_entry_01_inf_pat Dmnl2 2 2 2 2 2

Perceived Product Quality : pol_hi_debug_coach_emph_01_inf_pat Dmnl3 3 3 3

Perceived Product Quality : pol_hi_barr_entry_hi_debug_coach_emph_01_inf_pat Dmnl4 4

Figure 5.168. Perceived Product Quality for Barriers to Entry, Debugging and

Coaching, and Combination Policy Settings under Infinite Patience Assumption

Average Developer Talent

1

0.75

0.5

0.25

0

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4

3
3

3 3 3 3 3
3

3
3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1
1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Average Developer Talent : base_case_inf_pat RTU/people1 1 1 1 1 1

Average Developer Talent : pol_hi_barr_entry_01_inf_pat RTU/people2 2 2 2

Average Developer Talent : pol_hi_debug_coach_emph_01_inf_pat RTU/people3 3 3

Average Developer Talent : pol_hi_barr_entry_hi_debug_coach_emph_01_inf_pat RTU/people4

Figure 5.169. Average Developer Talent for Barriers to Entry, Debugging and

Coaching, and Combination Policy Settings under Infinite Patience Assumption

 391

Product Functionality

600

450

300

150

0 4

4

4

4

4

4

4

4
4 4 4 4 4 4 4

3

3

3

3

3

3

3

3 3 3 3 3 3 3 3

2

2

2

2

2

2

2

2
2 2 2 2 2 2 2

1

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Product Functionality : base_case_inf_pat UF1 1 1 1 1 1 1 1

Product Functionality : pol_hi_barr_entry_01_inf_pat UF2 2 2 2 2 2 2

Product Functionality : pol_hi_debug_coach_emph_01_inf_pat UF3 3 3 3 3 3

Product Functionality : pol_hi_barr_entry_hi_debug_coach_emph_01_inf_pat UF4 4 4

Figure 5.170. Product Functionality for Barriers to Entry, Debugging and

Coaching, and Combination Policy Settings under Infinite Patience Assumption

Users

20,000

15,000

10,000

5,000

0 4 4 4 4 4

4

4

4
4

4
4

4
4

4

3 3 3 3
3

3

3

3
3

3
3

3 3 3 3

2 2 2 2
2

2

2

2
2

2
2

2
2 2 2

1 1 1 1
1

1

1

1
1

1
1

1
1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time (Month)

Users : base_case_inf_pat people1 1 1 1 1 1 1 1 1 1 1

Users : pol_hi_barr_entry_01_inf_pat people2 2 2 2 2 2 2 2

Users : pol_hi_debug_coach_emph_01_inf_pat people3 3 3 3 3 3 3

Users : pol_hi_barr_entry_hi_debug_coach_emph_01_inf_pat people4 4 4 4 4

Figure 5.171. Users for Barriers to Entry, Debugging and Coaching, and

Combination Policy Settings under Infinite Patience Assumption

 392

The results of the comparisons among the policy options under infinite patience

assumption were not different than those under the original diminishing patience

assumption. The best policy options were higher barriers to entry, combination of higher

debugging and coaching emphases, and an overall combination of these two policy

options. However, the implications about certain individual policy options were rather

different than those under the original assumption. The bifurcation observed for higher

levels of barriers to entry and barriers to contribution under the original assumption was

not observed at all under infinite patience assumption. This finding indicated that the

assumption about the patience factor could affect the outcomes of the policy

interventions.

All of these findings indicate that the existence of a diminishing patience level,

which drives the expectations about product functionality, is a key assumption of the

OSSD model. Furthermore, the values of the parameters that drive the patience factor,

such as normal time to lose patience may affect how the model behaves under different

parametric conditions and different policy settings. This leads to the conclusion that the

values of such parameters should be estimated very accurately in order to achieve an

acceptable level of confidence in the model. This would be a crucial antecedent to

drawing implications for real life applications from the findings of the model, especially

from the policy runs. The challenge of estimating an accurate value for such parameters

in the OSSD model was noted as a potential future research topic.

Another important implication of the analyses on the patience factor is that

managing patience and expectations in an open online collaboration community can

provide considerable leverage as a policy. The leaders of such communities can sustain

 393

the attractiveness of their communities for exiting and potential contributors and users by

maintaining a healthy level of expectations, which is neither too high not too low

compared to the realities of the community. While unrealistically high expectation would

cause disappointments among the members of the community and lead them to leave the

community, low expectations would decrease the attractiveness of the community for

potential members, and may have a decreasing effect on the motivation of the existing

contributors.

On the other hand, rivals of such communities can employ tactics that would

decrease the patience level within the community and increase or decrease expectations

beyond realistic limits in order to impede the growth of the community and hurt its ability

to develop products. The software development world have witnessed allegations about

proprietary software companies trying to impede the growth of open source software

development communities (Valloppillil, Cohen and Raymond (annotations) 1998,

Valloppillil and Raymond (annotations) 1998). Although it would be very interesting and

insightful, a detailed study of the implications discussed in this and the previous

paragraphs are obviously beyond the scope of this dissertation. However, such a study

was noted as a potential topic for future research, as well.

The following chapter summarizes the findings of a series of interviews carried

out in order to test whether the structure of the OSSD model and the policy implications

discussed in this chapter can be applied to actual open online collaboration communities.

The policy options tested on the model were introduced to the interviewees as pure policy

options only, and not in combination with one another. Barriers to entry policy option

was introduced to the interviewees as “Selecting New Inexperienced Authors”. Barriers

 394

to contribution was introduced as “Filtering New Material”, higher debugging emphasis

as “Reviewing and Editing Existing Material”, and higher coaching emphasis as

“Coaching Existing Inexperienced Authors.”

The interviewees were then asked whether they observed similar polices

implemented in their community, and if so what the consequences of such policies were,

or if not, what they thought the potential consequences of such policies would be in case

they were implemented. The interviewees also compared the policy options based on

their potential positive and negative consequences. At that stage, the interviewees

discussed about combination policy options, as well as the pure policy options.

 395

CHAPTER 6 -- INSTRUCTIONAL MATERIAL DEVELOPMENT - THE

CASE OF SYSTEM DYNAMICS K THROUGH 12 COMMUNITY

6.1. Analysis of the Interviews

In this study, the main function of the interviews was to test the applicability of

the hypothetical open source software development (OSSD) model to the case of a

specific instructional material development community. Accordingly, the interviews were

analyzed in order to see whether the personal observations and mental models of the

interviewees supported or refuted the assumptions and the structure of the model. The

interviews were analyzed in the order in which the subjects were interviewed. The

analysis involved testing the main reinforcing and balancing (limiting) loops in the

model, the assumption of the underlying policy problem for the community, and the

policy options that had the potential of addressing that policy problem. Please refer to

Appendix A, Sections 5 through 7 for the worksheets and the diagrams used during the

interviews, and the complete interview protocol.

The interviews tested the main reinforcing and balancing loops, which are

discussed in Chapter 4. Loops of secondary importance, namely the Reinforcing Loop 1

(“Positive Network Externalities Effect Attracts More Users”), and the Balancing Loop 3

(“More Functionality Makes It Harder to Add Further Functionality”) were omitted from

the informed portion of the interview. This was done in order to simplify the

communication about the model between the interviewer and the interviewees and to help

interviewees comprehend the model within the short span of time the interviews allowed.

Another tactic used in order to simplify communication and increase

comprehension was the omission of certain outflows associated with the main stocks of

 396

the model. “Leaving Authors” and “Leaving Users” were the two outflows omitted in the

diagrams presented to the interviewees. (See Appendix A, Section 6 for the diagrams.)

Another reason for omitting these outflows was to elicit interviewees’ observations and

mental models with the least possible amount of interference caused by exposing them to

an existing model. As discussed elsewhere in this chapter, several interviewees suggested

the existence of the omitted outflows. This provides stronger support to those

components of the model than having the interviewees approve them after being exposed

to diagrams that include those components.

Omitting the outflows of leaving authors and leaving users kept several

reinforcing and balancing loops that work through these outflows out of the diagrams

shown to the interviewees. Namely, Reinforcing Loop 4 (“More Functionality Retains

More Existing Developers”), Reinforcing Loop 5 (“More Functionality Retains More

Existing Users, and That Attracts More New Developers”), and Balancing Loop 2

(“Fewer Opportunities for Contribution Retain Fewer Existing Developers”) were

excluded due to omitting the outflows. However, each of these three loops, which work

through outflows, has a symmetrical loop that works through a corresponding inflow.

Accordingly, the dynamic effects delivered to the corresponding stocks by these omitted

loops were tested in an indirect way, via the corresponding loops that work through the

inflows. Omitting these loops provided a way to elicit the interviewees’ observations and

mental models with the least amount of interference, in addition to simplifying

communication and facilitating comprehension. Once again, several interviewees

suggested the existence of the omitted loops, albeit sometimes slightly different than they

 397

were originally conceptualized, thus providing support to those specific components of

the model.

Another step of the testing process was to ask the interviewees about the

underlying policy problem of the community with respect to developing instructional

materials. The underlying policy problem of the hypothetical OSSD model was identified

as a tension between producing content and maintaining quality. The interviewees were

asked to elaborate on whether they have observed that problem in the community, and to

what extent.

The last step involved the testing of the policy options outlined in the model. At

this stage, the interviewees were exposed to four series of diagrams about the four policy

options (See Appendix A.6.), and were asked to comment on whether they observed the

application of those policy options within the community and the consequences of the

policy options that were applied. In cases where an interviewee suggested that certain

policy options had not been applied to the community he or she was asked about the

possible consequences of those policy options if they were applied.

6.2. Analysis of the Loops

6.2.1. Reinforcing Loop 3 (“More Functionality Attracts More Authors”)

The first loop discussed with the interviewees was Reinforcing Loop 3. Figure 6.1

displays this loop as it was shown to the interviewees.4 The explanation that accompanied

the sketch for Balancing Loop 3 was as follows:

4 The loops were introduced to the interviewees as a series of diagrams building on top of each other. In
this chapter only the final (complete) diagram for each loop is shown. Please refer to Appendix A, Section
6 for the full set of diagrams. Also, the references to partial diagrams in the explanations that accompanied

 398

“Here, participating authors produce content in the form of documents,

models, visuals, etc. and thus add new functionality to the teaching materials

collection. Here, functionality means a general level of usefulness of the materials

for teaching purposes. As new functionality is added, functionality of the

materials approaches the level expected by possible users, and thus functionality

achievement increases. Increased functionality achievement increases the

attractiveness of participation for authors, and thus new authors become active in

the community faster.”

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Figure 6.1. Reinforcing Loop 3 (“More Functionality Attracts More Authors”) as

Shown to the Interviewees

the diagrams were edited out for this chapter. For the complete explanations with references to the partial
diagrams see Part II in the interview protocol in Appendix A, Section 4.

 399

After this explanation, the interviewees were asked whether they thought such a

positive loop reinforces the growth of the number of authors, and the level of

functionality of the materials in the case of their community. Table 6.1 summarizes the

key comments made by the interviewees about this loop. In Table 6.1 and in the tables

from there on the interviewees are listed based on randomly assigned numbers,

independent of interview order, name, or other factors, in order not to disclose the

identities of the interviewees.

Table 6.1. Key Comments from Interviewees about Reinforcing Loop 3 (“More

Functionality Attracts More Authors”)

Respondent5 Key Comments6
Interviewee 1 Yes.
Interviewee 2 Yes. It reaches a plateau though.
Interviewee 3 “I am not sure about the applicability of this reinforcing loop [to

this community.]” No.
Interviewee 4 Make sense in general. However, the authors do not come from

a cloud; they come from users. So potential users become users,
and some of those become authors. {This discussion took place
before the Users stock was introduced to the interviewee.} There
is also attrition, people that leave.

Interviewee 5 “Probably.” Not the most important one though.
Interviewee 6 “Not quite the same as my mental model.”
Interviewee 7 Yes. {Discussed about users becoming authors.}
Interviewee 8 {Did not comment on this loop.}
Interviewee 9 There has to be some kind of quality control mechanism for this

loop to work.
Interviewee 10 {Questioned the link from functionality achievement to

attractiveness of participation.} Functionality achievement
attracts users, and some users become authors. {This discussion
took place before the Users stock was introduced to the
interviewee.}

5 Interviewees 1,3,5 and 6 were affiliated with the same organization. Interviewees 2 and 9, and
Interviewees 7, 8 and 10 were also affiliated with two other organizations within the overall community,
respectively. Interviewee 4 worked mostly independently. No other details are given about the relationships
between the interviewees in order not to reveal their identities.
6 Notation for comments: Direct quotations are given in quotation marks. Ellipsis dots denote words edited
out due to redundancy. Words and phrases in straight brackets were added to the direct quotations for
clarification. Curly brackets denote explanations about the comments.

 400

Although only two interviewees [3, 6] challenged this loop, the other

interviewees’ support for the loop was not very strong. Two other interviewees [4, 10]

initially challenged the causal link from the attractiveness of participation to the new

authors. Through discussion, the root cause of the challenge was found to be the idea that

new authors do not come from outside of the community (represented with a cloud), but

from the existing users. In fact, that was the strongest challenge about this loop. Three

interviewees [4, 7, 10] explicitly argued along the lines of this idea. The idea of new

users coming from existing users was discussed further within the context of the next

loop.

6.2.2. Reinforcing Loop 2 (“More Functionality Attracts More New Users,

and That Attracts More New Developers”)

The interviewees examined the sketch displayed in Figure 6.2 about Reinforcing

Loop 2, accompanied with the following explanation:

“…a higher level of functionality achievement attracts more users. …

[and] a higher number of users increases the attractiveness of participation for the

authors, thus attracting more new authors.”

 401

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Users
New Users

+

Figure 6.2. Reinforcing Loop 2 (“More Functionality Attracts More New Users,

and That Attracts More New Developers”) as Shown to the Interviewees

Again the interviewees were asked whether they observed such a positive loop

reinforcing the growth of their community. The key comments made by the interviewees

about this loop are summarized in Table 6.2.

 402

Table 6.2. Key Comments from Interviewees about Reinforcing Loop 2 (“More

Functionality Brings More Users, and More Authors”)

Respondent Key Comments
Interviewee 1 There is no feedback from the users. The link from users to

attractiveness does not hold. If there were feedback this loop
would work.

Interviewee 2 Yes. However, it reaches a plateau. These two [together with the
previous loop] are the most important reinforcing loops, the
leverage points.

Interviewee 3 In theory yes; however, there is no feedback available to authors
about users. (This causal link does not exist. Theoretically, it
would if there were feedback mechanisms from users to authors.)

Interviewee 4 Yes. Don’t forget the attrition. There is an outflow from users.
Interviewee 5 Theoretically, but such a feedback does not exist. More users

means more users becoming authors. This shoul dbe represented
as a stock-flow structure. Authors don’t come from a cloud, but
only from existing users. That is a stronger loop. {At this point,
argued against the previous loop.}

Interviewee 6 The link from functionality achievement to users works. The link
from the number of users to attractiveness is questionable.

Interviewee 7 Authors come from users, not from a cloud. {Forcefully argued.}
Interviewee 8 {Did not comment on this loop.}
Interviewee 9 “[The link from functionality achievement to users] would work

pretty well, provided that the materials are of high quality.”
{About the link from users to attractiveness for authors:} “Yes,
that would work.”

Interviewee 10 Yes.

The main challenge against this loop, argued by four interviewees [1, 3, 5, 6], was

that the causal link from the number of users to the attractiveness of participation does

not exist. Apparently, the Creative Learning Exchange (CLE) website, which

disseminates the instructional material, did not track the number of visitors and

downloads in a manner that is visible to the authors. The argument here was that authors

could not gather any information regarding the number and characteristics of the users

and thus the number of users could not have any effect on the attractiveness of

 403

participation. However, most interviewees [2, 3, 4, 5, 6, 7, 9, 10], including three of those

that question the link from the number of users to the attractiveness of participation,

suggested the existence of a reinforcing loop that involved functionality, number of users,

and number of authors. One plausible explanation here was the argument that new

authors came from the stock of existing users. In fact, a fourth interviewee [5] explicitly

stated that argument, in addition to the three interviewees [4, 7, 10] who suggested the

structure within the context of the previous loop. Those three interviewees [4, 7, 10]

repeated their opinion again, and more forcefully within the context of this loop.

Apparently, the interviewees observed a “material” type of causal link between the

number of users and the number of authors, rather than an “information” link.

6.2.3. Balancing Loop 1 (“Fewer Opportunities for Contribution Bring Fewer

Authors”)

Figure 6.3 displays Balancing Loop 1, as shown to the interviewees. The

following explanation accompanied the sketch:

“Here as the materials approach the expected level of functionality,

opportunities for contribution decrease. Due to decreased opportunity, a smaller

number of new authors are attracted to participate.”

 404

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Opportunities for
Contribution

-

+

Users
New Users

+

Figure 6.3. Balancing Loop 1 (“Fewer Opportunities for Contribution Bring

Fewer Authors”) as Shown to the Interviewees

The interviewees were asked whether they observed such a negative loop limiting

the growth of their community, or whether they thought such a loop may become

dominant in the future. The key comments from the interviewees are summarized in

Table 6.3.

 405

Table 6.3. Key Comments from Interviewees about Balancing Loop 1 (“Fewer

Opportunities for Contribution Bring Fewer Authors”)

Respondent Key Comments
Interviewee 1 “I don’t see that.” There are infinite applications. Each lesson can

be presented in a new, and different way.
Interviewee 2 Not at this point. “I would hope so.” “That [would mean] we have

been successful.” “50 years down the road, I can see that
happening, not sooner.”

Interviewee 3 In theory yes. However the community is so far from that.
Interviewee 4 Curriculums change all the time; so the limit on functionality is

not constant, but rather a moving target. It changes, just like the
achieved functionality level.

Interviewee 5 “I don’t think we are anywhere close to that.” This will not happen
in the foreseeable future.

Interviewee 6 Probably an accurate loop. However, functionality achievement
right now is low enough that this loop is not dominant at the time
being, and for some time it will not be even remotely dominant.
“There are lots of opportunities out there for people to be doing
things. [We have not] come close to saturating the domain yet.”

Interviewee 7 “We are so far from it, it doesn’t have much effect now…. As the
gap closes it will have a greater…effect.”

Interviewee 8 Not at this time. This may happen in the future. “There are only so
many lessons you can write.”

Interviewee 9 “I think it could… Most people get the same beginning ideas
often, and if there are materials already out there they won’t know
that they can contribute until they reach a higher level of
functionality. [This] makes sense to me.”

Interviewee 10 “We are [about]…three decades away from seeing that happen.”
“That may end up being true, but… it will be so long from now,
you can barely even think about it.”

Almost all the interviewees, with the exception of one [1], said that Balancing

Loop 1 represented a theoretically plausible structure. However, all of them concurred

that their community was too far from such a saturation point, where a low level of

opportunities for contribution would decrease the attractiveness of participation for the

authors. Consequently, they suggested that the loop had no effect on the growth of the

community, at the time being. One interviewee [1] suggested that no such limit on

 406

functionality exist, even on a theoretical level, since there are infinite ways to express the

same curriculum components. Another interviewee [4] suggested that the limit on

functionality would be a “moving target,” which changed through time, and thus it would

be hard to catch it even over a long period of time. This suggestion reflected the

“increasing limit on functionality” assumption, which was used in the OSSD model, but

omitted from the interview sketches for simplification purposes.

6.2.4. Balancing Loop 4 (“More Errors Bring Fewer Authors”)

Next the interviewees were asked whether they observed a loop similar to

Balancing Loop 4 in their community. The following explanation accompanied the sketch

displayed in Figure 6.4:

“… as authors produce content and add functionality to the materials, they

also generate errors or weaknesses in the materials… the number of errors

decrease the perceived quality of the materials. … A decreased perception of

quality decreases the attractiveness of participation for the authors, thus forming

another negative loop.”

 407

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Figure 6.4. Balancing Loop 4 (“More Errors Bring Fewer Authors”) as Shown to

the Interviewees

The interviewees were asked whether they observed this balancing loop (which

works through errors and weaknesses in the materials) limits the growth of their

community. A summary of key comments by interviewees is given in Table 6.4.

 408

Table 6.4. Key Comments from Interviewees about Balancing Loop 4 (“More

Errors Bring Fewer Authors”)

Respondent Key Comments
Interviewee 1 “I don’t know if it limits the number of existing authors, [and] how

that would work.” This would not affect existing authors, because
they are the ones who generate the errors in the first place.
However, it might affect the potential authors’ willingness to join.
{Also mentioned that it might affect users.}

Interviewee 2 {Chuckled} “Have you been taping all the conversation over the
last three years?” Yes. {Strongly supports.}

Interviewee 3 “I don’t see that loop operating [in this community.]”
Interviewee 4 {About the link from production to errors:} “I think that happened.

I can see that happening. And it did happen. At least the
perception was that it was happening. That was why there has
been more standardization and quality control at the CLE and
Waters Foundation level.” That was true in the past, but not any
more. The quality is very good now.

Interviewee 5 A decreased perceived quality might increase the number of
people who want to contribute, because they want to make it
better. So, one can argue both ways. This again works through
users.

Interviewee 6 It has the potential. If the ratio between errors and functionality
stays the same the perceived quality would not change. The effect
of quality would work more through users rather than authors.

Interviewee 7 For certain individuals, yes. As a general dynamic, no. If there is
no structure to correct errors, this may have an effect.

Interviewee 8 This is not a very strong loop. However, if the perceived quality
stays low for a long time, there may be a problem there.

Interviewee 9 “There you have it.” “Absolutely.”
Interviewee 10 This loop does not hold for this community, since there are

mechanisms to improve quality. Without such mechanisms this
loop might hold.

Although three interviewees [2, 4, 9] supported this loop (two of whom [2, 9]

rather strongly), the others were skeptical about its existence, or at least its relative power

within the overall system. Three interviewees [1, 5, 6] from the skeptical group suggested

that this loop again works through users rather than existing authors. Their argument was

that perceived quality would affect the number of users, and since new authors should

 409

come from the stock of users, that would eventually have an affect on the number of

authors; however, not directly through an attractiveness factor as portrayed in the sketch.

An interesting argument made by an interviewee [5] was that a decreasing quality level

might motivate more people to become authors, in order to help increase the quality level.

The arguments about this loop support the alternative structure, which emerged from the

discussions about Reinforcing Loop 3 and Reinforcing Loop 2, where new authors come

from the stock of existing users instead of from outside of the model.

6.2.5. Balancing Loop 5 (“More Errors Bring Fewer Users, and Fewer

Authors”)

The last loop shown to the interviewees was Balancing Loop 5, as shown in

Figure 6.5. The following explanation accompanied the sketch:

“…a decreased Perceived Quality of Materials has a decreasing effect on

the number of new users, thus forming another negative feedback loop.”

 410

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Users
New Users +

+

+

Figure 6.5. Balancing Loop 5 (“More Errors Bring Fewer Users, and Fewer

Authors”) as Shown to the Interviewees

Once again the interviewees were asked whether they observed such a balancing

loop limiting the growth of their community. Table 6.5 summarizes the key comments by

the interviewees.

 411

Table 6.5. Key Comments from Interviewees about Balancing Loop 5 (“More

Errors Bring Fewer Users, and Fewer Authors”)

Respondent Key Comments
Interviewee 1 Yes. “That actually, happened… Teachers would say to me ‘I

don’t bother to go to the CLE [website.] There is so much junk
there. I don’t have time to waste through all that stuff while I’m
trying to look for good stuff.’”

Interviewee 2 “Yes, yes, yes. Absolutely.” Substantial, however anecdotal,
evidence suggests that low quality material turned users off.

Interviewee 3 This may happen in the future. It doesn’t happen at this moment.
{Later on.} “OK. Now I see the argument. The combination of the
perceived quality and functionality do in fact define the new users.
I’ll buy this.”

Interviewee 4 The bigger issue here is not the quality itself, but whether the
materials are accessible to the users. The current users are not
skilled enough to assess and use the existing quality. This is a
minor issue. Most users don’t even see the errors.

Interviewee 5 Yes. {Discussed about the previous one.} This one is plausible,
not the previous one.

Interviewee 6 “[This] works better for me than a direct linkage to attractiveness.”
“I like [this] better than [the previous one.]”

Interviewee 7 This is similar to the previous loop. Again, without a structure to
correct errors, this may have an effect

Interviewee 8 This is a strong loop.
Interviewee 9 “I have not had direct experience of this, but I think this would be

true theoretically.”
Interviewee 10 Yes.

More interviewees supported this loop than the previous one. Eight interviewees

[1, 2, 3, 5, 6, 8, 9, 10] suggested that this loop was plausible, at least on a theoretical

level. Some [1, 2] suggested that they had personal observations that this loop exists. One

link that was questioned by some interviewees [5, 6] again was the link from the number

of users to the attractiveness of participation. The fact that not many interviewees argued

against that link this time might be attributed to the fact that they had already made their

points within the context of the discussion about Reinforcing Loop 2 and that they were

 412

mostly focused on the link from perceived quality to number of users while discussing

this loop. These arguments again point to the alternative structure where new authors

come form the stock of existing users.

6.3. Analysis of the Policy Options

6.3.1. Tension between Building Functionality and Maintaining Quality as

the Underlying Policy Problem

After the questions about the main loops, the interviewees were asked to comment

on the applicability of the main policy problem of the open source software development

(OSSD) model to their community. The main policy problem for the OSSD model has

emerged as the tension between building functionality fast enough to attract a critical

mass of users and contributors, while trying to maintain an acceptable level of quality in

order to retain existing users and contributors.

The system dynamics K through 12 community is a multi-faceted entity, which

works to propagate system dynamics concepts to K through 12 education. The

community works on many fronts, including, but not limited to developing and

disseminating instructional material for introducing system dynamics concepts to K

through 12 educators and students. Obviously, the community has many different issues

and problems related to different facets of their existence and functions. However, since

this research studies the community from an instructional material development

perspective, the focus is on the policy problems related to that specific facet of the

community. Consequently, the interviewees were asked whether they observed the

tension between building functionality and maintaining quality as their community’s

 413

underlying policy problem with respect to the functions of developing and disseminating

instructional materials.

Table 6.6 summarizes the key comments from the interviewees related to this

question. Almost all of the interviewees [1, 2, 3, 5, 6, 7, 8, 9, 10] responded that they

observed the tension between building functionality and maintaining quality as the

underlying policy problem leading to the symptomatic problems related to the

development and dissemination of instructional materials within the community. Some

interviewees [1, 2, 5, 7] argued strongly in support of this tension being the main

problem, which eventually led the leaders of the community to take serious measures in

order to improve the quality of the materials without hurting the growth of the materials

collections in terms of quantity and functionality.

Table 6.6. Key Comments from Interviewees about the Tension between Building

Functionality and Maintaining Quality as the Underlying Policy Problem in the

Community

Respondent Key Comments
Interviewee 1 Yes. At first, when CLE tried to get as much material as possible

on the website, the quality went down. Then the low quality
material is taken off, and this time quantity suffered. Now the
quantity does not increase as fast, probably because of the quality
control process.

Interviewee 2 “Absolutely.”
Interviewee 3 “Yes. I think that’s valid.”
Interviewee 4 This is not the problem right now. It may become a problem when

the community becomes more mainstream.
Interviewee 5 “Yes, of course. We have just tried to address it.”
Interviewee 6 “Yeah, I think so.”
Interviewee 7 “Yes. This is exactly the way we look at it, too.”
Interviewee 8 Yes
Interviewee 9 Yes. Coaching/training could help improve this.
Interviewee 10 Yes.

 414

An interesting theme narrated by several interviewees was how the quality and

quantity of the materials collection hosted by the CLE website have changed over time.

As mentioned in Chapter 3, the CLE website is the main repository of instructional

materials for introducing system dynamics concepts to K through 12 education.

According to several interviewees, when the CLE started to gather instructional materials

from contributors and disseminate them through their website, they avoided putting a

quality control mechanism in place. One of the reasons for that was the concern that the

limited number of contributors might be discouraged by such a quality control

mechanism. That led to a considerably low level of quality for the general collection,

especially in terms of the accuracy of system dynamics concepts, although there were

occasional pieces of really high quality. The low quality level was not a big concern back

then, since the users of the collection were mostly newcomers to the field of system

dynamics, and they were not yet knowledgeable enough to find the small system-

dynamics-related errors in the materials. During those initial stages the focus of attention

was to build as much quantity and functionality as possible in order to reach a critical

mass, which would be useful for many people and thus could attract a high number of

users.

However, as the collection grew over time, two important dynamics came into

play. On one hand, the users became far more knowledgeable about system dynamics,

and started to find and complain about the system-dynamics-related errors. This shifted

the focus of attention from quantity and functionality to quality, since the main problem

became retaining exiting users as well as attracting new users. Another dynamic that

helped shift the focus was the fact that the materials collection had reached a considerable

 415

mass. At that stage, the CLE felt more confident about putting a quality control

mechanism in place, even if it meant sacrificing some functionality in order to improve

quality.

The first step taken to improve quality was to carry out an audit of existing

materials. Three experienced system dynamicists reviewed all of the existing materials

and grouped them into three categories according to their quality. One group was those of

high quality, which stayed on the collection “as is.” The second group consisted of

materials that needed slight improvements and updates, which were easily revised and

put back in the collection. The third group consisted of materials that needed a

considerable amount of rework. These materials were sent back to their authors for

revision. Some of these were so low quality that even the authors did not seek to revise

them. A mechanism for continued quality control was also put in place. New materials

were not directly added to the collection any more, but went through a similar quality

assurance process. However, the CLE is still sensitive about not discouraging

contributors. They try to keep the “quality threshold” at a level that strikes a balance

between improving quality and maintaining an acceptable stream of new materials into

the collection. This narrative reflects how the tension between building functionality and

maintaining quality can become an important policy problem and shape the policies of

the leadership of an open online collaboration community.

6.3.2. Policy Option 1: Filtering New Material

Following the discussion about the main policy problem, the first policy option

discussed with the interviewees was filtering new materials produced by inexperienced

authors, as shown in Figure 6.6. The counterpart of this policy option in the context of the

 416

OSSD model is the barriers to contribution policy option. The following explanation was

presented with the sketch:

“The first policy option is filtering materials that are produced by

inexperienced authors. This option is based on the premises that inexperienced

authors generate more errors per production, and by filtering the materials that are

produced by inexperienced authors, it may be possible to decrease the number of

new errors or weaknesses in materials. … materials produced by inexperienced

authors are not added directly to the overall materials produced, but instead

diverted to a backlog to be filtered. … a certain portion of this backlog would be

accepted and added to the overall production, while the rest is rejected. …

filtering would be done by experienced developers, with a certain filtering rate per

time unit, and an average rejection ratio would determine the amount of materials

that are accepted or rejected. The rejection ratio would depend on the level of

scrutiny experienced developers apply during filtering, and thus decrease the

number of new errors that go into the materials collection. … a higher rejection

ratio, which means a higher scrutiny level, would reduce the number of new

errors. … a possible adverse effect of this policy would be decreasing motivation

for production on the part of the inexperienced authors. It is possible that as the

rejection rate increases, motivation for producing materials would decrease. …

another adverse effect of this policy [might be that materials] produced by

experienced authors would decrease, since they would dedicate a portion of their

time to filtering.”

 417

Inexperienced
Authors

Production

Functionality of
Materials

Expected
Functionality

Functionality
Achievement

+

+

+-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+
Perceived Quality

of Materials
-

+

Experienced
Authors

Production by
Experienced

Authors +

+

Production to
be Filtered Rejected

Accepted

Production by
Inexperienced

Authors

+

Filtering
Rate

+

-

+

+

Rejection
Ratio

+

-

-

-

Motivation for
Production

+

Figure 6.6. Policy Option 1: Filtering New Material as Shown to the Interviewees

The interviewees were asked whether they observed a similar policy implemented

in their community, and if so what the consequences were. Table 6.7 summarizes the key

comment by the interviewees.

 418

Table 6.7. Key Comments from Interviewees about Policy Option 1: Filtering

New Material

Respondent Key Comments
Interviewee 1 {Discussed about diverting the production from inexperienced

authors to a backlog to be filtered.} ”Yes. That’s what we do
now.” {About the two adverse effects:}“We observed all of that.”

Interviewee 2 CLE applies this. For a period, submissions were down. This may
be due to the decrease in motivation or other factors. CLE has a
three-tier policy, including rework. With just an accept-or-reject
policy average quality would increase but quantity would suffer.

Interviewee 3 Yes. A decrease in motivation could happen, but rejection rate is
not that high now. Decreased production by experienced authors
argument does not hold, because the materials to be filtered and
reviewed and edited are negligible in number at CLE.

Interviewee 4 “Yes; this is what [CLE] is doing.” Motivation decrease would in
fact be a problem. When the community is not mainstream
rejecting is more risky. Later on when the community becomes
more credible and mainstream that might become easier to do. At
this stage re-writes would work better. Inexperienced authors need
coaching, not rejecting. Decrease in experienced authors’ own
production happens. But it could be made positive, if filtering [and
reviewing and editing] is done together with coaching.

Interviewee 5 “Filtering is what we are doing. But we are filtering from all
authors. [Not just from inexperienced authors.]” We have a limited
number of editors, so they cannot spend a lot of time on other
things. We tried to avoid the motivation decrease. We have not
observed the amount of reaction we expected.

Interviewee 6 Not enough filtering is being done to hurt production by
experienced authors. “It may become a problem [in the future], I
haven’t seen it yet.” The first adverse effect would happen rather
in the form of inexperienced authors leaving the community,
rather than their contribution level decreasing.

Interviewee 7 “[Our policy] is exactly this…[However,] we don’t differentiate
between experienced and inexperienced authors. [All work is
filtered.]” {Refers to a filtering and editing type of policy.}

Interviewee 8 Yes. Combined with reviewing and editing. Motivation decrease is
not observed, but makes sense theoretically. Decrease in
experienced authors’ production is observed.

Interviewee 9 “This makes a lot of sense to me.” CLE does this. There is no
direct observation, but a very high rejection ratio might in fact
hinder the production by inexperienced authors. CLE was
concerned about that. “[CLE is] trying to find some middle
ground.” However CLE also has reviewing and editing.

 419

Table 6.7. Key Comments from Interviewees about Policy Option 1: Filtering

New Material (continued)

Interviewee 10 “Absolutely.” This is CLE’s approach. Waters Foundation
combines this with reviewing and editing. There is not enough
sample to comment on motivation decrease. Decrease in
experienced authors’ production is actively avoided. “[We suggest
experienced authors to] focus on what [they] are doing, rather than
fixing things.”

All the interviewees suggested that they had observed some form of a filtering

policy being implemented in their community. However, in terms of the implementation

they emphasized two important differences between the suggested policy and the real life

applications within the community. First, filtering was not implemented as a pure policy,

where materials were either accepted as-is or rejected flatly. Whenever some kind of a

filtering policy was implemented, it was coupled with a revision extension, so that the

materials that are not accepted as-is can be “reworked” by the authors, the reviewers or

both.

The second difference suggested was that the community filtered all materials that

were submitted, both by experienced or inexperienced authors. This difference was not

brought up by as many interviewees as the first difference. However, those [5, 7] who

brought it up emphasized it forcefully.

One interviewee [1] suggested that the negative effect of filtering on motivation

for production was actually observed whenever a very high quality threshold was used.

Most other interviewees [2, 3, 4, 5, 6, 8, 9, 10] suggested that the negative effect was not

observed. They attributed that to the fact that the quality threshold, and consequently the

rejection rate were not high enough to trigger such an effect. However, even those

 420

interviewees suggested that motivation for participation would decrease if the rejection

rate were high enough. In fact, they suggested that the understanding that motivation for

production would decrease under a high rejection rate was the reason why the quality

threshold and the rejection rate had been kept low. One interviewee [6] suggested that

this adverse effect would manifest itself as a portion of inexperienced author leaving the

community after being rejected, rather than a decrease in their motivation for production.

The other adverse effect of this policy, namely the decrease in experienced

authors’ own production due to spending time on filtering, did not receive as much

support on a theoretical level from the interviewees as the first adverse effect. However,

at least four interviewees [1, 4, 8, 10] suggested that they had observed either a decrease

in experienced authors’ production or a deliberate effort on the community’s part to avoid

such a decrease. One interviewee [3] argued that filtering had not hindered the production

by the experienced authors who participate in filtering, and that it did not have the

potential to do so.

6.3.3. Policy Option 2: Reviewing and Editing Existing Material

Figure 6.7 displays the second policy option, reviewing and editing exiting

material, as shown to the interviewees. This policy option is the counterpart of the higher

debugging emphasis policy option in the context of the OSSD model. The following

explanation accompanied the sketch:

“The second policy option is reviewing and editing content in order to fix

existing errors. … Here again, experienced authors and inexperienced authors

build functionality by producing materials and while doing that they generate

errors and weaknesses in materials. … experienced authors would spend time on

 421

reviewing and editing content and thus fix a portion of existing errors. …

reviewing and editing would decrease production by experienced authors. This

decrease would probably be greater than that would happen under the filtering

option, since reviewing and editing existing content would take more time than

filtering new production.”

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

++-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived
Quality of
Materials

-

+
Reviewing and

Editing

Fixed
Errors +

Experienced
Authors

+

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+
-

Figure 6.7. Policy Option 2: Reviewing and Editing Existing Material as Shown

to the Interviewees

Once again, the interviewees were asked whether they observed a similar policy

implemented in their community, and if so what the consequences were. Table 6.8

summarizes the key comment by the interviewees about the second policy option.

 422

Table 6.8. Key Comments from Interviewees about Policy Option 2: Reviewing

and Editing Existing Material

Respondent Key Comments
Interviewee 1 Yes. A combination of filtering and reviewing and editing is

implemented.
Interviewee 2 This policy has been implemented intermittently. Now it exist in

CLE.
Interviewee 3 Production decrease happened for a while during the general

retrospective review at CLE. CC-STADUS must have had that
during a period in the past. “It is periodic, …rather than
continual.” CLE’s review process is a combination of filtering, and
reviewing and editing

Interviewee 4 Filtering is done together with reviewing and editing. CLE waited
for material to gather for a while and then carried out a big
filtering/reviewing and editing intervention. Nowadays materials
go through filtering, and reviewing and editing as they arrive.

Interviewee 5 Reviewing and editing is combined with filtering. CLE filters, but
doesn’t spend time on reviewing and editing if the author does not
do rework on a piece that is found to be of low quality. If the
author does rework, CLE does reviewing and editing, as well.”

Interviewee 6 CLE implements a combination of filtering and reviewing and
editing. There are four categories for incoming materials: 1) Good
enough to publish as is. 2) Requires very little editing. 3) Requires
substantial editing. 4) Has no value at all; diplomatically rejected.
Filtering does not take too much time, reviewing and editing does.

Interviewee 7 This is not used outside of Waters Foundation. Decrease in
experienced authors’ production does not hold, since the reviewing
and editing load is not too big. If the expectations from the Waters
Foundation sites in terms of quantity were higher, that would
probably hold.

Interviewee 8 Yes. Combined with filtering. Decrease in experienced authors’
production is observed.

Interviewee 9 This is used extensively. “I agree [that reviewing and editing takes
more from experienced authors’ time.] I don’t think you’re going
to find very many experienced authors willing to do this
scenario…. [They] love to write, …and if you take too much of
their time reviewing other materials, there has to be a really good
compensation for that.” Have observed that effect.

Interviewee 10 Combined with filtering. Not enough sample size to comment on
the production decrease effect. There is not a lot of material to be
reviewed and edited.

 423

All the interviewees suggested that they had observed the policy of reviewing and

editing existing material being implemented in their community. Many interviewees

reiterated the fact that their community implements the “filtering” and “reviewing and

editing” policies in combination. The interviewees suggested two reasons for this

combined implementation. First, the community tries to bring out the best in each author

and each work, so they encourage revisions based on rounds of reviews and edits in order

to help improve the quality of the submitted materials. Second, the community does not

want to flat out reject materials, in an effort not to discourage authors. Several

interviewees [3, 4, 6, 8] attributed the unwillingness to reject materials to the culture

within the overall community of K through 12 educators. They suggested that, as a

cultural value, criticism within the general K through 12 community tends to be more

indirect, encouraging, and constructive in nature, compared to criticism in an academic

setting, which is essentially direct and at times confrontational. To loosely paraphrase an

interviewee [4], the skins of K through 12 educators are not as thick as academicians.

When filtering is coupled with reviewing and editing, it becomes possible to reject

materials indirectly. As one interviewee [5] suggested, a work that is not found to be of

merit can be sent back to the author for revision numerous times. In the end it would

either become good enough to be added to the collection or the author would give up

trying to improve it further without feeling directly rejected.

Some interviewees suggested another difference between the reviewing and

editing policy as presented during the interviews and its actual implementation within the

community. The policy as presented during the interview assumes a continual reviewing

and editing intervention. As the materials are received, they are added to the backlog of

 424

materials to be reviewed, and the experienced authors review the backlog with a certain,

continual rate. According to four interviewees [2, 3, 4, 5], the real life implementation of

the policy had been periodic, or intermittent rather than continual. One of the four

interviewees [5] suggested that the process had become more continual recently, and that

they were trying to keep it that way.

Several interviewees supported the hypothesis that this policy would have an

adverse effect on the production level of experienced authors who participate in

reviewing and editing. Four interviewees [3, 6, 8, 9] suggested that they had observed a

decrease in experienced authors production whenever they participated in reviewing and

editing. Two other interviewees [7, 10] suggested that they had not observed the adverse

effect, and they attributed it to the fact that there were not too many materials to be

reviewed. They concluded that if the submissions would increase, maintaining an

acceptable amount of reviewing and editing would take from experienced authors’ own

production time.

6.3.4. Policy Option 3: Selecting New Inexperienced Authors

Selecting new inexperienced authors was the third policy option discussed with

the interviewees. The counter part of this policy option in the context of the OSSD model

is the barriers to entry policy option. Figure 6.8 displays this policy as shown to the

interviewees. The sketch was presented with the following explanation:

“… the third policy option is selecting new inexperienced authors

according to their talents. … Here, new inexperienced authors are not directly

accepted into the existing inexperienced authors pool. Rather, they apply and wait

to be selected. … selecting is carried out by experienced authors, and of course

 425

some applicants are refused, based on an average refusal ratio. Refusal ratio

would be based on the scrutiny level of the selection process. A higher level of

scrutiny would mean a higher refusal rate, and that in turn would mean a higher

average inexperienced author talent level… One possible adverse effect here

would be a decrease in the number of inexperienced authors applying. … as

refusal ratio increases, number of inexperienced authors applying would decrease.

… another adverse effect of this policy [might be that materials] produced by

experienced authors would decrease, since they would dedicate a portion of their

time to selecting.”

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+-

Attractiveness of
Participation

+

Selected

+

New
Functionality

Errors
New Errors

+

Perceived
Quality of
Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Inexperienced
Authors to be

SelectedInexperienced
Authors Applying

Refused

Refusal
Ratio

+

-

Average
Inexperienced
Author Talent

-

+

Selecting
Rate

+

+

+

--

Figure 6.8. Policy Option 3: Selecting New Inexperienced Authors as Shown to

the Interviewees

 426

Table 6.9 summarizes the key comments by the interviewees about this policy.

Table 6.9. Key Comments from Interviewees about Policy Option 3: Selecting

New Inexperienced Authors

Respondent Key Comments
Interviewee 1 Authors are not authors until they send something in; and when

someone sends something in, they are never refused. Their work
would be reviewed and comments would be sent in any case. What
may happen is someone sends something in that does not meet the
guidelines, and a comment is sent back suggesting following the
guidelines. If that person does not work on the submission any
further, the person does not become an author; but CLE never
refuses people. At least in the current stage, refusing people would
not help, because there is not enough participation anyway.

Interviewee 2 No. If this policy is implemented, a reduction in the number of
people interested could be observed in short run, and that would
have a negative impact. There might be a positive impact in the
long run.

Interviewee 3 Why are not there a lot of inexperienced authors joining the
community? Is it because experienced authors are not supportive
enough? Maybe, maybe not? Along with that, time, willingness,
and predisposition for being an author might all be reasons. “In
fact, rather than a cloud … we may have a small stock of [potential
authors], ... a finite stock.”

Interviewee 4 “No, I haven’t seen that… I am personally for it. But, I don’t know
how it would work.”

Interviewee 5 No. Because motivation of inexperienced authors to join would in
fact decrease. I don’t think this should be implemented. CLE has
the policy that anybody can submit to its website.

Interviewee 6 CLE is involved not in selecting, but in training novices.
Interviewee 7 Done in a very refined, diplomatic, and covert way. People do not

apply formally, however, Waters Foundation site managers do
pick people to encourage and support. Motivation decrease has not
been an issue so far.

Interviewee 8 No. There is some covert selection, though. Most of the time not
even the mentor that does the selecting is aware of this. An overt
selection policy would not be a “helpful” policy.

Interviewee 9 “Yes, I have seen this.” The best people among one year’s
workshop participants become next year’s instructors. However
people don’t know about this beforehand, and thus it does not
affect the motivation. Production decrease on part of experienced
authors is negligible.

Interviewee 10 No. “We are not rejecting people.”

 427

Most interviewees [1, 2, 3, 4, 5, 6] suggested that they had not observed a policy

of selecting new authors being implemented in their community. Three interviewees [7,

8, 9] argued that although an open selection process had never been implemented, there

were covert and subtle processes for selecting new authors. In most cases these processes

would be so subtle that even those doing the selecting would not be aware that what they

do is selecting. One example given was the process of picking people to support and

encourage.

Interviewees expressed varied opinions about the overall usefulness of this policy

option. Some [4, 7, 9] suggested that they are in favor of it, since it is an efficient way to

determine and encourage the best people to become authors. However, a larger portion of

interviewees [1, 3, 5, 6, 8] suggested that they would be against such a policy since it

would discourage and alienate most potential authors. One common concern expressed

by most of the interviewees, regardless of their being for or against selecting as a policy

option, was its potential for decreasing new contributions, either only in the short run, or

both in the short and the long run. Thus, most interviewees [1, 2, 3, 5, 6, 8] supported the

hypothesized potential adverse effect of an overt selecting policy on the number of

inexperienced authors willing to join the community. The three interviewees [7, 8, 9] who

argued that covert and subtle forms of selecting were implemented suggested that these

implementations had not had a negative effect on the willingness of new authors who

want to join the community. However, one of them [8] suggested that an open selecting

policy could have such an adverse effect.

 428

The hypothesis that the selecting policy would have an adverse effect on

experienced authors’ own production was not supported. The interviewees who

commented on that potential effect suggested that it would not be substantial.

6.3.5. Policy Option 4: Coaching Existing Inexperienced Authors

The last policy option discussed with the interviewees was coaching existing

inexperienced authors, which is the counterpart of the higher coaching emphasis policy

potion in the context of the OSSD model. Figure 6.9 displays this policy as shown to the

interviewees. The following explanation accompanied the sketch:

“…Here experienced authors coach inexperienced authors, and …

coaching increases average inexperienced author talent gradually over time (with

a delay). Accordingly, average inexperienced author talent is defined as a

“smooth” in this context. Both experienced and inexperienced authors would

dedicate a portion of their time to coaching under this policy. So, … coaching

would decrease materials produced by experienced and inexperienced authors,

thus affecting the functionality growth negatively in the short run.

 429

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+
+-

Attractiveness of
Participation

+

New
Functionality

Errors
New Errors

+

Perceived
Quality of
Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+
Average

Inexperienced
Author Talent

-

New Inexperienced
Authors

+

Coaching
+

-

+

-

+

Figure 6.9. Policy Option 4: Coaching Existing Inexperienced Authors as Shown

to the Interviewees

 430

The key comments by the interviewees about this policy option are summarized in

Table 6.10.

Table 6.10. Key Comments from Interviewees about Policy Option 4: Coaching

Existing Inexperienced Authors

Respondent Key Comments
Interviewee 1 The expectation is that coaching will increase the general talent

level, and the number of errors will decrease. Coaching indeed
takes a lot of time, even more than reviewing and editing.

Interviewee 2 This is not done systematically. It might have a positive effect in
the long run.

Interviewee 3 Yes. However, not everybody does that. It is mostly done in a
localized manner. Carlisle site is an example where coaching
exists.

Interviewee 4 “There is quite a lot of that. I have probably done [this] more than
anything else.” Coaching is very time-consuming. It’s the slowest,
but the safest policy.

Interviewee 5 It is hard to separate coaching from reviewing and editing.
Coaching is the only way to increase the talent level across the
board.

Interviewee 6 Coaching is a very common strategy. Coaching overlaps with
production, It may limit production, but these two activities are not
completely divorced.

Interviewee 7 “You are probably getting closer to what happens within [the
Waters Foundation] network; and it does slow down the
production. But we think that that is probably desirable. The
quality will make up for the quantity. You are much better off over
the long term.”

Interviewee 8 Yes. Coaching increases the talent level of both inexperienced and
experienced authors.

Interviewee 9 Time is an issue in making coaching work. However if it works,
coaching is very effective.

Interviewee 10 Yes. Coaching raises awareness level. It absolutely helps. “You
can consider… the editing process to be some coaching.” “It keeps
me from going back and revising my own [work].” “It’s something
of a trade off. I’m taking time away from getting my thing done,
but I’m putting more material our there through that other person
I’m coaching.”

 431

All interviewees suggested that one form or another of coaching was done within

their community. They suggested that coaching was mostly done in an unorganized and

localized manner. In that sense, coaching was not implemented as a systematic policy,

but nevertheless encouraged within the community. Some interviewees [4, 5, 6, 10]

suggested that coaching was done in the form of experienced authors reviewing

inexperienced authors’ work and giving ideas to improve them. Thus, coaching was

coupled with reviewing and editing in some cases.

Most interviewees [1, 4, 5, 7, 8, 9, 10] suggested that coaching is indeed an

effective policy for improving the average author talent and consequently the overall

quality of the materials collection in the long run. Several interviewees [4, 5, 7] argued

that coaching is the only policy that would sustain the quality level of the collection in the

long run, since it gradually shifts the burden of maintaining quality within the community

from a few experts to a larger number of experienced contributors.

The potential adverse effect of coaching on the experienced authors’ own

production was supported by most of the interviewees. Several interviewees [1, 4, 7, 9]

emphasized that coaching was indeed a time-consuming process and that it took a lot

from the experienced authors own production time. One interviewee [7] suggested that

the loss of production is compensated by the increasing level of overall quality. Another

interviewee [10] suggested that the production loss on the experienced authors’ part

would be compensated by the increase in the production by the inexperienced authors

who were coached.

 432

6.3.6. Comparing the Policy Options

At the end of the discussions about the policy options, the interviewees were

asked to compare the policy options based on their merits and potential adverse effects,

and suggest which policy options would bring the highest improvement with the least

amount of loss when applied to their community. The key comments by the interviewees

are given in Table 6.11.

Table 6.11. Key Comments from Interviewees Comparing the Four Policy

Options

Respondent Key Comme nts
Interviewee 1 Coaching takes a lot of time, but pays off. Filtering, reviewing and

editing, and coaching all have their merits.
Interviewee 2 Coaching would be beneficial. Reviewing and editing and filtering

combined would also be useful. Coaching, combined with
reviewing and editing, has critical positive implications for the
future. Coaching can take the form of collaboration or mentoring
depending on the situation.

Interviewee 3 Selecting seems to be the most promising policy. Not everybody
would become an author. So pick the right ones and encourage
those. That can even be done overtly. It would require time,
money and structure.

Interviewee 4 “I like [the selecting policy], but it would be very dangerous.”
Other than that, coaching is the most constructive, most positive. It
develops more collaboration.

Interviewee 5 CLE is trying to do the reviewing and editing with coaching, “A
little bit of filtering done in a very polite way, combined with
reviewing and editing, which becomes coaching.” If you do
reviewing and editing in a coaching fashion it becomes most
effective.

Interviewee 6 Reviewing and editing has coaching intrinsically. Coaching is the
most efficient strategy. Plain reviewing and editing is an “after-
the-fact” approach, and thus it is not so efficient. It involves some
time and energy lost along the way. Selecting implies some kind
of pre-judgment before anything has been done. “Coaching is
more of a continuous quality improvement model.”

Interviewee 7 A combination of local filtering (“narrowing-down”), and
network-wide reviewing and editing works best.

 433

Table 6.11. Key Comments from Interviewees Comparing the Four Policy

Options (continued)

Interviewee 8 Coaching is the best policy. Especially, in the initial stages when
gathering a critical mass of authors.

Interviewee 9 Filtering is beneficial. Reviewing and editing is not feasible.
Selecting actually works in a small group. However, it may or may
not be practical on a larger scale. Coaching has great potential, but
the time issue is going to be critical. Release time for authors
would help make coaching work.

Interviewee 10 Coaching.

Half of the interviewees [1, 4, 6, 8, 10] suggested that coaching was the most

constructive and effective policy option. Two other interviewees [2, 5] suggested that

coaching coupled with reviewing and editing would have considerable potential in

improving product quality and developer talent while maintaining product functionality

growth. Some interviewees [1, 2, 4] reiterated their arguments that coaching worked

better in the long run. All of these suggestions were in parallel with the findings of the

OSSD model policy runs about the higher coaching emphasis option. Higher coaching

emphasis coupled with higher debugging emphasis provided an optimal mix of product

quality and developer talent improvement while causing very small amounts of product

functionality and community growth losses within the context of the OSSD model. (See

Sections 5.5.5 through 5.5.7 and Section 5.5.9.)

One interviewee [3] argued that selecting would be the best policy option.

Another interviewee [4] suggested that selecting would be favorable, but there was the

danger of losing the interest of potential authors, which might decrease the number of

authors, and consequently slow down the product functionality and community growth to

the point where the community would fail to sustain itself. The policy runs with the

 434

counterpart of the selecting policy in the OSSD model, higher barriers to entry, provided

substantial product quality improvement without causing a dramatic loss in product

functionality growth. However, one argument about the findings of those runs was that a

very high barrier to entry coupled with developer participation or developer productivity

levels lower than those in the base case could cause a large enough product functionality

loss that the community would fail to sustain itself. Thus, the selecting policy was found

to be a beneficial, but also a dangerous policy option within the context of the OSSD

model. Accordingly, it can be argued that that interviewee’s mental model about this

policy option was in parallel with the findings of the policy runs.

One interviewee [9] suggested that the only feasible policy option was filtering.

This interviewee argued that reviewing and editing and coaching were not feasible since

they consume too much of experienced authors’ time, and selecting would only work in a

small group. These arguments were in disagreement with the findings of the policy runs

on the OSSD model. While barriers to contribution, the counter part of the filtering policy

in the OSSD model, did improve product quality, the improvement was just a little better

than the other policy options, and it came in expense of product functionality and

community growth.

One interviewee [7] suggested that the combination of the filtering and the

reviewing and editing options would be the best policy to improve quality while

maintaining product functionality growth. Another interviewee [2] suggested this

combination as a feasible and beneficial policy, although not the best. A policy run that

combined the counterparts of these two policy options, namely barriers to contribution

and higher debugging emphasis, had not been performed on the OSSD model in the

 435

original policy run set. However, such a run was performed in order to analyze the

implications of the arguments of these interviewees within the context of the OSSD

model. During the policy analysis of the OSSD model, the combination of filtering with

reviewing and editing was found to be less favorable than a pure reviewing and editing

policy in overall. On the other hand, the combination policy performed better than a pure

filtering policy.

The analysis of the responses to the policy comparison question revealed that

many of the interviewees’ observations and mental model were in parallel with the

findings of the policy analyses performed on the OSSD model. This finding provided

more support for the argument that open source software development communities and

instructional development communities such as the system dynamics K through 12

community can be studied as the instances of the same kind of online communities,

which this study has defined as open online collaboration communities.

6.4. Implications for the General Dynamic Feedback Framework

The analysis of the interviews provided several important implications that guided

the development of the dynamic framework. These implications are summarized in Table

6.11.

 436

Table 6.11. Key Implications Indicated by the Interviews for the General

Dynamic Feedback Framework

Loop Summary Findings and Implications
Reinforcing Loop 3
(“More Functionality
Attracts More
Authors”)

Keep the loop. However, change the detail structure: Authors
come from Users, not from outside the community
(represented by a cloud in the initial model.)

Reinforcing Loop 2
(“More Functionality
Attracts More New
Users, and That
Attracts More New
Developers”)

Combine with Reinforcing Loop 3. The causal link from the
number of users to the number of authors is a “material” link,
instead of an “information” link.

Balancing Loop 1
(“Fewer
Opportunities for
Contribution Bring
Fewer Authors”)

Mark as suspect. May not hold for some communities, which
focus on divergent products. May come into play very late in
the life cycle of a community, thus having little effect on the
success or failure of the community as a whole.

Balancing Loop 4
(“More Errors Bring
Fewer Authors”)

Keep the loop. However it works through Users rather than
through Authors, agreeing with the changes to Reinforcing
Loop 3.

Balancing Loop 5
(“More Errors Bring
Fewer Users, and
Fewer Authors”)

Combine with Balancing Loop 4. Once again, the causal link
from Users to Authors is not an “information” link, but a
“material” link.

Using these implications as guidelines, the basic feedback structure of the OSSD

model was transformed into a simplified, general dynamic feedback framework. In that

sense, the final framework is a representation of the fundamental dynamic feedback

structure of open online collaboration communities based on the initial OSSD model and

the mental models of the interviewees about system dynamics K through 12 community.

The details of the dynamic feedback framework are discussed in Chapter 7.

 437

CHAPTER 7 -- A GENERAL DYNAMIC FEEDBACK FRAMEWORK

FOR OPEN ONLINE COLLABORATION COMMUNITIES

7.1. The Framework

A general dynamic feedback framework was built based on the initial open source

software development (OSSD) model and the findings of the ten interviews with the

members of the system dynamics K through 12 instructional material development

community. The framework is a simplified theoretical representation of the fundamental

dynamic feedback structure underlying open online collaboration communities. The

framework is represented as a causal loop/stock-and-flow diagram.

The dynamic feedback framework contains four main feedback loops. These

loops were among the main reinforcing and limiting structures in the OSSD model.

Furthermore, the interviewees identified these loops as structures that determine the

performance of their community. These four loops are introduced below.

The members of the community are grouped into three: Users, Inexperienced

Authors, and Experienced Authors. When users decide to make contributions to the

collection they become inexperienced authors. The OSSD model did not involve a flow

between the user pool and the author (developer) pool. In other words, there was no

material link from the user pool to the author (developer) pool. The user pool influenced

the author (developer) pool thorough an information link: as more users adopted the

product, more developers were attracted to the community. However, most of the

interviewees strongly argued in favor of a material link between the user and author

pools. They had a twofold rationale for that: 1) Potential authors did not have adequate

means of knowing the size and the structure of the user pool, and 2) New authors did not

 438

come from outside of the community, they came from among the existing users.

Accordingly, in the framework, new authors come from the user pool. Inexperienced

authors become experienced authors as they mature in authoring. There are members that

leave at every stage of the maturing process. (See Figure 7.1.)

 439

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

New
Users

+
+

Leaving
Users

Leaving
Inexperienced

Authors

Leaving
Experienced

Authors
+ -

+

Figure 7.1. The General Dynamic Feedback Framework.

 440

Inexperienced and experienced authors contribute to the production and build the

product or the materials collection. The size and the functionality of the collection

determine the number of new users. A larger and more functional (more useful)

collection brings more new users, thus forming the main reinforcing loop of the

framework. (See Figure 7.2.)

 441

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

New
Users

+ +

+
+

Leaving
Users Leaving

Inexperienced
Authors

Leaving
Experienced

Authors
+

-

+

Total Author
Hours

+

+

Figure 7.2. The General Dynamic Feedback Framework.

 442

As authors produce content, they add quality problems to the collection. (See

Figure 7.3.) Experienced authors review the collection, discarding materials that are of

very low quality, and choose some other materials for rework. Inexperienced and

experienced authors revise and improve the materials chosen for rework. (See Figure

7.4.)

 443

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

Quality
ProblemsNew Quality

Problems

+

New
Users

+ +

+
+

Leaving
Users

Leaving
Inexperienced

Authors

Leaving
Experienced

Authors
+

-

+

Total Author
Hours

+

+

Figure 7.3. The General Dynamic Feedback Framework.

 444

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

Rework
BacklogTo Rework

Discarded

Review
Rate

+

+

Quality
ProblemsNew Quality

Problems

+

Reworked

New
Users

+ +

+
+

Leaving
Users

Leaving
Inexperienced

Authors

Leaving
Experienced

Authors
+

-

+

Total Author
Hours

+
+

+

-

+

Figure 7.4. The General Dynamic Feedback Framework.

 445

Discarding and reworking materials eliminate certain portions of the quality

problems. The amounts of discarded and reworked materials are determined by the

quality threshold, which is used by the experienced authors as the benchmark for

evaluating the collection. This threshold also affects the ratio of users who become

authors. A higher quality threshold means more discarded and reworked material, thus

yielding a higher quality level. However, it also means a lower number of new authors.

(See Figure 7.5.) The rationale is that a higher probability of their work being discarded

or sent for rework will decrease users’ motivation to make contributions and become

authors. This follows from the findings of the policy runs based on the higher barriers to

contribution option, which suggested that higher rejection ratios yield lower number of

new authors (developers). (See Section 5.5.2 for the discussion about the higher barriers

to contribution policy runs.) Also, the discussions with the interviewees supported the

hypothesis that a considerably high rejection ratio would decrease the motivation to

participate in production. (See Section 6.3.2 for the discussion about interviewees’

comments on the effects of high rejection ratios.)

Quality threshold also determines the barriers to entry. As the quality threshold

increases the community becomes more selective in accepting new authors, and the

number of users accepted into the inexperienced author pool decreases. (See Figure 7.5.)

 446

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

Rework
BacklogTo Rework

Discarded

Review
Rate To Rework

Ratio

Rejection
Ratio

+

+

+

+

Quality
Threshold

+

Quality
ProblemsNew Quality

Problems
QP Fixed by

Rework
QP Eliminated by

Discarding

+

+

Reworked

New
Users

+ +

+
+

Leaving
Users

Leaving
Inexperienced

Authors

Leaving
Experienced

Authors
+

-

+-

Total Author
Hours

+
+

+

+

-

+

Figure 7.5. The General Dynamic Feedback Framework.

 447

The density of quality problems, which is defined as the number of quality

problems per unit of the collection, determines the rates with which new users join the

community, and exiting users leave. A higher density of quality problems would yield a

lower number of new users, and a higher number of leaving users. These links form the

second main loop in the framework, which is a balancing (limiting) one. (See Figure 7.6.)

 448

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

Rework
BacklogTo Rework

Discarded

Review
Rate To Rework

Ratio

Rejection
Ratio

+

+

+

+

Quality
Threshold

+

Quality
ProblemsNew Quality

Problems
QP Fixed by

Rework
QP Eliminated by

Discarding

+

+

Reworked

New
Users

+ +

+
+

Leaving
Users Leaving

Inexperienced
Authors

Leaving
Experienced

Authors

+
-

+-

Total Author
Hours

+
+

+

+

-

+

Density of Quality
Problems -

+

+
-

Figure 7.6. The General Dynamic Feedback Framework.

 449

The third main loop of the framework, which also is a balancing one, is formed by

the opportunities for contribution. As the collection gets larger and more functional,

opportunities for contribution decrease. Decreasing opportunities for contribution

decrease the number of new authors, since potential authors may be discouraged by the

lack of vast opportunities for making contributions. (See Figure 7.7.) This was one of the

main limiting loops in the OSSD model. However, the discussions with the interviewees

about the existence and effects of such a limiting loop suggested that this loop might

come into effect considerably late in the process for some open online collaboration

communities. In fact, it may not come into effect for some communities that focus on

divergent tasks such as instructional materials collections, rather than convergent tasks

such as software products. Although many interviewees suggested that this loop was

plausible theoretically, they emphasized that they have seen no indication that this loop

exists or can be effective in their community. Thus the link from the collection to the

opportunities for contribution and the link from the opportunities to new authors are

marked as “questionable” in the final framework, and shown in dashed lines. (See Figure

7.9.)

 450

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

Rework
BacklogTo Rework

Discarded

Review
Rate To Rework

Ratio

Rejection
Ratio

+

+

+

+

Quality
Threshold

+

Quality
ProblemsNew Quality

Problems
QP Fixed by

Rework
QP Eliminated by

Discarding

+

+

Reworked

New
Users

+ +

+
+

Leaving
Users Leaving

Inexperienced
Authors

Leaving
Experienced

Authors
+

-

+-

Total Author
Hours

+
+

+

+

-

+

Density of Quality
Problems -

+

+

Opportunities for
Contribution

+

-

-

Figure 7.7. The General Dynamic Feedback Framework.

 451

Average developer talent and coaching form the fourth loop, which is a

reinforcing one. Coaching increases average developer talent, and as average developer

talent increases quality problems decrease, causing a lower density of quality problems.

A lower density of quality problems brings more new users, and slows the leaving of the

existing users, thus increasing the number of users more quickly. More users mean a

higher number of new authors, which increases the number of authors more quickly, and

thus provides more author hours available. More author hours close this reinforcing loop

by giving way to more coaching. (See Figure 7.8.) This loop shows its reinforcing effect

in the long run, since average talent takes a lot of time to build. This was an important

point that the interviewees argued when discussing the effects of coaching. Most of the

interviewees suggested that coaching is the most effective policy option in the long run.

(See Section 6.3.5 and Section 6.3.6 for discussions with interviewees about the coaching

policy and the comparison of the policy options.) Figure 7.9 shows the final framework in

its entirety with all the loops and variables involved.

 452

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

Rework
BacklogTo Rework

Discarded

Review
Rate To Rework

Ratio

Rejection
Ratio

+

+

+

+

Quality
Threshold

+

Quality
ProblemsNew Quality

Problems
QP Fixed by

Rework
QP Eliminated by

Discarding

+

+

Reworked

New
Users

+ +

+
+

Leaving
Users Leaving

Inexperienced
Authors

Leaving
Experienced

Authors

+
-

+-

Total Author
Hours

+
+

+

+

-

+

Density of Quality
Problems -

+

+

Opportunities for
Contribution

+

-

-

Coaching

Average
Developer Talent

+

+

-
+

+

Figure 7.8. The General Dynamic Feedback Framework.

 453

Users Inexperienced
Authors

Experienced
AuthorsNew

Authors
Maturing
Authors

Collection
Production

Rework
BacklogTo Rework

Discarded

Review
Rate To Rework

Ratio

Rejection
Ratio

+

+

+

+

Quality
Threshold

+

Quality
ProblemsNew Quality

Problems
QP Fixed by

Rework
QP Eliminated by

Discarding

+

+

Reworked

New
Users

+ +

+
+

Leaving
Users Leaving

Inexperienced
Authors

Leaving
Experienced

Authors
+

-

+-

Total Author
Hours

+
+

+

+

-

+

Density of Quality
Problems -

+

+

Opportunities for
Contribution

+

-

-

Coaching

Average
Developer Talent

+

+

-
+

+

Figure 7.9. The General Dynamic Feedback Framework.

 454

The framework is a concise representation of the dynamic feedback structure that

underlies open online collaboration communities. It has the potential of explaining the

phenomena that determine the growth or decline of an open online collaboration

community. The feedback framework can be used as a basis for developing a generalized

dynamic feedback simulation model of an open online collaboration community. The

causal relationships between the variables of the framework or the feedback loops can be

used as hypotheses for empirical research studies. The framework can be further refined

based on the findings of such research studies.

7.2. Strengths and Limitations of the Study

7.2.1. Strengths of the Study

This study used a multi-method research approach, which combined system

dynamics and qualitative analysis of structured interview data. A multi-method approach

provides a way to study complex social phenomena by integrating different

methodologies. That way the researcher has the opportunity to combine the strengths and

compensate for the limitations of each individual methodology (Brewer and Hunter 1989

pp.17). The system dynamics modeling phase provided a means to develop and articulate

a preliminary hypothesis in the form of a system dynamics model. The interview and

qualitative analysis phases provided a way of testing the hypothetical model against the

observations and mental models of the members of a specific open online collaboration

community.

System dynamics is a quantitative modeling approach, which is particularly fit for

modeling complex, large scale, non-linear, partially qualitative social systems. System

dynamics provides a means to conceptualize and model systems of mutual causal

 455

relationships and feedback structures among high numbers of variables, which is harder

to achieve with other quantitative modeling methods.

The hypothetical system dynamics model was based on a literature review of

three relevant literature streams. The literature review was particularly focused on the

parallels that exist between these literature bodies, in an effort to ground the model on

multiple theoretical foundations.

Qualitative analysis of structured interviews is an efficient method for building

theories and testing hypotheses based on rich, qualitative data, which provides a means to

look at complex social phenomena within a deeper context than that provided by most

quantitative approaches. The depth provided by a qualitative approach is hard, if not

impossible, to achieve using solely quantitative methods.

The research design provided a means to test the hypothetical system dynamics

model of open online collaboration communities against the personal observations and

mental models of the members of a representative community. The analysis of the

interviews provided rich and deep conceptual basis for testing the model and articulating

the dynamic framework. The final theoretical dynamic framework provided a basis for

developing models that can be applied to a wider range of cases.

Another important strength of this study was the contributions it made on several

fronts. The study contributed to various literatures, provided critical insights for

managing OOCCs, and constituted a basis for numerous potential future research studies.

For a full discussion about the contributions made by the study see Section 7.3.

 456

7.2.2. Limitations of the Study

Qualitative research methods that are used to analyze rich qualitative data through

interviews and fieldwork have limitations with respect to reliability and

representativeness (Babbie 1998 pp.304). Findings of a qualitative research study would

inevitably bear subjective judgments on the researcher’s part. The researcher’s duty is to

consciously minimize this subjective “noise.” If more than one data collector or analyzer

is involved in the study, the differences in their subjective dispositions would bring about

a problem with consistency of data collection and analysis.

Qualitative research studies based on interviews generally involve smaller sample

sizes compared to those of questionnaire-based surveys, and experiments. Also the

sampling schemes are not always random (not probability-based). These factors bring

about a concern about the representativeness of qualitative research study findings. When

drawing conclusions from the findings of a qualitative research study, the researchers

should always keep in mind that external validities of qualitative research findings are

very limited.

Consequently, the research design used for this study had limitations with respect

to external validity. The findings of the case analysis have limited representative value.

The applicability of the initial system dynamics model was tested against only one open

online collaboration community. Thus, the final dynamic feedback framework, which is

based on the hypothetical system dynamics model and the findings of the interviews,

requires further empirical testing before it can be generalized to other cases.

System dynamics models are limited and simplified representations of the real

world. Classic system dynamics texts acknowledge this fact and argue that models cannot

 457

be “verified,” or “validated” in the exact sense (Richardson and Pugh 1981, Sterman

2000). Thus, system dynamics methodology provides tests for “confidence building” in

models, rather than “validating” models. As discussed previously in this document,

system dynamics methodology is mostly used for modeling partially qualitative systems.

All variables in a model should be quantified in order to be able to simulate the model,

including the “soft,” qualitative variables, and that may mean that some (or in many cases

most) variables will be parameterized based on limited or no “hard” data. However, this

generally does not hurt the level of confidence toward robust models, since the overall

behavior of a robust model does not change significantly based on parameter changes. On

the other hand, system dynamics models are not good point estimators, partly due to the

parameterization issue, and partly due to the fact that they involve complex feedback

structures, and a significantly higher number of variables compared to predictive models

such as time series models or econometric models.

System dynamics models, just like any conceptual model, contain biases that their

modelers bring in about the systems or problems being modeled. The modelers can try to

identify and stay aware of their biases, but ultimately, any model would contain a number

of biases. The effort of a modeler to keep his or her model bias-free is beneficial not

because it can actually achieve that goal, but because it can reduce the number and extent

of biases in the model. The OSSD model is not an exception to the rule. While the model

is an integration of existing literatures on the theoretical approaches to online

communities, open source software development, and applications of system dynamics to

software project management, it undoubtedly hosts the biases and presumption of its

modeler about these concepts. However, the OSSD model is as good as any other similar

 458

model can be, since those similar models would be the products of modelers who have

their own biases and presumptions. The important point here is the acknowledgement of

this limitation about the model.

The research design lacks a component to test the initial system dynamics model

against empirical data from actual open source software development communities. This

limits the confidence with respect to the internal validity of the model. A possible

solution is testing the model through interviews with members of an actual open source

software development community, as discussed in the future research opportunities

section below.

When the initial model was tested for its applicability to the specific instructional

material development community through the interviews, the ideal case would be asking

the interviewees about the applicability of all the loops, variable definitions and causal

relationships in the model to their community. However, the limited time and attention

span of the interviewees during the interviews did not allow for an analysis of that

magnitude. Consequently, a substantial portion of the initial model could not be tested.

The loops and causal relationships that were selected for presentation to the interviewees

were those that were identified as the main drivers of model behavior during the model

building and model analysis phases. This approach holds a potential bias factor on the

part of the modeler/researcher. Some of the feedback loops, variables and causal

relationships that were omitted from the interviews based on the researcher’s judgment

about their importance could be identified by the interviewees as important structures that

affect the behavior of their community. However, the interviewees did not have the

chance to see and comment on these loops, variables, and relationships. This limitation is

 459

not particular to this study. Any model-based social research study based on testing a

large model against individuals’ observations and mental models should involve some

degree of simplification of the model before it can be tested. The OSSD model has over

270 variables, several hundred causal relationships, and over 500 major and minor

feedback loops. A model this big cannot be tested in its entirety against individuals’

observations and mental models. That would require not only an enormous amount of

time, but also a tremendous cognitive effort and concentration on the part of the subjects

in order to understand all the structural details of the model. Not many subjects would be

willing and able to do that. Furthermore, trying to mentally digest a very large model

structure may overwhelm the cognitive ability of the subject. In such a case, the subject

may choose to accept or reject the model in its entirety without further comparison to his

or her observations and mental models. The subject may also choose to neglect certain

portions of the model in order to be able to digest at least a part of it, and thus compare

only the part that he or she chooses to focus on against his or her mental models. Any of

these strategies by the subject would defy the purpose of testing the model in its entirety.

Furthermore, it would not always be possible to detect whether the subject is using such a

strategy. Therefore, we can argue that any large model would need some degree of

simplification before it can be tested against individuals’ mental models.

Testing simplified models pose cognitive problems too. Even small and simple

models presented to subjects have the potential of distorting subjects’ own mental models

and inducing biases in subjects’ selection of personal observations to support or refute the

structures presented to them. In fact, we can argue that it is impossible to keep the mental

models of the subjects intact while presenting them external models. To further

 460

complicate the problem, it is not practically possible to assess the degree to which the

mental model of a subject is affected by the introduction of the external model.

Another problem that is inherent to testing models with subjects is the effect of

psychological processes between the researcher and the subjects, and internal to the

subjects. The personalities of the subject and the researcher, the relationship between the

researcher and the subject, methodological factors such as the way the questions are

designed, the order in which the questions were asked, and external factors such as

interview media (phone, face-to-face, etc.) may all have substantial effects on the

responses of the subject. The subject may approach the questions in a conformist manner

and support even those structures that do not fit to his or her mental model or personal

observations. On the other hand, the subject may tend to reject more than what does not

fit to his or her mental models in an effort to avoid looking (or feeling) too conformist.

Once again, it is not possible to catch all of the instances when such a process comes in

effect, and measure to what extend it affects the subject’s arguments about the model

being tested.

These problems limit the refuting power of interviews. Refutation is a crucial

feature of hypothesis testing. A research design or instrument that does not allow refuting

is not fit for hypothesis testing. It is an important task on the part of the researcher to

improve the refuting power of the design he or she is using. All these arguments may cast

doubt about the validity of model-based social research. However, until we find better

methods and instruments to assess individuals’ mental models and personal observations,

model-based social research should be used as a viable approach with known and

acknowledged limitations.

 461

In the case of this study, the interviewees supported most of the loops and policy

options presented to them during the interviews. A naïve explanation for this would be

that the OSSD model captured the reality so accurately that there was not a lot in it to be

refuted. However, a better approach would be to question the refuting power of the

interviews and the data analysis phase. The refuting power of the interviews and the data

analysis in the case of this study might have been limited by the factors inherent to

model-based social research as discussed above. The particular design of the study might

have limited the refuting power, as well. On the other hand, the interviews identified two

important differences between the generalized OSSD model and the interviewees’ mental

models. First, the interviewees rejected the casual link from the number of users to the

rate of new authors. The interviewees did not reject the overall loop and suggested an

alternate structure where the new authors come from the existing users rather than from

out of the community. Also, the interviewees argued that the balancing loop that is driven

by decreasing opportunities for contribution is not observed in their community, although

most of them suggested that it might be a plausible loop in theory. These examples show

that the research design used in this study had a certain refuting power. In fact, arguably

the most valuable findings of this study were these two challenges to the model. We can

argue that if a research study does not refute anything, nothing new has been learned

from it, since whatever the study supported was already known. In that sense, we would

not learn anything from the interviews if all the structure presented to the interviewees

went unchallenged.

Another limitations of the study is that the final dynamic feedback framework

does not provide a quantitative means to articulate and test the emergent theory until it is

 462

further developed into a system dynamics model. Policy options cannot be tested without

simulation, and the final theoretical framework cannot be simulated until it is developed

into a system dynamics model. This hampers the usefulness of the final theoretical

framework for policy analysis purposes. Despite all its limitations, this study made

several contributions on different fronts. The following section discusses these

contributions.

7.3. Contributions of the Study

This study made notable theoretical and practical contributions to several fields.

These contributions can be grouped under three headings: 1) contributions to several

streams of literature 2) critical insights for managing OOCCs, and 3) topics for future

research studies. These groups of contributions are discussed below with references to

relevant sections of the dissertation.

7.3.1. Contribution to Related Literatures

Literature on Online Communities

This study made an important contribution to the online communities literature by

defining open online collaboration communities as a special type of online communities.

As discussed in the research purpose section, most of the existing studies approached

online communities without distinguishing between different types. On the other hand,

there are some studies that focused on special types of online communities, such as

studies on open source software development communities. However, these studies kept

their focused too tight, and did not attempt to encompass as a wide a group of

communities as open online collaboration communities. This study defined open online

 463

collaboration communities as online communities that are formed by loosely connected

groups of people, who use the Internet as a medium for carrying out collaborative

projects for producing and improving a wide range of information products. (See Section

2.2 for a discussion about the definition and characteristics of open online collaboration

communities.) This definition can be used as a starting point for studying phenomena

related to OOCCs, such as motivation factors for people to participate in these

communities, ways to manage motivations and expectations in order to accelerate and

sustain community growth, and strategies to improve the products developed by the

communities. Other questions related to OOCCs such as strategies to improve the talent

levels of inexperienced participants, ways to determine and enforce quality standards

within an OOCC, and methods to improve dissemination of products developed by the

community can also be studied using the framework as a starting point.

This study also analyzed and integrated several theoretical approaches to the

study of online communities. Gift economies, public goods, social informatics and social

networks perspectives were analyzed, and the implications of the first three perspectives

for open online collaboration communities were identified. An important one of those

implications was that communities that provide more utility with their products would

attract more participants. Another important implication was that as the user pool of a

product developed by an OOCC becomes larger, the community would become more

attractive to contributors. The argument that an easier and simpler contribution process

would make an OOCC more attractive to contributors was another important implication

that emerged from the review and integration of the theoretical approaches. These

 464

implications were integrated within the context of the open source software development

(OSSD) model.

Parallels between the online communities and open source software development

literatures with respect to the theoretical approaches were also identified. Both literature

streams used all of the four theoretical perspectives, which were discussed in the

literature review section, to explain phenomena related to communities they studied.

Furthermore, the two literature streams derived similar implications from those

theoretical perspectives about the communities they studied. (For a detailed discussion

about those implications see Section 2.3.)

The findings of the literature review provided a comprehensive theoretical basis

for future studies that may approach phenomena related to open online collaboration

communities such as different ways of organizing these communities and how the way of

organizing affects the performance of communities, how leadership is structured and how

power is distributed within such communities, and how collaboration among participants

is realized. Those potential studies can employ different methodological perspectives

such as survey based statistical analysis to test hypotheses, ethnographic or grounded-

theory based qualitative approaches to identify deeper concepts and causal relationships

that are hard to discover without analyzing rich qualitative data, and simulation based

methods to test scenarios related to phenomena that pertain to OOCCs.

Furthermore, this is the first research study which applied system dynamics

modeling and simulation method to studying online communities. As discussed in the

methodology chapter, system dynamics is a quantitative modeling approach, which is

particularly fit for modeling complex, large scale, non-linear, partially qualitative social

 465

systems such as open online collaboration communities. System dynamics provided an

adequate means to conceptualize and model the system of mutual causal relationships and

feedback structures that exist in open source software development communities. That is

a task that would be considerably harder to achieve with most other quantitative

modeling methods. (See Section 3.2 for a discussion about the system dynamics

methods.)

Literature on Open Source Software Development

The study made contributions to open source software literature, as well. First of

all, it placed open source software development communities within the concept of open

online collaboration communities. While the validity of this classification is open to

discussion, it nevertheless provides a framework for integrating studies on open source

software development with studies on other types of open online collaboration

communities, such as courseware development communities, collaborative authoring

communities or collaborative music making communities.

The system dynamics model provided valuable insights about the structure and

potential behaviors of a hypothetical open source software development community. An

important insight was that any policy aimed at improving the quality of an open source

software product would slow product functionality growth. In fact, extremely high levels

of such policies may lead to severe impediments of functionality growth, which may

stagnate community growth and even cause the community to fail to sustain itself and

disintegrate. The importance of the patience factor in making an open source software

community succeed or fail was another valuable insight. The findings of the analyses on

the patience factor implied that managing expectations about product functionality

 466

growth within the community is a crucial task that the leaders of the community should

undertake in order to make the community successful. (See Section 5.4.9 and Section

5.5.9 for a full discussion about the implications of the potential behaviors of the OSSD

model under different external conditions and policy settings.) The model also served as a

hypothetical representation of open online collaboration communities, which was tested

through the interviews with the members of the system dynamics K through 12

community. (See Section 6.4 and Section 7.1 for discussions about the implications of the

interviews for the OSSD model, and the final framework based on the model and the

findings of the interviews.)

The OSSD model is the first system dynamics model of open source software

development, which integrated concepts such as code production, debugging, coaching

and developer motivation. The model provided critical insights about the relationships

between performance measures such as product functionality, product quality,

community growth, and determinants of success such as participation, productivity and

developer talent. Sensitivity and policy tests performed on the model provided important

implications about the potential effects of policy interventions on performance measures.

One such implication was that variables such as average developer talent and average

developer productivity have critical values below which an open source software

development community fails to sustain itself in terms of product functionality and

community growth. Critically low values for such variables keep product functionality

growth so slow that achieved functionality growth cannot reach the level of expected

functionality. The fundamental cause behind such a failure was found to be the patience

factor -- as patience of users and developers runs out their expectations about product

 467

functionality grows. Runs showed that, under an infinite patience assumption, failures

caused by low achieved functionality would not happen. Policy options such as barriers

to entry and barriers to contribution also had critical levels above which the community

could not sustain product functionality and community growth. Diminishing patience

assumption was the fundamental reason behind this as well. Under infinite patience even

extremely high levels of such policies did not cause a failure driven by slow functionality

growth. Higher barriers to entry, a combination of higher debugging and coaching

emphases, and and overall combination of these two policies were found to be the most

beneficial policy option in overall. (For a full discussion on the comparison of various

policy options see Section 5.4.9.)

Literature on Applications of System Dynamics

System dynamics is another stream of literature to which this study contributed.

As emphasized above, the OSSD model is the first comprehensive system dynamics

model of open source software development. Although many software project

management models have existed in the system dynamics literature, the OSSD model is

the first that focused specifically on an open source software development project. (See

Section 2.4 and Section 2.5 for a review of applications of system dynamics to software

project management and instructional material development.) The OSSD model opened a

new topic area for applying system dynamics modeling, since it was conceptualized also

as a representation of open online collaboration communities. In that sense, the OSSD

model serves as a starting point for future system dynamics studies applied to open online

collaboration communities in particular, and online communities in general.

 468

This study also provided an example of combining qualitative and quantitative

research methods by using a multi-method research approach, which combined system

dynamics and qualitative analysis of structured interview data. That way the researcher

had the opportunity to combine the strengths and compensate for the limitations of each

individual methodology. The system dynamics modeling phase provided a means to

develop and articulate a preliminary hypothesis in the form of a system dynamics model.

The interview and qualitative analysis phases provided a way of testing the hypothetical

model against the observations and mental models of the members of a specific open

online collaboration community.

7.3.2. Implications for Practice

Defining OOCCs and the Underlying Policy Problem in OOCCs

The study provided some critical implications for practice, as well. One important

contribution of the study in this regard was defining open online collaboration

communities as a special type of online communities, which involve a common

underlying policy problem. The analysis of the policy runs performed on the OSSD

model revealed that a fundamental trade-off exists between building functionality and

improving quality of products developed in open online collaboration communities. (See

Section 5.5.9 for a discussion about the underlying policy problem.) The interviews with

the members of the system dynamics K through 12 community supported the argument

that the tension between building functionality and improving quality is a common policy

problem in open online collaboration communities. Almost all the interviewees, with the

exception of one, suggested that they see that tension as the underlying policy problem in

their community. (See Section 6.3.1 for the interviewees’ comments about the underlying

 469

policy problem.) These findings imply that the leaders of open online collaboration

communities should be prepared to make decisions about how to best manage this

tension, and determine what emphases they will put on building functionality and

improving quality within their communities. This implication should be particularly

relevant for leaders of open source software development communities and instructional

material development communities since these communities were defined as open online

collaboration communities in this study.

Defining the Structure that Causes the Underlying Policy Problem

The study also identified the structure that caused the underlying policy problem

by building the OSSD model, testing it with the interviews and finally developing the

dynamic feedback framework based on the OSSD model and the implications of the

interviews. The dynamic feedback framework can be used as a tool for understanding and

communicating the structure that causes the success or failure of open online

collaboration communities, as well as the fundamental tension between building

functionality and maintaining quality while building an open online collaboration

community.

Implications about Potential Solutions for the Policy Problem

Besides defining the fundamental policy problem, and the underlying structure

that causes it, the study provided several critical implications about the potential solutions

for the policy problem. One important implication was that each potential solution was

limited in terms of the improvement it can provide before causing another problem within

the overall system. For example, each of the policies tested for improving quality slowed

down product functionality and community growth beyond a certain level. Some of these

 470

policies even had critical levels, above which the community would fail to sustain itself

due to losses in functionality and community growth. On the other hand, policy decisions

aimed at accelerating functionality growth beyond a certain point would impede quality

improvement. All these findings point to the implication that the leaders of open online

collaboration communities can use a specific policy only to a certain extent while trying

to improve quality or accelerate functionality growth. Pushing any given policy option

beyond its optimal extent would not only fail to provide any additional performance

improvement in the expected direction, but also hamper the overall performance in terms

of other measures. (See Section 5.5.9 for a discussion about the policy implications of the

model.)

The analysis of the model through policy runs provided implications about the

effectiveness and the side effects of some specific policies. The two most favorable

options were a pure barriers to entry policy, which involved a high level of refusal ratio

for selecting new developers, and a combination of higher debugging and higher

coaching emphases, which was based on higher pressures for bug discovery, bug fixing

and talent building. These policies yielded substantial improvements in product quality at

the expenses of very limited losses in product functionality and community growth. An

overall combination of the two best policy options yielded an even higher quality

improvement, but caused much bigger losses in product functionality and community

growth. Consequently, no single best policy option emerged from the policy runs.

However, depending on the structure and the culture of a given open online collaboration

community, a pure higher barriers to entry policy, a combination of higher debugging and

higher coaching emphases, or an overall combination of higher barriers to entry, and

 471

higher debugging and coaching emphases policies would be effective policy alternatives

for improving product quality while maintaining functionality and community growth.

(See Section 5.5.9 for a detailed comparison of the policy runs.)

The analysis of the interviewees’ responses to a question about comparing the

policy options revealed that the interviewees’ observations and mental models were

mostly in parallel with the findings of the policy runs performed on the OSSD model.

Most of the interviewees argued that coaching either as a pure policy or in combination

with reviewing and editing would be the most effective policy, particularly in the long

run. (The counterpart of the reviewing and editing option was the higher debugging

emphasis policy in the context of the OSSD model.) Two interviewees suggested

selecting new developers as a viable option; however, one of them emphasized that such

a policy would pose the danger of alienating potential authors. These findings, coupled

with the findings of the policy runs on the OSSD model, imply that coaching is the most

effective policy for improving quality and developer talent while maintaining

functionality and community growth, especially in the long run. Selecting, either as a

pure policy option, or coupled with coaching, and reviewing and editing can also be a

viable and effective policy option for certain open online collaboration communities,

provided that their structures and the cultures allow such an approach.

7.3.3. Topics for Future Research Studies

Improving the Open Source Software Development Model

The study also provided a wide range of topics for future research studies. One

group of potential topics involves improving the open source software development

(OSSD) model. As discussed in Chapter 5, the OSSD model generally performed

 472

satisfactorily under extreme condition and sensitivity runs. However, there were some

runs, which indicated that the model could benefit from further refinement. For example,

the extreme condition run which involved zero bug generating rate normal did not

generate a behavior as extreme as expected. Also, the sensitivity runs with different

values of normal time to attract developers, normal time for developers to leave, and

normal time to attract users did not generate behavior as varied as expected. A study that

focuses on the revision and refinement of the equations involving these variables would

be very beneficial.

Testing the OSSD Model Against Empirical Data from Actual Communities

The research design used for this study did not include a component to test the

initial system dynamics model against empirical data from an actual open source software

development community. It is possible to design an interesting study that would test and

improve the model through interviews or questionnaires with the members of actual open

source software development communities. Another variation of this study would be

testing the policy implications of the OSSD model with the members of an actual open

source software development community.

The limited time and attention span during the interviews did not allow testing all

the feedback loops, causal relationships and variable definitions of the OSSD model

against the observations and the mental models of the interviewees. An extended version

of the interviews could put more of the structure of the OSSD model to test. Such a study

could be based on a delphi-type iterative approach, which would involve more than one

interview with each subject. This could improve the OSSD model dramatically, as well as

build a very high level of confidence in the final model.

 473

Developing a General System Dynamics Model of OOCCs

Another potential research topic is developing a general system dynamics model

for open online collaboration communities. The final dynamic feedback framework is an

adequate starting point for such a model. The general system dynamics model would

provide a quantitative means to articulate and test the theory that emerged through the

dynamic feedback framework. Such a model could be used as a testing platform for

policy analysis in the context of a wider range of open online collaboration communities.

An empirical component can be added to such a study by including data collection from

several open online collaboration communities, preferably with different characteristics

and product types. That would increase the representativeness of the model and build a

higher level of confidence in the model.

Testing the Implications of the Final Framework Against Data from OOCCs

Data collection from several open online collaboration communities through

interviews and questionnaires could also used in a study that would further test the

implications of the initial OSSD model or the final dynamic feedback framework. That

would increase the representative value of the dynamic feedback framework

substantially. Inclusion of a questionnaire-based component would be particularly

beneficial, since such a component would provide data from a larger sample. The

interviews used for this study involved 10 subjects and thus did not lend themselves to

statistical analysis. A questionnaire-based data collection could provide enough sample

size for statistical analysis. A larger number of interviews would also provide a sample

size large enough for statistical analysis; however, that would obviously require more

time and resources than a questionnaire-based data collection method.

 474

Empirical Research on Hypotheses Derived from the Final Framewrok

Another group of studies could focus on empirically testing the causal

relationships and feedback loops from the framework. The framework provides an

adequate theoretical basis for developing hypotheses related to open online collaboration

communities.

7.4. Conclusion

This study was a first look at open online collaboration communities. It defined

open online collaboration communities as a special type of online communities, identified

the fundamental policy problem that exists in such communities, identified the underlying

structure that caused the policy problem, and analyzed the potential consequences of

several policy options for addressing that problem.

The study integrated several theoretical approaches to the study of online

communities and open source software development, built a dynamic feedback

simulation model of a hypothetical open source software development community, tested

the model under a range of external conditions and policy options, tested the applicability

of the model and its policy implications to a specific instructional material development

community, and integrated the implications of the initial model and the interviews to built

a theoretical dynamic feedback framework for studying open online collaboration

communities. The study contributed to several streams of literature, provided critical

implications for practice, and laid a foundation for a wide range of potential future

research studies.

 475

APPENDIX A -- INTERVIEW PROTOCOL AND RELATED

DOCUMENTS

A.1. Initial E-mail Request

Dear________,

I am a PhD student at the University at Albany, working with David Andersen, George

Richardson, Deborah Andersen, and Karl Rethemeyer. I am currently studying the efforts

to develop teaching materials within the system dynamics K-12 community. I would like

to carry out a telephone interview with you in order to gather information pertaining to

this issue. The information I gather in the interview will be used as data in my

dissertation. Your name or any information that might identify you as an individual will

not be used in the dissertation, or elsewhere.

I expect the interview to last between 60 to 90 minutes. I would be happy to call you any

day and time within the next two weeks, as long as my schedule permits. If you give your

permission, I would like to tape the interview for detailed analysis of your answers.

Please let me know, by replying to this e-mail, if you would accept doing such an

interview, and if so when you would like to do it. Also, if you decide to do the interview,

please fill out the attached consent form and fax or mail it to me. My contact information

is given below. If you cannot open or print the form, I would gladly fax or mail you a

copy.

Thank you

Sincerely,

Vedat Diker
Rockefeller College
University at Albany
Milne 300
135 Western Avenue
Albany, NY, 12222
Phone: (518) 442 3865
Fax: (518) 442 3398
E-mail: vd7606@albany.edu

 476

A.2. Follow up E-mail Messages

Dear________,

Thank you for voluntarily accepting to do a telephone interview with me about the efforts

to develop teaching materials within the system dynamics K-12 community. As you

suggest in your message, I will call you on _ (Date) _ at _ (Time) _ . [Alternately:

Unfortunately, I am not able to call you on _ (Date) _ at _ (Time) _ . Please let me know

if you would be available on _ (Date) _ at _ (Time) _ . If this does not work for you

please suggest another date and time.] [If the phone number is not provided: Please let me

know the phone number I should use to reach you.]

As I mentioned in my previous message I would like to tape the interview. In order to

comply with applicable laws, I will ask your permission to tape the interview during the

initial stage of our phone conversation. I will also ask your permission to quote the

interview anonymously. As I mentioned before, your name or any information that might

identify you as an individual will not be used in the dissertation, or elsewhere. Please

refer to your copy of the consent form for details about confidentiality and your rights as

a participant in this study.

If there is anything you would like to ask about the interview, please let me know.

Thanks again for accepting my request.

Sincerely,

Vedat Diker

 477

Dear ________,

I am sorry that you will not be able to do an interview with me. Thank you for

considering my request, all the same.

Sincerely,

Vedat Diker.

 478

A.3. Interview Packet Cover Letter

 Dear _______,

 Thank you once again for accepting to participate in my dissertation research.

Please find enclosed the hardcopy of the consent form, along with a stamped and

addressed return envelope. You may use the return envelope to mail the signed consent

form if you have not mailed or faxed it yet. Also enclosed are the reference mode

worksheets, and diagrams that we will use during the interview. Please do not open the

smaller envelope, which holds the diagrams, until you are prompted to do so during the

interview. Please keep the reference mode worksheets, the diagram envelope, and a pen

or a pencil close by during the interview. A second return envelope is enclosed for you to

mail the filled-out reference mode worksheets after the interview. Please contact me at

vd7606@albany.edu or (518) 235 7048 if you have any questions or concerns.

Sincerely,

Vedat Diker

 479

A.4. Participation in Research Consent Form

STUDY WORKING TITLE: Toward a Theory of Open Online Collaboration

RESEARCHER: Vedat G. Diker (University at Albany, Ph.D. Program in Information Science)

STUDY DESCRIPTION

My dissertation research is aimed toward exploring the mutual relationships between factors that

have potential of affecting the success of open online collaborative projects, (e.g., motivation,

participation, product quality and product functionality). The ultimate purpose of the research is

to articulate a theory of open online collaboration phenomena, in the form of a dynamic feedback

framework.

I concluded that the community of researchers and practitioners who are applying system

dynamics concepts to K-12 education, and their efforts for developing and sharing instructional

material on the Internet would be an excellent case for exploration, for the purposes of my

research. Since you are an important figure within that community, I would very much like to

carry out a telephone interview with you. During the interview I will ask you several questions

about the instructional material development projects within the system dynamics K-12

community. I expect the interview to last about one and a half hours.

Your participation in the study is completely voluntary, so you may stop and discontinue the

interview any time you wish without any adverse consequences on your part. You may also

choose not to answer any questions you do not wish to for any reason.

In order to keep a better record of the interview, I would like to tape the telephone conversation,

though this is not mandatory. The tapes of the telephone conversation will be stored in my home,

in a locked box, and will not be made available to anybody except myself and the below listed

members of my dissertation committee.

While I may quote from interviews in my dissertation or any other future publication related to

this research, I will not identify you or your organization in any quote or opinion. The tapes and

the transcript of the interview will not be made available to other researchers for secondary

analysis or any other research purposes without your written consent. I will keep all records that

identify you private to the extent allowed by law. However, officials from the federal government

and/or the University at Albany may inspect the records that identify you for the purpose of

protecting your rights as a human participant.

While I cannot promise you any direct benefit from your participation in this study, I hope that

this study will provide more information on the dynamics of open online communities. This

information may help us develop policies that would increase the success of such projects in the

future.

 480

I will report my findings in my dissertation, which I expect to complete in August 2003. I can

provide you with an abstract and/or an electronic copy of the dissertation when it is completed, if

you would like.

My contact information is below, as is my dissertation committee members’ information, if you

would like to discuss this research. If you would like to be interviewed, please sign this form, and

mail or preferably fax it to me.

CONSENT

If you agree to be interviewed for my research, please sign below.

__ ____ / ____ / ________

Name Date

Furthermore, if you agree to me taping the telephone conversation, please sign below.

__ ____ / ____ / ________

Name Date

CONTACT INFORMATION

I am a doctoral student in the Information Science Program at the University at Albany. The

above mentioned interview will provide data for my dissertation. My contact information follows.

Vedat G. Diker
Rockefeller College
University at Albany
Milne 300
135 Western Avenue
Albany, NY, 12222

Phone: (518) 442 3865
Fax: (518) 442 3398
E-mail: vd7606@albany.edu

Dissertation Committee:
David F. Andersen (co-chair)
Rockefeller College
University at Albany
Milne 315-B
135 Western Avenue
Albany, NY, 12222
(518) 442 5280
david.andersen@albany.edu

George P. Richardson (co-chair)
Rockefeller College
University at Albany
Milne 318
135 Western Avenue
Albany, NY, 12222
(518) 442 3859
gpr@albany.edu

Deborah L. Andersen
School of Infornmation. Science and Policy
University at Albany
Draper 113
135 Western Avenue
Albany, NY, 12222
(518) 442 5115
dla@albany.edu

R. Karl Rethemeyer
Rockefeller College
University at Albany
Milne 312-A
135 Western Avenue
Albany, NY, 12222
(518) 442 5258
kretheme@albany.edu

If you have any questions regarding your rights as a participant, contact the Compliance

Office, Office for Sponsored Programs, at (518) 437-4569.

 481

A.5. Reference Mode Worksheet

 482

A.6. Model Sketches

Sketch 0.1.

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

 483

Sketch 0.2.

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Users
New Users

+

 484

Sketch 0.3.

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Users
New Users

+

+

 485

Sketch 0.4.

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Opportunities for
Contribution

-

+

Users
New Users

+

+

 486

Sketch 0.5.

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Errors
New Errors

+

 487

Sketch 0.6.

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

 488

Sketch 0.7.

Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New
Authors+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Users
New Users

+

+

+

 489

Sketch 1.0.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Experienced

Authors +

+

<Rejection

Production by
Inexperienced

Authors.

 490

Sketch 1.1.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Experienced

Authors +

+

Production to
be FilteredProduction by

Inexperienced
Authors

 491

Sketch 1.2.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Experienced

Authors +

+

Production to
be Filtered Rejected

Accepted

Production by
Inexperienced

Authors

+

 492

Sketch 1.3.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Experienced

Authors +

+

Production to
be Filtered Rejected

Accepted

Production by
Inexperienced

Authors

+

Filtering
Rate

+

+

+

Rejection
Ratio

+

-

 493

Sketch 1.4.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Experienced

Authors +

+

Production to
be Filtered Rejected

Accepted

Production by
Inexperienced

Authors

+

Filtering
Rate

+

+

+

Rejection
Ratio

+

-

-

 494

Sketch 1.5.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Experienced

Authors +

+

Production to
be Filtered Rejected

Accepted

Production by
Inexperienced

Authors

+

Filtering
Rate

+

+

+

Rejection
Ratio

+

-

-

-

Motivation for
Production

+

 495

Sketch 1.6.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+

-

Attractiveness of
Participation

+

New Inexperienced
Authors

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Experienced

Authors +

+

Production to
be Filtered Rejected

Accepted

Production by
Inexperienced

Authors

+

Filtering
Rate

+
-

+

+

Rejection
Ratio

+

-

-

-

Motivation for
Production

+

 496

Sketch 2.1.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

New Inexperienced
Authors+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

 497

Sketch 2.2.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

New Inexperienced
Authors+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+ Reviewing and
Editing

Fixed
Errors +

Experienced
Authors

+

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

 498

Sketch 2.3.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

New Inexperienced
Authors+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+ Reviewing and
Editing

Fixed
Errors +

Experienced
Authors

+

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+ -

 499

Sketch 3.1.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Average
Inexperienced
Author Talent

-

New Inexperienced
Authors

 500

Sketch 3.2.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

Selected

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Inexperienced
Authors to be

SelectedInexperienced
Authors Applying

Average
Inexperienced
Author Talent

-

 501

Sketch 3.3.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

Selected

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Inexperienced
Authors to be

SelectedInexperienced
Authors Applying

Refused

Refusal
Ratio

+

-

Average
Inexperienced
Author Talent

-

Selecting
Rate

+

+

+

 502

Sketch 3.4.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

Selected

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Inexperienced
Authors to be

SelectedInexperienced
Authors Applying

Refused

Refusal
Ratio

+

-

Average
Inexperienced
Author Talent

-

+

Selecting
Rate

+

+

+

 503

Sketch 3.5.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

Selected

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Inexperienced
Authors to be

SelectedInexperienced
Authors Applying

Refused

Refusal
Ratio

+

-

Average
Inexperienced
Author Talent

-

+

Selecting
Rate

+

+

+

-

 504

Sketch 3.6.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+
-

Attractiveness of
Participation

+

Selected

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Inexperienced
Authors to be

SelectedInexperienced
Authors Applying

Refused

Refusal
Ratio

+

-

Average
Inexperienced
Author Talent

-

+

Selecting
Rate

+

+

+

-

-

 505

Sketch 4.1.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+-

Attractiveness of
Participation

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Average
Inexperienced
Author Talent

-

New Inexperienced
Authors

+

 506

Sketch 4.2.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+-

Attractiveness of
Participation

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Average
Inexperienced
Author Talent

-

New Inexperienced
Authors

+

Coaching
++

 507

Sketch 4.3.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+-

Attractiveness of
Participation

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Average
Inexperienced
Author Talent

-

New Inexperienced
Authors

+

Coaching
++

+

 508

Sketch 4.4.

Inexperienced
Authors

Production

Functionality
of Materials

Expected
Functionality

Functionality
Achievement

+

+

+-

Attractiveness of
Participation

+

New
Functionality

Errors
New Errors

+

Perceived Quality
of Materials

-

+

Experienced
Authors

Production by
Inexperienced

Authors

+

Production by
Experienced

Authors

+

+

Average
Inexperienced
Author Talent

-

New Inexperienced
Authors

+

Coaching
+

-

+

-

+

 509

A.7. Interview Protocol (Script)

Date: ________________ Time Start: ____________ Time End: ______________

Interview Mode: [] Face to face [] Telephone [] E-mail

Respondent: ___ Title: _____________

Affiliation: __

Phone: _______________________ E-mail: ___________________________________

Interview Start: First of all, thank you for voluntarily accepting to do this interview, and

for giving me your time. I am talking to you today to gather information about

collaborative efforts to develop teaching materials for introducing system dynamics

concepts in K through 12 education. As I mentioned in my e-mail to you, the information

I gather today will be used as data in my dissertation in Information Science. Your name

and any information that might identify you as an individual will not be used in the

dissertation, or elsewhere; and no one else except myself and my dissertation committee

will have access to the raw data without your written consent

Before we start, I would like to ask your permission to tape this phone conversation. Do

you give your permission for me to tape this conversation? Also, I would like to ask your

permission for quoting sections of this conversation anonymously. Do you give your

permission for me to quote this conversation anonymously? [Prompt if not] May I loosely

paraphrase your replies?

Checklist:

1. Intro ______________

2. Permission to tape ______________

3. Permission to quote ______________

Questions:

Part I.

1. How did you get involved in the system dynamics K through 12 community?

2. What is your role in that community?

 510

a. Have you ever worked with others within the community? [Prompt if

necessary] Have you ever worked with a mentor?

3. How would you describe the efforts to develop and disseminate teaching

materials within the system dynamics K through 12 community? [Prompts, if

necessary] How is it organized? Is it coordinated? [Prompt, if yes] How?

[Prompt, if necessary] I am particularly interested in efforts for using the Internet

for sharing work on developing teaching materials, such as the Creative Learning

Exchange, Waters Foundation, CC-STADUS and MIT System Dynamics in

Education Project websites.

4. Do you see any categories that the individuals who contribute to these efforts

would fall into? [Prompt, if necessary] The efforts to develop and disseminate

teaching materials within the community?

[Prompts, if necessary]

a. How would you categorize them based on expertise?

b. How would you categorize them based on contribution levels?

c. How would you categorize them based on reasons and motivation for

participation?

5. Is contributing to these efforts open to all? [Prompt, if necessary] Can anybody

who wants to make a contribution do so?

a. [Prompt if not] What are the requirements for participation?

6. Now I would like to talk a little about the teaching material repositories on the

Internet such as Creative Learning Exchange, Waters Foundation site, CC-

STADUS, and MIT System Dynamics in Education Project. Is contributing to

such online repositories open to all?

a. [Prompt if not] What are the requirements for contributions?

7. What do you think motivates people to make a contribution?

a. Do you think characteristics of the materials developed have any effect on

the motivation of the contributors? [Prompt if necessary] …characteristics

such as quality, functionality, customizability, etc. [Prompt if necessary]

Within this context, “materials” might mean documents such as handouts,

 511

assignment sheets, models, etc. For example I think of the teaching

materials posted on the website such as Creative Learning Exchange.

b. Do you think community characteristics have any effect on the motivation

of the contributors? [Prompt if necessary] …such as number or talent

level of contributors, number of users of the materials developed, ease of

making contributions, probability of one’s work being accepted and

recognized?

8. Do the contributors sometimes work together?

[Prompts, if they do]

a. What is the nature of such collaboration?

b. Do they collaborate using the Internet, such as by e-mail or on-line chat?

[Prompts, if they do]

i. Do they ever meet face-to-face

ii. Do they generally begin to collaborate online before they meet, or

vice-versa?

c. Do you have an estimate of what percentage of their contribution time the

participants devote to collaboration?

d. Do you have an estimate of what percentage of collaboration takes place

on-line versus face-to-face collaboration?

e. Does collaboration generally take place between peers, or between

participants with different characteristics?

i. [Prompt if necessary] …such as experience level, contribution

level, researchers vs. practitioners, etc.

9. What do you think about the quality of the materials that are developed through

these efforts?

a. How would you evaluate the overall quality on a scale of 0 to 10, 0 being

the lowest and 10 the highest possible quality?

b. What about the variation of quality?

[Prompts if necessary]

i. What is the quality level of the top 10%, and top 25% of the

materials?

 512

ii. What is the quality level of the bottom 10%, and bottom 25% of the

materials?

c. How would you group the materials based on their quality levels?

10. How does good work get recognized or selected?

a. How does work get judged as high or low quality?

b. Is there a filtering mechanism? How is it managed?

c. What happens to work judged to be high quality?

d. What happens to work judged to be low quality?

e. What happens to authors of work judged to be low quality?

11. Do you think anything can be done to improve the quality of the materials, in the

short and the long run?

12. What can you say about the quantity of materials produced? [How would you

quantify the work produced? Number of documents, number of models, number of

pages, etc.]

a. Do you have a rough estimate of average work produced per contributor?

[Prompt if necessary] A very rough estimate is OK.

b. Are there significant variations between the amounts of work produced by

contributors with different characteristics?

i. [Prompt if necessary] …such as experience level, collaboration

level, researchers vs. practitioners, etc.

c. Do you see the teaching material collections such as that of the Creative

Learning Exchange as a coherent whole or a set of unconnected

documents?

13. Who are the users of those teaching materials? What can you say about their

characteristics?

a. What is your estimate of a user/contributor ratio?

14. In what ways do you think the users make use of those materials? [Prompt if

necessary] …such as self-study, classroom exercises, homework assignments.

a. What features make those materials more or less useful?

15. What do you think makes those materials attractive to the users?

 513

a. [Prompt if necessary] …such as quality, functionality, ease of access,

customizability, existence of other users, etc.

Reference Modes

16. I would like you to draw some observed reference modes about the concepts

(variables) we have discussed so far. Please use the sheet titled “Reference Modes

- Observed”. [Prompt if necessary] Behaviors over time; graphs over time. I

would like you to pick the variables you think are key to the issue first.

[Prompt if necessary]

a. What about the number of contributors,…

b. number of users,…

c. number of materials produced,…

d. functionality of materials,…

e. quality of materials?

Policy Problems & Scenario

17. Are there large problems or issues within the community?

a. [Prompt if there are problems] Do you think anything can be done about

these problems in the short or the long run?

18. What do you think the future holds for the system dynamics K through 12

community? [Will the community grow? Decline? Split? Divide?]

a. What is your “best case” scenario?

b. What is your “worst case” scenario?

c. What is your “most likely” scenario?

19. At this stage, I would like you to draw some more reference modes. This time

let’s focus on projected reference modes, which you think may happen in the

future. Please use the sheet titled “Reference Modes - Projected”.

[Prompt if necessary]

a. What about the number of contributors,…

b. number of users,…

c. number of materials produced,…

d. functionality of ma terials,…

e. quality of materials?

 514

Part II,

20. In the previous phases of this study I built a system dynamics model of a

hypothetical open online collaboration community. I would like to show you

some sketches from that model. I will explain the variables and loops in the

sketches, and then ask you whether they apply to the case of system dynamics K

through 12 community.

a. Please look at Sketch 0.1. Here, participating authors produce content in

the form of documents, models, visuals, etc. and thus add new

functionality to the teaching materials collection. Here, functionality

means a general level of usefulness of the materials for teaching purposes.

As new functionality is added, functionality of the materials approaches

the level expected by possible users, and thus functionality achievement

increases. Increased functionality achievement increases the attractiveness

of participation for authors, and thus new authors become active in the

community faster. Do you think such a positive loop reinforces the growth

of the number of authors, and the level of functionality of the materials in

the case of this community?

b. Sketch 0.2 shows that a higher level of functionality achievement attracts

more users. In Sketch 0.3 a higher number of users increases the

attractiveness of participation for the authors, thus attracting more new

authors. Do you think such a positive loop reinforces the growth of the

number of authors, the level of functionality of the materials, and the

number of users in the case of this community?

c. Do you see any other influence that might reinforce the growth of the

number of authors, the level of functionality of the materials, and the

number of users in the case of this community?

d. Please look at Sketch 0.4. Here as the materials approach the expected

level of functionality, opportunities for contribution decrease. Due to

decreased opportunity, a smaller number of new authors are attracted to

participate. Do you think such a negative loop limits the growth of the

number of authors, and the level of functionality of the materials in the

 515

case of this community at the time being? [Prompt if not] Do you think

there is a probability that such a negative loop may limit growth in the

future?

e. Please look at Sketch 0.5. Here, as authors produce content and add

functionality to the materials, they also generate errors or weaknesses in

the materials. In Sketch 0.6 the number of errors decrease the perceived

quality of the materials. This is represented as a “smooth”, since the

perception of quality would change gradually (with a delay). A decreased

perception of quality decreases the attractiveness of participation for the

authors, thus forming another negative loop. Do you think such a negative

loop, which runs through errors and weaknesses, limits the growth of the

number of authors, and the level of functionality of the materials in the

case of this community? [Prompt if not] Do you think there is a

probability that such a negative loop may limit growth in the future?

f. Sketch 0.7 shows that a decreased Perceived Quality of Materials has a

decreasing effect on the number of new users, thus forming another

negative feedback loop. Do you think such a negative loop limits the

growth of the number of authors, the level of functionality of the

materials, and the number of users in the case of this community? [Prompt

if not] Do you think there is a probability that such a negative loop may

limit growth in the future?

g. Do you see any other influence that might limit the growth in this

community?

21. As you can see, when conceptualizing the model, I laid out the main problem as

the dichotomy between building functionality and maintaining quality; or put in

another way, producing materials vs. improving materials. Many times these act

against each other. When you try to build functionality too fast, you may hurt

quality. On the other hand, trying to increase quality above a certain level may

bring about too slow a functionality growth. Do you observe such a problem in

the case of this community?

 516

22. Having laid out the problem about building functionality while maintaining

quality, I tried to sketch some policy options. I would like to show you these

sketches and ask you whether any of these processes have been implemented, or

at least suggested as a remedy for the problems of this community? Before

moving on to the policy options, please look at Sketch 1.0, where I divided the

authors into two groups, experienced authors and inexperienced authors. These

two groups add functionality to the materials by producing content, and while

doing that they generate new errors or weaknesses in materials. Now the policy

options…

23. The first policy option is filtering materials that are produced by inexperienced

authors. This option is based on the premises that inexperienced authors generate

more errors per production, and by filtering the materials that are produced by

inexperienced authors, it may be possible to decrease the number of new errors or

weaknesses in materials. In Sketch 1.1, materials produced by inexperienced

authors are not added directly to the overall materials produced, but instead

diverted to a backlog to be filtered. As Sketch 1.2 shows, a certain portion of this

backlog would be accepted and added to the overall production, while the rest is

rejected. Sketch 1.3 shows that filtering would be done by experienced

developers, with a certain filtering rate per time unit, and an average rejection

ratio would determine the amount of materials that are accepted or rejected. The

rejection ratio would depend on the level of scrutiny experienced developers

apply during filtering, and thus decrease the number of new errors that go into the

materials collection. As Sketch 1.4 shows, a higher rejection ratio, which means a

higher scrutiny level, would reduce the number of new errors. As portrayed in

Sketch 1.5 a possible adverse effect of this policy would be decreasing motivation

for production on the part of the inexperienced authors. It is possible that as the

rejection rate increases, motivation for producing materials would decrease.

Sketch 1.6 shows another adverse effect of this policy: Materials produced by

experienced authors would decrease, since they would dedicate a portion of their

time to filtering.

 517

a. Have you observed such processes operating in the case of this

community? [Prompt if yes] What were the consequences of these filtering

processes? [Prompt if not] Has such processes ever been suggested?

[Prompt if not] Do you think such processes would remedy certain

problems in this community? [Prompt if yes] What do you think the

consequences of such a filtering approach would be?

24. The second policy option is reviewing and editing content in order to fix existing

errors. Please look at Sketch 2.1. Here again, experienced authors and

inexperienced authors build functionality by producing materials and while doing

that they generate errors and weaknesses in materials. Sketch 2.2 shows that

experienced authors would spend time on reviewing and editing content and thus

fix a portion of existing errors. As Sketch 1.3 shows, reviewing and editing would

decrease production by experienced authors. This decrease would probably be

greater than that would happen under the filtering option, since reviewing and

editing existing content would take more time than filtering new production.

a. Have you observed such processes operating in the case of this

community? [Prompt if yes] What were the consequences of these

reviewing and editing processes? [Prompt if not] Has such processes ever

been suggested? [Prompt if not] Do you think such processes would

remedy certain problems in this community? [Prompt if yes] What do you

think the consequences of such a reviewing and editing approach would

be?

25. Before moving on to the third policy option, I would like to introduce another

concept, namely the average talent level of the inexperienced authors. Please look

at Sketch 3.1. I suggest that the number of errors generated by inexperienced

authors would depend on their talent level. The higher the average inexperienced

author talent, the fewer new errors generated by the inexperienced authors.

Based on this talent concept, the third policy option is selecting new

inexperienced authors according to their talents. Please look at Sketch 3.2. Here,

new inexperienced authors are not directly accepted into the existing

inexperienced authors pool. Rather, they apply and wait to be selected. As Sketch

 518

3.3 shows, selecting is carried out by experienced authors, and of course some

applicants are refused, based on an average refusal ratio. Refusal ratio would be

based on the scrutiny level of the selection process. A higher level of scrutiny

would mean a higher refusal rate, and that in turn would mean a higher average

inexperienced author talent level, as Sketch 3.4 shows. One possible adverse

effect here would be a decrease in the number of inexperienced authors applying.

As shown in Sketch 3.5, I suggest that as refusal ratio increases, number of

inexperienced authors applying would decrease. Sketch 3.6 shows another

adverse effect of this policy: Materials produced by experienced authors would

decrease, since they would dedicate a portion of their time to selecting.

a. Have you observed such processes operating in the case of this

community? [Prompt if yes] What were the consequences of these

selecting processes? [Prompt if not] Has such processes ever been

suggested? [Prompt if not] Do you think such processes would remedy

certain problems in this community? [Prompt if yes] What do you think

the consequences of such a selecting approach would be?

26. The fourth policy option is also geared toward increasing the average

inexperienced author talent level. However, this time not by selecting the

incoming inexperienced authors, but coaching the existing inexperienced authors.

Please look at Sketch 4.2. Here experienced authors coach inexperienced authors,

and as Sketch 4.3 shows, coaching increases average inexperienced author talent

gradually over time (with a delay). Accordingly, average inexperienced author

talent is defined as a “smooth” in this context. Both experienced and

inexperienced authors would dedicate a portion of their time to coaching under

this policy. So, Sketch 4.4 shows that coaching would decrease materials

produced by experienced and inexperienced authors, thus affecting the

functionality growth negatively in the short run.

a. Have you observed such processes operating in the case of this

community? [Prompt if yes] What were the consequences of these

coaching processes? [Prompt if not] Has such processes ever been

suggested? [Prompt if not] Do you think such processes would remedy

 519

certain problems in this community? [Prompt if yes] What do you think

the consequences of such a coaching approach would be?

27. At this stage, I would like you to compare these four policy options in the context

of system dynamics K through 12 community.

a. Which of these four policy options do you think would be beneficial in the

case of this community?

b. Which of these four policy options do you think could be implemented?

Part III.

28. Is there anything you would like to add that might help me get a better

understanding of the system dynamics K through 12 community?

29. Is there anything you are surprised I have not brought up about the community?

30. Who else would you recommend I talk to about these issues?

31. What else do you think I should be asking during the interviews to get a better

understanding of these issues?

 520

APPENDIX B -- OPEN SOURCE SOFTWARE DEVELOPMENT MODEL

(ITERATION V VERSION) EQUATIONS AND SECTOR VIEWS7

B.1. Model Equations (Iteration V Version)

(001) Acceptable Level of Known Bugs per Functionality = 0.1 [Units: bugs/UF]

(002) Acceptable Level of Total Bugs per Functionality = 0.3 [Units: bugs/UF]

(003) Accepted Production = Production to be Filtered * Filtering Rate * (1 - Rejection
Ratio) [Units: lines/Month]

(004) Achieved Functionality Ratio = Product Functionality / Limit on Product
Functionality [Units: Dmnl]

(005) "Achieved/Expected Functionality Ratio" = Achieved Functionality Ratio /
Expected Functionality Ratio [Units: Dmnl]

(006) Attractiveness of Product for Developers Due to Achieved Functionality = f
Attractiveness for Developers vs Achieved Functionality ("Operative/Expected
Functionality Ratio") [Units: Dmnl]

(007) Attractiveness of Product for Developers Due to Potential Functionality = f
Attractiveness for Developers vs Potential Functionality (Achieved Functionality Ratio)
[Units: Dmnl]

(008) Attractiveness of Product for Developers Due to Users = f Attractiveness for
Developers vs Success in Attracting Users (Success in Attracting Users) [Units: Dmnl]

(009) Attractiveness of Product for Users = f Attractiveness for Users vs Achieved
Functionality (Achieved Functionality Ratio) [Units: Dmnl]

(010) Average Developer Participation = f Average Developer Participation vs
Rejection Ratio (Rejection Ratio) * Average Developer Participation Normal [Units:
hours/(Month*people)]

(011) Average Developer Participation Normal = 30 [Units: hours/(Month*people)]

(012) Average Developer Productivity = Average Developer Productivity Normal * f
Average Developer Productivity vs Participant Population Intensity (Participant
Population Intensity) [Units: lines/hour]

(013) Average Developer Productivity Normal = 5 [Units: lines/hour]

(014) Average Developer Talent = IF THEN ELSE (Developers = 0, 0, (Developer
Talent Pool / Developers)) [Units: RTU/people]

7 The model file for the Iteration V version of the OSSD model, as well as the prior versions (Iteration I
through Iteration IV) can be downloaded from http://www,glue,umd,edu/~diker. The page also contains a
link to download a loyalty free personal version of Vensim, the system dynamics modeling and simulation
package, which can be used to view and simulate the model.

 521

(015) Average Developer Talent Building Opportunity = Maximum Developer Talent -
Average Developer Talent [Units: RTU/people]

(016) Average Developer Talent Building Ratio = f Average Developer Talent Building
Ratio vs Coaching Hours Coverage (Coaching Hours Coverage) * Maximum Developer
Talent Building Ratio [Units: 1/Month]

(017) Average Developer Talent Built = Average Developer Talent Building
Opportunity * Average Developer Talent Building Ratio [Units: RTU/(Month*people)]

(018) Average Incoming Developer Talent = f Average Incoming Developer Talent vs
Refusal Ratio (Refusal Ratio) [Units: RTU/people]

(019) Average Leader Participation = 30 [Units: hours/(Month*people)]

(020) Average Leader Productivity = Average Leader Productivity Normal * f Average
Leader Productivity vs Participant Population Intensity (Participant Population Intensity
) [Units: lines/hour]

(021) Average Leader Productivity Normal = 10 [Units: lines/hour]

(022) Average Leader Talent = 1 [Units: RTU/people]

(023) Average Relative Developer Talent = Average Developer Talent / Maximum
Developer Talent [Units: Dmnl]

(024) Average Relative Leader Talent = Average Leader Talent / Maximum Developer
Talent [Units: Dmnl]

(025) Bug Discovery Rate Normal = 3 [Units: bugs/hour]

(026) Bug Fixing Quality = f Debugging Quality vs Average Relative Developer Talent
(Average Relative Developer Talent) [Units: Dmnl]

(027) Bug Fixing Rate Normal = 1 [Units: bugs/hour]

(028) Bug Generating Rate Normal = 0.01 [Units: bugs/line]

(029) Bugs Added per Bug Fixed = f Bugs Added per Bug Fixed vs Debugging Quality
(Bug Fixing Quality) * Bugs Added per Bug Fixed Normal [Units: Dmnl]

(030) Bugs Added per Bug Fixed Normal = 0.075 [Units: Dmnl]

(031) Bugs Fixed = (Developer Bug Fixing Rate * Developer Hours Allocated to Bug
Fixing) + (Leader Bug Fixing Rate * Leader Hours Allocated to Bug Fixing) [Units:
bugs/Month]

(032) Bugs Found = (Developer Bug Discovery Rate * Developer Hours Allocated to
Bug Detection) + (Leader Bug Discovery Rate * Leader Hours Allocated to Bug
Detection) [Units: bugs/Month]

(033) Bugs in Accepted Code = Accepted Production * Bugs per Code in Production to
be Filtered * (1 - Quality Improvement by Filtering) [Units: bugs/Month]

(034) Bugs in Production to be Filtered = INTEG(New Bugs in Production to be
Filtered - Bugs in Accepted Code - Bugs in Rejected Code , Initial Bugs in Production to
be Filtered) [Units: bugs]

 522

(035) Bugs in Rejected Code = Rejected Production * Bugs per Code in Production to
be Filtered * (1 + Quality Improvement by Filtering) [Units: bugs/Month]

(036) Bugs per Code = Total Bugs in Code / Project Size [Units: bugs/line]

(037) Bugs per Code in Production to be Filtered = ACTIVE INITIAL(ZIDZ (Bugs in
Production to be Filtered , Production to be Filtered) , 0.0064) [Units: bugs/line]

(038) Candidates Applying = Overall Attractiveness of Product for Developers *
Potential Developers / Normal Time to Attract All Potential Developers [Units:
people/Month]

(039) Candidates Refused = Selecting Rate * Refusal Ratio * Developer Candidates
[Units: people/Month]

(040) Candidates Selected as New Developers = Selecting Rate * (1 - Refusal Ratio) *
Developer Candidates [Units: people/Month]

(041) Coaching Hours Availability Ratio = ZIDZ (Total Coaching Hours Available ,
Developer Hours Needed for Coaching) [Units: Dmnl]

(042) Coaching Hours Coverage = Coaching Hours per Developer / Maximum
Coaching Hours Needed per Developer [Units: Dmnl]

(043) Coaching Hours Needed per Developer = Pressure for Talent Building *
Maximum Coaching Hours Needed per Developer [Units: hours/(Month*people)]

(044) Coaching Hours per Developer = ZIDZ (Developer Hours Allocated to Coaching
, Developers) [Units: hours/(Month*people)]

(045) Code Added per Bug Fixed = ZIDZ (f Code Added per Bug Fixed vs Debugging
Quality (Bug Fixing Quality) , Bugs per Code) [Units: lines/bug]

(046) Desired Time to Discover All Bugs = 6 [Units: Month]

(047) Desired Time to Fix All Known Bugs = 6 [Units: Month]

(048) Developer Bug Discovery Rate = Bug Discovery Rate Normal * f Bug Discovery
Rate vs Average Relative Developer Talent (Average Relative Developer Talent) * f
Bug Discovery Efficiency vs Unknown Bugs Density (Unknown Bug Density) [Units:
bugs/hour]

(049) Developer Bug Fixing Rate = Bug Fixing Rate Normal * f Bug Fixing Rate vs
Average Relative Developer Talent (Average Relative Developer Talent) [Units:
bugs/hour]

(050) Developer Bug Generating Rate = Bug Generating Rate Normal * f Bug
Generating Rate vs Average Relative Talent (Average Relative Developer Talent)
[Units: bugs/line]

(051) Developer Candidates = INTEG(Candidates Applying - Candidates Refused -
Candidates Selected as New Developers , 0) [Units: people]

(052) Developer Hours Allocated to Bug Detection = Developer Hours Revised
Allocation Factor * Developer Hours Needed for Bug Detection [Units: hours/Month]

 523

(053) Developer Hours Allocated to Bug Fixing = Developer Hours Revised Allocation
Factor * Developer Hours Needed for Bug Fixing [Units: hours/Month]

(054) Developer Hours Allocated to Coaching = Developer Hours Revised Allocation
Factor * Developer Hours Planned for Coaching [Units: hours/Month]

(055) Developer Hours Allocated to Production = Total Developer Hours Available -
"Total Developer Hours Allocated for Non-Production Tasks" [Units: hours/Month]

(056) Developer Hours Allocation Factor = f Developer Hours Allocation Factor vs
Developer Hours Coverage Ratio (Developer Hours Coverage Ratio) [Units: Dmnl]

(057) Developer Hours Coverage Ratio = ZIDZ (Total Developer Hours Available ,
Total Developer Hours Needed) [Units: Dmnl]

(058) Developer Hours for Bug Detection Gap = Developer Hours Needed for Bug
Detection - Developer Hours Allocated to Bug Detection [Units: hours/Month]

(059) Developer Hours for Bug Fixing Gap = Developer Hours Needed for Bug Fixing -
Developer Hours Allocated to Bug Fixing [Units: hours/Month]

(060) Developer Hours for Production Gap = Developer Hours Planned for Production -
Developer Hours Allocated to Production [Units: hours/Month]

(061) Developer Hours Needed for Bug Detection = (Pressure for Bug Detection *
ZIDZ (Unknown Bugs in Code , Developer Bug Discovery Rate)) / Desired Time to
Discover All Bugs [Units: hours/Month]

(062) Developer Hours Needed for Bug Fixing = (Pressure for Bug Fixing * ZIDZ (
Known Bugs in Code , Developer Bug Fixing Rate)) / Desired Time to Fix All Known
Bugs [Units: hours/Month]

(063) Developer Hours Needed for Coaching = MIN ((Coaching Hours Needed per
Developer * Developers) , Total Developer Hours Available) [Units: hours/Month]

(064) Developer Hours Planned for Coaching = f Developer Hours Planned for
Coaching vs Coaching Hours Availability Ratio (Coaching Hours Availability Ratio) *
Developer Hours Needed for Coaching [Units: hours/Month]

(065) Developer Hours Planned for Production = Total Developer Hours Available
[Units: hours/Month]

(066) Developer Hours Revised Allocation Factor = INTEG(Developer Hours Revised
Allocation Factor Adjustment , Initial Developer Hours Revised Allocation Factor)
[Units: Dmnl]

(067) Developer Hours Revised Allocation Factor Adjustment = Developer Hours
Revised Allocation Factor Adjustment Discrepancy / Developer Hours Revised
Allocation Factor Adjustment Time [Units: 1/Month]

(068) Developer Hours Revised Allocation Factor Adjustment Discrepancy = Indicated
Developer Hours Revised Allocation Factor - Developer Hours Revised Allocation
Factor [Units: Dmnl]

(069) Developer Hours Revised Allocation Factor Adjustment Time = 1 [Units:
Month]

 524

(070) Developer Talent Built = Average Developer Talent Built * Developers [Units:
RTU/Month]

(071) Developer Talent Gained = Average Incoming Developer Talent * Candidates
Selected as New Developers [Units: RTU/Month]

(072) Developer Talent Lost = Average Developer Talent * Leaving Developers
[Units: RTU/Month]

(073) Developer Talent Pool = INTEG(Developer Talent Gained - Developer Talent
Lost + Developer Talent Built , Initial Developer Talent Pool) [Units: RTU]

(074) Developers = INTEG(Candidates Selected as New Developers - Leaving
Developers , Initial Developers) [Units: people]

(075) Developers on Other Projects = INTEG(Potential Developers Choosing Other
Projects - Leaving Developers from Other Projects , Initial Developers on Other Projects
) [Units: people]

(076) Expected Funtionality Ratio = f Expected Functionality Ratio vs Patience (
Patience) [Units: Dmnl]

(077) f Attractiveness for Developers vs Achieved Functionality ([(0,0)-(6,1)],(0,0),
(0.165138,0), (0.311927,0.0307018), (0.40367,0.114035), (0.862385,0.758772),
(1.04587,0.96), (1.3211,0.986842), (1.54128,0.991228), (1.88379,0.995614),
(2.39755,0.995614), (2.88073,0.995614), (3.2844,0.995614), (4,1), (5,1)) [Units:
Dmnl]

(078) f Attractiveness for Developers vs Potential Functionality ([(0,0)-(1,1)],(0,1),
(0.125,0.994737), (0.25,0.987719), (0.3333,0.980263), (0.425,0.972807), (0.5,0.959211),
(0.575,0.890351), (0.6666,0.723684), (0.761468,0.486842), (0.810398,0.328947),
(0.862385,0.184211), (0.905199,0.0877193), (0.941896,0.0394737), (0.97,0), (1,0))
[Units: Dmnl]

(079) f Attractiveness for Developers vs Success in Attracting Users ([(0,0)-(1,4)
],(0,1), (0.125382,1.07018), (0.24159,1.22807), (0.348624,1.47368), (0.428135,1.82456),
(0.5,2.31579), (0.575,2.96491), (0.6666,3.5614), (0.75,3.78947), (0.875,3.92982),
(1,3.96491)) [Units: Dmnl]

(080) f Attractiveness for Users vs Achieved Functionality ([(0,0)-(1,1)], (0,0),
(0.131498,0.00877193), (0.253823,0.0263158), (0.357798,0.0701754),
(0.477064,0.131579), (0.574924,0.241228), (0.651376,0.390351), (0.706422,0.557018),
(0.749235,0.697368), (0.807339,0.837719), (0.892966,0.95614), (1,1)) [Units: Dmnl]

(081) f Average Developer Participation vs Rejection Ratio ([(0,0)-(1,1.4)],(0,1.3333),
(0.1,1.1667), (0.2,1), (0.35,0.8), (0.5,0.65), (0.6,0.5667), (0.75,0.5), (0.85,0.4333),
(0.9,0.36667), (0.95,0.2667), (1,0)) [Units: Dmnl]

(082) f Average Developer Productivity vs Participant Population Intensity ([(0,0)-
(3,1)],(0,1), (0.2,1), (0.4,0.99), (0.62,0.95), (0.95,0.85), (1.5,0.6), (2,0.4), (2.3,0.29),
(2.5,0.22), (3,0.2)) [Units: Dmnl]

 525

(083) f Average Developer Talent Building Ratio vs Coaching Hours Coverage ([(0,0)-
(1,1)],(0,0), (0.1,0.02), (0.2,0.08), (0.3,0.19), (0.4,0.36), (0.5,0.6), (0.6,0.78), (0.7,0.87),
(0.8,0.94), (0.9,0.98), (1,1)) [Units: Dmnl]

(084) f Average Incoming Developer Talent vs Refusal Ratio ([(0,0)-(1,1)], (0,0.3),
(0.045,0.4), (0.1,0.5), (0.2,0.65), (0.3,0.75), (0.45,0.85), (0.6,0.9), (0.8,0.95), (1,1))
[Units: RTU/people]

(085) f Average Leader Productivity vs Participant Population Intensity ([(0,0)-(3,1)
],(0,1), (0.2,1), (0.4,0.99), (0.62,0.95), (0.95,0.85), (1.5,0.6), (2,0.4), (2.3,0.29),
(2.5,0.22), (3,0.2)) [Units: Dmnl]

(086) f Bug Discovery Efficiency vs Unknown Bugs Density ([(0,0)-(1,1)],(0,0),
(0.1,0.2), (0.2,0.37), (0.3,0.52), (0.4,0.65), (0.5,0.77), (0.6,0.85), (0.7,0.91), (0.8,0.96),
(0.9,0.98), (1,1), (2,1), (5,1)) [Units: Dmnl]

(087) f Bug Discovery Rate vs Average Relative Developer Talent ([(0,0)-(1,1)],(0,0),
(0.1,0.02), (0.2,0.05), (0.3,0.15), (0.4,0.3), (0.5,0.5), (0.6,0.7), (0.7,0.85), (0.8,0.95),
(0.9,0.98), (1,1)) [Units: Dmnl]

(088) f Bug Fixing Rate vs Average Relative Developer Talent ([(0,0)-(1,1)],(0,0),
(0.1,0.02), (0.2,0.05), (0.3,0.15), (0.4,0.3), (0.5,0.5), (0.6,0.7), (0.7,0.85), (0.8,0.95),
(0.9,0.98), (1,1)) [Units: Dmnl]

(089) f Bug Generating Rate vs Average Relative Talent ([(0,0)-(1,1)],(0,1), (0.1,0.98),
(0.2,0.95), (0.3,0.89), (0.4,0.78), (0.5,0.65), (0.6,0.48), (0.7,0.28), (0.8,0.14), (0.9,0.07),
(1,0.05)) [Units: Dmnl]

(090) f Bugs Added per Bug Fixed vs Debugging Quality ([(0,0)-(1,1)],(0,1),
(0.1,0.98), (0.2,0.95), (0.3,0.85), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.15), (0.8,0.05),
(0.9,0.02), (1,0)) [Units: Dmnl]

(091) f Code Added per Bug Fixed vs Debugging Quality ([(0,0)-(1,1)],(0,1),
(0.1,0.98), (0.2,0.95), (0.3,0.85), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.15), (0.8,0.05),
(0.9,0.02), (1,0)) [Units: Dmnl]

(092) f Debugging Quality vs Average Relative Developer Talent ([(0,0)-(1,1)],(0,0),
(0.1,0.03), (0.2,0.1), (0.3,0.2), (0.4,0.36), (0.5,0.58), (0.6,0.8), (0.7,0.94), (0.8,0.98),
(0.9,0.995), (1,1)) [Units: Dmnl]

(093) f Developer Hours Allocation Factor vs Developer Hours Coverage Ratio ([(0,0)-
(1,1)],(0,0), (0.01,0), (0.25,0.24), (0.5,0.49), (0.75,0.74), (1,0.99), (20,0.99)) [Units:
Dmnl]

(094) f Developer Hours Planned for Coaching vs Coaching Hours Availability Ratio (
[(0,0)-(1,1)],(0,0), (1,1), (20,1)) [Units: Dmnl]

(095) f Developer Hours Revised Allocation Factor vs Pressure for Production ([(0,0)-
(1,1)],(0,1), (0.1,0.97), (0.2,0.9), (0.3,0.767544), (0.4,0.6), (0.5,0.416667),
(0.6,0.280702), (0.7,0.2), (0.8,0.15), (0.9,0.12), (1,0.1)) [Units: Dmnl]

(096) f Expected Functionality Ratio vs Patience ([(0,0)-(1,1)],(0,1), (0.1,0.97),
(0.2,0.92), (0.3,0.833333), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.166667), (0.8,0.08),
(0.9,0.03), (1,0.0001)) [Units: Dmnl]

 526

(097) f Functionality Adding Efficiency vs Achieved Ratio ([(0,0)-(1,1)],(0,1),
(0.140673,0.99), (0.25,0.98), (0.38,0.9693), (0.5,0.9561), (0.65,0.9386), (0.75,0.9211),
(0.85,0.8947), (0.9,0.8553), (0.929664,0.7763), (0.95,0.5877), (1,0)) [Units: Dmnl]

(098) f Functionality Lost per Bug Fixed vs Debugging Quality ([(0,0)-(1,1)],(0,1),
(0.1,0.98), (0.2,0.95), (0.3,0.85), (0.4,0.7), (0.5,0.5), (0.6,0.3), (0.7,0.15), (0.8,0.05),
(0.9,0.02), (1,0)) [Units: Dmnl]

(099) f Initial Developer Hours Revised Allocation Factor vs initial Average Developer
Participation ([(0,0)-(8,0.6)],(0,0), (7,0), (8,0.6), (300,0.6), (1000,0.6)) [Units: Dmnl]

(100) f Initial Leader Hours Revised Allocation Factor vs initial Leader Hours Coverage
Ratio ([(0,0)-(1,0.6)],(0,0), (0.01,0), (0.015,0.6), (1,0.6), (11,0.6), (300,0.6), (1000,0.6))
[Units: Dmnl]

(101) f Leader Hours Allocation Factor vs Leader Hours Coverage Ratio ([(0,0)-(1,1)
],(0,0), (1,1), (20,1)) [Units: Dmnl]

(102) f Leader Hours Planned for Coaching vs Leader Hours Availability for Coaching (
[(0,0)-(100,1)],(0,0), (0.001,1), (1,1), (2,0.5), (2.5,0.4), (4,0.25), (5,0.2), (8,0.125),
(10,0.1), (12.5,0.08), (20,0.05), (40,0.025), (100,0.01)) [Units: Dmnl]

(103) f Leader Hours Revised Allocation Factor vs Pressure for Production ([(0,0)-
(1,1)],(0,1), (0.1,0.97), (0.2,0.9), (0.3,0.767544), (0.4,0.6), (0.5,0.416667),
(0.6,0.280702), (0.7,0.2), (0.8,0.15), (0.9,0.12), (1,0.1)) [Units: Dmnl]

(104) f Leaving Accelaration vs Achieved Functionality ([(0,0)-(1,10)],(0,10),
(0.088685,9.76316), (0.159021,9.36842), (0.214067,8.85526), (0.262997,8.22368),
(0.308868,7.5), (0.342508,6.7), (0.379205,5.53947), (0.40367,4.55263),
(0.428135,3.48684), (0.470948,2.53947), (0.510703,1.78947), (0.562691,1.23684),
(0.657492,1.01754), (0.75,1), (1,1), (5,1)) [Units: Dmnl]

(105) f Leaving Accelaration vs Perceived Product Quality ([(0,0)-(1,10)], (0,10),
(0.088685,9.76316), (0.159021,9.36842), (0.214067,8.85526), (0.262997,8.22368),
(0.308868,7.5), (0.342508,6.7), (0.379205,5.78947), (0.425076,4.60526),
(0.470948,3.90351), (0.510703,3.20175), (0.562691,2.58772), (0.657492,1.97368),
(0.75,1.5), (1,1)) [Units: Dmnl]

(106) f Leaving Accelaration vs Potential Functionality ([(0,0)-(1,20)],(0,1), (0.15,1.1),
(0.3,1.22), (0.45,1.35), (0.6,1.6), (0.75,1.95), (0.85,2.6), (0.91,4), (0.944954,6.15),
(0.97,8.8), (0.985,12.5), (1,20)) [Units: Dmnl]

(107) "f Leaving Leaders Coefficient vs Operative/Expected Functionality Ratio" (
[(0,0)-(5,1)],(0,0.5), (0.1,0.3), (0.2,0.18), (0.3,0.12), (0.4,0.08), (0.5,0.04), (0.6,0.01),
(0.7,0), (0.8,0), (0.9,0), (1,0), (5,0)) [Units: 1/Month]

(108) f Leaving Users Acceleration vs Achieved Functionality ([(0,0)-(5,20)],(0,20),
(0.0764526,13.6842), (0.129969,9.91228), (0.197248,6.66667), (0.3,4), (0.42,2.4),
(0.6,1.15), (1,1), (5,1)) [Units: Dmnl]

 527

(109) f Leaving Users Acceleration vs Perceived Product Quality ([(0,0)-(1,10)
],(0,10), (0.088685,9.76316), (0.159021,9.36842), (0.214067,8.85526),
(0.262997,8.22368), (0.308868,7.5), (0.342508,6.7), (0.379205,5.78947),
(0.425076,4.60526), (0.470948,3.90351), (0.510703,3.20175), (0.562691,2.58772),
(0.657492,1.97368), (0.75,1.5), (1,1)) [Units: Dmnl]

(110) f New Users Acceleration vs Success in Attracting ([(0,0)-(1,10)],(0,1),
(0.0458716,3.91667), (0.0764526,4.91667), (0.143731,6.21053), (0.272171,7.51316),
(0.434251,8.73684), (0.6,9.28947), (0.75,9.56579), (0.85,9.72368), (0.944954,9.88158),
(1,10)) [Units: Dmnl]

(111) f Normal Time to Attract All Potential Developers vs Refusal Ratio ([(0,0)-
(1,10)],(0,0.8), (0.1,1), (0.2,1.2), (0.3,1.5), (0.4,2), (0.5,2.5), (0.6,3.4), (0.7,4.5), (0.8,6),
(0.9,7.8), (1,10)) [Units: Dmnl]

(112) f Optimal Filtering Rate vs Optimal Filtering Horizon ([(0,0)-(5,2)], (0,0), (1e-
006,2), (0.5,1.4), (1,1), (2,0.5), (3,0.333), (4,0.25), (5,0.2), (6,0.166), (7,0.143), (8,0.125),
(9,0.111), (10,0.1), (20,0.05), (100,0.01)) [Units: 1/Month]

(113) f Perceived Product Quality vs Severity of Total Bugs Problem ([(0,0)-(40,1)
],(0,1), (0.1,1), (0.963303,0.964912), (1.36086,0.921053), (1.80428,0.79386),
(2.15596,0.600877), (2.53823,0.381579), (3.0581,0.22807), (3.59327,0.135965),
(4.29664,0.0745614), (5,0.05), (10,0.02), (30,0)) [Units: Dmnl]

(114) f Pressure for Bug Detection vs Perceived Product Quality ([(0,0)-(1,1)],(0,1),
(0.214067,0.982456), (0.360856,0.942982), (0.5,0.846491), (0.59633,0.758772),
(0.688073,0.635965), (0.752294,0.45614), (0.788991,0.276316), (0.83792,0.149123),
(0.899083,0.0526316), (1,0)) [Units: Dmnl]

(115) f Pressure for Bug Fixing vs Severity of Known Bugs Problem ([(0,0)-(5,1)
],(0,0), (1,0), (1.46789,0.0657895), (1.92661,0.20614), (2.27829,0.429825),
(2.53823,0.618421), (2.98165,0.828947), (3.50153,0.921053), (4.09786,0.986842),
(5,0.99), (10,0.99), (50,0.99)) [Units: Dmnl]

(116) "f Pressure for Production vs Achieved/Expected Functionality Ratio" ([(0,0)-
(1,1)],(0,1), (0.1,0.98), (0.2,0.95), (0.3,0.9), (0.4,0.8), (0.5,0.6), (0.6,0.4), (0.7,0.23),
(0.8,0.11), (0.9,0.03), (1,0), (20,0)) [Units: Dmnl]

(117) "f Pressure for Production vs Operative/Expected Functionality Ratio" ([(0,0)-
(1,1)],(0,1), (0.1,0.98), (0.2,0.95), (0.3,0.9), (0.4,0.8), (0.5,0.6), (0.6,0.4), (0.7,0.23),
(0.8,0.11), (0.9,0.03), (1,0), (20,0)) [Units: Dmnl]

(118) f Pressure for Talent Building vs Talent Building Opportunity ([(0,0)-(1,1)
],(0,0), (1,1)) [Units: Dmnl]

(119) f Quality Improvement by Filtering vs Quality of Filtering ([(0,0)-(1,0.3)],(0,0),
(0.125,0.01), (0.25,0.03), (0.375,0.058), (0.5,0.09), (0.625,0.128), (0.75,0.17),
(0.875,0.225), (1,0.3)) [Units: Dmnl]

(120) f Quality of Filtering vs Relative Filtering Rate ([(0,0)-(10,1)],(0,1), (0.5,1),
(1,1), (1.6,0.84), (2.5,0.64), (3.2,0.52), (4,0.4), (5,0.28), (6.2,0.18), (7.5,0.1), (8.5,0.05),
(10,0)) [Units: Dmnl]

 528

(121) f Time to Lose Patience vs Limit on Product Functionality ([(0,0)-(20000,8)
],(0,0), (400,1), (1000,1.68), (2000,2.6), (3000,3.4), (4000,4), (7000,5.2), (10000,6),
(20000,7.5)) [Units: Dmnl]

(122) f Weight on Expected Functionality Ratio vs Expected Functionality Ratio (
[(0,0)-(1,1)],(0,1), (0.1,1), (0.12,0.98), (0.14,0.94), (0.1666,0.85), (0.185,0.72), (0.2,0.5),
(0.215,0.28), (0.2333,0.15), (0.26,0.06), (0.28,0.02), (0.3,0), (1,0)) [Units: Dmnl]

(123) Filtering Rate = 0.5 [Units: 1/Month]

(124) FINAL TIME = 100 [Units: Month]

(125) Functionality Lost by Debugging = Functionality Lost per Bug Fixed * Bugs
Fixed [Units: UF/Month]

(126) Functionality Lost per Bug Fixed = ZIDZ (f Functionality Lost per Bug Fixed vs
Debugging Quality (Bug Fixing Quality) , Total Bugs per Functionality) [Units:
UF/bug]

(127) Functionality per Code = Product Functionality / Project Size [Units: UF/line]

(128) Increase in Limit on Product Functionality = Increase in Limit on Product
Functionality Coefficient * Limit on Product Functionality [Units: UF/Month]

(129) Increase in Limit on Product Functionality Coefficient = 0.002 [Units: 1/Month]

(130) Indicated Developer Hours Revised Allocation Factor = f Developer Hours
Revised Allocation Factor vs Pressure for Production (Pressure for Production) *
Developer Hours Allocation Factor [Units: Dmnl]

(131) Indicated Leader Hours Revised Allocation Factor = f Leader Hours Revised
Allocation Factor vs Pressure for Production (Pressure for Production on Leaders) *
Leader Hours Allocation Factor [Units: Dmnl]

(132) Initial Bugs in Production to be Filtered = 0 [Units: bugs]

(133) Initial Developer Hours Revised Allocation Factor = f Initial Developer Hours
Revised Allocation Factor vs initial Average Developer Participation (Average
Developer Participation) [Units: Dmnl]

(134) Initial Developer Talent Pool = Average Incoming Developer Talent * Initial
Developers [Units: RTU]

(135) Initial Developers = 7 [Units: people]

(136) Initial Developers on Other Projects = Initial Developers on Other Projects per
Limit on Product Functionality * Limit on Product Functionality [Units: people]

(137) Initial Developers on Other Projects per Limit on Product Functionality = 0.1
[Units: people/UF]

(138) Initial Functionality = 0 [Units: UF]

(139) Initial Known Bugs = 0 [Units: bugs]

 529

(140) Initial Leader Hours Revised Allocation Factor = f Initial Leader Hours Revised
Allocation Factor vs initial Leader Hours Coverage Ratio (Leader Hours Coverage Ratio
) [Units: Dmnl]

(141) Initial Leaders = 3 [Units: people]

(142) Initial Limit on Product Functionality = 400 [Units: UF]

(143) Initial Patience = 1 [Units: Dmnl]

(144) Initial Potential Developers = Initial Potential Developers per Limit on Product
Functionality * Limit on Product Functionality [Units: people]

(145) Initial Potential Developers per Limit on Product Functionality = 0.025 [Units:
people/UF]

(146) Initial Potential Users = Initial Potential Users per Limit on Product Functionality
* Limit on Product Functionality [Units: people]

(147) Initial Potential Users per Limit on Product Functionality = 20 [Units:
people/UF]

(148) Initial Production to be Filtered = 0 [Units: lines]

(149) Initial Project Size = 0.012 [Units: lines]

(150) INITIAL TIME = 0 [Units: Month]

(151) Initial Unknown Bugs = 0 [Units: bugs]

(152) Initial Users = 0 [Units: people]

(153) Initial Users Using Competitor Products = Initial Users Using Competitor
Products per Limit on Product Functionality * Limit on Product Functionality [Units:
people]

(154) Initial Users Using Competitor Products per Limit on Product Functionality = 30
[Units: people/UF]

(155) Known Bugs in Code = INTEG(Bugs Found - Bugs Fixed , Initial Known Bugs)
[Units: bugs]

(156) Known Bugs per Code = Known Bugs in Code / Project Size [Units: bugs/line]

(157) Known Bugs per Functionality = ZIDZ (Known Bugs in Code , Product
Functionality) [Units: bugs/UF]

(158) Leader Bug Discovery Rate = Bug Discovery Rate Normal * f Bug Discovery
Efficiency vs Unknown Bugs Density (Unknown Bug Density) [Units: bugs/hour]

(159) Leader Bug Fixing Rate = 1 [Units: bugs/hour]

(160) Leader Bug Generating Rate = Bug Generating Rate Normal * f Bug Generating
Rate vs Average Relative Talent (Average Relative Leader Talent) [Units: bugs/line]

(161) Leader Hours Allocated to Bug Detection = Leader Hours Revised Allocation
Factor * Leader Hours Needed for Bug Detection [Units: hours/Month]

 530

(162) Leader Hours Allocated to Bug Fixing = Leader Hours Revised Allocation Factor
* Leader Hours Needed for Bug Fixing [Units: hours/Month]

(163) Leader Hours Allocated to Coaching = Leader Hours Revised Allocation Factor *
Leader Hours Planned for Coaching [Units: hours/Month]

(164) Leader Hours Allocated to Production = Total Leader Hours Available - "Total
Leader Hours Allocated for Non-Production Tasks" [Units: hours/Month]

(165) Leader Hours Allocation Factor = f Leader Hours Allocation Factor vs Leader
Hours Coverage Ratio (Leader Hours Coverage Ratio) [Units: Dmnl]

(166) Leader Hours Availability for Coaching = ZIDZ (Leader Hours Needed for
Coaching , Maximum Total Leader Hours Available for Coaching) [Units: Dmnl]

(167) Leader Hours Coverage Ratio = ZIDZ (Total Leader Hours Available , Total
Leader Hours Needed) [Units: Dmnl]

(168) Leader Hours Needed for Bug Detection = ZIDZ (Developer Hours for Bug
Detection Gap , "Leader/Developer Bug Discovery Efficiency Ratio") [Units:
hours/Month]

(169) Leader Hours Needed for Bug Fixing = ZIDZ (Developer Hours for Bug Fixing
Gap , "Leader/Developer Bug Fixing Efficiency Ratio") [Units: hours/Month]

(170) Leader Hours Needed for Coaching = Developer Hours Needed for Coaching
[Units: hours/Month]

(171) Leader Hours Needed for Filtering = 1 [Units: hours/Month]

(172) Leader Hours Needed for Selecting = 1 [Units: hours/Month]

(173) Leader Hours Planned for Coaching = f Leader Hours Planned for Coaching vs
Leader Hours Availability for Coaching (Leader Hours Availability for Coaching) *
Leader Hours Needed for Coaching [Units: hours/Month]

(174) Leader Hours Planned for Production = Total Leader Hours Available [Units:
hours/Month]

(175) Leader Hours Revised Allocation Factor = INTEG(Leader Hours Revised
Allocation Factor Adjustment , Initial Leader Hours Revised Allocation Factor) [Units:
Dmnl]

(176) Leader Hours Revised Allocation Factor Adjustment = Leader Hours Revised
Allocation Factor Adjustment Discrepancy / Leader Hours Revised Allocation Factor
Adjustment Time [Units: 1/Month]

(177) Leader Hours Revised Allocation Factor Adjustment Discrepancy = Indicated
Leader Hours Revised Allocation Factor - Leader Hours Revised Allocation Factor
[Units: Dmnl]

(178) Leader Hours Revised Allocation Factor Adjustment Time = 4 [Units: Month]

(179) "Leader/Developer Bug Discovery Efficiency Ratio" = IF THEN ELSE (
Developer Bug Discovery Rate > 0, (Leader Bug Discovery Rate / Developer Bug
Discovery Rate) , 1.308) [Units: Dmnl]

 531

(180) "Leader/Developer Bug Fixing Efficiency Ratio" = ZIDZ (Leader Bug Fixing
Rate , Developer Bug Fixing Rate) [Units: Dmnl]

(181) "Leader/Developer Coaching Ratio" = 1 [Units: Dmnl]

(182) Leaders = INTEG(- Leaving Leaders , Initial Leaders) [Units: people]

(183) Leaders Coaching Involvement Factor = 0.9 [Units: Dmnl]

(184) Leaving Accelaration Due to Low Achieved Functionality = f Leaving
Accelaration vs Achieved Functionality ("Operative/Expected Functionality Ratio")
[Units: Dmnl]

(185) Leaving Accelaration Due to Low Quality = f Leaving Accelaration vs Perceived
Product Quality (Perceived Product Quality) [Units: Dmnl]

(186) Leaving Acceleration Due to Potential Functionality = f Leaving Accelaration vs
Potential Functionality (Achieved Functionality Ratio) [Units: Dmnl]

(187) Leaving Developers = Leaving Acceleration Due to Potential Functionality *
Leaving Accelaration Due to Low Achieved Functionality * Leaving Accelaration Due to
Low Quality * Developers / Normal Time for Developers to Leave [Units:
people/Month]

(188) Leaving Developers from Other Projects = Developers on Other Projects / Normal
Time for Developers to Leave [Units: people/Month]

(189) Leaving Leaders = Leaders * Leaving Leaders Coefficient [Units:
people/Month]

(190) Leaving Leaders Coefficient = "f Leaving Leaders Coefficient vs
Operative/Expected Functionality Ratio" ("Operative/Expected Functionality Ratio")
[Units: 1/Month]

(191) Leaving Users = Leaving Users Acceleration Due to Low Achieved Functionality
* Leaving Users Acceleration Due to Low Quality * Users / Normal Time to Lose All
Users [Units: people/Month]

(192) Leaving Users Acceleration Due to Low Achieved Functionality = f Leaving
Users Acceleration vs Achieved Functionality ("Operative/Expected Functionality
Ratio") [Units: Dmnl]

(193) Leaving Users Acceleration Due to Low Quality = f Leaving Users Acceleration
vs Perceived Product Quality (Perceived Product Quality) [Units: Dmnl]

(194) Leaving Users from Competitor Products = Users Using Competitor Products /
Normal Time to Lose All Users [Units: people/Month]

(195) Limit on Product Functionality = INTEG(Increase in Limit on Product
Functionality , Initial Limit on Product Functionality) [Units: UF]

(196) Maximum Coaching Hours Needed per Developer = 10 [Units:
hours/(Month*people)]

(197) Maximum Developer Talent = 1 [Units: RTU/people]

(198) Maximum Developer Talent Building Ratio = 0.1 [Units: 1/Month]

 532

(199) Maximum Talent Building Opportunity = 1 [Units: RTU/people]

(200) Maximum Total Leader Hours Available for Coaching = Leaders Coaching
Involvement Factor * Total Leader Hours Available [Units: hours/Month]

(201) New Bugs Added by Bug Fixes = Bugs Added per Bug Fixed * Bugs Fixed
[Units: bugs/Month]

(202) New Bugs Added by Production = Bugs in Accepted Code + (Leader Bug
Generating Rate * Production by Leaders) [Units: bugs/Month]

(203) New Bugs in Production to be Filtered = (Developer Bug Generating Rate *
Production by Developers) [Units: bugs/Month]

(204) New Product Functionality Added = Product Functionality Adding Efficiency *
Total Production [Units: UF/Month]

(205) New Users = New Users Acceleration Due to Success in Attracting *
Attrractiveness of Product for Users * Potential Users / Normal Time to Attract All
Potential Users [Units: people/Month]

(206) New Users Acceleration Due to Success in Attracting = f New Users Acceleration
vs Success in Attracting (Success in Attracting Users) [Units: Dmnl]

(207) Normal Time for Developers to Leave = 96 [Units: Month]

(208) Normal Time to Attract All Potential Developers = f Normal Time to Attract All
Potential Developers vs Refusal Ratio (Refusal Ratio) * Time to Attract Developers
Normal [Units: Month]

(209) Normal Time to Attract All Potential Users = 36 [Units: Month]

(210) Normal Time to Lose All Potential Developers to Other Projects = 10 [Units:
Month]

(211) Normal Time to Lose All Potential Users to Competitor Products = 36 [Units:
Month]

(212) Normal Time to Lose All Users = 60 [Units: Month]

(213) Normal Time to Lose Patience = 25 [Units: Month]

(214) Operative Functionality Ratio = (Weight on Expected Functionality Ratio *
Expected Funtionality Ratio) + (Weight on Achieved Functionality Ratio * Achieved
Functionality Ratio) [Units: Dmnl]

(215) "Operative/Expected Functionality Ratio" = Operative Functionality Ratio /
Expected Funtionality Ratio [Units: Dmnl]

(216) Optimal Filtering Amount = Optimal Filtering Amount per Leader * Leaders
[Units: lines/Month]

(217) Optimal Filtering Amount per Leader = 3000 [Units: lines/(Month*people)]

(218) Optimal Filtering Horizon = ZIDZ (Production to be Filtered , Optimal Filtering
Amount) [Units: Month]

 533

(219) Optimal Filtering Rate = f Optimal Filtering Rate vs Optimal Filtering Horizon (
Optimal Filtering Horizon) [Units: 1/Month]

(220) Overall Attractiveness of Product for Developers = (Attractiveness of Product for
Developers Due to Achieved Functionality * Attractiveness of Product for Developers
Due to Potential Functionality * Attractiveness of Product for Developers Due to Users)
[Units: Dmnl]

(221) Participant Population Intensity = (Developers + Leaders) / Productive
Participant Population Limit [Units: Dmnl]

(222) Patched Code = Code Added per Bug Fixed * Bugs Fixed [Units: lines/Month]

(223) Patience = INTEG(- Patience Lost , Initial Patience) [Units: Dmnl]

(224) Patience Lost = Patience / Time to Lose Patience [Units: 1/Month]

(225) Perceived Product Quality = f Perceived Product Quality vs Severity of Total
Bugs Problem (Severity of Total Bugs Problem) [Units: Dmnl]

(226) Potential Developers = INTEG(Leaving Developers + Leaving Developers from
Other Projects + Candidates Refused - Candidates Applying - Potential Developers
Choosing Other Projects , Initial Potential Developers) [Units: people]

(227) Potential Developers Choosing Other Projects = Potential Developers / Normal
Time to Lose All Potential Developers to Other Projects [Units: people/Month]

(228) Potential Users = INTEG(Leaving Users + Leaving Users from Competitor
Products - New Users - Potential Users Choosing Competitor Products , Initial Potential
Users) [Units: people]

(229) Potential Users Choosing Competitor Products = Potential Users / Normal Time
to Lose All Potential Users to Competitor Products [Units: people/Month]

(230) Pressure for Bug Detection = f Pressure for Bug Detection vs Perceived Product
Quality (Perceived Product Quality) [Units: Dmnl]

(231) Pressure for Bug Fixing = f Pressure for Bug Fixing vs Severity of Known Bugs
Problem (Severity of Known Bugs Problem) [Units: Dmnl]

(232) Pressure for Production = "f Pressure for Production vs Operative/Expected
Functionality Ratio" ("Operative/Expected Functionality Ratio") [Units: Dmnl]

(233) Pressure for Production on Leaders = "f Pressure for Production vs
Achieved/Expected Functionality Ratio" ("Achieved/Expected Functionality Ratio")
[Units: Dmnl]

(234) Pressure for Talent Building = f Pressure for Talent Building vs Talent Building
Opportunity (Relative Average Talent Building Opportunity) [Units: Dmnl]

(235) Product Functionality = INTEG(New Product Functionality Added -
Functionality Lost by Debugging , Initial Functionality) [Units: UF]

(236) Product Functionality Adding Efficiency = f Functionality Adding Efficiency vs
Achieved Ratio (Achieved Functionality Ratio) * Product Functionality Adding
Efficiency Normal [Units: UF/line]

 534

(237) Product Functionality Adding Efficiency Normal = 0.006 [Units: UF/line]

(238) Production by Developers = Average Developer Productivity * Developer Hours
Allocated to Production [Units: lines/Month]

(239) Production by Leaders = Average Leader Productivity * Leader Hours Allocated
to Production [Units: lines/Month]

(240) Production to be Filtered = INTEG(Production by Developers - Accepted
Production - Rejected Production , Initial Production to be Filtered) [Units: lines]

(241) Productive Participant Population Limit = 100 [Units: people]

(242) Project Size = INTEG(Patched Code + Total Production , Initial Project Size)
[Units: lines]

(243) Quality Improvement by Filtering = f Quality Improvement by Filtering vs
Quality of Filtering (Quality of Filtering) [Units: Dmnl]

(244) Quality of Filtering = f Quality of Filtering vs Relative Filtering Rate (Relative
Filtering Rate) [Units: Dmnl]

(245) Refusal Ratio = 0.1 [Units: Dmnl]

(246) Rejected Production = Production to be Filtered * Filtering Rate * Rejection Ratio
[Units: lines/Month]

(247) Rejection Ratio = 0.2 [Units: Dmnl]

(248) Relative Average Talent Building Opportunity = Average Developer Talent
Building Opportunity / Maximum Talent Building Opportunity [Units: Dmnl]

(249) Relative Filtering Rate = ZIDZ (Filtering Rate , Optimal Filtering Rate) [Units:
Dmnl]

(250) SAVEPER = TIME STEP [Units: Month]

(251) Selecting Rate = 0.5 [Units: 1/Month]

(252) Severity of Known Bugs Problem = Known Bugs per Functionality / Acceptable
Level of Known Bugs per Functionality [Units: Dmnl]

(253) Severity of Total Bugs Problem = Total Bugs per Functionality / Acceptable
Level of Total Bugs per Functionality [Units: Dmnl]

(254) Success in Attracting Users = Users / Total User Population [Units: Dmnl]

(255) TIME STEP = 0.125 [Units: Month]

(256) Time to Attract Developers Normal = 10 [Units: Month]

(257) Time to Lose Patience = f Time to Lose Patience vs Limit on Product
Functionality (Limit on Product Functionality) * Normal Time to Lose Patience [Units:
Month]

(258) Total Bugs in Code = Known Bugs in Code + Unknown Bugs in Code [Units:
bugs]

 535

(259) Total Bugs per Functionality = ACTIVE INITIAL(ZIDZ (Total Bugs in Code ,
Product Functionality) , 0.6) [Units: bugs/UF]

(260) Total Coaching Hours Available = "Leader/Developer Coaching Ratio" * Leader
Hours Allocated to Coaching [Units: hours/Month]

(261) "Total Developer Hours Allocated for Non-Production Tasks" = Developer Hours
Allocated to Bug Detection + Developer Hours Allocated to Bug Fixing + Developer
Hours Allocated to Coaching [Units: hours/Month]

(262) Total Developer Hours Available = Average Developer Participation *
Developers [Units: hours/Month]

(263) Total Developer Hours Needed = Developer Hours Planned for Production +
"Total Developer Hours Needed for Non-Production Tasks" [Units: hours/Month]

(264) "Total Developer Hours Needed for Non-Production Tasks" = Developer Hours
Needed for Bug Detection + Developer Hours Needed for Bug Fixing + Developer Hours
Planned for Coaching [Units: hours/Month]

(265) "Total Leader Hours Allocated for Non-Production Tasks" = Leader Hours
Allocated to Bug Detection + Leader Hours Allocated to Bug Fixing + Leader Hours
Allocated to Coaching [Units: hours/Month]

(266) Total Leader Hours Available = Average Leader Participation * Leaders [Units:
hours/Month]

(267) Total Leader Hours Needed = Leader Hours Planned for Production + "Total
Leader Hours Needed for Non-Production Tasks" [Units: hours/Month]

(268) "Total Leader Hours Needed for Non-Production Tasks" = Leader Hours Needed
for Bug Detection + Leader Hours Needed for Bug Fixing + Leader Hours Planned for
Coaching [Units: hours/Month]

(269) Total Participants = Leaders + Developers [Units: people]

(270) Total Production = Production by Leaders + Accepted Production [Units:
lines/Month]

(271) Total User Population = Users + Potential Users + Users Using Competitor
Products [Units: people]

(272) Unknown Bug Density = ZIDZ (Unknown Bugs per Code , Bug Generating Rate
Normal) [Units: Dmnl]

(273) Unknown Bugs in Code = INTEG(New Bugs Added by Production - Bugs Found
+ New Bugs Added by Bug Fixes , Initial Unknown Bugs) [Units: bugs]

(274) Unknown Bugs per Code = Unknown Bugs in Code / Project Size [Units:
bugs/line]

(275) Users = INTEG(New Users - Leaving Users , Initial Users) [Units: people]

(276) Users Using Competitor Products = INTEG(Potential Users Choosing
Competitor Products - Leaving Users from Competitor Products , Initial Users Using
Competitor Products) [Units: people]

 536

(277) Weight on Achieved Functionality Ratio = 1 - Weight on Expected Functionality
Ratio [Units: Dmnl]

(278) Weight on Expected Functionality Ratio = f Weight on Expected Functionality
Ratio vs Expected Functionality Ratio (Expected Functionality Ratio) [Units: Dmnl]

 537

B.2. Model Sector Views (Iteration V Version) Developers and Production Sector

Developers

Average Developer
Participation

Total
Production

Average Developer
Productivity

Product
Functionality

+
New Product

Functionality Added

+

Product Functionality
Adding Efficiency

+

Attrractiveness of Product
for Developers Due to
Potential Functionality

+

-
Candidates Applying

Limit on
Product

Functionality

-

Achieved
Functionality Ratio+

-

-

Overall Attractiveness
of Product for

Developers
+

Attrractiveness of
Product for Developers

Due to Users

+

Normal Time
for Developers

to Leave

Leaving Acceleration
Due to Potential

Functionality
+

Product Functionality
Adding Efficiency

Normal

+

Normal Time to Attract
All Potential Developers

-

Potential
Developers

+

+

+

Average Developer
Productivity Normal

+

Participant
Population Intensity

-

+ Productive Participant
Population Limit

-

Operative/Expected
Functionality Ratio

-

Attrractiveness of Product
for Developers Due to
Achieved Functionality

+

+
Leaving Accelaration
Due to Low Achieved

Functionality
-

-Leaving
Developers

+

+
+-

Developers on
Other Projects

Leaving Developers
from Other Projects

Potential Developers
Choosing Other Projects

+

Normal Time to Lose All
Potential Developers to

Other Projects

+

-

+

<Success in
Attracting Users>

+

Operative
Functionality Ratio

+

+
+

Weight on Expected
Functionality Ratio

+-

Weight on Achieved
Functionality Ratio +

-

Total Developer
Hours Available

Developer Hours
Allocated to
Production

+

Leaving Accelaration
Due to Low Quality

+

<Perceived
Product Quality>

<Leaders>

++

<Production by
Leaders>

+

Patience
Patience Lost Normal Time to

Lose Patience

Expected
Funtionality Ratio

Increase in Limit
on Product

Functionality

Increase in Limit on
Product Functionality

Coefficient
Time to Lose

Patience

Developer
Candidates Candidates Selected

as New DevelopersCandidates Refused

Refusal Ratio -

Selecting
Rate +

+ +

+

+ +

Production to
be FilteredRejected

Production

Production by
Developers

Accepted
Production

+

Rejection
Ratio

Filtering
Rate

+
-

+
++

+

-

Average Incoming
Developer Talent

+

 538

Users Sector

Attrractiveness of
Product for Developers

Due to UsersSuccess in
Attracting Users

+

Total User
Population

-

Users

+

Potential
Users

+

Attrractiveness of
Product for Users

+

Normal Time to
Attract All Potential

Users

-

+

New Users
Acceleration Due to
Success in Attracting

+
+-

New Users

+

+

Normal Time to
Lose All Users

Leaving Users Acceleration
Due to Low Achieved

Functionality

Potential Users
Choosing Competitor

Products

+

Normal Time to Lose All
Potential Users to

Competitor Products

-

Users Using
Competitor
Products

+

Leaving
Users +

-

+

Leaving Users from
Competitor Products

+
-

<Achieved
Functionality

Ratio>

Operative/Expected
Functionality Ratio

<Expected
Funtionality Ratio>

<Operative
Functionality Ratio>

Leaving Users
Acceleration Due to

Low Quality

+

<Perceived
Product Quality>

 539

Quality Sector

Project Size
+

Total
Production

Product
Functionality

<Product Functionality
Adding Efficiency>

+

+

New Product
Functionality Added

Functionality Lost
by Debugging

Unknown
Bugs in Code

Known Bugs
in Code

Bugs Found
+

New Bugs Added
by Production

Bugs Fixed

Developer Bug
Generating Rate

+

Total Bugs in
Code

Perceived
Product Quality

Total Bugs per
Functionality

+

+

+

Functionality
per Code

-

+
Bug Fixing

Quality

-

Developer Bug
Discovery Rate

+

Functionality Lost
per Bug Fixed

Code Added
per Bug Fixed

-

+
Patched

Code
+

Bugs Added
per Bug Fixed

+

New Bugs Added
by Bug Fixes

+
+

+

+

-

Bugs per
Code

Unknown Bugs
per Code

+

Bug Discovery
Rate Normal

Unknown Bug
Density

+
++

Bug Fixing Rate
Normal

Developer Bug
Fixing Rate

+

<Developer Hours
Allocated to Bug

Detection>

+

<Developer Hours
Allocated to Bug

Fixing>

+

Known Bugs
per Functionality

-

+

Severity of Total
Bugs Problem

<Acceptable Level
of Total Bugs per

Functionality>

Severity of Known
Bugs Problem

<Acceptable Level
of Known Bugs per

Functionality>

Bugs Added per
Bug Fixed Normal

<Average
Developer Talent>

Average Relative
Developer Talent

<Maximum
Developer Talent>

<Average Relative
Developer Talent>

+
+

Bug Generating
Rate Normal

+

<Production by
Developers>

<Production by
Leaders>

Leader Bug
Generating Rate

<Average Relative
Leader Talent>

<Project
Size>

<Leader Hours
Allocated to Bug

Detection>

<Leader Bug
Discovery Rate>

<Leader Bug
Fixing Rate>

<Leader Hours
Allocated to Bug

Fixing>

<Accepted
Production>

Bugs in
Production to be

Filtered
New Bugs in
Production to

be Filtered

Bugs in
Rejected Code

Bugs in
Accepted Code

<Average Relative
Developer Talent>

Bugs per Code in
Production to be

Filtered

 540

Filtering Sector

Bugs in
Production to be

Filtered

+New Bugs in
Production to be

Filtered

<Developer Bug
Generating Rate>

++

+

Bugs per Code in
Production to be

Filtered

+

+ +

- Bugs in
Rejected Code

-
Bugs in

Accepted Code

+

Production to be
Filtered

+

+Production by
Developers

-
Accepted
Production

- Rejected
Production

+

+

-

Filtering
Rate

+
+

Rejection
Ratio

+

Quality of
Filtering

Optimal Filtering
Horizon

Relative
Filtering Rate

+

Optimal Filtering
Amount

+ Leaders

+

Optimal Filtering
Amount per Leader

+

-

-

Optimal
Filtering Rate-

-

Quality
Improvement by

Filtering
+

-

+

 541

Developer Talent and Coaching Sector

Developer
Talent PoolDeveloper

Talent Gained
Developer
Talent Lost

Developers

Initial
Developers

<Leaving
Developers>

Average
Developer Talent

Average Incoming
Developer Talent

Initial Developer
Talent Pool

Developer
Talent Built

Average Developer
Talent Built

Average Developer
Talent Building

Opportunity

Average Developer
Talent Building Ratio

Maximum
Developer Talent

Coaching Hours
per Developer

Maximum Coaching
Hours Needed per

Developer

Coaching Hours
Coverage

<Total Coaching
Hours Available>

Coaching Hours
Needed per Developer

Developer Hours
Planned for Coaching

Pressure for
Talent Building

Maximum Talent
Building Opportunity

Relative Average
Talent Building

Opportunity

Developer Hours
Allocated to Coaching

Maximum Developer
Talent Building Ratio

Coaching Hours
Availability Ratio

Developer Hours
Needed for Coaching

<Developer Hours
Revised Allocation

Factor>

Developer
Candidates Candidates

Selected as New
Developers

Candidates
Applying

Refusal Ratio

 542

Developer Time Allocation Sector

Developer Hours
Allocated to Bug

Detection

Developer Hours
Allocated to Bug Fixing

<Developers>

Developer
Hours Allocated

to Coaching

Developer Hours
Allocated to
Production

Total Developer
Hours Available

Average Developer
Participation

Perceived
Product Quality

<Total Bugs per
Functionality> <Known Bugs per

Functionality>

Developer Hours
Needed for Bug

Detection

Developer
Hours Needed
for Bug Fixing

<Developer Hours
Planned for
Coaching>

Total Developer Hours
Needed for

Non-Production Tasks

<Known Bugs in
Code>

<Developer Bug
Fixing Rate>

Pressure for Bug
Fixing

Acceptable Level of
Total Bugs per
Functionality

Severity of Known
Bugs Problem

Severity of Total
Bugs Problem

Pressure for Bug
Detection

<Unknown Bugs
in Code><Developer Bug

Discovery Rate>

Developer Hours
Planned for
Production

Total Developer
Hours Needed

Developer Hours
Coverage Ratio

Desired Time to
Discover All Bugs

Desired Time to
Fix All Known

Bugs

Developer Hours
Allocation Factor

Indicated Developer
Hours Revised

Allocation Factor
Pressure for
Production

<Operative/Expected
Functionality Ratio>

Acceptable Level
of Known Bugs per

Functionality

Developer Hours for
Bug Detection Gap

Developer Hours for
Bug Fixing Gap

Developer Hours for
Production Gap

Developer Hours
Revised Allocation

FactorDeveloper Hours
Revised Allocation
Factor Adjustment

Developer Hours
Revised Allocation

Factor Adjustment Time

Developer Hours Revised
Allocation Factor

Adjustment Discrepancy

<Rejection Ratio>

 543

Leaders Sector

Leaders
Average Leader

Participation

Total Leader
Hours Available

Leader Hours Needed
for Bug Detection

Leader Hours
Needed for Bug

Fixing

Leader Hours
Needed for
Coaching

Leader/Developer Bug
Discovery Efficiency

Ratio

<Developer Bug
Discovery Rate>

Leader Bug
Discovery Rate

Leader/Developer
Bug Fixing

Efficiency Ratio

<Developer Bug
Fixing Rate>

Leader Bug
Fixing Rate

<Bug Discovery
Rate Normal>

<Unknown Bug
Density>

Leader Hours
Planned for
Production

Total Leader
Hours Needed

Total Leader Hours
Needed for

Non-Production Tasks

Leader Hours
Coverage Ratio

Leader Hours
Allocation Factor

Indicated Leader
Hours Revised

Allocation Factor

Leader Hours
Allocated to Bug

Detection

Leader Hours
Allocated to Bug

Fixing

Leader Hours
Allocated to

Coaching

Total Coaching
Hours Available

Leader/Developer
Coaching Ratio

<Developer Hours
Needed for
Coaching>

<Developer
Hours for Bug

Detection Gap>

<Developer Hours
for Bug Fixing Gap>

Total Leader Hours
Allocated for

Non-Production Tasks

Leader Hours
Allocated to
Production

Production by
Leaders

Average Leader
Productivity

<Participant
Population
Intensity>

Average Leader
Productivity

Normal

Total Participants <Developers>

Leader Hours
Revised Allocation

Factor
Leader Hours Revised

Allocation Factor
Adjustment

Leader Hours Revised
Allocation Factor

Adjustment DiscrepancyLeader Hours Revised
Allocation Factor
Adjustment Time

Pressure for
Production on

Leaders

<Achieved/Expected
Functionality Ratio>

Leader Hours
Planned for
Coaching

Leader Hours
Availability for

Coaching

Maximum Total
Leader Hours

Available for Coaching

Leaders Coaching
Involvement Factor

Leaving Leaders

Leaving Leaders
Coefficient

<Operative/Expected
Functionality Ratio>

 544

REFERENCES

Abdel-Hamid, T. K. (1984). The Dynamics of Software Development Project
Management: An Integrative System Dynamics Perspective. Ph.D. Thesis. Massachusetts
Institute of Technology.

Abdel-Hamid, T. K. (1989). "The Dynamics of Software Project Staffing: A System
Dynamics Based Simulation Approach." IEEE Transactions on Software Engineering
15(2): 109-119.

Abdel-Hamid, T. K. and S. E. Madnick (1983). "The Dynamics of Software Project
Scheduling." Communications of the ACM 26(5): 340-346.

Abdel-Hamid, T. K. and S. E. Madnick (1989). "Lessons Learned from Modeling the
Dynamics of Software Project Management." Communications of the ACM 32(12):
1426-1438.

Abdel-Hamid, T. K. and S. E. Madnick (1991). Software Project Dynamics: An
Integrated Approach. Englewood Cliffs, New Jersey, USA, Prentice Hall.

Abdel-Hamid, T. K. and J. D. W. Morecroft (1983). "A Generic System Dynamics
Model of Software Project Management." International System Dynamics Conference,
Chestnut Hill, MA.

Andersen, D. F. and G. P. Richardson (1997). "Scripts for Group Model Building."
System Dynamics Review 13(2): 107-129.

Andersen, D. F., G. P. Richardson and J. A. M. Vennix (1997). "Group Model Building:
Adding More Science to the Craft." System Dynamics Review 13(2): 187-201.

Andersen, D. L., M. J. Radzicki, R. L. Spencer and W. S. Trees (1997). "The Dynamics
of the Field of System Dynamics." 15th International System Dynamics Conference:
"Systems Approach to Learning and Education into the 21st Century", Istanbul, Turkey,
Bogazici University Printing Office.

Applegate, L., C. Ellis, C. W. Holsapple, F. J. Radermacher and A. B. Whinston (1991).
"Organizational Computing: Definitions and Issues." Journal of Organizational
Computing 1(1): 1-10.

Babbie, E. (1998). The Practice of Social Research. Belmont, CA, Wadsworth Publishing
Co.

Barbrook, R. (1998). The Hi-Tech Gift Economy. First Monday 3 (12) Last Accessed:
January 10, 2003
Available:http://www.firstmonday.org/issues/issue3_12/barbrook/index.html

Barlas, Y. (1989). "Multiple Tests for Validation of System Dynamics Type of
Simulation Models." European Journal of Operational Research 42(1): 59-87.

 545

Barlas, Y. and I. Bayraktutar (1992). "An Interactive Simulation Game for Software
Project Management (Softsim)." Proceedings of the 1992 International System Dynamics
Conference of the System Dynamics Society, Utrecht, the Netherlands, The System
Dynamics Society.

Barros, M. d. O., C. M. L. Werner and G. H. Travassos (2000). "Applying System
Dynamics To Scenario Based Software Project Management." 18th International
Conference of the System Dynamics Society, Bergen, Norway, System Dynamics
Society.

Bays, H. and M. Mowbray (2001). Cookies, Gift-Giving, and Online Communities.
Online Communities. C. Werry and M. Mowbray. Upper Saddle River, NJ, Prentice Hall
PTR.

Bell, D. (1991). "Modes of Exchange: Gift and Commodity." Journal of Socio-
Economics 20(2): 155-167.

Bell, G. A. and J. O. Jenkins (1998). "Methods Chosen to Identify Dominant Feedback
Loops that Explain Software Project Cost." 16th International Conference of the System
Dynamics Society, Quebec '98, Quebec City, Canada, System Dynamics Society.

Bessen, J. (2002). "Open Source Software: Free Provision of Complex Public Goods."
Open Source Software: Economics, Law and Policy, Toulouse, France, Institut
d'Economie Industrielle.

Bezroukov, N. (1999). Open Source Software Development as a Special Type of
Academic Research. First Monday Last Accessed: April 20, 2002
Available:http://www.firstmonday.org/issues/issue4_10/bezroukov/index.html

Bourdieu, P. (1997). Marginalia--Some Additional Notes on the Gift. The Logic of the
Gift: Toward an Ethic of Generosity. A. D. Schrift. New York, NY, Routledge.

Brewer, J. and A. Hunter (1989). Multimethod Research: A Synthesis of Styles. Newbury
Park, CA, Sage.

Brooks, F. P. (1995). The Mythical Man-Month - 20th Anniversary Edition. Reading,
MA, Addison-Wesley.

Browne, C. B. (1998). Linux and Decentralized Development. First Monday Last
Accessed: November 09, 2002
Available:http://www.firstmonday.org/issues/issue3_3/browne/index.html

Carrier, J. (1991). "Gifts, Commodities, and Social Relations: A Maussian View of
Exchange." Sociological Forum 6(1): 119-136.

Cowen, T. (1993). Public Goods and Externalities. The Fortune Encyclopedia of
Economics. D. R. Henderson. New York, NY, Warner Books: 74-77.

 546

Cox, A. (1998). Cathedrals, Bazaars and the Town Council. Slashdot Last Accessed:
November 09, 2002 Available:http://slashdot.org/features/98/10/13/1423253.shtml

Dempsey, B. J., D. Weiss, P. Jones and J. Greenberg (2002). "Who is an open source
software developer?" Communications of the ACM 45(2): 67-72.

Diker, V. G. and H. J. Scholl (1999). "David vs. Goliath: Responses to Domination
Strategies in PC and Server OS Markets." 17th International Conference of the System
Dynamics Society, Wellington, New Zealand.

Diker, V. G. and H. J. Scholl (2001). "The Art of Leveraging : How Powerful Nonlinear
Feedback Processes Can Restructure Rapidly Growing Technology and Knowledge
Industries." 34th Annual Hawaii International Conference on System Sciences, Maui, HI.

Donzelli, P. and G. Iazeolla (2001). "Hybrid Simulation Modeling of the Software
Process." The Journal of Systems and Software 59: 227-235.

Eason, K. (1997). Understanding the Organisational Ramifications of Implementing
Information Technology Systems. Handbook of Human-Computer Interaction. M. G.
Helander, T. K. Landauer and P. V. Prabhu. Amsterdam, Elsevier Science: 1475-1495.

Fogel, K. and M. Bar (2001). Open Source Development with CVS. Scottsdale, AZ,
Coriolis Technology Press.

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, MA, Productivity Press.

Forrester, J. W. and P. M. Senge (1996). Tests for Building Confidence in System
Dynamics Models. Modeling for Management: Simulation in Support of Systems
Thinking. G. P. Richardson. Dartmouth, NH, Aldershot. 2: 414-434.

Fox, R. (1995). "Newstrack." Communications of the ACM 38(8): 11-12.

Gallaugher, J. M. and Y. Wang (1999). "Network Effects and the Impact of Free Goods:
An Analysis of the Web Server Market." International Journal of Electronic Commerce
3(4): 67-88.

Garton, L., C. Haythornthwaite and B. Wellman (1997). Studying Online Social
Networks. Journal of Computer-Mediated Communication 3(1) Last Accessed: May 29,
2003 Available:http://www.ascusc.org/jcmc/vol3/issue1/garton.html

Gates, W. (1995). The Road Ahead. New York, NY, Viking Penguin.

Ghosh, R. A. (1995). The Problem with Infinity. Electric Dreams #63 (June 19) Last
Accessed: January 14, 2003 Available:http://dxm.org/dreams/dreams63.html

Ghosh, R. A. (1998). Cooking Pot Markets: An Economic Model for the Trade in Free
Goods and Services on the Internet. First Monday 3 (3) Last Accessed: January 10, 2003
Available:http://www.firstmonday.org/issues/issue3_3/ghosh/index.html

 547

Gregory, C. (1982). Gifts and Commodities. London, Academic Press.

Grudin, J. and M. L. Markus (1997). Organizational Issues in Development and
Implementation of Interactive Systems. Handbook of Human-Computer Interaction. M.
G. Helander, T. K. Landauer and P. V. Prabhu. Amsterdam, Elsevier Science: 1457-
1474.

Hagel, J. and A. Armstrong (1997). Net Gain: Expanding Markets through Virtual
Communities. Boston, MA, Harvard Business School Press.

Hawkins, R. (2001). "The Economics of Free and Open Source Software." 7th
International Conference of the Society for Computational Economics, New Haven, CT.

Hiltz, S. R. (1986). Online Communities: A Case Study of the Office of the Future. New
York, NY, Ablex.

Jones, Q. (2000). "Time to Split, Virtually: Expanding Virtual Publics Into Vibrant
Virtual Metropolises." 33rd Hawaii International Conference on System Sciences, Maui,
HI.

Kahen, G., M. M. Lehman, J. F. Ramil and P. Wernick (2001). "System Dynamics
Modeling of Software Evolution Processes for Policy Investigation: Approach and
Example." The Journal of Systems and Software 59: 271-281.

Katz, M. and C. Shapiro (1985). "Network Externalities, Competition and
Compatibility." American Economic Review 75(3): 424-440.

Kling, R. (1999). What is Social Informatics and Why Does It Matter? D-Lib Magazine 5
(1) Last Accessed: January 12, 2003
Available:http://www.dlib.org/dlib/january99/kling/01kling.html

Kollock, P. (1999). The Economies of Online Cooperation: Gifts and Public Goods in
Cyberspace. Communities in Cyberspace. M. Smith and P. Kollock. London, Routledge:
220-239.

Kvale, S. (1996). Interviews: An Introduction to Qualitative Research Interviewing.
Thousand Oaks, CA, Sage.

Lazar, J. and J. Preece (1998). "Classification Schema for Online Communities." AMCIS
- Americas Conference on Information Systems, Baltimore, MD.

Lin, N. (2001). Social Capital: A Theory of Socail Structure and Action. Cambridge,
Cambridge University Press.

Luna, L. F. and D. L. Andersen (2002). "Using Qualitative Methods in the
Conceptualization and Assessment of System Dynamics Models." 20th International
System Dynamics Conference, Palermo, Italy, System Dynamics Society.

 548

Madachy, R. (1994). A Software Project Dynamics Model for Process Cost, Schedule
and Risk Assessment. Ph.D. Dissertation. Los Angeles, CA, University of Southern
California.

Madachy, R. (1996). "Modelling Software Processes with System Dynamics: Current
Developments." 14th International System Dynamics Conference, Cambridge, MA,
System Dynamics Society.

Madachy, R. (2000). "Recent Results In Software Process Modeling." 18th International
Conference of the System Dynamics Society, Bergen, Norway, System Dynamics
Society.

Madachy, R. (2002). "Software Process Concurrence." Proceedings of the 20th
International Conference of the System Dynamics Society, Palermo, Italy, The System
Dynamics Society.

Madachy, R. J. (1996). "System Dynamics Modeling of an Inspection-Based Process."
Eighteenth International Conference on Software Engineering, Berlin, Germany.

Madachy, R. J. and B. W. Boehm (2003). Software Process Modeling With System
Dynamics, John Wiley & Sons.

Markus, M. L., B. Manville and C. E. Agres (2000). "What Makes a Virtual Organization
Work?" Sloan Management Review 42(1): 13-26.

Martin, R. and D. Raffo (2001). "Application of a Hybrid Process Simulation Model to a
Software Development Project." The Journal of Systems and Software 59: 237-246.

Martinez-Moyano, I. J. and G. P. Richardson (2002). "An Expert View of the System
Dynamics Modeling Process: Concurrences and Divergences Searching for Best
Practices in System Dynamics Modeling." Proceedings of the 20th International
Conference of the System Dynamics Society, Palermo, Italy, The System Dynamics
Society.

Mauss, M. (1990). The Gift: The Form and Reason for Exchange in Archaic Societies.
London, Routledge.

Millen, D. R. (2000). "Community Portals and Collective Goods: Conversation Archives
as an Information Resource." 33rd Hawaii International Conference on System Sciences,
Maui, Hawaii, IEEE.

Olson, G. M. and J. S. Olson (1997). Research on Computer Supported Cooperative
Work. Handbook of Human-Computer Interaction. M. G. Helander, T. K. Landauer and
P. V. Prabhu. Amsterdam, Elsevier Science: 1433-1456.

Olson, M. (1965). The Logic of Collective Action. Cambridge, MA, Harvard University
Press.

 549

O'Reilly, T. (1999). "Lessons from Open-Source Software Development."
Communications of the ACM 42(4): 33-37.

Pfahl, D., M. Klemm and G. Ruhe (2001). "A CBT Module with Integrated Simulation
Component for Software Project Management Education and Training." The Journal of
Systems and Software 59: 283-298.

Preece, J. (2000). Online Communities: Designing Usability, Supporting Sociability.
New York, NY, John Wiley & Sons Inc.

Preece, J. (2000). Online Cumminites: Designing Usability, Supporting Sociability. New
York, NY, John Wiley & Sons Inc.

Putnam, R. (1995). "Bowling Alone: America's Declining Social Capital." Journal of
Democracy 6(1): 65-78.

Rai, V. K. and B. Mahanty (2002). "Dynamics of Schedule Pressure in Software
Projects." Proceedings of the 20th International Conference of the System Dynamics
Society, Palermo, Italy, The System Dynamics Society.

Raymond, E. S. (2001). The Cathedral and the Bazaar : Musings on Linux and Open
Source by an Accidental Revolutionary. Sebastopol, CA, O'Reilly and Associates.

Reid, E. (1996). Communication and Community of Internet Relay Chat: Construction
Communities. High Noon on the Electronic Frontier: Conceptual Issues in Cyberspace. P.
Ludlow. Cambridge, MA, MIT Press: 397-411.

Rethemeyer, R. K. (2002). Centralization or Democratization: Assesing the Internet's
Impact on Policy Networks - A Theoretical and Empirical Inquiry. Ph.D. Thesis. Boston,
MA, Harvard University.

Richardson, G. P. and A. L. Pugh (1981). Introduction to System Dynamics Modeling
with DYNAMO. Cambridge, MA, Productivity Press.

Rodrigues, A. G. and T. M. Williams (1997). "System Dynamics in Software Project
Management: Towards the Development of a Formal Integrated Framework." European
Journal of Information Systems 6(1): 51-66.

Ruiz, M., I. Ramos and M. Toro (2001). "A Simplified Model of Software Project
Dynamics." The Journal of Systems and Software 59: 299-309.

Sandred, J. (2001). Managing Open Source Projects. New York, NY, John Wiley and
Sons.

Scott, J. (2000). Social Network Analysis: A Handbook. London, Sage.

Slouka, M. (1995). War of the Worlds: Cyberspace and the High-Tech Assault on
Reality. New York, NY, Basic Books.

 550

Smith, M. J. and F. T. Conway (1997). Psychosocial Aspects of Computerized Office
Work. Handbook of Human-Computer Interaction. M. G. Helander, T. K. Landauer and
P. V. Prabhu. Amsterdam, Elsevier Science: 1497-1517.

Spector, J. M. (1995). "Using System Dynamics to Model Courseware Development: The
Project Dynamics of Complex Problem-Solving." Proceedings of the 1995 ACM
Symposium on Applied Computing, Nashville, TN.

Stallinger, F. and P. Gruenbacher (2001). "System Dynamics Modeling and Simulation of
Collaborative Requirements Engineering." The Journal of Systems and Software 59: 311-
321.

Stanoevska-Slabeva, K. and B. F. Schmid (2001). "A Typology of Online Communties
and Community Supporting Platforms." 34th Hawaii International Conference on System
Sciences, Maui, HI.

Sterman, J. D. (2000). Business Dynamics : Systems Thinking and Modeling for a
Complex World. Boston, MA, Irwin/McGraw-Hill.

Torvalds, L. (1999). "The Linux edge." Communications of the ACM 42(4): 38-39.

Turoff, M. (1991). "Computer-Mediated Communication Requirements for Group
Support." Journal of Organizational Computing 1(1): 1-10.

Turoff, M. (1997). "Virtuality." Communications of the ACM 40(9): 38-43.

Turoff, M. and S. R. Hiltz (1982). "The Electronic Journal: A Progress Report." Journal
of The American Society for Information Science 33(4).

Valloppillil, V. and E. Raymond (annotations) (1998). Halloween I Memo.
Opensource.org Last Accessed: November 09, 200 2
Available:http://www.opensource.org/halloween/halloween1.php

Valloppillil, V., J. Cohen and E. Raymond (annotations) (1998). Halloween II Memo.
Opensource.org Last Accessed: November 09, 2002
Available:http://www.opensource.org/halloween/halloween2.php

Wasko, M. M. and R. Teigland (2002). "The Provision of Online Public Goods:
Examining Social Structure in a Network of Practice." 23th International Conference on
Information Systems, Barcelona, Spain, AIS.

Wasserman, S. and K. Faust (1994). Social Network Analysis : Methods and
Applications. Cambridge, Cambridge University Press.

Wellman, B. (1997). An Electronic Group is Virtually a Social Network. Culture of the
Internet. S. Kiesler. Mahwah, NJ, Lawrence Erlbaum: 179-205.

 551

Wellman, B. and S. D. Berkowitz, Eds. (1988). Social Structures: A Network Approach.
Cambridge, Cambridge University Press.

Wellman, B. and M. Gulia (1999). Virtual Communities as Communities: Net Surfers
Don't Ride Alone. Communities in Cyberspace. M. Smith and P. Kollock. London,
Routledge: 167-194.

Williams, D. (2001). "Towards a System Dynamics Theory of Requirements Engineering
Process." The 19th International Conference of the System Dynamics Society, Atlanta,
Georgia, System Dynamics Society.

Williams, R. L. and J. Cothrel (2000). "Four Smart Ways to Run On-line Communities."
Sloan Management Review 41(4): 81-91.

