Area measurements with randomized peak heights with equal widths

In the following simulations, the areas of a group of three partially overlapping peaks is measured, by the perpendicular drop method, before and after peak sharpening by Fourier selfdeconvolution. The measurements are repeated with random peak heights from 0.5 to 4.5 , to test how the peak overlap interferes with precise area measurement. Sixteen trials with randomized peak heights, the true peak area are plotted against the measured areas, and the R2 for each case are compared before and after deconvolution. Link to Matlab script: GLSDPerpDropDemo16.m. Conclusion: in every case, from the "easiest" to the most challenging, deconvolution yields the best results.

Test 1: Well-separated Gaussian peaks work well with or without deconvolution
90\% Gaussian peaks; positions =360 500 640; SeparationWidthRatio =3.5
MeanPercentErrorOfMeasuredAreas $=0.9419 \quad 1.3087 \quad 0.6015$
PRSDPercentErrorOfMeasuredAreas -2.5021 -6.0390 -5.4700
MeanErrorsOfDeconvolutedAreas $=0.1377 \quad 0.1391 \quad 0.1098$
PRSDPercentErrorsOfDeconvolutedAreas =-1.3568 $-1.0600 \quad 2.9387$
AccuracylmprovementFactor $=7.2412$

Test 2: For slightly-overlapped peaks, deconvolution yields baseline resolution, better results.

```
positions=420 500 580
```

SeparationWidthRatio $=\mathbf{2}$
$\begin{array}{llll}\text { MeanPercentErrorOfMeasuredAreas }=4.1019 & 3.1636 & 2.8436\end{array}$
PRSDPercentErrorOfMeasuredAreas $=-1.3072 \quad 4.4501$-1.9798
MeanErrorsOfDeconvolutedAreas $=0.5096 \quad 0.4006 \quad 0.3542$
PRSDPercentErrorsOfDeconvolutedAreas $=-1.2460 \quad 3.7374 \quad-1.7393$
AccuracylmprovementFactor $=7.9922$

Original signal. Separation/width ratio: 2

Deconvoluted signal. Separation/width ratio: 2

Test 3: More-overlapped peaks work better with deconvolution positions $=430500570$
SeparationWidthRatio $=1.75$
$\begin{array}{llll}\text { MeanPercentErrorOfMeasuredAreas }=1.9730 & 3.1958 & 3.4725\end{array}$
PRSDPercentErrorOfMeasuredAreas $=-5.6076$-12.8715 -1.8906
MeanErrorsOfDeconvolutedAreas $=\begin{array}{llll}0.1963 & 0.3229 & 0.3720\end{array}$
PRSDPercentErrorsOfDeconvolutedAreas $=-3.1952 \quad 7.5383$-1.6257
AccuracylmprovementFactor $=9.7603$
Test with randomized peak heights

Test 4: Heavily-overlapped peaks work significantly better with deconvolution
positions $=440500560$
SeparationWidthRatio =1.5
MeanPercentErrorOfMeasuredAreas $=4.0260 \quad 9.2013 \quad 3.6862$
PRSDPercentErrorOfMeasuredAreas $=-2.9061$-2.2265 -7.6087
MeanErrorsOfDeconvolutedAreas $=0.4809 \quad 1.0074 \quad 0.4135$
PRSDPercentErrorsOfDeconvolutedAreas $=-2.2622$-2.6433 $\quad-5.3338$
AccuracylmprovementFactor $=8.8068$

Percent Gaussian: 909090 Relative deconv. width: 0.75

Test 5: Severely-merged peaks work far better with deconvolution positions = 460500540
SeparationWidthRatio $=\mathbf{1 . 0}$
MeanPercentErrorOfMeasuredAreas $=12.155317 .483213 .9822$
PRSDPercentErrorOfMeasuredAreas $=-1.7285$-4.9517 -2.5153
MeanErrorsOfDeconvolutedAreas =4.0401 $5.9301 \quad 4.7017$
PRSDPercentErrorsOfDeconvolutedAreas $=-1.6747$-3.9970 -2.4296
AccuracylmprovementFactor $=2.9769$

Deconvoluted signal. Separation/width ratio: 1

Test 6: Well-separated Lorentzian peaks still interact slightly, but even then deconvolution is better.

90\% Lorentzian (10\% Gaussian) peaks
positions $=360500640$
SeparationWidthRatio =3.5
$\begin{array}{llll}\text { MeanPercentErrorOfMeasuredAreas }=4.5783 & 6.6357 & 9.9925\end{array}$
PRSDPercentErrorOfMeasuredAreas $=-2.1666 \quad 2.7683-1.7190$
MeanErrorsOfDeconvolutedAreas $=0.9209 \quad 0.62791 .7969$
$\begin{array}{llll}\text { PRSDPercentErrorsOfDeconvolutedAreas }=3.1201 & -0.9316 & 1.6664\end{array}$
AccuracylmprovementFactor $=7.0335$

Original signal. Separation/width ratio: 3.5

Deconvoluted signal. Separation/width ratio: 3.5

Test 7 With more overlap, the deconvolution method is far better.
90\% Lorentzian (10\% Gaussian) peaks
positions =420 500580
SeparationWidthRatio $=\mathbf{2 . 0}$
MeanPercentErrorOfMeasuredAreas $=13.753619 .6947 \quad 6.7218$
PRSDPercentErrorOfMeasuredAreas $=-1.7772$-3.2485 -16.2214
MeanErrorsOfDeconvolutedAreas $=0.6554 \quad 2.4280 \quad 0.5624$
PRSDPercentErrorsOfDeconvolutedAreas =3.7026 $-1.5151 \quad 3.8531$
AccuracylmprovementFactor $=13.6825$

Test 8: Even closer spacing, deconvolution method achieves flat baseline between peaks.
90\% Lorentzian (10\% Gaussian) peaks
positions =440 500560
SeparationWidthRatio $=\mathbf{1 . 5}$
MeanPercentErrorOfMeasuredAreas $=14.443419 .3372 \quad 8.5846$
PRSDPercentErrorOfMeasuredAreas $=-1.7901 \quad-5.2272 \quad-5.9883$
$\begin{array}{llll}\text { MeanErrorsOfDeconvolutedAreas }=0.6605 & 2.2794 & 0.4722\end{array}$
PRSDPercentErrorsOfDeconvolutedAreas $=9.3058$-1.8957 2.6210
AccuracylmprovementFactor $=16.1773$

Test 9: Even closer spacing; deconvolution method still achieves baseline resolution 90\% Lorentzian (10\% Gaussian) peaks
positions =450 500550
SeparationWidthRatio =1.25
MeanPercentErrorOfMeasuredAreas $=24.031816 .242032 .2423$
PRSDPercentErrorOfMeasuredAreas $=-1.4414 \quad 0.7382 \quad-1.5508$
$\begin{array}{llll}\text { MeanErrorsOfDeconvolutedAreas }=1.0915 & 0.8485 & 1.5102\end{array}$
PRSDPercentErrorsOfDeconvolutedAreas = -1.8925 2.6568 -1.6747
AccuracylmprovementFactor $=20.8365$

Test 10: With extreme overlap, deconvolution method nearly achieves baseline resolution positions =460 500540
SeparationWidthRatio = 1.0
MeanPercentErrorOfMeasuredAreas $=22.032326 .439824 .1916$
PRSDPercentErrorOfMeasuredAreas $=-2.6072-13.0751-1.6612$
MeanErrorsOfDeconvolutedAreas = $1.0100 \quad 1.65240 .8971$
PRSDPercentErrorsOfDeconvolutedAreas $=-2.9719$-3.3261 -2.0592
AccuracylmprovementFactor $=21.5936$

Test 11: When peaks merge into a blob with bumps: deconvolution method still works well.
positions =470 500530
SeparationWidthRatio $=\mathbf{0 . 7 5}$
MeanPercentErrorOfMeasuredAreas $=17.049437 .358431 .3426$
PRSDPercentErrorOfMeasuredAreas =-2.3349 110.2535 -1.6326
MeanErrorsOfDeconvolutedAreas = $1.34883 .8740 \quad 2.4266$
PRSDPercentErrorsOfDeconvolutedAreas $=-3.2312$-5.1943 -1.8989
AccuracylmprovementFactor $=11.7332$
Test with randomized peak heights

Test 12: If peaks fuse into one peak, even the deconvolution method performs poorly.
positions $=480500520$
SeparationWidthRatio $=0.5$
MeanPercentErrorOfMeasuredAreas $=47.274744 .7142 \quad 29.4886$
$\begin{array}{lllll}\text { PRSDPercentErrorOfMeasuredAreas }=-1.4058 & 8.3318 & -1.8355\end{array}$
MeanErrorsOfDeconvolutedAreas = 9.1199 15.4335 5.7621
PRSDPercentErrorsOfDeconvolutedAreas =-1.9862 -3.4480 -3.7076
AccuracylmprovementFactor $=4.3995$

Deconvoluted signal. Separation/width ratio: 0.5

