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Computationally Efficient
Simulations of Stochastically
Perturbed Nonlinear Dynamical
Systems
A probabilistic approach is needed to address systems with uncertainties arising in natu-
ral processes and engineering applications. For computational convenience, however,
the stochastic effects are often ignored. Thus, numerical integration routines for stochas-
tic dynamical systems are rudimentary compared to those for the deterministic case. In
this work, the authors present a method to carry out stochastic simulations by using meth-
ods developed for the deterministic case. Thereby, the well-developed numerical integra-
tion routines developed for deterministic systems become available for studies of
stochastic systems. The convergence of the developed method is shown and the method’s
performance is demonstrated through illustrative examples. [DOI: 10.1115/1.4054932]

1 Introduction

Natural processes are inevitably uncertain, and systems in engi-
neering commonly have uncertainties. To capture this stochastic-
ity, one needs a probabilistic approach. Thus, stochastic models
are widely used in physics (e.g., Gardiner [1]), engineering (e.g.,
Wirsching et al. [2]), and biology (e.g., Wilkinson [3]). Uncertain
parameters are classically related to manufacturing imperfections,
finite measurement resolution, or incomplete data, whereas ran-
dom loads arise in complex environments due to wind, ocean
waves, seismic excitations, or road roughness. However, for com-
putational convenience, stochasticity is often ignored in studies of
associated systems. Thus, a variety of methods exist to simulate
deterministic systems, while the same is not true for carrying out
simulations of stochastic systems. In particular, for high dimen-
sional systems, methods are still in their infancy.

The response of stochastic dynamical systems is fully pre-
scribed by the time evolution of the probability density function
(PDF). If the stochasticity is generated by a Wiener process, then
the PDF is governed by the Fokker-Planck equation, a partial dif-
ferential equation (e.g., Risken [4]). Exact solutions have been
obtained by, for example, Soize [5], Caughey [6], and Lin and Cai
[7]. To obtain these results one requires a balance between dissi-
pative terms and white noise perturbations. This balance, how-
ever, is hardly met in realistic systems (Lin and Cai [7]).

In the absence of exact solutions to the Fokker–Planck equa-
tion, it can be solved with numerical methods. In principle, space
and/or time can be discretized to obtain a finite-dimensional
dynamical system. Examples include methods based on finite dif-
ferences (e.g., Pichler et al. [8]), the path integral method (e.g.,
Wehner and Wolfer [9] or Yu et al. [10]) and a finite element dis-
cretization formulated by Spencer and Bergman [11]. However,
Masud and Bergman [12] point out that the computational burden
is so significant, that the applications of those methods are limited
to two or three-dimensional systems. In fact, the memory require-
ments of such methods generally grow exponentially with the
dimensions of the considered dynamical system.

The most common and effective approach to approximate solu-
tions to stochastic differential equations are discrete-time approxi-
mations (cf. Kloeden and Platen [13]). With this approach, the
computational costs and memory requirements grow only polyno-
mially with respect to number of dimensions. However, for

example, as remarked by R€uemelin [14], numerical time integra-
tion schemes derived to approximate solutions of deterministic
ordinary differential equations do not carry over to the stochastic
setting in a straightforward manner. An underlying reason is that
additional terms arise when solutions to stochastic differential
equations are expanded in a Taylor series. These terms lead to the
so-called Wagner-Platen formula (cf. Wagner and Platen [15] or
Milstein [16]). Therefore, numerical integration of stochastic dif-
ferential equations requires fundamentally different algorithms.

Schurz through his chapter in Ref. [17], Kloeden and Platen
[13], and the introductory treatment by Platen [18] offer an exten-
sive list of available integration schemes. The most prominent and
basic ones are the Euler–Maruyama scheme and Milstein’s
method (e.g., Milstein Ref. [16]). Higher order schemes include
the stochastic Runge–Kutta in which a predictor-corrector scheme
is employed similar to the deterministic equivalent to enhance
numerical stability (Schurz in Ref. [17]). Moreover, Boyce [19]
developed a scheme with adaptive step size control. Milstein and
Tret’yakov [20,21] present integration methods for stochastic dif-
ferential equations with small noise terms. Such a setting is espe-
cially relevant for engineering applications, wherein the stochastic
part can often be considered as small or weak. However, the com-
putational expense of such higher-order schemes can be signifi-
cant (e.g., Schurz in Ref. [17]), so much so, that these costs
outweigh their benefits (cf. Mannella [22]).

In terms of the current state of the art, the available numerical
methods to solve the Fokker–Plank equation suffer from the curse
of dimensionality, whereas the discrete-time approximations of
stochastic differential equations are often limited to the stochastic
equivalent of the forward Euler scheme. However, in many appli-
cations, accurate and effective approximations of solutions to the
deterministic part already require intricate numerical integration
routines employing, for example, adaptive step-size control (cf.
Gear [23]), predictor-corrector schemes (cf. de-Jalon and Bayo
[24]), and customized methods such as Newmark’s method for
structural dynamics (cf. G�eradin and Rixen [25]). Unfortunately,
these well-developed routines are not applicable in a stochastic
setting.

Here, the authors propose an algorithm to extend any determin-
istic numerical integrator to a stochastic setting. To that end, they
proceed as follows. In many applications, especially in engineer-
ing, the noise intensity is small and one can perform a parameter
expansion (cf. Sec. 3). In this setting, the authors formulate a
small noise integrator (SNI), which relies on an appropriate
resampling of distributions along sample paths (cf. Sec. 4.1).
Within this algorithm, any deterministic integrator can be used to
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approximate the sample paths of stochastic dynamical systems.
After proving the strong convergence of the SNI, the algorithm
performance is demonstrated by considering various nonlinear
mechanical systems with up to one hundred degrees-of-freedom
in Sec. 4.2. Furthermore, in Sec. 5.1, a Gaussian kernel is pre-
sented to rigorously deduce a smooth distribution from a finite
number of samples and the corresponding performance is shown
for nonlinear mechanical systems (cf. Sec. 5.2).

2 System Setting

The authors consider the general dynamical system

_x ¼ fðx; tÞ þ rbðx; tÞ; 0 < r� 1; x 2 RN (1)

where the vector x denotes the states and the integer N is the num-
bers of degrees-of-freedom. The parameter r in Eq. (1) is small
and scales the stochastic excitation defined in differential form as

dbðx; tÞ ¼ Bðx; tÞdW ¼
XM

m¼1

Bmðx; tÞdWm; B : RN �R 7!RN�M

(2)

where W1;W2;…;WM denote uncorrelated one-dimensional
standard Wiener processes (e.g., Kloeden and Platen [13]). The m-
th column of the matrix Bðx; tÞ prescribes the direction in which
the m-th Wiener process acts. The directions can generally depend
on the states as indicated in Eq. (2). Such multiplicative noise
commonly arises, for example,, in micro-electromechanical devi-
ces (MEMS, cf. Vig and Yonkee [26]). The parameter r can be
considered to be representative of small uncertainities that arise in
various settings, including high precision manufacturing, meas-
urements, and environmental modeling.

The time dependence of the deterministic part fðx; tÞ and the
stochastic part Bðx; tÞ is general. Thus, system (1) includes auton-
omous (i.e., time-invariant) systems as well as systems with time-
periodic, quasi-periodic, and even more general, possibly aperi-
odic, time dependence. Moreover, it is assumed that the matrix
Bðx; tÞ and the vector fðx; tÞ are at least twice continuously differ-
entiable with respect to the spatial coordinate x.

This study is motivated by, but not limited to, the general non-
linear mechanical system

M€q þ C _q þKqþ Sðq; _q; tÞ ¼ rgðq; _q; tÞ; 0 < r� 1;

q 2 RN� ; dgðq; _q; tÞ ¼
XM

m¼1

gmðq; _q; tÞdWm

(3)

where q is the vector of coordinates and the integer N� denotes
the numbers of degrees-of-freedom. The mass M 2 RN��N� is
assumed to be invertible, whereas the damping C 2 RN��N� and
stiffness K 2 RN��N� matrix are assumed to be general matrices.
In many engineering applications the aforementioned matrices,
however, are assumed to be positive definite (cf. G�eradin and
Rixen [25] or Balachandran and Magrab [27]). The vector
Sðq; _q; tÞ includes nonlinear terms depending on positions and
velocities as well as time varying terms such as external and/or
parameteric excitation. Introducing the state-space coordinate
x :¼ ½q>; _q>�>, the notation

A :¼
0 I

M�1K M�1C

2
4

3
5 2 R2N��2N� ;

Gðq; _q; tÞ :¼
0

M�1Sðq; _q; tÞ

2
4

3
5 2 R2N�

(4)

and defining the columns of the matrix B as

Bmðq; _q; tÞ :¼ 0

M�1gmðq; _q; tÞ

� �
; m ¼ 1;…;M (5)

the mechanical system (3) can be reformulated in the form of
Eq. (1) with fðx; tÞ ¼ AxþGðx; tÞ.

As customary with the treatment of stochastic differential equa-
tions, for the forthcoming development, the stochastic dynamical
system is most conveniently formulated as the differential equiva-
lent of system (1); that is

dx ¼ fðx; tÞ dtþ rBðx; tÞ dW; xðt ¼ t0Þ ¼ x0; 0 < r� 1

(6)

where x0 denotes a deterministic initial condition.

3 Small Noise Expansion

Similar to approximate solutions obtained through perturbation
analysis in the deterministic case (e.g., Verhulst [28] or Nayfeh
[29]), approximate solutions to system (6) can be obtained
through an expansion in the small parameter r. The convergence
of such a series can be guaranteed by the following result due to
Blagoveshchenskii [30]:

THEOREM 3.1. Assume that fðx; tÞ and Bðx; tÞ and their partial
derivatives with respect to the coordinate x up to order two are
bounded and Lipschitz continuous for t0 < t < t1. Then, there
exists r0 > 0 such that

xðtÞ ¼ x0ðtÞ þ rx1ðtÞ þ r2rðt; rÞ; for all 0 � r � r0 (7)

holds, whereby the remainder rðt; rÞ is bounded in the mean
square sense; that is

E sup
0�r�r0

t0<t<t1

jrðt;rÞj2
" #

� K <1 (8)

Proof. This is a restatement of a Theorem by Blagoveshchen-
skii [30] for the current setting of the paper. Related versions have
alo been stated by Freidlin and Wentzell [31] and Kasz�as and Hal-
ler [32]. �

Remark 3.1. Polynomial nonlinearities appearing in common
nonlinear oscillator prototypes such as Duffing’s equation (cf.
Kovacic and Brennan [33]) or the van der Pol oscillator (e.g.,
Guckenheimer and Holmes [34]) are neither bounded nor globally
Lipschitz continuous. These nonlinearities generally grow
unbounded for infinite states. Hence, Theorem 3.1 is not applica-
ble in those cases. On the other hand, realistic systems, do not
allow for arbitrarily large states. Thus, Eq. (1) is necessarily only
valid for states inside a bounded domain; that is, the model’s
domain of validity. Thus, for example, one can follow an argu-
ment of Breunung [35] and modify Eq. (1) outside its domain of
validity such that the requirements of Theorem 3.1 are met.

After substituting the expansion (7) into Eq. (6) and equating
terms of equal order in r, the result is the following hierarchy of
equations for the first two orders

Oð1Þ: dx0¼ fðx0; tÞdt; x0ðt0Þ¼ x0 (9)

OðrÞ : dx1 ¼ @xfðx0; tÞx1 dtþ Bðx0; tÞ dW; x1ðt0Þ ¼ 0

(10)

The zeroth order (9) is simply the deterministic limit of Eq. (6)
(r! 0). It can be solved or approximated by standard methods
available for deterministic systems such as numerical time inte-
gration. Moreover, the stochastic process x0 þ rx1 is Gaussian
(cf. Blagoveshchenskii [30] or Freidlin and Wentzell [31]) and the
linear stochastic differential Eq. (10) can be solved in closed
form. To this end, the flow map; that is, the map mapping the
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initial condition x0 at the time t¼ t0 to their position at time t is
denoted by Ft

t0
ðx0Þ. The gradient of Ft

t0
ðx0Þ with respect to the ini-

tial condition is denoted by DFt
t0
ðx0Þ. The linearized flow map

DFt
t0
ðx0Þ is also the fundamental solution to the deterministic part

of the first order Eq. (10), i.e., it satisfies

d

dt
DFt

t0
x0ð Þ ¼ @xf x0 tð Þ; t

� �
DFt

t0
x0ð Þ; DFt0

t0
x0ð Þ ¼ I (11)

With this notation, the first two moments of the stochastic process
(10) are given by the explicit formulae

E½x1ðtÞ� ¼ 0;

E½x1ðtÞðx1ðtÞÞ>� ¼
ðt

t0

DFs
t0
ðx0ÞBðx0; sÞ½DFs

t0
ðx0ÞBðx0; sÞ�>

ds ¼: Rðt; x0; t0Þ
(12)

which have been obtained by van Kampen [36]. Caughey [6] and
Risken [4] present solutions for the special case of a constant
Jacobian @xfðx0; tÞ ¼ A1 in Eq. (10).

In the following, the probability density of the stochastic pro-
cess (10) is obtained. The matrix Rðt; x0; t0Þ defined in Eq. (12) is
positive semidefinite. Thus, it admits the decomposition

Rðt; x0; t0Þ ¼ U>KU, where the matrix U is orthogonal and the
matrix K is diagonal containing the L � N positive eigenvalues of
Rðt; t0; x0Þ. The pseudo-inverse of K is defined elementwise by

~K
�1

jl :¼ djl=Kll for 1 � j; l � L and ~K
�1

jl :¼ 0 otherwise. With this

notation, the pseudo-inverse of Rðt; t0; x0Þ is given by

~Rðt; x0; t0Þ�1 :¼ U> ~K
�1

U (13)

Moreover, the pseudo-determinant of Rðt; t0; x0Þ is defined as

jRðt; x0; t0Þj :¼
K11K22…KLL; L � 1;

1; otherwise

(
(14)

With the definition of the pseudo-inverse (13) and determinant
(14), the time varying probability density of the stochastic process
(10) is given by

p1 x; t; x0; t0ð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð ÞLjR t; x0; t0ð Þj
q exp � 1

2
x> ~R t; x0; t0ð Þ�1x

� �

(15)

which generally depends on the solution to the first order x0.

In summary, the solutions to system (6) can be approximated as

xðtÞ ¼ Ft
t0
ðx0Þ þ rx1ðt; x0; t0Þ þ Oðr2Þ;

x1ðt; x0; t0Þ 	 p1ðx; t; x0; t0Þ
(16)

where the symbol	 indicates that the random variable x1ðt; x0; t0Þ
has the distribution p1ðx; t; x0; t0Þ (cf. Eq. (15)). Moreover, the
probability density function of x0 þ rx1; that is, the first order
approximation of solutions to system (6), is given by

pr x; t; x0; t0ð Þ ¼
1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞLjR t; x0; t0ð Þj

q
exp � 1

2r2
x� Ft

t0
x0ð Þ

	 
>
~R t; x0; t0ð Þ�1

�
x� Ft

t0
x0ð Þ

	 


(17)

Thus, the PDF can be approximated by a Gaussian distribution
whereby the mean is determined by solution to the deterministic
limit Ft

t0
ðx0Þ and the variance is given in Eq. (12). The authors

emphasize that both, the mean and variance, are defined through
purely deterministic equations and hence, they can be computed
without relying on stochastic integration methods.

Before continuing with the development, it is revealing to eval-
uate the validity of approximation (16) based on Theorem 3.1. To
this end, the classical Duffing equation

€q þ c _q þ kqþ jq3 ¼ a sinðXtÞ þ rf ; df ¼ dW (18)

with the dimensionless parameters

c ¼ 0:02; k ¼ 1; j ¼ 0:5; a ¼ 0:1 (19)

is considered. First, the deterministic limit (r! 0) is analyzed.
Varying the excitation frequency X in the vicinity of the natural
frequency, the frequency response curve is computed with the
numerical continuation package COCO [37] and shown in Fig. 1(a).
For the forcing frequency X ¼ 1:2, two stable periodic responses
exist for system (18). After selecting the initial condition x0 to be
at the orbit with higher amplitude, the variances (12) are com-
puted and depicted in Fig. 1(b). For comparison, 104 approxima-
tions of solutions to the stochastic differential Eq. (18) are
calculated with the Euler–Maruyama scheme (e.g., Kloeden and
Platen [13]) with the noise intensity r ¼ 0:01. Subsequently, the
variances are calculated from the Euler–Maruyama samples.

Fig. 1 Deterministic and stochastic solutions to Duffing’s Eq. (18) with parameters (19): (a) frequency response
of the deterministic limit of system (18) and (b) comparison of the computed variances (12) with variances com-
puted from 104 Euler–Maruyama approximations of Eq. (18) (r 5 0.01).
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From Fig. 1(b), it is evident that the approximation (16) is only
accurate for about a quarter of the period T. After half a period,
the computed variances (12) differ significantly from the results
obtained through Monte Carlo sampling. This discrepancy is not
an artifact of the obtained numerical approximation, as increasing
the sample size or decreasing the step size in the
Euler–Maruyama approximation does not alter Fig. 1(b). Further-
more, Fig. 1(b) is not in contradiction with Theorem 3.1, accord-
ing to which, for any final time t1 there exists some r0 such that
the series (7) converges and the remainder is bounded in the mean
square sense (cf. estimate (8)). It can be said that Fig. 1(b) solely
indicates that for t1 ¼ T and r ¼ 0:01, the series (7) either does
not converge or the remainder is unacceptably large. However, for
t1 ¼ T=4, the approximation (16) is found to be acceptable. This
observation is in line with experience from deterministic dynami-
cal systems. In this setting, Nayfeh [29] has noted that the
straightforward expansions in the form of Eq. (7) are often limited
to small time intervals and more sophisticated methods need to be
employed to obtain solutions valid over larger time intervals.

4 Approximation of Sample Paths

In the previous section, it was demonstrated that the explicit
formula (16) works well for small enough times, but the formula’s
accuracy deteriorates significantly for longer time spans. To
address this shortcoming, the small noise integrator (SNI) is pro-
posed in Sec. 4.1. Subsequently, the integrator’s performance is
evaluated on nonlinear mechanical systems with up to one hun-
dred degrees-of-freedom.

4.1 Small Noise Integrator. To overcome the small time
horizon of the approximation (16), the Algorithm 1 is proposed
next. After fixing a time-step s and providing an initial condition
x0 at t0, the distribution (15) for t ¼ s is computed and then this
distribution is sampled to generate the new initial condition xs
according to Eq. (16). Then, the algorithm is restarted with the ini-
tial condition xs to generate a new sample x2s. By repeating these
two steps, samples are generated at later time instances xks.

Algorithm 1: Small noise integrator (SNI)

Result: xðKs; x0; t0Þ
Set time step s and provide initial condition x0;
K¼ 1;
while k<K do

Solve Eq. (9) to obtain the deterministic solution Fks
ðk�1Þsðxk�1Þ;

Compute the variance (12) ;
Sample the distribution p1ðx; ks; xk�1; ðk � 1ÞsÞ (cf. Eq. (15)) to
obtain

x1ðks; xk�1; ðk � 1ÞsÞ;
xk ¼ Fks

ðk�1Þsðxk�1Þ þ rx1ðks; xk�1; ðk � 1ÞsÞ;
k ¼ k þ 1;

end

The SNI is motivated by the fact that the small noise expansion
is accurate only for a limited time span. Thus, by selecting s to be
within this time span, one can ensure that the approximation (16)
is accurate. Repeated sampling removes the limited time horizon
of the small noise expansion and the following Lemma guarantees
the accuracy of the SNI 1 for longer time spans:

LEMMA 4.1. Assume that the flow map of the deterministic limit
(9) is approximated with an accuracy not less than OðsÞ. Then the
SNI 1 strongly converges to the sample paths of the stochastic sys-
tem (6) with order Oðs1

2Þ; that is, the following holds

E½jxðksÞ � xSNI
k j� < C

ffiffiffi
s
p
; 0 � k � K (20)

where xðksÞ denotes a solution to system (6), xSNI
k is an approxi-

mation obtained by the SNI 1, and C is a finite constant.
Proof. The above Lemma 4.1 is proven by showing that for

system (6) the SNI 1 converges to the Euler–Maruyama

approximation for a small enough time-step s. Then, the conver-
gence follows from well-established convergence results (e.g.,
Kloeden and Platen [13] or Schurz’s chapter in Ref. [17]). The
details are presented in Appendix A. �

Remark 4.1. Notably, the convergence result of Lemma 4.1
does not depend on the size of the noise intensity r. More specifi-
cally, in Appendix A only a parameter expansion in the time-step
s is performed and no restrictions on the noise intensity r are
imposed. For small enough time-step s, the SNI 1 resembles the
Euler–Maruyama scheme, which is valid for arbitrarily large r.
Hence, the SNI 1 will also converge for large r.

Remark 4.2. As utilized in the Euler–Maruyama scheme and
also shown by Risken [4], solutions to Eq. (6) can be approxi-
mated by a Gaussian process on small time scales regardless of
the size of the noise intensity. With the SNI 1 one arrives at a sim-
ilar conclusion and exploits the convergence of the expansion (7)
for small noise intensities. Within the SNI 1 a non-Gaussian distri-
bution arises on longer time scales when multiple sample paths
are computed.

If the directions along which the Gaussian white noise act are
constant; that is, Bmðx; tÞ ¼ Bm for m ¼ 1;…;M < N, one can
reduce the computational costs of obtaining the variance (12).
Instead of computing the linearized flow map DFt

t0
ðx0Þ, which

requires N integrations of the equations of variation, the new vari-
able VðtÞ :¼ DFt

t0
ðx0ÞB is introduced. Then, the variance (12) can

be reformulated as

Rðt; t0; x0Þ ¼
ðt

t0

VðtÞV>ðtÞ ds (21)

and differentiation of VðtÞ yields

_V ¼ d

dt
DFt

t0
x0ð ÞB

	 

¼ d

dt
DFt

t0
x0ð Þ

	 

B ¼ @xf x; tð ÞDFt

t0
x0ð Þ

B ¼ @xf x; tð ÞV; V t0ð Þ ¼ B

(22)

Thus, it suffices to compute the matrix V which requires only M
integrations of the linearized flow.

The fact, that for small times solutions of system (6) can be
approximated by a Gaussian process is well-known (see, e.g.,
Risken [4] or Freidlin and Wentzell [31]) and has also been
exploited in the construction of solution schemes that repeatedly
resample an arising Gaussian distribution in a similar manner as
the SNI 1. For example, Sun and Hsu [38] introduce a short-time
Gaussian approximation for the cell mapping method or Yu et al.
[10] and Wehner and Wolfer [39] use a Gaussian transition proba-
bility density function in the formulation of a path integral solu-
tion to the Fokker–Planck equation. In these schemes, however,
the mean and variance of the Gaussian approximation are
obtained differently from the SNI 1. Wehner and Wolfer [39] uti-
lize the short time propagator also used in the Euler–Maruyama
scheme and Sun and Hsu [38] and Yu et al. [10] rely on moment
equations with heuristic closure schemes. Contrarily, the SNI 1
utilizes the rigorously deduced mean and variance (16) for the
arising Gaussian processes.

For further understanding, the SNI 1 can be compared with the
classical Euler–Maruyama scheme which applied to system (6) yields

xe
k ¼ xe

k�1 þ sfðxe
k�1; ðk � 1ÞsÞ þ r

ffiffiffi
s
p

Bðxe
k�1; ðk � 1ÞsÞDW

(23)

where DW denotes the increments of the m-dimensional of the
normalized Wiener process. In this setting, the SNI 1 replaces the
forward Euler scheme of the deterministic part in the
Euler–Maruyama scheme (xe

k�1 þ sfðxe
k�1; ðk � 1ÞsÞ) by the deter-

ministic flow map Fks
ðk�1Þsðxk�1Þ at each time-step. Moreover,

instead of sampling the normal distribution with zero mean and
variance sBðxe

k�1; ðk � 1ÞsÞ½Bðxe
k�1; ðk � 1ÞsÞ�> the variance (12)
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is sampled for the stochastic increment in the SNI 1 at each time-
step.

Although the order of convergence of the SNI is only one-half,
which is the order of the classic Euler–Maruyama scheme, the
SNI 1 has inherent advantages making it an appealing alternative
to existing techniques to solve Eq. (6) numerically. First, the SNI
requires only sampling of normal distributions and hence it does
not require sampling of intricate distributions as some competing
method (e.g., Schurz’s chapter in Ref. [17]). Second, the SNI
allows for the use of deterministic integration routines. More spe-
cifically, the flow-map Ft

t0
ðx0Þ can be approximated by any deter-

ministic numerical integrator. This is especially appealing in
applications, where accurate and effective approximations of solu-
tions to the deterministic limit of Eq. (6) already require sophisti-
cated numerical integration routines. For example, the forward
Euler approximation of the deterministic flow map in the
Euler–Maruyama scheme or Milstein’s scheme (e.g., Kloeden and
Platen [13]) can be unstable for simple linear equations (see, e.g.,
Butcher [40]).

Most importantly, the SNI’s performance is drawn from not
only the limit of an asymptotically small time-step, but this algo-
rithm is also accurate for large time steps, given that the noise
terms are sufficiently small. Thus, it is anticipated that the time-
step s can be chosen considerably larger than in the available
numerical integration routines for stochastic differential
equations.

Overall, a possible increase in speed and accuracy gained by
using a deterministic integrator for system (1) is counteracted by
the necessity of computing the linearized flow map DFt

t0
ðx0Þ and

the variance (12). In special cases, this burden can be reduced by
computing the matrix V instead (cf. Eq. (22)). These observations
lead to the conclusion that the SNI 1 is superior to other stochastic
integration methods if the deterministic limit is challenging
enough such that the speed up gained by the deterministic numeri-
cal integration routines is larger than the computational effort of
computing the linearized flow map DFt

t0
ðx0Þ and the variance

(12). In the next section, it is shown that this can be the case,
through many examples.

4.2 Numerical Investigations. As a benchmarking study, the
SNI 1 is compared to Euler–Maruyama (EM) approximations of
solutions to Eq. (6) (e.g., Kloeden and Platen [13]). Although
many higher-order schemes are available (cf. Schurz’s overview
in Ref. [17]), as reported by Mannella [22], the performance gain
can be insignificant at the expense of additional computational
expense. Thus, for a first comparison, the widely-used

Euler–Maruyama method is used2,3. Within the SNI 1 the follow-
ing numerical routines are used. Equations (9) and (10), and in
turn Eq. (22), are solved using MATLAB’s ODE45 routine. More-
over, the integral to compute the variance (12), respectively
Eq. (21), is approximated by using the trapezoidal rule.

For an initial demonstration of the accuracy of the SNI, the
Duffing system (18) with parameter values (19) and excitation fre-
quency X ¼ 1:2 is investigated for two different choices of the
time-step s. For the first choice, s ¼ T=5 is selected, and subse-
quently, for the second choice, it is increased to T for comparison.
The results of the SNI are shown in Fig. 2. While the distribution
obtained with the SNI 1 with time-step s ¼ T=5 shown in
Fig. 2(a) matches the distribution from the EM-approximations,
the SNI does not yield an accurate approximation for the time-
step s ¼ T (cf. Fig. 2(b)). The accuracy can be quantified by com-
puting the first two statistical moments for all three distributions.
In Fig. 2(a), the mean and standard deviation of the EM-
approximation and the SNI agree up to an accuracy of 10�3,
whereas the standard deviations differ by more than 0.01 in
Fig. (2(b)). With the SNI 1, one computes the 103 samples shown
in Fig. 2 about 20-times faster than the Euler–Maruyama
approximation.

In Fig. 3(a), the authors show the convergence of the SNI rela-
tive to the step size s. The errors in the first two statistical
moments, that is the mean and variance, computed with the SNI 1
are compared to those associated with from an Euler–Maruyama
approximation with step size of s ¼ T=ð2 
 105Þ. For the selected
step sizes, the mean computed with the SNI 1 remains accurate
with an error of the order of about 10�3. This accuracy is also rec-
ognizable in Fig. 2. For both step sizes s ¼ T and s ¼ T=5, the
sample populations are centered at the same phase space location
indicating that both distributions have a similar mean. However,
the accuracy of sample variance computed with the SNI 1
increases significantly between s ¼ T=2 and s ¼ T=3. This obser-
vation is also discernible in Fig. 2. The sample population com-
puted with the SNI 1 for the step size s ¼ T spans an evidently

Fig. 2 Deterministic and stochastic solutions to Duffing’s Eq. (18) with parameters (19): (a) SNI-algorithm 1
with s 5 T=5 and (b) SNI-algorithm 1 with s 5 T

2The MATLAB provided Euler-Maruyama approximation is not utilized. Instead, a
self-written code, available at github.com/tbreunung/SNI, is employed. For the cases
tested the self-written code outperforms the MATLAB provided code. Moreover,
various optimizations of the Euler-Maruyama scheme summarized by Higham [47]
(especially vectorization) have been tested and a version was selected that seemed
optimal in terms of speed and memory requirements for the purposes of this study.

3It is noted that for the investigated systems, the first order equivalent of systems
(18) and (24), the matrix B (cf. Equation (6)) does not depend on the coordinates.
Hence, the Euler-Maruyama scheme is equivalent to Milstein’s scheme (e.g.,
Kloeden and Platen [13]). Thus, it convergences to the sample path of system (24)
with order one.
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larger area than the converged sample distribution (cf. Fig. 2(b)).
The same numerical convergence analysis is also performed for
the Euler–Maruyama scheme and shown in Fig. 3(a). A converged
result from the Euler–Maruyama scheme requires a significantly
higher number of time steps per period compared to that for
SNI 1.

The performance of the SNI 1 is further demonstrated in a
series of numerical experiments on an array of N� coupled oscilla-
tors shown in Fig. 4. The equation of motion of the nth mass is

mn €qnþ cn _qnþ knqnþ jnq3
nþ sn�1ðqn� qn�1Þþ snðqn� qnþ1Þ ¼ fn

fn ¼ an sinðXtÞþ rbn; dbn ¼ gn dW1; n¼ 1;…;N�

(24)

where q0 � qN�þ1 � 0 and s0 ¼ sN� ¼ 0 holds. The springs with
stiffness sn induce coupling between the individual degrees-of-
freedom of system (24). The quantity an is the amplitude of the
deterministic harmonic component in the nth forcing, and the
quantity gn is the level of the noise term W1 in the nth coordinate.
It is noted that considering the oscillator array (24) with a single
mass (N� ¼ 1) yields the Duffing Eq. (18) investigated in Figs. (2)
and (3). Next, identical parameters for each oscillator are chosen
with the following dimensionless values

mn ¼ 1; kn ¼ 1; sn ¼ 0:1; cn ¼ 0:02; jn ¼ 0:5;

an ¼ 0:1; gn ¼ 1; n ¼ 1; ::;N�
(25)

and the noise intensity is set to r ¼ 0:01.
The excitation frequency X is set to 1.2 and for each oscillator,

the same initial condition x0 shown in Fig. 1(a) is selected. Then,
the sample paths of the oscillator array (24) are approximated for
1, 10, and 100 forcing periods. To ensure that the Euler approxi-
mation yields the correct deterministic limit, the step size of the
EM-approximation is decreased until it matches the solution of

MATLAB’s ODE45 with an error less than 10�3. For the SNI 1,
s ¼ T=5 is selected and MATLAB’s ODE45 algorithm is used to
solve Eqs. (6) and (22). For both approximations, 103 sample
paths are obtained and the first two statistical moments are com-
pared. It is observed that in all cases there is an agreement with an
accuracy of 10�3. The run-time comparison of the EM-
approximation and the SNI 1 is shown in Table 1.

Overall, from Table 1, it can be discerned that a significant
speed-up of the SNI 1 is obtained in comparison to the classical
Euler–Maruyama scheme. In all cases, the speed-up is at least one
order of magnitude. Especially large is the speed-up for oscillator
arrays with 5 to 50 oscillators. Moreover, the efficiency of the
SNI 1 increases with the time span, which makes it an appealing
choice for long time horizons.

To further demonstrate the versatility of the SNI 1, the excita-
tion frequency is increased to X ¼ 1:9 and for each oscillator, the
initial condition is selected to be on the upper stable branch
depicted in Fig. 1(a). At this frequency, MATLAB’s ODE45 algo-
rithm can be used to compute the stable periodic orbit effectively,
whereas the step size of the primitive EM-approximation needs to
be decreased significantly to converge to a stable periodic orbit of
the deterministic limit. Proceeding as previously described for the
stochastic simulations, the SNI 1 yields a significant computa-
tional gain compared to the Euler–Maruyama scheme (cf.
Table 2).

To verify that the performance of the SNI 1 is independent of
specific parameter values (25), the parameter values of system
(24) are assigned randomly as described in Appendix B. Also for
this numerical experiment the SNI 1 is found to outperform the
Euler–Maruyama approximation (cf. Table 2). Overall, from
Table 2, one can discern a speed-up of about two orders in magni-
tude. Moreover, for longer simulation times an even higher speed-
up of the SNI 1 is expected, since the small step size to be used
for the EM-approximation will increase the computational burden
excessively.

Fig. 3 Convergence analysis for the Duffing Eq. (18) with parameters (19): (a) convergence of the SNI 1 for vary-
ing step size s and (b) Convergence of the Euler–Maruyama approximation for varying step size s

Fig. 4 Oscillator array with cubic nonlinearities j and linear coupling sn
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Although the SNI 1 relies on a repeated sampling of Gaussian
distributions, the resulting sample distribution is not necessarily
Gaussian. To demonstrate this, the oscillator array (24) with two
masses N� ¼ 2 and a coupling spring stiffness kc ¼ 0:025 is con-
sidered. For these parameter values, four stable periodic orbits
exist. For one of there orbits, both masses oscillate with a high
amplitude (i.e., the high amplitude orbit), whereas along the low
amplitude orbit, the displacements of both masses are low. More-
over, two localized modes exist. Along one of the localized
modes, the first mass oscillates considerably, whereas the ampli-
tude of the second mass is low. For the other localized mode, the
energy distribution is reversed; that is, the amplitude of the first
mass is low and the second mass oscillates with a high amplitude.
Such energy localization phenomena have been previously inves-
tigated, for example, Sievers and Takeno [41], Vakakis and Cetin-
kaya [42] and Dick et al. [43]. Recently, there has been an interest
to study the effects of noise on such energy localization (e.g., Per-
kins et al. [44] and Balachandran et al. [45]). Selecting the high
amplitude orbit as an initial condition, 103 sample paths for 100
periods have been computed with the SNI 1. The sample locations
are shown in Fig. 5. The projections show that some samples
remained in the neighborhood of the high amplitude orbit,
whereas other realizations have escaped toward the low amplitude
periodic orbit. Overall, the distribution shown in Fig. 5 is clearly
non-Gaussian.

5 Approximation of the Probability Density Function

A straightforward method to compute probability densities is to
discretize the state space into volumes, compute sample paths

(e.g., with the SNI 1 or the EM-approximation) and then count the
number of realizations within each volume. The result of this
Monte Carlo approach is an invariably nonsmooth approximation
of the probability density function. This requires a high number of
samples to accurately represent the PDF. To overcome these
shortcomings a more effective method is proposed in Sec. 5.1.
This approach relies on the rigorously deduced Gaussian kernel
(12) to smoothly approximate the probability density function.
Next, the performance of the proposed method is examined
through examples in Sec. 5.2.

5.1 Gaussian Kernel Approximation. To approximate the
probability density function of system (6) at t ¼ Ks, it is assumed
that R realizations xrðKsÞ ¼ xrðKs; x0; t0Þ of the stochastic pro-
cess (6) have been computed. At time t ¼ ðK � 1Þs, the sample
locations are given by xrððK � 1ÞsÞ ¼ xrððK � 1Þs; x0; t0Þ. Now
advancing the sample population from time t ¼ ðK � 1Þs to the
final time t ¼ Ks, each individual sample results in the generation
of the Gaussian distribution

prðx;Ks; xrððK � 1ÞsÞ; ðK � 1ÞsÞ :

¼ prðx;Ks; xrððK � 1ÞsÞ; ðK � 1ÞsÞ (26)

where the distribution pr is defined in Eq. (17). Averaging the dis-
tributions (26) over the samples yields

p x;Ks; x0; t0ð Þ � 1

R

XR

r¼1

pr x;Ks; xr K � 1ð Þsð Þ; K � 1ð Þs
� �

(27)

Table 1 Run-time comparison for the SNI 1 with s5T=5 and the Euler–Maruyama approximation for the oscillator array (24)

Final time t¼T Final time t ¼ 10T Final time t ¼ 100T

# dof (N�) EM: Steps per T Speed-up EM: Steps per T Speed-up EM: Steps per T Speed-up

1 4� 104 21 6� 104 32 1� 105 47
2 6� 104 32 8� 104 45 2� 105 95
5 8� 104 37 1� 105 52 4� 105 194
10 1� 105 46 2� 105 195 6� 105 259
20 2� 105 72 3� 105 115 6� 105 175a

50 3� 105 46 4� 105 45 8� 105 102a

100 4� 105 21 6� 105 32 1� 106 62a

The computations have been performed using MATLAB 2020a installed on a Windows PC with Intel Xeon CPU E5-2687 W @ 3.1 GHz and 64 GB RAM.
The sample size is 103 and the convergence of the two methods is ensured by computing the first two statistical moments. The excitation frequency X is
1.2.
aDue to the excessive computation time of the Euler–Maruyama scheme (more than one day), the run-time for the full sample size is estimated by extrap-
olating the run-time for one sample.

Table 2 Run-time comparison for the SNI 1 with s5T=5 and the Euler–Maruyama approximation for the oscillator array (24)

X ¼ 1:9 Random parameters

Final time t¼T Final time t¼T Final time t ¼ 10T

# dof (N�) EM: Steps per T Speed-up EM: Steps per T Speed-up EM: Steps per T Speed-up

1 2� 105 87 6� 104 21 3� 105 89
2 3� 105 130 2� 104 16 2� 105 161
5 5� 105 156 2� 104 13 2� 105 163
10 8� 105 303 5� 104 27 5� 105 270
20 1� 106 257 5� 105 60 4� 106 488a

50 2� 106 270 5� 106 22 1� 107 250a

100 3� 106 153 5� 105 7 5� 106 201a

The computations have been performed using MATLAB 2020a installed on a Windows PC with Intel Xeon CPU E5-2687 W @ 3.1 GHz and 64 GB
RAM.
(i) X ¼ 1:9 and uniform parameters (25) and (ii) random parameters (cf. also Appendix B). The sample size is 103 and the convergence of the two meth-
ods is ensured by computing the first two statistical moments.
aDue to the excessive computation time of the Euler–Maruyama scheme (more than one day), the run-time for the full sample size is estimated by extrap-
olating the run-time for one sample.
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that is, a Gaussian kernel approximation (GKA) to the probability
density at the final time. Equation (27) is an approximation of the
probability density pðx;Ks; x0; t0Þ obtained by a sum of Gaussian
distributions centered at FNs

ðN�1ÞsðxrððK � 1ÞsÞÞ with variance (12),
which generally differ for each realization r. Hence, it can also be
viewed as kernel smoothening method (e.g.,, Friedman et al.
[46]). Compared to the usual adhoc chosen kernel distributions,
the kernel (27) is rigorously chosen based on the Gaussian kernel
(12). Moreover, since (27) is the standard Monte Carlo estimator,
the corresponding convergence can be guaranteed under appropri-
ate assumptions; that is, small enough s and small enough r.

5.2 Numerical Investigations. In the following, the time-
varying probability density function of the stochastic process (6)
is computed with the Gaussian kernel approximation (27) and
compared with the probability density obtained by using the
straight forward Monte Carlo simulations, wherein the state space
is discretized into volumes and the number of realizations in each
volume is counted.

For a first comparison, the single degree-of-freedom oscillator
(18) with the parameters (19) is reinvestigated. The initial condi-
tion is depicted in Fig. 1(a) and the solutions of the stochastic pro-
cess (18) are approximated via the SNI 1 for one period. In Fig. 6,
the authors show the obtained probability density functions for
various sample sizes. For 105 samples, the probability density
function of both methods, Monte Carlo and GKA (27) match very
well. Reducing the sample size in the GKA to include only 103

samples, still yields a PDF, which matches the PDF obtained at
convergence with 105 samples. However, with a reduced number
of samples in the Monte Carlo method, there is a significant devia-
tion from the converged results.

To quantify the superior convergence of the GKA, the L2-error
relative to Monte Carlo simulations with 106 samples is visualized
for both approximations and various sample sizes. The relative
error of the GKA shown in Fig. 7 is about two orders of magni-
tude smaller than that of the Monte Carlo approximation. Only for
the largest sample size (Ns ¼ 105), the error of the GKA is one
order of magnitude less than that of the Monte Carlo simulations.

Fig. 5 Samples of the oscillator array (24) with localized modes after 100 periods

Fig. 6 Comparisons of computed probability density function with the proposed Gaussian kernel approximation (27) and
Monte Carlo sampling for different sample sizes for Duffing’s Eq. (18) with parameters (19)
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However, the error with the Monte Carlo simulations with 105

samples is still larger than the error with the GKA with only 103

samples. Thus, in this example, the sample size of the GKA-
approximation can be reduced by two orders of magnitude com-
pared to the Monte Carlo method.

Before proceeding with a high dimensional oscillator array
(24), it is insightful to emphasize the enormous sample size
needed for the Monte Carlo simulations to obtain a converged
PDF. For the one degree-of-freedom oscillator considered in
Figs. 6 and 7, about 105 samples were necessary to compute a
converged PDF with the Monte Carlo method. Thus, an estimated
number of 105N� samples would be required to obtain a converged
PDF for an N�-oscillator array (24). Even for three oscillators in
system (24), the computational effort necessary to generate such a
high number of samples is overwhelming4.

To verify whether one obtains the correct results with the
GKA-approximation (27) in higher dimensions, an perturbation
scheme is employed. For the weak coupling spring stiffness sn,
the time evolution the oscillator array (24) can be estimated with
N uncoupled oscillators; that is, the uncoupled limit sn ! 0. More
precisely, it is assumed that the coupling spring stiffness sn is of
order Oðr2Þ. Then, for the uniform parameters (25) each oscillator
qj and _qj are identical up to order Oðr2Þ. Thus, in this limit, it is
sufficient to simulate a single degree-of-freedom oscillator to infer
about the full oscillator array (24).

In Fig. 8, the authors depict the PDF of the oscillator array (24)
with three masses N¼ 3 along the two-dimensional plane where
the positions and velocities of the second and third mass are at
their sample mean; that is, q2 ¼ �q2; q3 ¼ �q3; _q2 ¼ �_q2 and
_q2 ¼ �_q2, where the bar indicates the mean values. Both approxi-
mations match with an relative L2-error of less than 0.01. It is
emphasized, that for the Monte Carlo simulations approximate
symmetries of system (24) are explicitly exploited, whereas no
such reduction technique has been employed for the GKA5. Simi-
lar to the single degree-of-freedom case, with the GKA (27), one
converges to a significantly lower number of samples than with
the Monte Carlo sampling.

Finally, the two-degree-of-freedom system with localized
modes from Sec. 4.2 is reinvestigated to verify whether samples
escaped from the high amplitude orbit to the other stable periodic

orbits. With the two-dimensional projection shown in Fig. 5, one
invariably ignores the other directions and hence such projections
are of limited use to infer about an escape from the high amplitude
orbit. Accordingly, measuring distances of samples to the periodic
orbits is more appropriate. For each periodic orbit, the distance is
a random variable, whose PDF can be approximated with the
GKA. The arising four PDFs are shown in Fig. 9 for 105 samples.
The peak in Fig. 9 is due to the initial condition, whose distance
to the localized modes and the low amplitude orbit is about 2.7.
The distances to the high amplitude orbit and the low amplitude
orbit (blue and red lines in Fig. 9) confirm the impression from
Fig. 5 that realizations do not stay close to the high amplitude
orbit and escape toward the low energy orbit.

6 Conclusions

In this work, the small noise expansion (cf. Eq. (7)) is exploited
to propose a method to obtain approximations for the following:
(i) the sample paths of the stochastic dynamical system (1) and
(ii) the associated time-varying probability density function. With
the formulated small noise integrator 1, one removes the limited
time horizon of the small noise expansion, by using an appropriate
resampling of the Gaussian distribution (12) along sample paths.
For the SNI 1, one only requires the solution to deterministic dif-
ferential equations, which means that deterministic integration
routines can be used in the stochastic setting. Additionally, the
authors have proven convergence of the proposed algorithm,
which notably also holds for arbitrarily large noise intensities.

The computational benefit of the proposed SNI is examined
with a series of coupled oscillator arrays with up to one hundred
degrees-of-freedom, including a randomly parameterized array.
Compared to the standard Euler–Maruyama scheme, a speed-up
of two orders of magnitude is observed for a wide range of inves-
tigated systems. Especially for longer simulation times, the com-
putational gain of the SNI is significant.

Moreover, the Gaussian kernel approximation (27) yields a jus-
tified approach to recover a smooth probability density function
from samples, without relying on adhoc kernel choices or interpo-
lation. With this method, the necessary sample size to accurately
approximate the probability density function can be reduced dras-
tically. For a single degree-of-freedom oscillator, the number of
samples can be reduced by three orders of magnitude compared to
established Monte Carlo methods. For a three degree-of-freedom
system, the GKA (27) is found to yield an accurate PDF, while a
computation with Monte Carlo methods is simply infeasible with
reasonable computational resources. Thus, the GKA (27) opens
up a new horizon to compute PDFs for higher dimensional sys-
tems beyond the current limitation to two or three dimensions.

Fig. 7 Relative error of Gaussian kernel approximation (27)
and Monte Carlo approximation for Duffing’s Eq. (18) with
parameters (19)

Fig. 8 Comparison of the computed probability density function
via the proposed Gaussian kernel approximation (GKA) (27) and
Monte Carlo sampling at the uncoupled limit for the oscillator
array (24) with parameters (25) and a sample size of 105

4To give an idea of the computational effort, the following is mentioned: the
storage required to store 1015 samples with double precision floating point numbers
is 48 petabytes (¼ 1015 
 3 
 2 
 8 bytes). With the current advances in high-
performance computing and data storage systems, such simulations may not be
impossible but one requires a serious commitment in computing power and data
storing capabilities, which is beyond the scope of this paper.

5Without using the approximate symmetries, not a single realization out of the
105 samples ended up in the discretized state space volume used to compute the
results for Fig. 8. Hence, the Monte Carlo approximation for the PDF is identically
zero.

Journal of Computational and Nonlinear Dynamics SEPTEMBER 2022, Vol. 17 / 091008-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/17/9/091008/6901101/cnd_017_09_091008.pdf?casa_token=M
JVu9lYN

VvEAAAAA:psxU
azvcPaP0EhA4hW

8Q
eXk57N

foIcH
U

Q
kJC

AnkR
3xM

vdr43tO
V2tZM

yo0S3cdoPw
BC

Q
Sw

 by U
niversity of M

aryland Libraries user on 08 Septem
ber 2022



While the SNI 1 can be used to extend the validity of the
straightforward expansion (7) to longer time intervals, it does not
yield a steady-state distribution, which can be of interest in appli-
cations. The underlying theory 3.1, unfortunately, is fundamen-
tally restricted to finite time intervals. Thus, an extension of the
underlying theory as well as computational algorithms is desirable
to compute a statistical steady-state, if it exists.

The probability density function, a time-varying scalar quantity
in a usually high dimensional space, is often difficult to under-
stand, visualize or access. In many applications, the quantities of
interest, for example, the exceedance probability, escape times, or
frequency of occurrence, can, in principle be answered by com-
puting the PDF, but this might not always be the most efficient
approach. Thus, it would be of interest to tailor the method pre-
sented in such specific contexts.
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Appendix A: Convergence Proof of the SNI 1

In the following, it is shown that the SNI 1 has the same order
of convergence as the Euler–Maruyama scheme. The
Euler–Maruyama approximation to system (10) with step size s is
given by

xe
k ¼ xe

k�1 þ sfðxe
k�1; ðk � 1ÞsÞ þ r

ffiffiffi
s
p

Bðxe
k�1; ðk � 1ÞsÞDW

(A1)

where DW denotes the increments of the m-dimensional of the
normalized Wiener process; that is, they are independent and
identically normal-distributed random variables with zero mean
and variance one. First, the variance (12) is expanded for small s
yielding

Rðks; xk�1; ðk � 1ÞsÞ

¼
ðks

ðk�1Þs
DFs
ðk�1Þsðxk�1ÞBðFs

ðk�1Þsðxk�1Þ; sÞ½DFs
ðk�1Þsðxk�1Þ

BðFs
ðk�1Þsðxk�1Þ; sÞ�> ds

¼ sDF
ðk�1Þs
ðk�1Þsðxk�1ÞBðFðk�1Þs

ðk�1Þsðxk�1Þ; ðk � 1ÞsÞ½DF
ðk�1Þs
ðk�1Þsðxk�1Þ

BðFðk�1Þs
ðk�1Þsðxk�1Þ; ðk � 1ÞsÞ�> þ Oðs2Þ

¼ sBðxk�1; ðk � 1ÞsÞ½Bðxk�1; ðk � 1ÞsÞ�> þ Oðs2Þ
(A2)

where the integral is approximated by the values of the integrand
at time s ¼ ðk � 1Þs. Equation (A2) reveals that the variance of
distribution (15) is sBðxk�1; ðk � 1ÞsÞB>ðxk�1; ðk � 1ÞsÞ. The
sampling of the normal distribution with variance sBðxk�1; ðk �
1ÞsÞB>ðxk�1; ðk � 1ÞsÞ is equivalent to scaling the M columns offfiffiffi

s
p

Bðxk�1; ðk � 1ÞsÞ by samples drawn from the standard distribu-
tion. Thus, one time-step of the SNI can be written as

xSNI
k ¼ ~F

ks
ðk�1ÞsðxSNI

k�1Þ þ r
ffiffiffi
s
p

BðxSNI
k�1; ðk � 1ÞsÞDWþOðsÞ (A3)

where ~F
ðk�1Þs
ns ðxkÞ denotes an appropriate approximation to the

flow map of the deterministic system (9). The error of the SNI has
the following upper bound

E½jxðksÞ � xSNI
k j� � E½jxðksÞ � xe

kj� þE½jxe
k � xSNI

k j�

� E½jxðksÞ � xe
kj� þ jxe

k�1 þ sfðxe
k�1; ðk � 1ÞsÞ

� ~F
ðk�1Þs
ks ðxSNI

k�1Þj þ OðsÞ
(A4)

wherein Eqs. (A1) and (A3) have been used. By adding and sub-
tracting the flow map Fks

ðk�1Þsðxððk � 1ÞsÞÞ, the arising error can
be split into three parts

Fig. 9 Distances of samples to the four stable periodic orbits of the oscillator array
(24) with localized modes after 100 periods

6github.com/tbreunung/SNI
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E½jxðksÞ � xSNI
k j� � E½jxðksÞ � xe

kj�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
error of stochastic Euler approximation

þ j~Fks
ðk�1ÞsðxSNI

k�1Þ � F
ðk�1Þs
ks ðxððk� 1ÞsÞÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

approximation error of deterministic flow map

þjFks
ðk�1Þsðxððk� 1ÞsÞÞ � ðxe

k�1 þ sfðxe
k�1; ðk� 1ÞsÞÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

error of deterministic explicit Euler scheme

þOðsÞ

� C
ffiffiffi
s
p

(A5)

where the following is used: (i) the convergence result of the sto-
chastic Euler–Maruyama approximation (A1) to the solutions of
Eq. (10) (e.g., Kloeden and Platen [13]), (ii) the assumption that

the approximated flow map ~F
ðn�1Þs
ks ðxSNI

k Þ is OðsÞ close to the true

flow map ~F
ðn�1Þs
ks ðxSNI

k Þ (cf. assumption in Lemma 4.1), and iii) the
convergence of the deterministic forward Euler scheme. The
required estimate for Lemma 4.1 is given in Eq. (A4).

Appendix B: Random Parameter Selection for Oscilla-

tor Array (24)

To assign values for the parameters of the oscillator array (24)
either the standard distribution Nðl;rN Þ with mean l and var-
iance rN or the uniform distribution U½a; b� with a denoting the
minimum and b the maximum value are sampled. The parameter
values are drawn from the following distributions:

mn	U½0:5;2�; kn	U½0:5;2�; sn	U½0:05;0:2�; cn	U½0:01;0:03�
jn	U½0;0:1�; fj	Nð0;0:1Þ; gj	Nð0;1Þ; X	U½1;2�

(A6)

The distributions (A6) are selected such that the linear unforced
limit of the oscillator array (24) (j! 0 and r! 0) is a weakly
damped oscillator customary in the structural dynamics literature
(cf. G�eradin and Rixen [25]). The parameter values for the numer-
ical experiments presented in Table 2 are available online.6
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