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Invariant manifolds, such as normally hyperbolic
invariant manifolds and spectral submanifolds, are
the key to understanding the dynamical behaviour
of many nonlinear mechanical systems and serve
as natural candidates for model-order reduction.
While numerous related invariant manifold results
are available for unforced and periodically forced
nonlinear mechanical systems, their applicability to
random external forcing remains to be established.
Here, we clarify the continued role of deterministic
invariant manifolds, more specifically normally
hyperbolic invariant manifolds and spectral
submanifolds under the addition of small white
noise excitation. Subsequently, we demonstrate our
results on several mechanical systems.

1. Introduction
Modern analysis of deterministic dynamical systems
relies on the understanding of influential invariant
manifolds, such as centre manifolds, (un-) stable
manifolds (e.g. Guckenheimer & Holmes [1]) or normally
hyperbolic invariant manifolds (NHIMs) (e.g. Wiggins
[2]). For realistic engineering structures, however, one
has to account for parameter uncertainty, unmodelled
degrees-of-freedom or unknown disturbances (e.g. Lutes
& Sarkani [3]). Whether the aforementioned deterministic
manifolds are of relevance under uncertainties or
random external excitation has remained unclear.

2022 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

un
e 

20
22

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0933&domain=pdf&date_stamp=2022-06-22
mailto:thomasbr@umd.edu
http://orcid.org/0000-0001-7885-2201
http://orcid.org/0000-0003-1260-877X


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210933

..........................................................

Specifically for deterministic nonlinear mechanical systems, various invariant manifolds have
been identified as relevant. For example, nonlinear normal modes have been defined either
as manifolds of conservative periodic orbits (Kerschen et al. [4] for a review) or as invariant
manifolds tangent to spectral subspaces of the linearized dynamics (Shaw & Pierre [5]). More
recently, Haller & Ponsioen [6] identified the smoothest nonlinear continuation of a spectral
subspace of the linearized dynamics as a spectral submanifold (SSM). While SSMs have recently
been shown to provide exact reduced order models (e.g. Jain et al. [7], Breunung & Haller [8],
Ponsioen et al. [9] and Jain & Haller [10]), the related computational tools assume a deterministic
dynamical system. This assumption, however, does not hold for structures that are commonly
subject to parameter uncertainties and external random disturbances.

The general relevance of a deterministic invariant manifold for the stochastically perturbed
system can be investigated using, e.g. Monte Carlo methods (see Rubinstein & Kroese [11]). Due to
their slow convergence, however, Monte Carlo methods require a high sample size, which leads to
significant numerical costs. Furthermore, this numerical approach does not allow for a systematic
understanding or general conclusions about qualitative aspects of the nonlinear dynamics.

The persistence of deterministic dynamical features, such as NHIMs or stable/centre
manifolds of fixed points under random perturbations, is intricate to establish mathematically.
Berglund & Gentz [12] studied a system with slow-fast dynamics and with a known slow
manifold. They showed that under small external white noise excitation, sample paths remain
close to the slow manifold with a certain probability for finite time. In a similar setting,
Schmalfuss & Schneider [13] established the existence of a random invariant manifold, which
eliminates the fast dynamics (also see Kuehn [14] for a summary). Both studies, however, assume
an idealized, global slow-fast decomposition of variables into arbitrarily slow and fast variables,
which is generally not available for realistic nonlinear mechanical systems.1 Li et al. [16] removed
this restriction and establish the persistence of NHIMs under random perturbation in a fairly
general setting. However, they required the sample path of the random dynamical system to be
close to trajectories of the deterministic counterpart in the C1 norm, which is overly restrictive for
the random noise models used in mechanics.

On the basis of linearization techniques by Wanner [17], Arnold [18] proved the existence
of stable, unstable and centre manifolds of fixed points of random dynamical systems, both
locally and globally. The conditions for the existence of global manifolds are restrictive,
e.g. require the nonlinearity to be globally Lipschitz. The local invariant manifolds obtained
from this analysis are non-unique as they depend on the choice of a cut-off function.
Mohammed & Scheutzow [19] proved another stable manifold theorem for stochastic differential
equations. Their result applies for certain nonlinearities with unbounded spatial derivatives.
All these invariant manifolds and reduced models depend generally on the realization of
the random process. Therefore, the computations leading to these individual reduced models
can be computationally costly and do not immediately yield conclusions for the full random
process.

By contrast, the probability density function, depending on position, velocity and time, is
independent of the specific realizations of the random process. In the case of Gaussian white
noise excitation, the time evolution of the probability density function is governed by the
Fokker–Planck equation [20]. Its solution could, in principle, reveal the relevance of deterministic
invariant manifolds for stochastically perturbed nonlinear mechanical systems. However, the
exact steady-state solutions reported, e.g. by Caughey & Ma [21], Lin & Cai [22] and Soize
[23] are inapplicable in practice since a peculiar relationship between the external white noise
perturbations and the damping is required (Lin & Cai [22]). In the absence of exact solutions
of the Fokker–Planck equation, approximate solutions have been constructed. For example,

1A slow-fast decomposition requires a peculiar scaling in the contraction rates. In the setting of nonlinear mechanical systems,
contraction rates usually stem from the damping terms. The dissipative forces, however, are still not well understood
and are challenging to identify (Kerschen et al. [15]). Thus, it can generally not be ensured that they are consistent with
the mathematical theory. Indeed, Jain et al. [7] noticed the limitations of such slow-fast decomposition when applying a
deterministic result to a finite element discretization of a von Kármán beam.
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Atkinson [24] proposed an eigenfunction expansion or Ibrahim [25] or Crandall [26] obtained
moment balance schemes by integrating the Fokker–Planck equation in space. Such methods,
however, require a heuristic selection of truncation schemes or trial functions. More generally, the
convergence of such methods is often unclear. Moreover, these approaches are computationally
expensive, especially in higher dimensions (Soize [23]), and their numeric nature impedes general
conclusions.

Structural engineers frequently use stochastic averaging or statistical linearization to assess
the response of randomly excited nonlinear mechanical systems. Stochastic averaging, initially
proposed by Stratonovich & Silverman [27], requires a transformation into a slowly varying
amplitude equation. This transformation restricts the applications for the stochastic averaging
techniques to primarily single-degree-of-freedom mechanical systems (Roberts & Spanos
[28]). By contrast, statistical linearization (Roberts & Spanos [29]) was developed to handle
systems with many degrees-of-freedom. It replaces the nonlinear dynamical system with a
linear one implicitly assuming a Gaussian distribution for the response. The response of a
nonlinear system to white noise, however, is usually non-Gaussian. Due to these limitations,
these methods are unsuitable for clarifying the influence of noise on deterministic invariant
manifolds.

In summary, the continued relevance of deterministic invariant manifolds under small random
perturbations has not been well understood. As a consequence, the applicability of existing
rigorous invariant manifold concepts to stochastically forced nonlinear mechanical systems has
remained limited in practice. Moreover, numerical approaches for state space exploration tend to
suffer from heuristic assumptions and high computational costs.

To address some of these issues, here, we apply tools derived by Haller et al. [30] to study
diffusion in fluid flows. As Haller et al. [30] already noted, these tools can be applied to
the Fokker–Planck equation governing the probability density function if the white noise has
small intensity relative to the deterministic part of the system. Under that assumption, Haller
et al. [30] identify diffusion barriers as material surfaces that extremize the diffusive transport of
the probability density in the phase space. By the definition of these barriers, the transport of
the probability density across them is purely driven by small stochastic perturbations of the
otherwise deterministic system. Specifically, perfect barriers block the transport at leading order
completely and thereby demarcate regions of the phase space that trajectories generally do
not penetrate. Perfect barriers can be computed from purely deterministic quantities associated
with the dynamical system, and hence computationally expensive numerical methods, such as
Monte Carlo simulations, can be omitted.

We identify invariant manifolds of the limiting deterministic systems under small white
noise excitation as barriers to the diffusive transport of the probability density function in
the stochastic system. After transforming the Fokker–Planck equation to a suitable form, we
extend the results of Haller et al. [30] to singular diffusion matrices, which unavoidably arise in
mechanical systems2 (§3). Thereafter, we study the asymptotic alignment of perfect barriers with
SSMs and NHIMs in §4. Specifically, we prove that the transport of probability density across fast
spectral submanifolds of the deterministic limit of the mechanical system is minimal at leading
order, i.e. these manifolds act as perfect barriers for the probability density in the presence of small
stochastic forcing. Furthermore, we show that the same conclusion holds for repelling NHIMs,
which implies that hyperbolic slow manifolds act as barriers in backward time. We illustrate our
results on specific nonlinear mechanical systems in §5.

2The underlying reason is that mechanical systems are customarily modelled by second-order differential equations and
the Fokker–Planck equation requires a transformation to a first-order differential equation. This transformation extends the
phase space by including velocities as coordinates. The velocities, however, are not forced by the stochastic terms and hence
a singular diffusion matrix arises. We also note that the diffusion matrix D is given by D = BB� and refer to equation (2.5)
where the null space is apparent.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

un
e 

20
22

 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210933

..........................................................

2. Setup
We consider a model of a general nonlinear mechanical system of the form

Mẍ + Cẋ + Kx + S0(x) + S1(x, Ωt) = √
νf(x, t), 0 < ν � 1, x, ẋ ∈ U ⊂ R

N , (2.1)

where M, C, and K ∈ R
N×N are the mass, stiffness and damping matrices and x(t) is the vector of

generalized displacement variables. Equations (2.1) modelling a physical process are generally
valid on a bounded domain, which we denote by U.

The function S0(x) =O(|x|2) consists of autonomous nonlinear terms. The time-varying terms
S1(x, Ωt) can include (nonlinear) parametric excitation as well as external forcing. The time
dependence of S1 is assumed to be quasi-periodic with K incommensurate frequencies Ωk, which
includes the special cases of a steady (K = 0) and a time-periodic (K = 1) function S1. Moreover,
we assume that S0 and S1 are at least five times continuously differentiable in space and S1 is at
least continuously differentiable in time.

The right-hand side of equation (2.1) represents the stochastic excitation, with its differential
defined as follows:

df(x, t) =
M∑

m=1

fm(x, t) dWm, m = 1, . . . , M, M ≥ 1, (2.2)

where Wm are M uncorrelated Wiener processes. The vectors fm(x, t) specify the direction in which
the white noise acts. We assume that the forcing directions fm(x, t) are continuous in space and
time and bounded, which will be made more precise in the definition of a non-degenerate forcing
matrix (see definition 4.1). In summary, the forcing in equation (2.1) can include external random
forcing as well as random parametric forcing. Parametric random forcing has also been treated by
Lin & Cai [22] and Soize [23], and such forcing has been observed in micro-electro-mechanical-
systems (see Vig & Yoonkee [31] or Shoshani et al. [32]).

In this work, we establish the relevance of deterministic invariant manifolds for the
stochastically perturbed nonlinear mechanical system (2.1). The connection between deterministic
and stochastic dynamics is made via the Fokker–Planck equation governing the probability
density function of system (2.1). Thus, we first introduce the Fokker–Planck equation for system
(2.1). Subsequently, we briefly review SSMs and r-normally hyperbolic invariant manifolds
(r-NHIMs). Due to their robustness both manifolds have been proven to be particularly relevant
for analysing nonlinear dynamical systems, especially in the context of structural dynamics
(cf. Jain et al. [7] and Haller & Ponsioen [6]).

(a) The Fokker–Planck equation of the nonlinear mechanical system (2.1)
To transform system (2.1) into an autonomous first-order form, we extend the phase space by
letting

y :=
[

x
ẋ

]
∈ R

2N , (2.3)

and also define the velocity field

v(y, Ωt) :=
[

ẋ
−M−1[Kx + Cẋ + S0(x) + S1(x, Ωt)]

]
∈ R

2N . (2.4)

To express the forcing (2.2) in the first-order formulation of system (2.1), we define the vectors

Bm(x, t) :=
[

0
M−1fm(x, t)

]
∈ R

2N , m = 1, . . . , M, (2.5)

which point in the direction in which the mth Wiener process acts. Subsequently, we collect the
directions (2.5) in the matrix

B := [B1, B2, . . . , BM] ∈ R
2N×M, (2.6)
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and define a m-dimensional vector consisting of one-dimensional Wiener processes:

W =

⎡
⎢⎢⎢⎢⎣

W1
W2

...
WM

⎤
⎥⎥⎥⎥⎦ ∈ R

M. (2.7)

With the velocity (2.4), the matrix (2.6) consisting of the directions of the stochastic perturbations
(2.5) and the vector (2.7) of m Wiener processes, the phase space variables of system (2.1) are
governed by the stochastic differential equation:

dy = v dt + √
νB(y, t) dW, 0 < ν � 1, (2.8)

where we have interpreted equation (2.1) in the sense of Itô (e.g. Williams et al. [33]). Our
derivations are motivated by the nonlinear mechanical system (2.1); however, most of the
following developments also apply for the more general, first-order system (2.8).

Alternatively, system (2.1) can be formulated as a stochastic differential equation utilizing the
Stratonovich integral. By using Itô’s integral formula, the Stratonovich formulation can be written
as follows:

dy =
[

v(y, Ωt) +
√

ν

2

M∑
m=1

∇(Bm(y, t))Bm(y, t)

]
dt + √

νB(y, t)dW, 0 < ν � 1, (2.9)

with an additional drift term (see Øksendal [34]). Calculating that additional term explicitly yields

M∑
m=1

∇(Bm(y, t))Bm(y, t) =
M∑

m=1

[
0 0

∂
∂x M−1fm(x, t) ∂

∂ ẋ M−1fm(x, t)

][
0

M−1fm(x, t)

]
= 0. (2.10)

Thus, the Itô and the Stratonovich formulation of the mechanical system with white noise (2.1)
are identical.

Hence, for both formulations, the probability density function p(y, t) satisfies the classic
Fokker–Planck equation:

∂p
∂t

+ ∇ · (pv(y, Ωt)) = ν

2
∇ · (∇ · (BB�p)), p(y0, t0) = p0(y0), (2.11)

where we have introduced the initial condition p0(y0). We assume that the mixed partial
derivatives of the initial condition up to order two have a finite L2-norm, which holds, e.g. for the
Gaussian distribution. In the context of the Fokker–Planck equation (2.11), the velocity v(y, Ωt) is
often referred to as drift term (Risken [20]). The right-hand side of the Fokker–Planck equation
(2.11) is denoted as diffusion term where the matrix BB� is replaced by the diffusion matrix

D := BB�. (2.12)

Haller et al. [30] formulate their findings for fluid flows in a Lagrangian setting. To utilize these
results, we introduce the Lagrangian or material derivative Dp/Dt := pt + (∇p)v and rewrite the
Fokker–Planck equation (2.11) in the following form:

Dp
Dt

+ p∇ · v = ν

2
∇ · (∇ · (Dp)). (2.13)

(b) Spectral submanifolds for the nonlinear mechanical system (2.1)
To precisely define SSMs for the mechanical system (2.1), we first note that the deterministic limit
of system (2.8) is given by

ẏ = v(y, Ωt). (2.14)

For nonlinear oscillations, the time-dependent part of the vector field S1(x, Ωt) is often small,
i.e. S1(x, Ωt) = εS̃1(x, Ωt) for some small parameter ε > 0 (cf. Haller & Ponsioen [6]). This
mathematical necessity ensures that the linearization of system (2.16) remains influential for
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the full nonlinear system. To transform the autonomous nonlinearities S0(x) and the small
non-autonomous terms εS̃1(x, Ωt) into the first-order form, we introduce the following notation:

G0(x) :=
[

0
−M−1S0(x)

]
and G1(x, Ωt) :=

[
0

−M−1S̃1(x, Ωt).

]
. (2.15)

With the definitions (2.15), equation (2.14) can be rewritten as follows:

ẏ = Ay + G0(y) + εG1(y, Ωt), 0 ≤ ε � 1. (2.16)

In the setting of equation (2.16), mechanical vibrations occur in the neighbourhood of the origin
y = 0, which is a stable fixed point of the autonomous limit of equation (2.16). To compute forced
responses in the linear settings, mechanical engineers perform modal analysis, i.e. decouple
the linearization of system (2.1) into N independent oscillators. Geometrically, this approach
projects system (2.1) into invariant planes spanned by the eigenvectors of the linearization.
Haller & Ponsioen [6] have precisely defined conditions under which the linear picture can be
continued to the full nonlinear system. In this nonlinear setting, the invariant planes from the
linearization deform into low-dimensional invariant submanifolds. Such SSMs have been proven
to be valuable for model-order reduction (Haller & Ponsioen [6]), system identification (Szalai
et al. [35]) and calculation of the forced response (Breunung & Haller [8]). Existence, robustness
and uniqueness of SSMs can be established by the results of Haller & Ponsioen [6], which are
based on more abstract results on invariant manifolds of Cabré et al. [36] and Haro & de la
Lave [37].

To recall the results of Haller & Ponsioen [6], we label the eigenvalues of A by {λj}1≤j≤2N and
order them such that their real parts form the non-increasing sequence:

Re(λ2N) ≤ Re(λ2N−1) ≤ · · · ≤ Re(λ1) < 0. (2.17)

As indicated in equation (2.17), the real parts of the eigenvalues λj are negative, since as previously
mentioned the origin of the autonomous limit of equation (2.16) (ε → 0) is assumed to be a
stable fixed point. In the following, we consider invariant eigenspaces of the matrix A, i.e. the
autonomous (ε → 0) linearization of equation (2.16) at the origin. We denote such an eigenspace
by E and its dimension by s := dim(E). From the study by Haller & Ponsioen [6], we recall the
definition of smooth nonlinear continuations of an eigenspace E as spectral submanifolds.

Definition 2.1. A SSM, W(E), corresponding to an eigenspace E of the linear part is an invariant
manifold of system (2.16) with the following properties:

(i) W(E) has s + K dimensions3 and, for any fixed time t0, the time-t0 slice of W(E) perturbs
smoothly from E under the full nonlinear and O(ε) terms in system (2.16).

(ii) The manifold W(E) is the smoothest among all invariant manifolds with property (i).

To restate the main theorem of Haller & Ponsioen [6], we introduce the spectral quotient Σ(E)
as follows:

Σ(E) := Int

(
minλ∈spect(A)(Re(λ))

maxλ∈spect(A|E)(Re(λ))

)
, (2.18)

where the function Int(·) extracts the integer part of its argument. The spectral quotient (2.18)
gives the quotient of the minimal real part of the eigenvalues λj and the maximal real part of

3Recall that K is the dimension of the frequency vector Ω .
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all eigenvalues with their corresponding eigenspace included in the subspace E. The eigenvalues
associated with the eigenspace E are non-resonant, if

s∑
j=1

mjRe(λqj ) 
= Re(λl), λqj ∈ spect(A|E), λl /∈ spect(A|E),

2 ≤
s∑

j=1

mj ≤ Σ(E), mj ∈ N. (2.19)

The non-resonance conditions (2.19) require that low-order linear combinations of the real parts
of the eigenvalues with their corresponding eigenvector included in the linear subspace E are not
equal to the real parts of the eigenvalues with their corresponding eigenvectors not included in
E. We then have the following statement on the existence and persistence of SSMs of the unforced
limit of general mechanical system (2.1).

Theorem 2.2. Assume that the non-resonance conditions (2.19) are satisfied for an eigenspace E. Then

1. The SSM, W(E), for system (2.16) uniquely exists in the class of CΣ(E)+1 manifolds.
2. The SSM is robust with respect to smooth changes in parameters.

Proof. This is a restatement of Haller & Ponsioen [6] deduced from more abstract results on
invariant manifolds by Haro & de la Llave [37]. �

Remark 2.3 (Autonomous SSMs). The results from Haller & Ponsioen [6] are slightly stronger
in the case that the deterministic system (2.16) is autonomous. The relevant spectral quotient is
then defined as follows:

σ (E) := Int

(
minλ∈spect(A|)−spect(A|E)(Re(λ))

maxλ∈spect(A|E)(Re(λ))

)
. (2.20)

Comparing with the non-autonomous spectral quotient (2.18), the numerator of the autonomous
spectral quotient (2.20) is restricted to eigenvalues with corresponding eigenvectors not included
in E. The relevant non-resonance conditions are as follows:

s∑
j=1

mjλqj 
= λl, λqj ∈ spect(A|E), λl /∈ spect(A|E), 2 ≤
s∑

j=1

mj ≤ σ (E), mj ∈ N. (2.21)

The non-resonance conditions (2.21) depend on the eigenvalues λj and not just for the real part
as in the non-autonomous case (cf. equation (2.19)). Thus, the non-resonance conditions for the
autonomous case (2.21) are generally easier to satisfy than the resonance conditions in the non-
autonomous case (2.19). The resulting SSM is time independent and tangent to the spectral
subspace E at the origin. For more details on SSMs, we refer to Haller & Ponsioen [6].

(c) Normally hyperbolic invariant manifolds for the nonlinear mechanical system (2.1)
NHIMs, initially proposed by Fenichel [38], have been also been extensively discussed by Wiggins
[2]. For an in-depth treatment, detailed derivations and specific characterizations of NHIMs, we
refer to the aforementioned literature. Moreover, Jain et al. [7] apply NHIMs in the structural
dynamics context.

The most crucial characteristics of NHIMs can be quantified in terms of their influence on
vectors in their tangent and normal space (cf. figure 1). NHIMs are normally attracting in the
sense that the normal component of vectors initially in the normal space shrink along NHIMs.
Moreover, this attraction dominates any rate inside the tangent space by a factor of r. More
specifically, vectors in the tangent space of a NHIM shrink or grow r times slower than normal
components of normal vectors shrink. Hence, locally trajectories quickly settle on to the NHIM
and lock on the slow flow inside the NHIM (cf. blue trajectories in figure 1)
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Figure 1. Sketch of a normally hyperbolic invariantmanifold (green) emanating from a fixed point (red). The normal attraction
rates dominate the tangential, slow flow. Typical trajectories in the neighbourhood of the NHIM are depicted in blue. (Online
version in colour.)

3. Barriers to transport of the probability density p(y, t)
In the following, we discuss barriers to the transport of diffusive scalars by a velocity field v and
then refine the related results of Haller et al. [30] for mechanical vibrations. These results are stated
for scalar concentrations fields governed by an advection-diffusion equation. Thus, we first recast
the transformed Fokker–Planck equation (2.13) into advection-diffusion form. We start by noting
that the divergence of the velocity (2.4) is given by the sum of the diagonal entries of the damping
matrix C̃ := M−1C, i.e.

∇ · v = −
N∑

j=1

C̃jj =: −c0 = const. (3.1)

Furthermore, we rewrite the right-hand side of equation (2.13) using the product rule of the
divergence operator ∇ · (Dp) = p∇ · D + ∇(p)D. The divergence of the diffusion tensor D defined
in equation (2.12) can be explicitly calculated to

∇ · D = ∇ ·
M∑

m=1

Bm(x, t)B�
m(x, t) =

M∑
m=1

∇ ·
[

0 0
0 M−1fm(x, t)f�

m(x, t)M−�

]

=
M∑

m=1

[
0, ∇ẋ · M−1fm(x, t)f�

m(x, t)M−�
]
= 0, (3.2)

where ∇ẋ denotes the nabla operator restricted to the coordinates ẋ. In summary, using equations
(3.1) and (3.2), we recast equation (2.13) in the advection-diffusion form

Dp
Dt

− c0p = ν

2
∇ · (D∇p). (3.3)

As previously mentioned, Haller et al. [30] work in a Lagrangian setting. To utilize this
description, we introduce the deterministic flow map for system (2.14) by Ft1

t0
(y0), which maps

the initial conditions y0 to their later position y(t) at time t. Furthermore, the gradient of Ft1
t0

(y0)
with respect to the initial condition will be denoted by ∇0Ft

t0
(y0). With this notation, Haller et al.

[30] consider a material surface:

M(t) = Ft
t0

(M0). (3.4)

The material surface M(t) is initially (at t = t0) located at M0 and evolves under the flow of
the velocity field v(y, Ωt). The leading-order transport through the material surface M(t) can be
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related to the transport tensor:

Tt
t0

(y0) := 1
2

[∇0Ft
t0

(y0)]−1D(Ft
t0

(y0), t)[∇0Ft
t0

(y0)]−�

= 1
2

[∇0Ft
t0

(y0)]−1B(Ft
t0

(y0), t)[(∇0Ft
t0

(y0))−1B(Ft
t0

(y0), t)]�, t > t0 ∈ R. (3.5)

Since the transport tensor is of fundamental importance for the upcoming derivations, we dissect
it into its elements to understand its physical meaning. For each initial condition y0 ∈M0 the
matrix B(Ft

t0
(y0), t) prescribes the directions of the Wiener processes at the time t and location

y(t) = Ft
t0

(y0) ∈M(t) inside the time-evolving material surface M(t). The inverse of the linearized
flow map or the pullback operator [∇0Ft

t0
(y0)]−1 acting on the directions B(Ft

t0
(y0), t) (cf. the

definition of the transport tensor (3.5)) transform these directions back to the initial position y0.
Thus, left multiplying the matrix [∇0Ft

t0
(y0)]−1B(Ft

t0
(y0), t) with a vector v based at y0 yields an

m-dimensional vector. Each entry indicates the strength of the direction Bm (cf. equation (2.5))
in the forward in time advected direction v(t) := ∇0Ft

t0
(y0)v0. The transport tensor (3.5) finally

is the Gram matrix of the matrix [∇0Ft
t0

(y0)]−1B(Ft
t0

(y0), t). Hence, left and right multiplying it
with two vectors v0 and w0 based at y0 yields a weighted scalar product of the two forward in
time advected vectors ∇0Ft

t0
(y0)v0 and ∇0Ft

t0
(y0)w0. The weights of the weighted scalar product

are determined by the diffusion matrix D(Ft
t0

(y0), t) at the time t. In the following, the transport
tensor (3.5) is utilized to measure the transport of the probability density p(y, t) in the normal
space of the material surface M(t).

While Haller et al. [30] assume a positive definite transport tensor, the tensor D defined in
equation (3.2) does generally not have full rank (see equation (2.5)). Therefore, the transport
tensor Tt

t0
(y0, t) in equation (3.5) is only positive semidefinite. Nevertheless, for the leading-order

transport through, we can establish a result analogous to that of Haller et al. [30].

Theorem 3.1. Over the time interval [t0, t1], the total transport Σ
t1
t0

of the probability density p(y0, t)
through an arbitrary evolving material surface M(t) in the direction of one of its unit normal vectors
n0(y0) is given by

Σ
t1
t0

(n0) = ν

∫ t1

t0

∫
M0

n�
0 Tt

t0
∇0p0 dA dt + νpC(t1), n0 ∈ Ny0

, |n0| = 1, (3.6)

where dA refers to the area element along M0; Ny0 denotes the normal space of M0 at the point y0; p > 1
and C(t1) denote constants depending on the time interval [t0, t1].

Proof. We detail the proof in Appendix Aa. �

Remark 3.2. For arbitrarily large times t1, there exists some (possibly small) ν such that the
ν2 terms in equation (3.6) are small compared with the leading order terms. Hence, theorem 3.1
allows us to study the leading-order transport for arbitrarily large time intervals, provided that
the stochastic forcing can be chosen arbitrarily small.

From our earlier explanations, it follows that the transport Σ
t1
t0

(n0) defined in equation (A 7)
sums diffusion weighted inner product of the forward in time advected normal vector n0 and
the gradient of the initial condition ∇0p0 over the material surface M(t) and time interval [t0, t1].
The normal vector n0 and the gradient of the initial condition ∇0p0 are independent of time, and
hence, the transport Σ

t1
t0

(n0) can be simplified by introducing the averaged transport tensor as
follows:

T̄t1
t0

(y0) := 1
t1 − t0

∫ t1

t0

Tt
t0

(y0) dt. (3.7)

Then, following the arguments of Haller et al. [30], theorem 3.1 establishes that the largest possible,
time averaged, leading-order diffusive transport through the material surface M0 is given by

E(M0) =
∫
M0

maxn0∈Ny0M0,|n0|=1 |n�
0 (y0)T̄t1

t0
(y0)∇0p0|dA0∫

M0
dA0

. (3.8)
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Taking the maximum in equation (3.8) ensures that the transport is indeed maximal. Expression
(3.8) extends the results derived by Haller et al. [30] to positive semidefinite diffusion matrices D
and material surfaces of arbitrary codimension.

Haller et al. [30] identify perfect barriers as codimension-one material surfaces completely
blocking the diffusive transport at leading order. By equation (3.8), such perfect barriers in our
setting satisfy the condition

〈n0(y0), T̄t1
t0

(y0)∇0p0〉 = 〈T̄t1
t0

(y0)n0(y0), ∇0p0〉 = 0, y0 ∈M0,

n0(y0) ∈ Ny0
M0, |n0(y0)| = 1. (3.9)

Condition (3.9) implies that the vector T̄t1
t0

(y0)∇0p0 must be orthogonal to n0(y0) or, equivalently,

the vector T̄t1
t0

(y0)n(y0) orthogonal to the gradient of the initial condition p0(y0). Due to the lack of
exact solutions to condition (3.9), numerical or approximative solutions have to be obtained (see
Haller et al. [30]). If the norm of the transport tensor T̄t1

t0
(y0) or initial gradient ∇0p0(y0) is small,

equation (3.9) is approximately satisfied by any choice for the normal vector n0. However, it is our
interest to find surfaces such that their normal directions ensure locally minimal transport in the
phase space. Therefore, we conclude that for approximate solutions and numerical simulations,
the following normalized version of condition (3.9) is more suitable:

n�
0 (y0)

T̄t1
t0

(y0)

||T̄t1
t0

(y0)||
∇0p0

|∇0p0|
= 0, y0 ∈M0, n0(y0) ∈ Ny0

M0, |n0(y0)| = 1. (3.10)

Equation (3.10) is equivalent to condition (3.9) if the gradient of the initial condition p0 is non-zero.

4. Alignment of barriers and invariant manifolds
In the following, we will investigate whether the condition (3.10) for perfect barriers are
asymptotically met along invariant manifolds of the deterministic dynamical systems (2.14). Our
first result gives conditions on an inflowing invariant manifold M0 of the deterministic system
(2.14) to act as barriers under the addition of the small noise terms. Subsequently, we apply this
result to two important classes of robust invariant manifolds, rNHIMs (cf. Fenichel [38]) and SSMs
(cf. Haller & Ponsioen [6]).

We consider inflowing invariant manifolds M, i.e. manifolds M that are forward time
invariant for the flow map of the deterministic system (2.14). This requires that Ft

t0
(M) ⊂M for

all t > t0 and that the velocity field (2.4) points strictly inward on the boundary ∂M for all times.
Along M, we denote the tangent space of M at the point y(t) := Ft

t0
(y0) by Ty(t) and the normal

space by Ny(t). Furthermore, we define the orthogonal projections from the phase space R
2N into

the normal and tangent space at point y(t) by

ΠTy(t)M : R
2N → Ty(t)M, ΠNy(t)M : R

2N → Ny(t)M, y(t) ∈M, t > t0. (4.1)

To quantify normal attraction or repulsion along M, we follow the ideas of Fenichel [38] for
inflowing invariant manifolds and define the linear mapping between normal spaces as follows:

Ny0
: NyM→ Ny0

M,

and ΠNy0M[∇0Ft
t0

(y0)]−1wt → w0.
(4.2)

In the mapping (4.2), the inverse of the linearized flow map [∇0Ft
t0

(y0)]−1 acting on the vector wt

inside the normal space at time t pulls this vector back to the initial position y0. Subsequently, the
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projection ΠNy0M ensures that the resulting vector is indeed in the normal space Ny0 . The norm
of Ny0 quantifies normal expansion and contraction along M0, with its asymptotic limit given by
generalized Lyapunov number (Fenichel [38])

η(y0) := lim sup
t→∞

||Ny0
(t)||1/(t−t0) = lim sup

t→∞

(
max

wt∈Ny(t)

|Ny0
(t)wt|

|wt|

)
. (4.3)

We note that the generalized Lyapunov number is constant along trajectories and hence only
depends on the forward limit set of M (Fenichel [38] or Wiggins [2]).

In addition, we define a Lyapunov-type exponent for the full backward time trajectory
Ft

t1
(Ft1

t0
(y0)) by

μmax(y0) := lim sup
t→∞

1
t − t0

log

(
max

u∈R2N\{0}
|[∇0Ft

t0
(y0)]−1u|
|u|

)
. (4.4)

The aforementioned quantity provides an upper bound for the usual Lyapunov exponents:

μ(y0, u) := lim sup
t→∞

1
t − t0

log

( |[∇0Ft
t0

(y0)]−1u|
|u|

)
. (4.5)

For a detailed treatment of Lyapunov exponents, we refer to the studies by Chicone [39] or
Oseledec [40]. Similar to the generalized Lyapunov numbers, the Lyapunov exponents and the
Lyapunov type are constant along trajectories and only depend on the limit set of a family of
trajectories.

We emphasize the lim sup in our definitions (4.3) and (4.4). Indeed, whether the limit of
Lyapunov exponents in definition (4.5) exists is non-trivial, as shown by Oseledec multiplicative
ergothic theorem [40]. Applying this theorem requires detailed knowledge about an invariant
measure for the dynamical system (2.14), as Ott & Yorke [41] point out. In addition, they
demonstrate on a nonlinear dynamical system that the limit of equation (4.5) does not exist in
general.

To formulate our key technical lemma, let us introduce the notion of a non-degenerate forcing
matrix B(Ft1

t0
(y0), t).

Definition 4.1. The forcing matrix [∇0Ft
t0

(y0)]−1B(Ft1
t0

(y0), t) is non-degenerate if the following
two conditions are met.

1. The matrix B is bounded, i.e. there exists a constant cB > 0 such that

||B(x, t)|| < cB, x ∈ U, t ∈ R. (4.6)

2. There exists a direction u∗(y0) ∈ R
2N with |u∗(y0)| = 1, a constant CB > 0 and, for all y0 ∈

M0, there exists a time instant t∗(y0) > t0 such that

‖(u∗)�(y0)(∇0Ft
t0

(y0))−1B(Ft
t0

(y0), t)‖ ≥ CB eμmax(y0)(t−t0) t > t∗(y0), for all y0 ∈M. (4.7)

Remark 4.2. Let us remark that, if the trajectory Ft
t0

(y0) approaches a fixed point, (u∗)�
denotes a projection into the direction with maximal backward time Lyapunov-type exponent
and condition (4.7) requires the forcing B to excite this direction.

Equation (4.7) requires to advect the forcing B along the trajectory Ft
t1

(Ft1
t0

(y0)) backwards to t0.
It suffices, however, to verify condition (4.7) along the forward time limit set in M(t). Moreover,
we emphasize that equation (4.7) is purely deterministic and hence can be checked numerically
without solving a stochastic system.

With the notion of the Lyapunov-type exponents (4.4) and the generalized Lyapunov-type
number (4.3), we are now ready to state our technical main result.
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Lemma 4.3. Assume that there exists an inflowing invariant manifold M0 ∈ U for the deterministic
system (2.14) and assume that the forcing matrix B(Ft1

t0
(y0), t) is non-degenerate in the sense of definition

4.1. If the inequalities

log(η(y0)) < μmax(y0), μmax(y0) > 0, ∀y0 ∈M0, (4.8)

hold, then M0 is asymptotically a perfect barrier, i.e. satisfies the perfect barrier condition (3.10)
asymptotically as t → ∞ for all y0 ∈M0.

Proof. We detail the proof in Appendix Ab. �

Remark 4.4. The Lyapunov exponents and generalized Lyapunov numbers are constant along
trajectories, and therefore, the condition of lemma 4.3 only needs to be verified at the forward time
limit set of trajectories. The exponent μmax quantifies maximal growths or minimal shrinkage of
perturbations to the trajectory Ft

t1
(Ft1

t0
(y0)) in backward time. Therefore, condition (4.8) requires

that perturbations at Ft1
t0

(y0) in at least one direction grow as time marches backwards, i.e.
decay in forward time. The number η(y0) quantifies normal growth or shrinkage. In the case of
normal repulsion in forward time, η(y0) is smaller than one and hence its logarithm is negative.
Therefore, condition (4.8) is satisfied, if M0 is either repelling (log(η(y0)) < 0) or weakly attracting
(0 < log(η(y0)) < |μmax(y0)|).

Remark 4.5. We have focused our derivations on the general mechanical system (2.1). Lemma
4.3, however, is more general. It applies to the diffusion of any scalar quantity, which can be
modelled by the advection-diffusion equation (3.3).

Lemma 4.3 can be used to establish the relevance of various types of invariant manifolds
of the deterministic system (2.14) under small stochastic excitations. Due to their robustness, r-
NHIMs and SSMs have been proven to be particularly relevant for analysing nonlinear dynamical
systems, especially in the context of structural dynamics (cf. Jain et al. [7] and Haller & Ponsioen
[6]). The results on r-NHIMs, established by Fenichel [38], apply to compact inflowing invariant
manifolds of the autonomous system (2.14). Based on remark 4.4 and the repelling nature of
inflowing r-NHIMs, we expect the persistence of these r-NHIMs as perfect transport barriers.
Indeed, applying lemma 4.3 to NHIMs, we obtain the following theorem.

Theorem 4.6. Assume that there exists an inflowing, r-NHIM M with μmax(y0) > 0 for the
deterministic system (2.14) and the forcing matrix B(Ft1

t0
(y0), t) is non-degenerate in the sense of

definition 4.1. Then, M is asymptotically a perfect barrier, i.e. satisfies the perfect barrier condition (3.10)
asymptotically as t → ∞ for all y0 ∈M.

Proof. We detail the proof in Appendix Ac. �

Remark 4.7. By reversing time in theorem 4.6, we conclude that overflowing attracting NHIMs
are barriers for the stochastically forced system (2.1), if the forcing directions are not degenerate.
Overflowing and r-normally hyperbolic invariant provide a rigorous tool to reduce the dynamics
of a nonlinear mechanical system to a slow manifold. Since overflowing r-NHIMs are inflowing
r-NHIMs in backward time, theorem 4.6 establishes the relevance of these slow manifolds as
diffusion barriers in backward time. A material surface minimizing transport in backward time
maximizes the transport in forward time. Thereby, we conclude that attracting NHIMs are
asymptotically transport maximizers. This confirms the intuition from the deterministic system
for which trajectories are attracted to and accumulate on the NHIM. Intuitively, one would then
expect that for small random perturbations it is very likely that a realization of the stochastic
process penetrates the NHIM. With our derivations, we confirm that this deterministic intuition
is indeed justified.

Remark 4.8. If μmax(y0) is negative along an r-NHIM, then the transport tensor T̄t1
t0

(y0) decays
towards zero, which implies that the unnormalized perfect barrier condition (3.9) holds. This is
due to the fact that the integrand in definition (3.5) is bounded by a decaying exponential (see
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Re(l)

Im(l)

E1

E3

E2

Figure 2. Possible eigenvalue configurations of the eigenspace E. The eigenvalues of E1 and E2 satisfy condition (4.9) of theorem
4.9, while E3, the two-dimensional slow SSM, does not satisfy condition (4.9). (Online version in colour.)

the bounds (A 26) and (A 29) in Appendix Ab). Therefore, the integral in equation (3.7) is upper-
bounded by a constant and vanishes after taking the time average. Therefore, an r-NHIM with
μmax(y0) < 0 satisfies equation (3.9) asymptotically as t → ∞ for all y0 ∈M0.

For the autonomous case (i.e. ε = 0 in equation (2.16)), we apply lemma 4.3 to an SSM, W(E),
tangent to the subspace E and obtain the following.

Theorem 4.9. Assume that the deterministic system (2.16) is autonomous, the non-resonance
conditions (2.21) are satisfied for an eigenspace E of the origin (i.e. the SSM exists) and that the forcing
matrix B(0, t) is non-degenerate (cf. definition 4.1). If all directions not included, E decays slower than the
fastest decay rate, i.e.

Re(λ2N) < min
λ∈spect(A)−spect(A|E)

Re(λ), (4.9)

then the SSM W(E) is asymptotically a perfect barrier, i.e. satisfies the perfect barrier condition (3.10)
asymptotically as t → ∞ for all y0 ∈M0.

Proof. We apply lemma 4.3 to points inside the stable manifold of the origin. We detail the
derivations in Appendix Ad. �

To illustrate condition (4.9), we sketch the possible eigenvalue configuration in figure 2. Fast
SSMs of arbitrary dimension (e.g. W(E1) in figure 2) satisfy the condition (4.9) of theorem 4.9.
The intermediate SSM W(E2) depicted in figure 2 also satisfies condition (4.9) since the fastest
decaying directions are included in the subspace Es. For the two-dimensional slow SSM, W(E3)
condition (4.9) is not satisfied.

Remark 4.10 (non-autonomous systems). Theorem 4.9 can be extended to the non-
autonomous setting (i.e. ε > 0 in equation (2.16)) as well. Compared with our derivations in
Appendix Ad, the forward time limit set will be a quasi-periodic orbit yε , for which the numbers
η(yε) and μmax(yε) need to be computed. For small ε > 0, the quasi-periodic orbit yε is normally
hyperbolic, and thus by the persistence of the Lyapunov-type numbers established by Fenichel
[38], η(yε) and μmax(yε) are O(ε) close to their values evaluated for the autonomous limit ε → 0.
For the autonomous limit ε → 0, the quasi-periodic orbit is the origin for which η(0) and μ(0)
can be computed explicitly (cf. Appendix Ad). Thus, if the autonomous limit of equation (2.16)
satisfies the assumptions of theorem (d), then the SSM W(E) for the non-autonomous system is
asymptotically a perfect barrier.

5. Numerical examples
In the following, we verify our theoretical findings from §4 and demonstrate numerically that
deterministic manifolds are of continued relevance under small stochastic excitation. As proven in
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Figure 3. Phase space of the autonomous limit of system (5.1) and sampled phase space for the numerical investigations.
(a) Fixed points and heteroclinic connection of system (5.1) with the parameters (5.2). (b) r-NHIM and counting variable for 106

realizations of equation (5.1). (Online version in colour.)

§4, r-NHIMs and fast SSMs can serve as perfect barriers for the stochastically excited mechanical
system. For illustrative purposes, we start with the classical Duffing oscillator. Subsequently, we
proceed to an example with two degrees-of-freedom (i.e. four dimensions).

(a) Duffing oscillator
We illustrate the relevance of r-NHIMs and fast SSMS as barriers on the stochastically excited
classical Duffing oscillator

q̈ + cq̇ + kq + κq3 = √
νf ,

∫ t

t0

f dt =
∫ t

0
dW, (5.1)

with parameters

c = 3.5, k = −1, κ = 1. (5.2)

The autonomous limit of system (5.1) has two stable fixed points at q̇ = 0 and q = ±1 and a saddle
type fixed point at q̇ = q = 0. The unstable manifold of the saddle at the origin connects to the
slow stable direction of the two other fixed points (cf. figure 3a). This heteroclinic connection is an
attracting NHIM, which we denote by M0. In backward time, the maximal Lyapunov exponent
of all trajectories inside M0 is given by the negative decay rate at the saddle point, which is
positive. The forcing vector of the phase space equivalent of system (5.1), see also equation (2.5),
is not orthogonal to the decaying direction at the fixed saddle point and hence the forcing is
non-degenerate. Therefore, theorem 4.6 together with remark 4.7 applies and we expect maximal
transport across M0.

Setting
√

ν = 0.01, we simulate 106 realizations of the stochastic system (5.1) for t1 = 10 time
units with the forward Euler scheme. Moreover, we draw the initial condition from a Gaussian
distribution centred at the stable fixed point q = 1 with a standard deviation of one. Since M0
enables transport of the probability density, it also maximizes the crossing of realizations of
the random process (5.1). Therefore, we expect that trajectories of the random process (5.1)
accumulate at M0. To demonstrate an accumulation of trajectories, we discretize time and phase
space of system (5.1). We divide the phase space into boxes and count the number of realizations
in a given box for a given time instance. By summing this number for all time instances, we
obtain a counting variable for each box, which we depict in figure 3b. As predicted by theorem
4.6, trajectories often cross M0 and therefore they stay close to M0.

For the forward time direction, there exists a fast SSM tangent to the fast decaying direction
of the stable fixed point at q = 1. According to theorem 4.9, the transport of probability density
across this fast SSM is minimal. To demonstrate minimal transport, we search the phase space of
system (5.1) for a barrier with minimal transport numerically. We start by attaching a small line
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Figure 4. Fast SSM, r-NHIM and numerically identified barriers for the Duffing oscillator (5.1), with small intensity
√

ν = 0.01.
(a) Fast SSMandnumerically identified barrierwithminimal transport and (b) r-NHIMandnumerically identified enhancerwith
maximal transport. (Online version in colour.)

segment with a fixed length to the fixed point and vary the position of the end point of the line
segment such that the number of realizations crossing this line is minimal. Having found such a
line, we iteratively grow the barrier by attaching a new line segment to the end of the barrier such
that the number of realizations crossing the new line segment is again minimal.

We depict the identified line with minimal transport in figure 4a and observe a close match
with the fast SSM as predicted by theorem 4.9. Numerically searching for a enhancer with
maximal number of trajectory crossings in a similar manner, we obtain the black curve in figure 4b.
The enhancer with maximal number of trajectory crossings aligns closely with the r-NHIM as
predicted by theorem 4.6.

Throughout our derivations, we rely on the fact that the stochastic terms are small. In system
(2.1), this smallness is expressed by the small parameter

√
ν scaling the noise terms. To stress the

importance of this assumption, we increase the parameter
√

ν to 0.1, repeat our investigations for
the Duffing oscillator (5.1) and depict our results in figure 5. Similar to the case with a smaller

√
ν,

the counting variable is high close to the r-NHIM. Thus, trajectories are still attracted to the NHIM.
However, frequently visited phase space locations, indicated by a high counting variable, are
more distant to the NHIM compared with the case with smaller noise intensity (cf. figure 4). This
is expected as the stronger stochastic perturbation can induce larger deviations from the attracting
r-NHIM. Moreover, the numerically identified barrier with maximal crossings starts to deviate
from the r-NHIM and, similarily, the barrier with minimal crossings departs from the fast SSM.
This indicates that the applicability of our theorems 4.6 and 4.9, based on the assumption of small
noise terms, deteriorates. However, even for the noise intensity

√
ν = 0.1 barriers with maximal

and minimal crossings are still in the general vicinity of the deterministic invariant manifolds. We
expect that for increasing noise intensities, this misalignment will generally grow.

(b) Multi-dimensional example
As an mechanical system with a r-NHIM, we select an extension of the single-degree-of-freedom
Duffing oscillator (5.1) of the form

q̈ +
[

c 0
0 c

]
+ q̇

[
k + ε −ε

−ε k + ε

]
q +

[
κq3

1
κq3

2

]
=
[

0√
ν

]
f ,

∫ t

0
f dt =

∫ t

t0

dW, (5.3)

where the random excitation acts on the second degree-of-freedom only. The coupling stiffness ε

is assumed to be small.
For the limit ε → 0, both degrees of freedom are decoupled and their phase space is structured,

as depicted in figure 3a. This implies that in the phase space of each degree of freedom
individually, there exists a one-dimensional r-NHIM. From this geometry, we conclude that inside
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Figure 5. Fast SSM, r-NHIM and numerically identified barriers for the Duffing oscillator (5.1)with larger noise intensity
√

ν =
0.1. (a) Fast SSM and numerically identified barrier withminimal transport and (b) r-NHIM and numerically identified enhancer
with maximal transport. (Online version in colour.)
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Figure 6. Slowmanifold and frequently visited phase space locations inside the trap q2 = 0. (a) Intersection of slowmanifold
and the hyperplane q2 = 0, (b) slow manifold (green) and the 200 most frequently visited phase space locations inside the
hyperplane q2 = 0. (Online version in colour.)

the four-dimensional phase space, there is a two-dimensional r-NHIM for the limit ε → 0. Since
r-NHIMs are robust to smooth perturbations (Fenichel [38]), the two-dimensional r-NHIM
survives for small values of ε. In the following, we select ε = 0.1 and the parameters (5.2).

To compute an approximation of the two-dimensional slow manifold, we initialize trajectories
close to the saddle equilibrium at the origin. Since the origin is on the slow manifold and the
r-NHIM is attracting, we infer that trajectories will closely follow the slow manifold. Thereby,
these trajectories serve as a good approximation of the r-NHIM. We obtain these trajectories by
numerically integrating system (5.3) without stochastic load (i.e. ν → 0). Subsequently fitting a
surface through these trajectories, we obtain an approximation of the slow manifold. Since the
r-NHIM is embedded in a four-dimensional space, it can only be displayed by taking appropriate
cross sections or projections. We depict the cross section of the slow manifold with the hyperplane
q2 = 0 in figure 6a.

Similar to §(a), we simulate 106 realizations of the random dynamical system (5.3) for t1 = 10
time units with the forward Euler scheme. Once again, we draw the initial condition from a
Gaussian distribution centred at the stable fixed point q1 = q2 = 1 with a standard deviation of
one and set

√
ν = 0.01. By the transport enhancing property of the r-NHIM predicted by theorem

4.6 and remark 4.7, we expect trajectories to stay close to the slow manifold. To verify this
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numerically, we calculate the counting variable, as described in §(a), inside the three-dimensional
hyperplane q2 = 0 on a three-dimensional grid. In this case, the counting variable cannot be easily
visualized by an intensity plot. Therefore, we choose to colour the 200 phase space volumes
with the highest value of the counting variable inside the trap blue in figure 6b. As predicted
by theorem 4.6 and remark 4.7, trajectories concentrate close to the r-NHIM.

6. Conclusions
We have shown that deterministic invariant manifolds of general nonlinear mechanical systems
are of continued relevance if small, white noise perturbations are added. To this end, we
have applied and extended the concept of diffusion barriers from fluid mechanics, which are
material surfaces minimizing diffusive transport (Haller et al. [30]), to stochastically excited
nonlinear mechanical systems. Our results reveal that fast SSMs and r-normally hyperbolic
invariant manifolds, two important and robust invariant manifolds for applications in dynamical
systems, asymptotically serve as diffusion barriers. From the transport-hindering character of
these surfaces, we conclude that these objects demarcate phase space regions that trajectories of
the random dynamical system generally do not penetrate.

We obtain that spectral submanifolds associated with a stable equilibrium generally serve
as asymptotic barriers to diffusive transport, unless the slowest decaying directions are
included in the SSM. This indicates that these SSMs, initially proposed for model-order
reduction of deterministic systems, remain relevant under the addition of small white noise
terms. Specifically they are observable in a more realistic, experimental setting. We illustrate
the asymptotic alignment of perfect barriers with a fast SSM on an explicit numerical
example.

The alignment of repelling r-normally hyperbolic invariant manifolds and perfect barriers
establishes the relevance of slow manifolds as diffusion barriers in backward time. Thereby,
the deterministic phase space geometry of a slow manifold as a strongly repelling structure
in backward time is robust with respect to small, white noise perturbations. Since slow SSMs
can be r-NHIMs for the reversed-time flow, the robustness of r-NHIMs can also establish the
continued relevance of slow SSMs as asymptotic diffusion barriers for the stochastically perturbed
system.

Our analytical treatment reveals the importance of fast SSMs and r-normally hyperbolic
invariant manifolds without the use of numerics. This enables an extension of the deterministic
phase space geometry to the stochastic setting, without relying on extensive numerics such as
Monte Carlo sampling.

As future continuation of our analysis, we envision an extension to extract information about
the steady-state response of nonlinear mechanical systems subject to small white noise excitation.
Indeed, in engineering applications, the steady-state response of the mechanical systems is an
important design criterion and performance indicator.
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Appendix A

(a) Proof of theorem 3.1
To prove theorem 3.1, we follow the derivations of Haller et al. [30] and consider the rate of change
of probability density in an enclosed volume:

d
dt

∫
V(t)

p(y, t) dV = d
dt

∫
V0

p(Ft
t0

(y0), t) det(∇0Ft
t0

(y0, t)) dV0. (A 1)

Liouville’s formula (cf. Chicone [39]) gives

det(∇0Ft
t0

(y0, t)) = exp
(∫ t

t0

∇ · v(Fs
t0

(y0), Ωs)ds
)

= e−c0(t−t0), (A 2)

where we have used the divergence of the mechanical system (3.1). Denoting the probability
density p̂(y0, t) := p(Ft

t0
(y0), t) in Lagrangian coordinates, we transform equation (A 1) to

Lagrangian coordinates yielding

d
dt

∫
V(t)

p(y, t) dV =
∫

V0

[∂tp̂(y0, t) − c0p̂(y0, t)]e−c0(t−t0) dV0. (A 3)

To transform the advection-diffusion equation (3.3) into Lagrangian coordinates, we use the
explicit formulas of Tang and Boozer [42] as well as Thiffeault [43],

∂tp̂(y0, t) − c0p̂(y0, t) = ν∇0 · (Tt
t0
∇0p̂(y0, t)). (A 4)

Taking the time derivative of the variable μ̂(y0, t) := e−c0(t−t0))p̂(y0, t) yields

∂tμ̂(y0, t) = (∂tp̂(y0, t) − c0p̂(y0, t))e−c0(t−t0)) = ν∇0 · (Tt
t0
∇0 e−c0(t−t0))p̂(y0, t))

= ν∇0 · (Tt
t0
∇0μ̂(y0, t)). (A 5)

With equation (A 5), we rewrite the rate of change of probability density in phase a space volume
(A 3) as follows:

d
dt

∫
V(t)

p(y, t) dV =
∫

V0

ν∇0 · (Tt
t0
∇0μ̂(y0, t))dV0

=
∫

∂V0

ν〈D∇0μ̂(y0, t), n(y(t))〉 dA0, (A 6)

where we have used the divergence theorem and the last integral denote the surface integral over
the 2N − 1 dimensional boundary ∂V(t) of the 2N dimensional volume V(t).

In the following, we show that the arguments from Haler et al. [30] can be extended to account
for surfaces with codimension higher than one. For any material surface M0, we can select a
volume V0 such that the material surface M0 is part of the boundary of V0. Then, the total
flux over the boundary of V(t) = Ft

t0
(V0) is given by the integral (A 6). The total flux through

the boundary ∂V0 can be written as a summation over subsets of ∂V0. Thereby the individual
contribution of the subset M(t) ⊂ ∂V(t) to the total flux over the time interval [t0, t1] is given by

Σ
t1
t0

(M0, NM0) := ν

∫ t1

t0

∫
M0

〈Tt
t0
∇0p̂(y0, t), n(y0)〉 dA dt, n(y0) ∈ Ny0

M(t). (A 7)

Contrary to Haller et al. [30], our formula (A 7) depends on the specific choice of unit normal
vectors inside the normal bundle NM(t).
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Taking the gradient of equation (A 5) as an integrate in time, we obtain

∇0μ̂(y0, t) = ∇0p(y0) + ν

∫ t

t0

∇0[∇0 · (Ts
t0
∇0μ̂(y0, s))]ds, (A 8)

where we have used that ∇0μ̂(y0, t0) = ∇0p(y0). With equation (A 8), the flux vector (A 7) can be
expressed as follows:

Σ
t1
t0

(M0, NM0) = ν

∫ t1

t0

∫
M0

〈Tt
t0
∇0p(y0), n(y0)〉 dA0 dt

+ ν2
∫ t1

t0

∫
M0

∫ t

t0

〈Tt
t0
∇0[∇0 · (Ts

t0
∇0μ̂(y0, s))], n(y0)〉 dA0 ds dt. (A 9)

Then, the transport of the probability density p(y0, t) through an arbitrary surface M(t0) into the
normal direction n0 can be written as (3.6) if the solution to the initial value problem

∂μ̂

∂t
= ν∇0 · (Tt

t0
(y0)∇0μ̂(y0, t)),

and μ̂(y0, t0) = p0,

⎫⎪⎬
⎪⎭ (A 10)

satisfies
sup

y0∈U, t0≤t≤t1

|∇0μ̂(y0, t) − ∇0p(y0)| =O(νq), (A 11)

for some q > 0. Indeed, using equation (A 10), integrating the t-derivative by the Fundamental
Theorem of Calculus and estimating by the supremum in x0 and t give condition (A 11) To
establish equation (A 11), Haller et al. [30] assume a positive definite transport tensor. In our
application, however, the matrix D = BB� is not of full rank and therefore the transport tensor
(3.5) is only positive-semidefinite. Defining ξ (t) := μ̂(y0, t) − p(y0), we transform equation (A 10)
to

∂ξ

∂t
= ν∇0 · (Tt

t0
(y0)∇0(ξ (y0, t) + p(y0)))

and ξ (y0, t0) = 0.

⎫⎪⎬
⎪⎭ (A 12)

For positive semidefinite diffusion tensors, we use an estimate by Igari [44] for solutions to
degenerate parabolic equations, which we restate in our setting:

Lemma A.1. Let μ̂ be a solution to equation (A 10) and assume that Tt
t0

(y0) and ∇0p(y0) are
sufficiently regular. Then, for m ≥ 0, the upper bound

||ξ (t)||Hm(U) ≤
∫ t

t0

eνγ (t−s)||ν∇0 · (Ts
t0

(y0)∇0p(y0))||Hm(U) ds (A 13)

holds, where γ is a constant depending on t, but not on ∇0 · (Tt
t0

(y0)∇0p(y0)) or μ̂.

Proof. For a proof we refer to Igari [44]. �

Our assumptions on the smoothness of the nonlinearity S(x, Ωt), the forcing directions B(x, t)
and the initial condition p0(y0) ensure that the smoothness requirements of lemma A.1 are met.
The upper bound (A 13) implies directly

||μ̂(y0, t) − p(y0)||Hm(U) = ||ξ (t)||Hm(U)

≤
∫ t

t0

eνγ (t−s)||ν∇0 · (Ts
t0

(y0)∇0p(y0))||H2(U)ds

≤ ν sup
t0≤s≤t

||∇0 · (Ts
t0

(y0)∇0p(y0))||Hm(U)
eνγ (t−t0) − 1

ν

=O(ν).
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Since now

||∇0μ̂(y0, t) − ∇0p(y0)||L∞(U) ≤ C1||∇0μ̂(y0, t) − ∇0p(y0)||H1(U)

≤ C2||μ̂(y0, t) − p(y0)||H2(U)

holds for some constants C1 and C2 dependent on the dimensions of the phase space R
2N ,

equation (A 11) holds. Therefore, leading-order transport through the surface M(t) can be written
as stated in equation (3.6).

(b) Proof of lemma 4.3
To prove 4.3, we introduce the unit vector

ep(y0) := 1
|∇0p0(y0)|∇0p0(y0), (A 14)

and note that
|n�(y0)T̄t1

t0
(y0)ep(y0)|

||T̄t1
t0

(y0)||
≤

|ΠNy0MT̄t1
t0

(y0)ep(y0)|
||T̄t1

t0
(y0)||

, (A 15)

since, by the Cauchy–Schwartz inequality:

|n�(y0)T̄t1
t0

(y0)ep(y0)| = |n�(y0)[(ΠNy0M + ΠTy0M)T̄t1
t0

(y0)ep(y0)]|
= |n�(y0)ΠNy0MT̄t1

t0
(y0)ep(y0)|

≤ |ΠNy0MT̄t1
t0

(y0)ep(y0)|, (A 16)

where we have used that |n�(y0| = 1. Consequently, the claim of lemma 4.3 holds, if the fraction

|ΠNy0MT̄t1
t0

(y0)ep(y0)|
||T̄t1

t0
(y0)||

, (A 17)

approaches zero asymptotically.
First, let us derive an upper bound on the nominator in equation (A 17):

|ΠNy0MT̄t1
t0

(y0)ep(y0)| = 1
2|t1 − t0|

∣∣∣∣
∫ t1

t0

ΠNy0M[∇0Ft
t0

(y0)]−1BB�[∇0Ft
t0

(y0)]−� dtep(y0)
∣∣∣∣

≤ 1
2|t1 − t0|

∫ t1

t0

‖ΠNy0M[∇0Ft
t0

(y0)]−1B‖ ‖[∇0Ft
t0

(y0)]−1B‖ dt. (A 18)

Recalling that B = [B1, .., BM] and using the Cauchy–Schwartz inequality, we can rewrite the norm
of the projection of the matrix [∇0Ft

t0
(y0)]−1B onto the normal space Ny0 as follows:

‖ΠNy0M[∇0Ft
t0

(y0)]−1B‖ = max
v∈R

M

|v|=1

|ΠNy0M[∇0Ft
t0

(y0)]−1Bv|

= max
v∈R

M

|v|=1

∣∣∣∣∣
M∑

m=1

ΠNy0M[∇0Ft
t0

(y0)]−1Bmvm

∣∣∣∣∣
≤ max

v∈R
M

|v|=1

M∑
m=1

|ΠNy0M[∇0Ft
t0

(y0)]−1Bm||vm|

≤
( M∑

m=1

|ΠNy0M[∇0Ft
t0

(y0)]−1Bm|2
)1/2

. (A 19)

We proceed by splitting the forcing directions Bm into normal and tangential direction

BT
m(t) := ΠTy(t)MBm ∈ Ty(t)M, BN

m(t) := ΠNy(t)MBm = Bm − BT
m(t) ∈ Ny(t)M. (A 20)
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By using the notation (A 20), we simplify the upper bound (A 19) to

‖ΠNy0M[∇0Ft
t0

(y0)]−1B‖ ≤
( M∑

m=1

|ΠNy0M[∇0Ft
t0

(y0)]−1(BT
m + BN

m)|2
)1/2

=
( M∑

m=1

|ΠNy0M[∇0Ft
t0

(y0)]−1BN
m|2

)1/2

, (A 21)

where we have used that the inverse of the linearized flow map maps the vector BT
m(t) ∈ Ty(t)M

into the tangent space Ty0M and therefore its projection into the normal space Ny0M(t0) is zero
(i.e. ΠNy0M(t0) [∇0Ft

t0
(y0)]−1BT

m(t) = 0). If the forcing direction Bm is tangent to M at y(t), i.e. |BN
m(t)|

is zero, then the upper bound (A 21) is zero. For all other time instances, we have |BN
m(t)| > 0,

whereby we can rewrite equation (A 21) as follows:

|ΠNy0M(t0) [∇0Ft
t0

(y0)]−1BN
m| = |BN

m(t)|
|ΠNy0M(t0)[∇0Ft

t0
(y0)]−1BN

m(t)|
|BN

m(t)| , |BN
m| 
= 0. (A 22)

We derive an upper bound for the fraction in equation (A 22) relying on the generalized
Lyapunov-type numbers. Let y0 ∈M be fixed. The definition of the generalized Lyapunov-type
numbers (cf. definition (4.3)) implies that for any δ1 > 0, there exists a time instant t1(y0, δ1) > 0
such that

max
wt∈Ny(t)M

|Ny0
(t)wt|

|wt| = ||Ny0
(t)|| ≤ (η(y0) + δ1)t−t0 , t > t1(y0, δ1), y0 ∈M. (A 23)

Since the upper bound (A 23) holds for all vectors in the normal space Ny(t)M, this certainly holds
for the specific choice of wt = BN

m(t), which lies in the normal space Ny(t)M by construction (cf.
equation (A 20)). Consequently, there exists a time t1(y0, δ1) > 0 such that

|ΠNy0M∇0[Ft
t0

(y0)]−1BN
m|

|BN
m| ≤ (η(y0) + δ1)t−t0 , t > t1(y0, δ1), |BN

m| 
= 0, (A 24)

which implies that

( M∑
m=1

|ΠNy0M(t0)[∇0Ft
t0

(y0)]−1Bm|2
)1/2

=
( M∑

m=1

|BN
m(t)|2

|ΠNy0M(t0)[∇0Ft
t0

(y0)]−1BN
m(t)|2

|BN
m(t)|2

)1/2

≤
( M∑

m=1

|BN
m(t)|2 e2 log(η(y0)+δ1)(t−t0)

)1/2

≤ M||B||elog(η(y0)+δ1)(t−t0)

≤ McB elog(η(y0)+δ1)(t−t0), t > t1(y0, δ1), y0 ∈M0, (A 25)

where in the last step, we have used the first assumption in definition 4.1.
Moreover, the quantity ‖ΠNy0M[∇0Ft

t0
(y0)]−1B‖ is bounded in the finite time interval

[t0, t1(y0, δ1)], hence can be bounded by C∗
1 elog(η(y0)+δ1)(t−t0) by selecting C∗

1 appropriately. In
summary, we have

‖ΠNy0M[∇0Ft
t0

(y0)]−1B‖ ≤ C1 elog(η(y0)+δ1)(t−t0), t > t0, (A 26)

for some C1 = C1(y0, δ1) > 0. Furthermore, let us note that the bound (A 26) trivially holds for
BN

m = 0 (c.f. equation (A 21)).
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To obtain an upper bound for the second factor in equation (A 18), we note that definition (4.4)
provides an upper bound on the norm of the term [∇0Ft

t0
(y0)]−1B:

lim sup
t→∞

1
t − t0

log(‖[∇0Ft
t0

(y0)]−1B‖) ≤ lim sup
t→∞

1
t − t0

log(cB‖[∇0Ft
t0

(y0)]−1‖) ≤ μmax(y0), (A 27)

where we have used the first assumption in definition 4.1 together with the monotonicity of
lim sup. Thus, for any δ2 > 0, there exists some time instant t2(y0, δ2), such that the following
holds:

‖[∇0Ft
t0

(y0)]−1B‖ ≤ e(μmax(y0)+δ2)(t−t0), t > t2(y0, δ2). (A 28)

Since [∇0Ft
t0

(y0)]−1B is bounded on the finite time interval [t0, t2], there exists some positive
constant C2 = C2(δ2, y0) > 0 such that

‖[∇0Ft
t0

(y0)]−1B‖ ≤ C2 e(μmax+δ2)(t−t0), t > t0 (A 29)

holds.
Finally, we estimate a lower bound on the norm of the transport tensor T̄t1

t0
(y0). To this end, we

note that the Euclidean norm is invariant with respect to an orthonormal coordinate change, i.e.

‖T̄t1
t0

(y0)‖2 = max
u ∈ R

2N

|u| = 1

〈T̄t1
t0

(y0)u, T̄t1
t0

(y0)u〉 = max
u ∈ R

2N

|u| = 1

〈T̄t1
t0

(y0)u, S�ST̄t1
t0

(y0)u〉

= max
u ∈ R

2N

|u| = 1

〈ST̄t1
t0

(y0)u, ST̄t1
t0

(y0)u〉0 = ‖ST̄t1
t0

(y0)‖2, (A 30)

holds for any orthonormal matrix S. Thus, we obtain

‖T̄t1
t0

(y0)‖ = ‖ST̄t1
t0

(y0)‖ = 1
2|t1 − t0|

max
u ∈ R

2N

|u| = 1

∣∣∣∣S
∫ t1

t0

[∇0Ft
t0

(y0)]−1BB�[∇0Ft
t0

(y0)]−� dtu
∣∣∣∣ , (A 31)

for any orthonormal matrix S. Denoting the jth row of S by sj ∈ R
1×2N and selecting S such that

s1 = (u∗)� (such a matrix simply consists of a orthonormal basis of R
2N with u∗ being one the of

basis vectors), it follows from the second assumption in definition 4.1 that

‖T̄t1
t0

(y0)‖ = 1
2|t1 − t0|

max
u ∈ R

2N

|u| = 1

⎡
⎣ 2N∑

j=1

(
sj

∫ t1

t0

[∇0Ft
t0

(y0)]−1BB�[∇0Ft
t0

(y0)]−�u dt
)2
⎤
⎦

1
2

≥ 1
2|t1 − t0|

max
u ∈ R

2N

|u| = 1

∫ t1

t0

(u∗)�[∇0Ft
t0

(y0)]−1BB�[∇0Ft
t0

(y0)]−�u dt

≥ 1
2|t1 − t0|

∫ t1

t∗
‖(u∗)�[∇0Ft

t0
(y0)]−1B‖2 dt

≥ C2
B

4|t1 − t0|μmax(y0)
(e2μmax(y0)(t1−t0) − e2μmax(y0)(t∗−t0)), (A 32)
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where we have used the second assumption in definition 4.1. The upper bounds (A 26) and (A 29)
and the lower bound (A 32) yield the following upper bound on the fraction (A 17):

|n�(y0)T̄t1
t0

(y0)ep(y0)|
||T̄t1

t0
(y0)||

≤
1

2|t1−t0|
∫ t1

t0
C1C2 e(log(η(y0)+δ1)+μmax+δ2)(t−t0) dt

C2
B

4|t1−t0|μmax(y0) (e2μmax(y0)(t1−t0) − e2μmax(y0)(t∗−t0))

≤ 2μmax(y0)C1C2

C2
B|(log(η(y0) + δ1) + μmax + δ2)|

|e(log(η(y0)+δ1)+μmax+δ2)(t1−t0) − 1|
(e2μmax(y0)(t1−t0) − e2μmax(y0)(t∗−t0))

≤ 2μmax(y0)C1C2

C2
B|(log(η(y0) + δ1) + μmax + δ2)|

e(log(η(y0)+δ1)−μmax+δ2)(t−t0) + e−2μmax(y0)(t1−t0)

(1 − e2μmax(y0)(t∗−t1))
. (A 33)

Due to the conditions (4.8), we can choose the constants δ1 and δ2 such that

log(η(y0) + δ1) − μmin + δ2 < 0, (A 34)

holds. Equation (A 34) implies that all exponents in equation (A 33) are negative and hence the
exponential functions in equation (A 33) decay to zero as t1 → ∞. This proves lemma 4.3.

(c) Lemma 4.3 applied to NHIMs
Fenichel’s [38] results apply to compact invariant manifolds of autonomous systems. To this end,
we rewrite system (2.14) as an autonomous system on extended phase space P := R

2N × T
K as

follows:
ẏ = v(y, φ)

and φ̇ = Ω ,

}
. (A 35)

Then, M × T
K is a normally hyperbolic invariant manifold of system (A 35) by assumption.

The constant growth in the phases φ yields a zero Lyapunov exponent in this direction. Thus,
a NHIM must necessarily include the phase directions, and we obtain the extended tangent
space T̃y0M(t0) := Ty0M(t0) × T

K. By definition (cf. Fenichel [38]), log(η(y0, φ0)) is negative along
a normally hyperbolic invariant manifold. Since μmax is negative by assumption, the first and the
second condition (4.8) hold.

(d) Lemma 4.3 applied to SSMs
In the following, we apply lemma 4.3 to SSMs. As Haller & Ponsioen [6] detail, for small enough
ε the fixed point at the origin perturbs into a quasi-periodic solution yε and a spectral subspace E
of the linear system can perturb into a SSM W(E).

We consider the SSM W(E) in a neighbourhood of the origin, which is a stable fixed point since
the eigenvalues of the linearization have a negative real part (c.f. equation (2.17)). Thus, the SSM
is locally an inflowing invarian manifold and the trajectories Ft

t0
(y0) approach the origin and thus

for large enough times the forcing directions B(Ft
t0

(y), t) are close to the forcing evaluated at the
fixed point (i.e. B(0, t)). Since the forcing B(0, t) is non-degenerate by assumption, we can infer
that there exists some time instance such that B(Ft

t0
(y), t) is non-degenerate.

Since the Lyapunov-type numbers η(y0) and μmax(y0) are constants along trajectories, it is
sufficient to calculate them at the forward time limit set of trajectories inside the SSM W(E), i.e.
the origin. At the origin, the linearized flow map, which can be explicitly computed:

∇0Ft1
t0

(0) = eA(t1−t0). (A 36)

The maximal growth of the inverse of the linearized flow map [∇0Ft1
t0

(0)]−1 is given by the

maximal decay of ∇0Ft1
t0

(0). Thus, for the generalized Lyapunov-type exponent μmax(y0), we
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obtain
μmax(yε) = −Re(λ2N), (A 37)

where we have used equation (2.17). Since the real parts are negative by assumption, the second
condition of equation (4.8) is satisfied.

To compute the generalized Lyapunov-type number η(0), we collect the eigenvectors vj of the
linearization A in the matrix V. Then, the Jordan normal form of A by

V := [v1, . . . , v2N], Λ(ỹ∗) = V−1AV. (A 38)

With the Jordan normal form (A 38), we compute the inverse of the linearized flow map explicitly

[∇0Ft1
t0

(ỹ∗)]−1 = [V−1 eΛ(t1−t0)V]−1 = V−1eΛ(t0−t1)V, (A 39)

whereby obtain for the norm of the mapping N(t)

sup
w ∈ N0E
|w| = 1

|ΠN0EV−1 eΛ(t0−t)Vw| ≤ sup
w ∈ N0E
|w| = 1

|eΛ(t0−t)Vw|. (A 40)

Since the vector w is in normal space N0E, i.e. orthogonal to E, it excites only the directions not
included in E. Thus, the generalized Lyapunov-type number is determined by the spectrum not
included in E., i.e.

sup
w ∈ N0E
|w| = 1

|ΠN0EV−1 eΛ(t0−t)Vw|

≤ max
λ∈spect(A)−spect(A|E)

e−Re(λ)(t−t0) = e− minλ∈spect(A)−spect(A|E )(Re(λ))(t−t0). (A 41)

Together with equation (A 37), we obtain for the first condition in equation (4.8) of lemma 4.3

log(η(y0)) ≤ − min
λ∈spect(A)−spect(A|E)

Re(λ) < −Re(λ2N) = μmin(y0), for all y0 ∈ W(E), (A 42)

which is satisfied, if condition (4.9) holds. This proves the claim of theorem 4.9.

References
1. Guckenheimer J, Holmes P. 2002 Nonlinear oscillations, dynamical systems, and bifurcations of

vector fields, vol. 42, Ed. 2002. Applied mathematical sciences, corr. 7th printing edn. New
York: Springer.

2. Wiggins S. 2013 Normally hyperbolic invariant manifolds in dynamical systems, vol. 105. New York,
NY: Springer Science & Business Media.

3. Lutes LD, Sarkani S. 2004 Random vibrations: analysis of structural and mechanical systems.
London, UK: Butterworth-Heinemann.

4. Kerschen G, Peeters M, Golinval J, Vakakis A. 2009 Nonlinear normal modes, part I: a
useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23, 170–194.
(doi:10.1016/j.ymssp.2008.04.002)

5. Shaw S, Pierre C. 1993 Normal modes for non-linear vibratory systems. J. Sound Vib. 164,
85–124. (doi:10.1006/jsvi.1993.1198)

6. Haller G, Ponsioen S. 2016 Nonlinear normal modes and spectral submanifolds:
existence, uniqueness and use in model reduction. Nonlinear Dyn. 86, 1493–1534.
(doi:10.1007/s11071-016-2974-z)

7. Jain S, Tiso P, Haller G. 2018 Exact nonlinear model reduction for a von kármán
beam: Slow-fast decomposition and spectral submanifolds. J. Sound Vib. 423, 195–211.
(doi:10.1016/j.jsv.2018.01.049)

8. Breunung T, Haller G. 2018 Explicit backbone curves from spectral submanifolds
of forced-damped nonlinear mechanical systems. Proc. R. Soc. A 474, 20180083.
(doi:10.1098/rspa.2018.0083)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

un
e 

20
22

 

http://dx.doi.org/10.1016/j.ymssp.2008.04.002
http://dx.doi.org/10.1006/jsvi.1993.1198
http://dx.doi.org/10.1007/s11071-016-2974-z
http://dx.doi.org/10.1016/j.jsv.2018.01.049
http://dx.doi.org/10.1098/rspa.2018.0083


25

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210933

..........................................................

9. Ponsioen S, Jain S, Haller G. 2020 Model reduction to spectral submanifolds and forced-
response calculation in high-dimensional mechanical systems. J. Sound Vib. 488, 115640.
(doi:10.1016/j.jsv.2020.115640)

10. Jain S, Haller G. 2022 How to compute invariant manifolds and their reduced dynamics in
high-dimensional finite element models. Nonlinear Dyn. 107, 1417–1450.

11. Rubinstein RY, Kroese DP. 2016 Simulation and the Monte Carlo method, vol. 10. Hoboken, NJ:
John Wiley & Sons.

12. Berglund N, Gentz B. 2003 Geometric singular perturbation theory for stochastic differential
equations. J. Differ. Equ. 191, 1–54. (doi:10.1016/S0022-0396(03)00020-2)

13. Schmalfuss B, Schneider KR. 2008 Invariant manifolds for random dynamical systems with
slow and fast variables. J. Dyn. Differ. Equ. 20, 133–164. (doi:10.1007/s10884-007-9089-7)

14. Kuehn C. 2015 Multiple time scale dynamics, vol. 191. Springer.
15. Kerschen G, Worden K, Vakakis AF, Golinval J-C. 2006 Past, present and future of

nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592.
(doi:10.1016/j.ymssp.2005.04.008)

16. Li J, Lu K, Bates P. 2013 Normally hyperbolic invariant manifolds for random dynamical
systems: part I-persistence. Trans. Am. Math. Soc. 365, 5933–5966. (doi:10.1090/S0002-
9947-2013-05825-4)

17. Wanner T. 1995 Linearization of random dynamical systems. In Dynamics reported, pp. 203–
268. Springer.

18. Arnold L. 2003 Random dynamical systems. Springer monographs in mathematics, [corr. 2nd
print.] edn. Berlin, Germany: Springer.

19. Mohammed S-EA, Scheutzow MK. 1999 The stable manifold theorem for stochastic
differential equations. Ann. Probab. 27, 615–652. (doi:10.1214/aop/1022677380)

20. Risken H. 1996 Fokker-planck equation. In The Fokker-Planck Equation, pp. 63–95. Springer.
21. Caughey T, Ma F. 1982 The steady-state response of a class of dynamical systems to stochastic

excitation. J. Appl. Mech. 49, 629–632. (doi:10.1115/1.3162538)
22. Lin Y, Cai G. 2004 Probabilistic structural dynamics: advanced theory and applications. McGraw-

Hill engineering reference. New York: McGraw-Hill.
23. Soize C. 1994 The Fokker-Planck equation for stochastic dynamical systems and its explicit steady

state solutions, vol. 17. Singapore: World Scientific.
24. Atkinson J. 1973 Eigenfunction expansions for randomly excited non-linear systems. J. Sound

Vib. 30, 153–172. (doi:10.1016/S0022-460X(73)80110-5)
25. Ibrahim RA. 1995 Recent results in random vibrations of nonlinear mechanical systems. J. Vib.

Acoust. 117, 222–233. (doi:10.1115/1.2838667)
26. Crandall SH. 1980 Non-gaussian closure for random vibration of non-linear oscillators. Int. J.

Non-Linear Mech. 15, 303–313. (doi:10.1016/0020-7462(80)90015-3)
27. Stratonovich R, Silverman RA. 1963 Topics in the theory of random noise, vol. 3. Mathematics and

its applications, [etc., rev. english ed. edition]. New York: Gordon and Breach.
28. Roberts J, Spanos P. 1986 Stochastic averaging: an approximate method of solving random

vibration problems. Int. J. Non-Linear Mech. 21, 111–134. (doi:10.1016/0020-7462(86)90025-9)
29. Roberts J, Spanos P. 1990 Random vibration and statistical linearization. Chichester, UK: Wiley.
30. Haller G, Karrasch D, Kogelbauer F. 2020 Barriers to the transport of diffusive scalars in

compressible flows. SIAM J. Appl. Dyn. Syst. 19, 85–123. (doi:10.1137/19M1238666)
31. Vig JR, Kim Y. 1999 Noise in microelectromechanical system resonators. IEEE Trans. Ultrason.

Ferroelectr. Freq. Control 46, 1558–1565. (doi:10.1109/58.808881)
32. Shoshani O, Heywood D, Yang Y, Kenny TW, Shaw SW. 2016 Phase noise reduction in an

mems oscillator using a nonlinearly enhanced synchronization domain. J. Microelectromech.
Syst. 25, 870–876. (doi:10.1109/JMEMS.2016.2590881)

33. Williams D, Chris L, Rogers G., 1987 Itô calculus, vol. 2. Diffusions, Markov processes, and
martingales. Chichester: Wiley.

34. Øksendal BK. 2010 Stochastic differential equations: an introduction with applications.
Universitext. Berlin, Germany: Springer.

35. Szalai R, Ehrhardt D, Haller G. 2017 Nonlinear model identification and spectral submanifolds
for multi-degree-of-freedom mechanical vibrations. Proc. R. Soc. A 473, 20160759.

36. Cabré X, Fontich E, de la Llave R. 2003 The parameterization method for invariant
manifolds I: manifolds associated to non-resonant subspaces. Ind. Univ. Math. J. 52, 283–328.
(doi:10.1512/iumj.2003.52.2245)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

un
e 

20
22

 

http://dx.doi.org/10.1016/j.jsv.2020.115640
http://dx.doi.org/10.1016/S0022-0396(03)00020-2
http://dx.doi.org/10.1007/s10884-007-9089-7
http://dx.doi.org/10.1016/j.ymssp.2005.04.008
https://doi.org/10.1090/S0002-9947-2013-05825-4
https://doi.org/10.1090/S0002-9947-2013-05825-4
https://doi.org/10.1214/aop/1022677380
http://dx.doi.org/10.1115/1.3162538
http://dx.doi.org/10.1016/S0022-460X(73)80110-5
http://dx.doi.org/10.1115/1.2838667
http://dx.doi.org/10.1016/0020-7462(80)90015-3
http://dx.doi.org/10.1016/0020-7462(86)90025-9
http://dx.doi.org/10.1137/19M1238666
http://dx.doi.org/10.1109/58.808881
http://dx.doi.org/10.1109/JMEMS.2016.2590881
http://dx.doi.org/10.1512/iumj.2003.52.2245


26

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210933

..........................................................

37. Haro A, de la Llave R. 2006 A parameterization method for the computation of invariant
tori and their whiskers in quasi-periodic maps: rigorous results. J. Differ. Equ. 228, 530–579.
(doi:10.1016/j.jde.2005.10.005)

38. Fenichel N. 1972 Persistence and smoothness of invariant manifolds for flows. Indiana Univ.
Math. J. 21, 193–226. (doi:10.1512/iumj.1972.21.21017)

39. Chicone C. 2006 Ordinary differential equations with applications. New York: Springer.
40. Oseledec VI. 1968 A multiplicative ergodic theorem. Characteristic ljapunov, exponents of

dynamical systems. Trudy Moskovskogo Matematicheskogo Obshchestva 19, 179–210.
41. Ott W, Yorke JA. 2008 When lyapunov exponents fail to exist. Phys. Rev. E 78, 056203.

(doi:10.1103/PhysRevE.78.056203)
42. Tang X, Boozer A. 1996 Finite time lyapunov exponent and advection-diffusion equation.

Physica D 95, 283–305. (doi:10.1016/0167-2789(96)00064-4)
43. Thiffeault J-L. 2003 Advection-diffusion in lagrangian coordinates. Phys. Lett. A 309, 415–422.

(doi:10.1016/S0375-9601(03)00244-5)
44. Igari K. 1974 Degenerate parabolic differential equations. Publ. Res. Inst. Math. Sci. 9, 493–504.

(doi:10.2977/prims/1195192569)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

un
e 

20
22

 

http://dx.doi.org/10.1016/j.jde.2005.10.005
http://dx.doi.org/10.1512/iumj.1972.21.21017
http://dx.doi.org/10.1103/PhysRevE.78.056203
http://dx.doi.org/10.1016/0167-2789(96)00064-4
http://dx.doi.org/10.1016/S0375-9601(03)00244-5
http://dx.doi.org/10.2977/prims/1195192569

	Introduction
	Setup
	The Fokker--Planck equation of the nonlinear mechanical system (2.1)
	Spectral submanifolds for the nonlinear mechanical system (2.1)
	Normally hyperbolic invariant manifolds for the nonlinear mechanical system (2.1)

	Barriers to transport of the probability density p( y, t)
	Alignment of barriers and invariant manifolds
	Numerical examples
	Duffing oscillator
	Multi-dimensional example

	Conclusions
	References

