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Abstract Energy localization, which are spatially
confined response patterns, have been observed in tur-
bomachinery applications,micro-electromechanical sys-
tems, and atomic crystals. While confined energy can
reduce a device’s life-span, in sensing and energy har-
vesting applications, it can be beneficial to steer a
system’s response into a localized mode. Building on
earlier studies, in this article, the authors extend the
research on localization by considering an array of cou-
pledDuffingoscillators arranged in a circle. The system
is composed ofmultiple nonlinear oscillators each con-
nected to two neighboring oscillators via springs. Due
to the periodic boundary conditions waves can propa-
gate through the boundaries. These oscillators are hard-
ening in most of the considered cases, and softening in
the others. In the studied parameter range, the system is
characterized by multi-stable behavior and a localized
mode as well as a unison-low-amplitude motion coex-
ist. The possibility that white noise can drive the system
response from the localized mode to the low ampli-
tude mode and thus suppresses energy localization is
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investigated. For different noise levels, the duration
needed to stop energy localization as well as the prob-
ability to suppress localization within a certain time is
numerically studied. In addition, the effects of linear
coupling and nonlinear coupling between the oscilla-
tors on the strength of localization and the minimum
noise addition needed to suppress energy localization
are examined in depth. Moreover, modeling of large
array dynamics with smaller subsystems is explored
and dynamics with non-Gaussian noise is also consid-
ered.

Keywords Circular arrays · Duffing oscillators ·
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1 Introduction

Energy localization is a response state, in which energy
exchange between sub-elements (oscillators) of a sys-
tem can lead the system’s energy to be spatially focused
in one or a few of the sub-elements (oscillators). This
response localization has been found to occur in sys-
tems with defects or imperfections [1] and homoge-
neous lattices with nonlinearities and discreteness [2].
Energy localization can occur during transient dynam-
ics [3] or steady-state dynamics. Localized modes have
been found to occur in nonlinear oscillator arrays,
including cyclically symmetric rotational systems [4]
and micro-resonator arrays [5].
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Suppression of energy localization is important for
many mechanical systems, as this localization can lead
to structural failures of machinery parts due to the
localized high amplitude (high energy) oscillations.
For other applications, such as for energy harvest-
ing or sensing, focusing the system’s energy in a cer-
tain sub-element may be desirable. Understanding the
mechanisms leading to energy localization and non-
linear analyses to identify localized modes are helpful
to develop strategies to suppress or spatially move a
localization.

Although breathers in a homogeneous continuum
canpass througheachotherwithout exchanging energy,
in discrete lattices, the energy of breathers may add up
when they collide, which results in localization of the
energy [6]. Nonlinear discrete systems with weak cou-
pling can exhibit energy localization, in which energy
can build up in a single sub-element without diffu-
sion to the neighboring sub-elements. Localizedmodes
often exist in frequency ranges where multiple solution
branches exist [7]. Depending on the initial conditions,
the system’s oscillatory response may be on a differ-
ent solution branch even when the harmonic forcing is
the same. Systems with multi-stable behavior can be
driven from one solution to another by perturbing the
oscillation through addition of noise to the harmonic
forcing. For a single Duffing oscillator with a double
potential well, Agarwal et al. [8] showed that by apply-
ing Gaussian noise, the system response can be driven
from one solution branch to another or in some cases,
the multi-stable behavior can be eliminated, and the
system response can be similar to that of a linear oscil-
lator. Perkins et al. [9] studied the influence ofGaussian
noise on intrinsic localized modes of a nonlinear oscil-
lator array with free-free boundary conditions. For this
system, they showed that energy localization can be
suppressed with noise. In this system, each of the oscil-
lators is coupled with two of its neighbors, except the
first and the last one, where propagating waves reflect
from the boundaries. In this work, localized modes in a
circular configuration of six to twenty coupled Duffing
oscillators is studied. The system has periodic bound-
ary conditions, and each oscillator is coupled to its left
and right neighbors, and waves can propagate through
the boundaries without interruptions.

For an array of hardening Duffing oscillators with
periodic boundary conditions subjected to a har-
monic excitation, Papangelo et al. [7] studied dif-
ferent response branches. They showed that the sys-

tem response has multi-stability characteristics in cer-
tain frequency regions, where depending on the initial
conditions, the array can oscillate in either a unison-
amplitude mode or an energy localized state. They also
pointed out that the localized modes exist only when
the forcing is above a certain level. When the system
is excited with a low forcing, the system exhibits lin-
ear system like behavior, and energy localization is not
observed. A similar system is studied here and Gaus-
sian and non-Gaussian noise is utilized to move the
system response from the localized mode to a uniform-
low-amplitude (ULA)mode.

In this work, white Gaussian noise is used to per-
turb the system when it is in a energy localized state,
and push the system response out of the basin of attrac-
tion of the localized mode. Then, the noise addition
is removed, and the system response is found to be
attracted to the ULA mode in steady state. A dynamic
noise duration algorithm is applied, wherein the noise
application is continued until the localized oscillator’s
amplitude drops below a certain level (i.e., the trajec-
torymoves out of the basin of attraction of the localized
mode). Then, this noise application is stopped. The sys-
tem then settles in a state of ULA oscillations. The sys-
tem response is studied for a number of noise levels, by
using hundreds of different noise vectors, and the dura-
tion required to suppress the localization is recorded for
each simulation. The system’s response to noise is stud-
ied in an averaged sense, and the probability of local-
ization suppression is investigated for different noise
levels and simulation lengths. In addition, the effects
of the inter-oscillator coupling on the localization sup-
pression are explored. Theminimumnoise level needed
to suppress localization is studied for systemswith both
linear coupling stiffness and nonlinear coupling stiff-
ness. Moreover, similarities between the responses of
small arrays and large arrays are investigated. If sim-
ilarities are present, this can help in reduction of the
computational costs and allow one to understand the
localization behavior in a large array by simulating only
a system comprised of the localization center and a few
adjacent neighbors. This study is concluded by com-
paring the influence of non-Gaussian noise models on
energy localization with the observations for Gaussian
noise obtained in the preceding sections.

The rest of the paper is organized as follows. In the
next section, a description of the system is given with
a calculation of localized modes. Then, in the subse-
quent section, the effects of Gaussian noise on sys-
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tem response is discussed through numerical simula-
tions, where the duration needed for the noise to sup-
press localization is calculated, the effect of coupling
is explored, and the studies are extended to large arrays
and non-Gaussian noise models. Concluding remarks
are presented at the end.

2 System description and localized modes

The oscillatory system of interest is sketched out in
Fig. 1. It is composed of identical Duffing oscillators
with linear springs and cubic springs, and these oscil-
lators are arranged in a cyclically symmetric layout.
The oscillators are coupled through linear and nonlin-
ear springs, where the coupling springs are weak com-
pared to the oscillator stiffness k. The system is excited
with a harmonic excitation.

Assuming each oscillator has mass m = 1, mass
normalized equations of motion of a coupled oscillator
array with periodic boundary conditions can be written
as

ẍn + cẋn + k1xn + k3x
3
n + fc(xn) = F0 cos(ωt), (1)

for n = 1, 2, . . . N , where c is the damping, k1 is the
linear stiffness, k3 is the cubic stiffness, and fc is the
coupling spring force with fc(xn) = kc(2xn − xn−1 −
xn+1) + kc3[(xn − xn+1)

3 + (xn − xn−1)
3] for 1 <

n < N , fc(x1) = kc(2x1 − xN − x2) + kc3[(x1 −
x2)3 + (x1 − xN )3] and fc(xN ) = kc(2xN − xN−1 −
x1) + kc3[(xN − x1)3 + (xN − xN−1)

3]. Depending on
the signs of k1 and k3, each individual oscillator can
behave as either a monostable or a bistable oscillator,
and can have hardening or softening characteristics.
In this study, an array of primarily, hardening Duffing
oscillators (with k1 > 0 and k3 > 0) are considered.

Papangelo et al. [7] showed that an energy localized
mode exists for the selected parameters k1 = 1, k3 = 1,
c = 0.01, kc = 0.04, and kc3 = 0, when the system is
harmonically excitedwith the forcing parameters being
F0 = 0.0126 and ω = 1.25. When oscillating in this
configuration, one of the oscillators has a significantly
larger amplitude compared to the other ones. To cap-
ture thismode numerically, the anti-continuousmethod
[10] was used. The localized mode is first found at the
anti-continuous limit; that is, uncoupled limit (for the
system with kc = 0 and kc3 = 0). In this limit, for a
single oscillator’s response state, there are two stable
periodic orbits, one with a low-amplitude and another

Fig. 1 A circular array of coupled Duffing oscillators with peri-
odic boundary conditions
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Fig. 2 The amplitude profile for the localized mode with cou-
pling spring stiffness kc = 0.04

with a high amplitude. Thus, for the full N -mass array,
stable periodic orbits exist, which continue to exist for
low enough coupling stiffness. These modes can be
computed with standard continuation techniques (e.g.,
[11]) orwith the automated continuation package coco
[12], which has been employed in this article.

Here, the authors focus on the mode, where the third
mass oscillates with high amplitude, while the other
oscillators remain at a relatively low vibration level.
An amplitude x̂ j is defined as themaximal absolute dis-
placement of the j-th oscillator along a stable periodic
steady-state solution, for example, the localized mode.
The amplitude profile of the oscillators for the localized
mode is given in Fig. 2, when the nonlinear coupling is
absent. The energy is localized in the third oscillator,
whereas the other oscillators have much lower ampli-
tudes. The amplitude profile is symmetric about the
localized oscillator. It is noted that due to cyclic sym-
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Fig. 3 Time histories of the oscillator responses: Before the
noise is applied, energy localization occurs in the third oscilla-
tor, while the other oscillators move with smaller amplitudes.
Upon application of the Gaussian noise, the energy localization

disappears and the solutionmoves from the localizedmode to the
ULAmode. Two different noise realizations are used in cases (a)
and (b). The time noise takes to suppress the localization is dif-
ferent for the two cases

metry localized modes with maximal energy in any of
the other oscillators exists as well.

In the next section, Gaussian noise is added to per-
turb the system response from the localized mode. The
authors investigate whether the noise can successfully
destroy the energy localization.

3 Noise induced suppression of energy
localizations

In order to explore the effects of white Gaussian noise
on the localizedmode, and to investigate if the noise can
be used to suppress the energy localization, a Gaussian
noise term is added to the right-hand side of Eq. (1),
yielding

ẍn + cẋn + k1xn + k3x
3
n + fc(xn)

= F0 cos(ωt) + σ Ẇ (t),
(2)

where σ is the intensity of the white Gaussian noise,
W (t) is a Wiener process and Ẇ (t) is a mnemonic
derivative. To ensure the uniformity in forcing, the
authors assume the same noise term is applied to
all of the oscillators. Throughout this work, the non-
dimensional parameters values are given by

k1 = 1, k3 = 1, ω = 1.25, F0 = 0.0126,

which correspond to the values from reference [7]. The
linear coupling spring stiffness kc, the nonlinear cou-
pling spring stiffness kc3, and the noise intensity σ are
varied. The stochastic equations of motion (2) can be
represented in state space form as

ẋn1 = xn2,

ẋn2 = F0 cos(ωt) + σ Ẇ − cxn2 − k1xn1 − k3x
3
n1

− fc(xn1).

(3)

Stochastic differential equations are more appropri-
ately addressed in differential form yielding

dxn1 = xn2dt,

dxn2 = (F0 cos(ωt) − cxn2 − k1xn1 − k3x
3
n1

− fc(xn1))dt + σdW.

(4)

The term dW indicates the differential of the noise
term. Detailed treatments of stochastic differential
equations can be found in references [13,14]. In this
work, the equations of motion (4) are integrated by
using the Euler–Maruyama scheme [15].

For a systemwith six oscillators, the localized mode
can be destroyed by noise, as the time series of the
system response for σ = 0.01 shown in Fig. 3a reveal.
In this example, the system is forced with harmonic
forcing only for the first 250 s. Oscillator 3 moves with
a much larger amplitude compared to the other ones
(i.e., the system’s energy is localized in oscillator 3). At
t = 250s, in addition to the harmonic forcing, aGaussian
noise with intensity σ = 0.01 is applied to the system.
The oscillator’s response is noisy, but stays around the
localized mode for a while. Then, around t = 400s, the
response is found to depart from the localizedmode and
move to the ULAmode. The noise addition is removed
from the forcing around t = 1000 s, and the resulting
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Fig. 4 Energy distribution of the oscillators averaged for 400
noise vectors: The energy is localized in the third oscillator in the
beginning. The Gaussian noise is found to suppress localization,
leading to a uniform, low-amplitude response

response is found to remain in the ULA mode. For the
same noise level, but for a different realization of the
stochastic process, the duration until the system reaches
the ULA mode differs (from around t = 550 s in Fig.
3a), as shown in Fig. 3b.

3.1 The effect of noise intensity

In order to explore the effects of the noise intensity,
Monte-Carlo simulations are carried out for which the
system is studied with 400 different noise vectors with
the same intensity, and the average behavior of the array
is investigated. The time it takes for noise to suppress
energy localization is compared for different noise lev-
els. Naturally, it is expected that a large noise intensity
would initiate the collapse faster.

For a noise intensity of σ = 0.01, the system is sim-
ulated with 400 different noise vectors. The averaged
energy distribution of the system is given in Fig. 4,
where the noise added to the system can suppress the
localization.Although from each simulation, it is found
that the noise level σ = 0.01 is sufficient to destroy the
localized mode, the duration needed to do so is found
to be different for different noise vectors.

The numerical simulations are extended to lower
noise levels. In Fig. 5, averaged energy distribution
across the oscillators are shown for the noise intensities
σ = 0.008 and σ = 0.006. For each noise level, the
energy of each oscillator is averaged over 400 simula-
tions with different noise vectors of the same intensity.
In both cases, the noise level is found to be sufficient
to suppress the localization, although, it takes longer

for the suppression to be initiated at the lower noise
intensities (σ = 0.008 and σ = 0.006).

To systematically calculate the duration needed to
apply the noise to suppress energy localization, a
dynamic noise application algorithm is used as shown
in Fig. 6. The system is initialized at the localizedmode
at time t = 0. Then, the equations of motion (4) are
integrated for one period and the distance between the
sample and theULAmode is calculated. If this distance
is less than a tolerance tol, the system is close to the
ULAmode. Hence, the response has departed from the
localized mode. In this case the localization has been
successfully suppressed and the integration is termi-
nated. If the system is not close to the ULAmode, then
the integration is continued. The tolerance tol was set
to be half of the distance between the localized mode
and ULA mode.

The probability of suppression of energy localiza-
tion within a given time as a function of the noise
intensity is shown in Fig. 7. For each noise level one
hundred realizations were computed. From Fig. 7, it
can be discerned that the likelihood of a successful
suppression of localization by noise increases with the
duration of noise application as well as with the noise
intensity. This could imply that if one can waits “long
enough,” there is a possibility that even the smallest
amount of noise can add up and suppress energy local-
ization. Although, the localized mode is stable, as the
noise perturbs the system, the attraction of the stable
mode is overcome by the random perturbations.

Indeed, according to the theoretical results on ran-
domly perturbed dynamical systems by Freidlin and
Wentzell [16] or Matkowsky and Schuss [17], any tra-
jectory of system (4) will leave the basin of attraction
of the localized mode for any noise intensity σ �= 0.
Moreover, the mean time for such an exit will grow
exponentially as the noise intensity σ approaches zero.
Therefore, one can search for a practical noise limit that
is sufficient to suppress localizations in a “reasonable”
amount of time.

3.2 Effect of inter-oscillator coupling

The effects of coupling between the oscillators on the
localized modes was studied in [18], where it was
shown that it is “easier” to create energy localization
with random initial conditions when the coupling is
low. For arrayswith stronger coupling,more energy can
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Fig. 5 Energy distribution
of the oscillators averaged
for 400 noise vectors for
σ = 0.008 and σ = 0.006:
The energy is localized in
the third oscillator in the
beginning. Gaussian noise
addition has been used to
suppress localization,
leading to a uniform,
low-amplitude response
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Fig. 6 Steps in the dynamic noise duration algorithm
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Fig. 7 Probability of suppression of the energy localization:
Although for shorter noise application times, the probability of
suppressing localization is lower for low noise intensities (e.g.,
σ = 0.01), for longer duration, the probability converges to 1
for all tested noise levels

flow through the oscillators, and the localized mode is
more sensitive to perturbations. Therefore, it is harder
to sustain a localized mode for systems with stronger
coupling. In addition, the localization is stronger for
systems with weaker coupling in the sense that the
amplitude ratio of the localization center to the neigh-

boring oscillators is larger. The effect of nonlinear cou-
pling has also been studied [19], where it is shown that
the addition of cubic coupling makes the energy local-
ization weaker. In order to explore the effects of cou-
pling on systems with noise, three scenarios are inves-
tigated: (1) the uncoupled system, (2) the linearly cou-
pled array, and (3) the array with both linear coupling
and cubic coupling.

3.2.1 Uncoupled system (kc = 0 and kc3 = 0)

For the uncoupled system (kc = 0), each individ-
ual oscillator can be treated as a single oscillator,
which oscillates in either the low-amplitude or a high-
amplitude response depending on the initial conditions.
Fromprevious studies in the authors’ group, it is known
that Gaussian noise can be used to induce transitions
between the two solution branches [8,20]. In search of
a practical minimum noise to initiate these transitions,
the single oscillator behavior is studied under various
noise intensities. For each noise level, one hundred
responses are simulated until the transition from the
high-amplitude orbit to the low-amplitude orbit starts,
and the transition times are recorded. The simulations
were truncated, if no transition to the ULA mode was
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Fig. 8 The average transition time from the high-amplitude
response to low-amplitude response for various noise levels
(F0 = 0.0126 and ω = 1.25). For σ = 0.005, the mean tran-
sition time is only calculated for realizations where a transition
was observed (52 out of 100 samples)

observed after 2 · 104 periods. The average times (t̄col)
for transitions are shown in Fig. 8.

For decreasing noise levels t̄col increases dramati-
cally. Indeed, according to large deviation theory (e.g.,
Freidlin and Wentzell [16]), for small noise inten-
sities the mean escape time increases exponentially
with decreasing noise intensity σ . Moreover, often the
escape times are concentrated in a small band close to
the mean value tavg. Thus, this theory also confirms
that the likelihood of observing an escape within a
fixed time span for small noise intensities is very slim.
For σ = 0.005, about half of the realizations have not
transitioned to the ULA mode within 2 · 104 periods1.
Due to the incomplete suppression of localization at
σ = 0.005, the value σ = 0.006 can thus be accepted
as a practical minimum noise limit for the specified
excitation level (F = 0.0126).

3.2.2 Linear coupling (kc > 0 and kc3 = 0)

First, the effect of the linear coupling on localization is
studied. To this end, the continuation of the determin-
istic localized mode is computed for increasing lin-
ear coupling stiffness coefficient kc with the automated

1 The average over the transitioned samples is included in Fig. 8
for comparison. Since many samples have been discarded, this
mean collapse time at σ = 0.005 is not completely equivalent to
the other transition times with σ > 0.005.
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Fig. 9 Amplitude ratio as a measure for localization for varying
strength of linear coupling spring coefficient kc

numerical continuation package coco [12]. As a mea-
sure of localization, the amplitude ratio of the local-
ization center and its neighboring oscillator x̂3/x̂4 is
shown in Fig. 9. For increasing strength of coupling
coefficient kc the localization decreases, which agrees
with [18]. Moreover, in Fig. 9, there is a critical value
kcritc ≈ 0.54 at which the localized mode folds over
the linear coupling coefficient kc. Thus, for values of
kc larger than kcritc , the localized mode ceases to exist.
In summary, for increasing coupling coefficients the
localized mode not only “delocalizes”; that is, the cor-
responding amplitude ratio decreases, and further, for
large enough kc values, the localized mode does not
exist.

Close to the fold point, in Fig. 9, one can note a
change of stability of the localized mode; that is, a
cyclic-fold bifurcation [11] of the stable periodic orbit
is observed. It is of interest to note that the other merg-
ing periodic orbit is the continuation of an unstable
localizedmode.More specifically, it is the continuation
of the unstable localized mode where in the uncoupled
or anti-continuum limit (kc = 0) the third mass moves
along the unstable periodic orbit with high energy and
the other masses are at the stable low amplitude orbit.
The bifurcation scenario depicted in Fig. 9 is an exam-
ple of a classic symmetry breaking bifurcation (e.g.,
[11,21,22]), induced by the symmetry breaking param-
eter kc.

In Fig. 9, localization is found to be stronger for
lower coupling. Thus, in the light of the authors’ pre-
vious studies, one can suggest that suppressing energy
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Fig. 10 Mean time necessary to suppress localization for noise
intensity σ = 0.01

localization through noise perturbations would be eas-
ier for systems with higher coupling. To verify this
hypothesis, the mean collapse time; that is, the aver-
age duration for trajectories launched at the localized
mode to collapse to the ULA mode, is computed for
various linear coupling coefficients kc and the constant
noise intensity σ = 0.01. The average is taken over 103

samples. In Fig. 10, the authors show the mean time
necessary to suppress energy localization is higher for
systemswith smaller coupling. Therefore, one can con-
clude that the energy exchange between the oscillators
makes it significantly easier for the noise to suppress
energy localizations.

3.2.3 Linear coupling and nonlinear coupling (kc > 0
and kc3 �= 0)

In addition to the linear coupling, nonlinear coupling
may exist in micro-resonator arrays [23] and systems
with fluid coupling [24]. In order to study suppression
of energy localization in these systems, and observe
the effect of nonlinear coupling on the minimum noise
intensity, a system with cubic coupling in addition to
the linear coupling is also considered. The equations of
motion for the coupled oscillator array can be written
as

ẍn + cẋn + k1xn + k3x
3
n + fc(xn)

= F0 cos(ωt) + σ Ẇ (t), (5)
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Fig. 11 Amplitude ratio x̂3/x̂4 for various strengths of linear
coupling stiffness and nonlinear coupling stiffness

for n = 1, 2, . . . N , where it is recalled that the fc
is the coupling spring force with fc(xn) = kc(2xn −
xn−1 − xn+1) + kc3[(xn − xn+1)

3 + (xn − xn−1)
3] for

1 < n < N , fc(x1) = kc(2x1 − xN − x2) + kc3[(x1 −
x2)3 + (x1 − xN )3] and fc(xN ) = kc(2xN − xN−1 −
x1) + kc3[(xN − x1)3 + (xN − xN−1)

3].
As pointed out in the authors’ earlier studies, initiat-

ing and sustaining the energy localization is harder for
systems with a cubic coupling [19]. To confirm these
observations for the cyclic system, the localized mode
is computed for various combinations of linear andnon-
linear coupling spring coefficients (k3 and kc3). As a
representative result, in Fig. 11, the authors show the
amplitude ratio as a measure of localization. The case
of only linear coupling; that is, the line kc3 = 0, is
equivalently shown in Fig. 9. For hardening coupling
springs (kc3 > 0), the localization level is found to
decrease with increase in kc3 until the localized mode
undergoes a cyclic fold bifurcation and ceases to exist
after the bifurcation. This behavior is analogous towhat
was observed in the case of a system with purely linear
coupling that was discussed in Sect. 3.2.1.

For softening springs (kc3 < 0), interestingly, as
shown in Fig. 9, the authors find a qualitatively different
trend. As one decreases the strength of nonlinear spring
coefficient below zero, one can actually increase the
localization level until a value similar to the uncoupled
limit is reached (red areas in Fig. 11). After this maxi-
mum is reached, the amplitude ratio drops again, indi-
cating a “delocalization” trend of the localized mode.
Contrary to the hardening case and linear case, no cyclic
fold points were found for softening nonlinearities in
the investigated parameter range.

Repeating the study of the correlation between the
amplitude ratio x̂3/x̂4, a deterministic measure for
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Dynamics of circular oscillator arrays subjected to noise 9

localization, and the average collapse time from the
previous section for various nonlinear coupling coeffi-
cients, the authors obtain Fig. 12. Once again the aver-
age taken is over 103 samples and the noise intensity
is kept constant at σ = 0.01. The trend of decreas-
ingmean collapse timewith decreasing amplitude ratio
observed for linear coupling is confirmed for harden-
ing springs kc3 > 0 (cf. the left plot in Fig. 12 for
kc3 > 0 ). For softening nonlinearities, this relation-
ship, however, cannot be confirmed. The mean time to
collapse can actually increase for decreasing amplitude
ratio. Thus, relying on the amplitude ratio as a single
indicator to quantify the robustness of localization with
respect to noise can be misleading.

Overall, the fundamental differences between soft-
ening (kc3 < 0) and hardening springs (kc3 > 0) from
the deterministic picture in Fig. 11 carry over to the
stochastic setting shown in Fig. 12. To understand and
uncover the causes of these differences in the stochastic
case, a global analysis is required. However, the avail-
able numerical analysis tools for stochastic dynamical
systems are often limited to single degree of freedom
systems [25].

3.3 Suppression of energy localization in large arrays

Exploring an array’s response under noise, and find-
ing the minimum noise intensity that can initiate the
transitions from the localized mode to the ULA mode
require analyzing the system behavior under hundreds
of different noise vectors through Monte Carlo simu-
lations. Although feasible for small arrays (e.g., with 6
oscillators), these simulations can be computationally
expensive as the number of oscillators in the system
grows. Finding the similarities between the responses
of small arrays and large arrays can enable modeling
simplifications, and reduce the cost of these investiga-
tions.

For arrays with low coupling, the localization center
is directly affected by its immediate neighbors, and the
influence of other oscillators on the localization ampli-
tude is much smaller. The authors’ previous work has
shown that one can approximate the amplitude pro-
file near the localization by considering only the local-
ization center and its two immediate neighbors [5]. In
order to explore if simulating only a few oscillators is
sufficient to capture the behavior of energy localization
in large arrays subjected to noise, the following study

is conducted. Three arrays with different numbers of
oscillators are considered: a six-oscillator array, a ten-
oscillator array, and a twenty-oscillator array.Addition-
ally, the uncoupled or anti-continuum limit is included.
All the arrays are composed of identical oscillators and
the inter-oscillator coupling is uniformwith kc = 0.04.
All arrays are then excited with the same exact noise
vector with intensity σ = 0.01 in addition to the har-
monic forcing. The initial condition is selected at the
localized mode with the energy localized at the third
oscillator.

The time responses of the arrays are shown in
Fig. 13. In cases with 6, 10, and 20 oscillators, the
amplitude of the third oscillator starts dropping at the
same time (around t = 600 s), and the time response
appears to be the same for the localization center (i.e.,
third oscillator). For the uncoupled limit, however, the
collapse from the localized mode to the ULA mode
starts not only significantly later (at around t = 1000
s) but also the transition is less rapid. Thus, although
in all of the depicted time histories a suppression of
localization is observed, it is inferred that the cyclic
configuration with a few number of oscillators (e.g.,
six) is more suitable to mimic the behavior of a large
oscillator arrays than the more trivial uncoupled limit.

A phenomenological explanation for why the tran-
sitions from the localized mode to the ULA mode in
larger cyclic arrays can be accurately mimicked by
an array with fewer oscillators is as follows. During
the simulations depicted in Fig. 13, it was observed
that the displacements and speeds of the masses far
away from the localization center are almost identi-
cal, although this symmetry is perturbed by the linear
stiffness coupling kc. More specifically, x j ≈ xi and
ẋi ≈ ẋi holds,where this approximation becomesmore
accurate the more the integers j and i differ from three;
that is, the localization center. Actively enforcing such
a behavior, one can propose the model order reduction
depicted in Fig. 14. Of course, an in-depth analysis for
deriving the observed similarity rather than enforcing it
would be preferable to deduce a reliable reduced order
model. However, at a phenomenological level, Fig. 14
can be used to explain the observed similarities in the
responses of small (N = 6) and large (N = 20) arrays.
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Fig. 12 Mean time necessary to destroy localization for noise intensity σ = 0.01 and different strengths of linear coupling stiffness
and nonlinear stiffness coupling

Fig. 13 Time responses for an array with kc = 0.04, N =1, 6, 10 and 20 oscillators subjected to the same noise vector with the intensity
σ = 0.01

3.4 Dynamics with non-Gaussian noise

The assumptionofGaussianwhite noise is the prevalent
assumption in studies of random vibrations. One rea-
son is thewell developedmathematical basis. In reality,
however, a stochastic excitation will be non-Gaussian,
since Gaussian white noise has infinite energy content
and hence is not physical. To investigate the effects of

non-Gaussian noise models, pink noise is considered
as an example. The spectral power density of the pink
noise is reciprocal of the frequency f . Hence, it is also
labeled as 1/ f -noise or Flicker noise. Amongst others,
it has been documented in electrical circuits and metals
[26] as well as in natural phenomena such as ocean cur-
rents and astronomical time series [27]. The equations
of motion of the cyclic oscillator array (4), driven by
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Fig. 14 Phenomenological model order reduction to explain the
similarities between array with low and high number of oscilla-
tors

the pink noise process Wp is given by

dxn1 = xn2dt,

dxn2 = (F0 cos(ωt) − cxn2 − k1xn1 − k3x
3
n1

− fc(xn1))dt + σdWp.

(6)

There are numerous approaches to generate pink
noise; for example, filtering white noise [28], a Green’s
function [27] approach or constructing this noise in the
frequency domain [29]. Once a realization pink noise is
created, one can straightforwardly replace the (pseudo-
) random number generator in the Euler-Maruyama
scheme with the pink noise process. Although the
Euler-Maruyama scheme is developed to approximate
stochastic integrals where the noise arises from the
standard Wiener process [13], this practical approach
can be justified. As with many other noise models, pink
noise can be obtained by filtering white noise appropri-
ately; that is, it can be obtained as a solution of a filter
differential equation of the form

dWp = f (z, t) + b(z, t)dW,

dz = fz(z, t) + bz(z, t)dW,
(7)

where the vector z denotes internal states and f (z, t),
b(z, t), fz(z, t), and bz(z, t) are appropriately cho-
sen, possibly nonlinear and time varying, functions.
A standard approach to handle system (6) driven by
the filtered Gaussian white noise (7) is to extend the
state space to include the filter differential equation in
the dynamical system (e.g., [30]). Then, one extends
the state space to include not only the positions xn
and velocities ẋn but also the pink noise variable Wp

and the internal states z. In this setting one obtains a
dynamical system driven by white noise. Thus, results
derived for the standard Wiener process apply for the
extended dynamical system. Now, one can skip the step
of extending the phase space, argue that for each time
step the filter equations have already been solved by
the built in noise generator and hence it can be included

directly into the Euler-Maruyama scheme. Therefore,
the sound mathematical basis , most notably the con-
vergence results, of the Euler–Maruyama scheme (e.g.,
[13]) carry over to non-Gaussian noise case; that is, fil-
tered white noise.

In Fig. 15, the authors show responses of a cyclic
oscillator arraywith a linear coupling spring kc = 0.04.
The pink noise was generated with the readily available
filter from reference [28]. For this specific realization,
the localization was suppressed for both noise models,
whereby the collapse occurred earlier in thewhite noise
(briefly after t = 200 s) case compared to the pink noise
case (slightly before t = 500 s).

To check whether the difference observed in Fig.
15 is statistically significant, responses of the cyclic
array are computed for one hundred different realiza-
tions for each noisemodel and the intensity is increased
to σ = 0.02. The resulting histogram is shown in
Fig. 16. Both distributions are almost identical and thus
the observed difference in the escape time in Fig. 15
can be said to be statistically irrelevant. Thus, it can be
noted that the localization suppression through white
noise observed in the preceding sections also extends to
more realistic noise models such as pink noise. While
in the specific case investigated even the escape times
distribution of white noise and pink noise match, it is
generally expected that with different noise models,
one will have a differing impact on the dynamics of
nonlinear mechanical systems such as oscillator arrays.

4 Concluding remarks

In this work, effects of noise on energy localization in
a circular array of coupled nonlinear oscillators have
been investigated. The considered system is composed
of multiple weakly coupled Duffing oscillators with
periodic boundary conditions.When excitedwith a har-
monic forcing at a certain level, the system exhibits
the energy localization phenomenon, where one of the
oscillators has a significantly higher amplitude com-
pared to the other ones. It is shown that Gaussian noise
can perturb the system from this localized mode, and
drive the system response to a ULA mode. Moreover,
it is observed that the likelihood of successful local-
ization suppression as well as the time necessary to
destroy energy localization by noise drops significantly
with decreasing noise intensity. Thus, one can find a
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Fig. 15 Comparison of responses of an oscillator array (kc = 0.04) excited by white noise and pink noise

minimum noise level for successful localization sup-
pression.

Subsequently, the dependenceof the couplingbetween
the oscillators on the robustness of localization with
respect to noise has been investigated. With increasing
linear and nonlinear coupling of hardening type, the
localized mode is found to be more sensitive to noise.
For softening nonlinear coupling, however, the aver-
age time to suppress localization actually is found to
increase.

A comparison between the six-oscillator cyclic case
and higher dimensional arrays revealed no fundamen-
tal differences for the noise induced transition from the
localized mode to the ULA mode. This fact indicates
that the obtained results remain valid for higher dimen-
sional systems. Moreover, based on the authors’ obser-
vations, a phenomenological reduced order modelling
is proposed to model the localization center and a few
adjacent neighbors. This simplified model was found
to be sufficient to understand the system behavior in
this study. In a similar spirit, no essential differences
have been observed when the Gaussian white noise is
replaced by more realistic noise models such as pink
noise. This finding suggests that discoveries based on
non-physical Gaussian white noise indeed have a rele-
vance for system behavior with realistic noise models.

The authors’ studies with softening coupling spring
stiffness remains a first step towards an largely unex-
plored area. In the same vein, the cases with non-

Fig. 16 Histogram of the escape times of the oscillator array
(kc = 0.04) excited by white noise and pink noise (sample size
= 100)

Gaussian noise should be considered as an initial foray
into non-Gaussian noise influenced dynamics. Both
aspects call formore fundamental and systematic future
work. Furthermore, it is desirable to put the reduced
order modelling proposed in Fig. 14 on a firmer footing
by carrying out an extensive numerical analysis and/or
an analytical treatment.

Currently, the authors are alsoworking on construct-
ing a physical circular array to carry out experiments
and enrich the numerical studies with empirical obser-
vations. Such experiments can also shed light into the
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question whether findings based on Gaussian white
noise are of relevance to practical systems. Further-
more, such experiments follow as extensions of ear-
lier experimental investigations on localized modes in
deterministic systems [9,31,32] towards the stochastic,
and hence, a more realistic setting.

Although, themethods and observations in thiswork
have been provided in the context of circular oscilla-
tor arrays, it is believed that this work is also relevant
to arrays of oscillators arranged in-line configuration.
A fundamental assessment of the impact of different
boundary conditions remains a future research topic.
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