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Abstract We discuss an integral equation approach
that enables fast computation of the response of non-
linear multi-degree-of-freedom mechanical systems
under periodic and quasi-periodic external excitation.
The kernel of this integral equation is a Green’s func-
tion that we compute explicitly for general mechan-
ical systems. We derive conditions under which the
integral equation can be solved by a simple and fast
Picard iteration even for non-smooth mechanical sys-
tems. The convergence of this iteration cannot be guar-
anteed for near-resonant forcing, for which we employ
a Newton– Raphson iteration instead, obtaining robust
convergence. We further show that this integral equa-
tion approach can be appended with standard continu-
ation schemes to achieve an additional, significant per-
formance increase over common approaches to com-
puting steady-state response.
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1 Introduction

Multi-degree-of-freedom nonlinear mechanical sys-
tems generally approach a steady-state response under
periodic or quasi-periodic forcing. Determining this
response is often the most important objective in ana-
lyzing nonlinear vibrations in engineering practice.

Despite the broad availability of effective numeri-
cal packages and powerful computers, identifying the
steady-state response simply by numerically integrat-
ing the equations ofmotion is often a poor choice. First,
modern engineering structures tend to be very lightly
damped, resulting in exceedingly long integration times
before the steady state is reached. Second, structural
vibrations problems to be analyzed are often available
as finite-element models for which repeated evalua-
tions of the defining functions are costly. These eval-
uations are inherently not parallelizable, thus increas-
ing the number of processors used in the simulation
results in increased cross-communication times that
slowdown already slowly converging runs even further.
As a result, even with today’s advances in computing,
it may take days to reach a good approximation to a
steady-state response in complex structural vibration
problems (cf. Avery et al. [1]).

To achieve feasible computation times for steady-
state response in high-dimensional systems, reduced-
order models (ROM) are often used to obtain a low-
dimensional variant of the mechanical system. Var-
ious nonlinear normal modes (NNM) concepts have
been used to describe such small-amplitude, nonlin-
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ear oscillations. Among these, the classic NNM defini-
tion of Rosenberg [2] targets periodic orbits in a two-
dimensional subcenter-manifold [3] in the undamped
limit of the oscillatory system. By contrast, Shaw and
Pierre [4] define NNMs as the invariant manifolds
tangent to modal subspaces at an equilibrium point
(cf. Avramov and Mikhlin [5] for a review) allowing
application to dissipative systems. Haller and Ponsioen
[6] distinguish these two notions for dissipative sys-
tems under possible periodic/quasi-periodic forcing, by
defining an NNM as a near-equilibrium trajectory with
finitely many frequencies, and introducing a spectral
submanifold (SSM) as the smoothest invariant man-
ifold tangent to a spectral subbundle along such an
NNM.

Alternatively, ROMs obtained using heuristic
projection-based techniques are also used to approx-
imate steady-state response of high-dimensional sys-
tems. These include sub-structuring methods such
as the Craig–Bampton method [7] (cf. Theodosiou
et al. [8]), proper orthogonal decomposition [9] (cf.
Kerchen et al. [10]), reduction using natural modes
(cf. Amabili [11], Touzé et al. [12]) and the modal-
derivative method of Idelsohn and Cardona [13] (cf.
Sombroek et al. [14], Jain et al. [15]). A common
feature of these methods is their local nature: they
seek to approximate nonlinear steady-state response in
the vicinity of an equilibrium. Thus, high-amplitude
oscillations are generally missed by these approaches.
The methods reviewed here are fundamentally heuris-
tic as the relationship between the full system and
its simplified approximation is generally unknown
and has to be tested in each application. Though we
focus on finite-dimensional dynamical systems in this
work, the same limitations are shared by many trunca-
tion/approximation methods when applied to infinite-
dimensional systems as well (cf. Malookani and van
Horssen [16] for the case ofGalerkin truncation applied
to string vibrations).

On the analytic side, perturbation techniques relying
on a small parameter have been widely used to approx-
imate the steady-state response of nonlinear systems.
Nayfeh et al. [17,18] give a formal multiple-scales
expansion applied to a system with small damping,
small nonlinearities and small forcing. Their results
are detailed amplitude equations to be worked out on
a case-by-case basis. Mitropolskii and Van Dao [19]
apply the method of averaging (cf. Bogoliubov and
Mitropolsky [20] or, more recently, Sanders and Ver-

hulst [21]) after a transformation to amplitude-phase
coordinates in the case of small damping, nonlineari-
ties and forcing. They consider single as well as multi-
harmonic forcing of multi-degree of freedom systems
and obtain the solution in terms of a multi-frequency
Fourier expansion. Their formulas become involved
even for a single oscillator, and thus, condensed formu-
las or algorithms are unavailable for general systems.
As conceded by Mitroposkii and Van Dao [19], the
series expansion is formal, as no attention is given to
the actual existence of a periodic response. Existence
is indeed a subtle question in this context, since the
envisioned periodic orbits would perturb from a non-
hyperbolic fixed point.

Vakakis [22] relaxes the small nonlinearity assump-
tion and describes a perturbation approach for obtain-
ing the periodic response of a single-degree-of-freedom
Duffing oscillator subject to small forcing and small
damping. A formal series expansion is performed
around a conservative limit, where periodic solutions
are explicitly known (elliptic Duffing oscillator). This
approach only works for perturbations of integrable
nonlinear systems.

Formally applicable without any small parameter
assumption is the harmonic balance method. Intro-
duced first by Kryloff and Bogoliuboff [23] for single-
harmonic approximation of the forced response, the
method has been gradually extended to include higher
harmonics and quasi-periodic orbits (cf. Chua and
Ushida [24] and Lau andCheung [25]). In the harmonic
balance procedure, the assumed steady-state solution
is expanded in a Fourier series which, upon substi-
tution, turns the original differential equations into a
set of nonlinear algebraic equations for the unknown
Fourier coefficients after truncation to finitely many
harmonics. The error arising from this truncation, how-
ever, is not well understood. For the periodic case,
Leipholz [26] and Bobylev et al. [27] show that the
solution of the harmonic balance converges to the actual
solution of the system if the periodic orbit exists and
the number of harmonics considered tends to infin-
ity. Explicit error bounds are only available as func-
tions of the (a priori unknown) periodic orbit (cf.
Bobylev et al. [27], Urabe [28], Stokes [29] andGarcía-
Saldaña andGasull [30]). Thequantities involved, how-
ever, generally require numerical integration to obtain.
For quasi-periodic forcing, such error bounds remain
unknown to the best of our knowledge.
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The shooting method (cf. Keller [31], Peeters et al.
[32] and Sracic and Allen [33]) is also broadly used
to compute periodic orbits of nonlinear system. In this
procedure, the periodicity of the sought orbit is used
to formulate a two-point boundary value problem. The
solutions are initial conditions on the periodic orbit.
Starting from an initial guess, one corrects the initial
conditions iteratively until the boundary value prob-
lem is solved up to a required precision. The iterated
correction of the initial conditions, however, requires
repeated numerical integration of the equation of varia-
tions along the current estimate of the periodic orbit, as
well as numerical integration of the full system. Albeit
the shooting method has moderate memory require-
ments relative to that of harmonic balance due to its
smaller Jacobian, this advantage is useful only for very
high-dimensional systems with memory constraints. In
practice, shooting is limited by the capabilities of the
time integrator used and can be unsuitable for solutions
with large Floquet multipliers, as observed by Seydel
[34]. Furthermore, the shooting method is only appli-
cable to periodic steady-state solutions, not to quasi-
periodic ones.

The shooting method uses a time-march-type inte-
gration, i.e., the solution at each time step is solved
sequentially after the previous one. In contrast, collo-
cation approaches solve for the solution at all time steps
in the orbit simultaneously. Collocation schemes miti-
gate all the drawbacks of the shooting method but can
be computationally expensive for large systems since
all unknowns need to be solved together over the full
orbit. Popular software packages, such as AUTO [35],
MATCONT [36] and the po toolbox of coco [37], also
use collocation schemes to continue periodic solutions
of dynamical systems. Renson et al. [38] provide a thor-
ough review of the commonly used methods for com-
putation of periodic orbits in multi-degree-of-freedom
mechanical systems.

Constructing particular solutions using integral
equations is textbook material in physics or vibration
courses for impulsive forcing the (system is at rest at
the initial time, prior to which the forcing is zero).
Solving this problem with a classic Duhamel integral
will produce a particular solution that approaches the
steady-state response asymptotically. This approach,
therefore, suffers from the slow convergence we have
already discussed for direct numerical integration.

In this paper, assuming either periodicity or quasi-
periodicity for the external forcing, we derive an

integral equation whose zeros are the steady-state
responses of the mechanical system. Along with a
phase condition to ensure uniqueness, the same integral
equation can also be used to obtain the (quasi-) peri-
odic response in conservative, autonomous mechanical
systems.

While certain elements of the integral equations
approach outlined here for periodic forcing have been
already discussed outside the structural vibrations liter-
ature, our treatment of quasi-periodic forcing appears
to be completely new. We do not set any concep-
tual bounds on the number of independent frequen-
cies allowed in such a forcing, which enables one to
apply the results to more complex excitations mimick-
ing stochastic forcing.

First, we derive a Picard iteration approach with
explicit convergence criteria to solve the integral
equations for the steady-state response iteratively
(Sect. 3.1). This fast iteration approach is particularly
appealing for high-dimensional systems, since it does
not require the construction and inversion of Jacobian
matrices, and for non-smooth systems, as is does not
rely on derivatives. At the same time, this Picard itera-
tion will not converge near external resonances. Apply-
ing a Newton–Raphson scheme to the integral equa-
tion, however, we can achieve convergence of the iter-
ation even for near-resonant forcing (Sect. 3.2). We
additionally employ numerical continuation schemes
to obtain forced response and backbone curves of
nonlinear mechanical systems (Sect. J.1). Finally, we
illustrate the performance gain from our newly pro-
posed approach on several multi-degree-of-freedom
mechanical examples (Sect. 4), using a MATLAB®-
based implementation.1

2 Setup

We consider a general nonlinear mechanical system of
the form

Mẍ + Cẋ + Kx + S(x, ẋ) = f(t), (1)

where x(t) ∈ R
n is the vector of generalized dis-

placements; M,C,K ∈ R
n×n are the symmetric

mass, stiffness and damping matrices; S is a non-
linear, Lipschitz continuous function such that S =
1 Available at https://www.georgehaller.com.
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O (|x|2 , |x| |ẋ| , |ẋ|2); f is a time-dependent, multi-
frequency external forcing. Specifically, we assume
that f(t) is quasi-periodic with a rationally incommen-
surate frequency basis � ∈ R

k, k ≥ 1 which means

f(t) = f̃(�t), 〈κ,�〉 �= 0, κ ∈ Z
k − {0}, (2)

for some continuous function f̃ : Tk → R
n , defined

on a k−dimensional torus T
k . For k = 1, f is peri-

odic in t with period T = 2π/�, while for k > 1, f
describes a strictly quasi-periodic forcing. System (1)
can be equivalently expressed in the first-order form as

Bż = Az − R(z) + F(t) , (3)

with

z =
[
ẋ
x

]
, B =

[
0 M
M C

]
, A =

[
M 0
0 −K

]
,

R(z) =
[

0
S(x, ẋ)

]
, F(t) =

[
0

f(t)

]
.

The first-order form in (3) ensures that the coeffi-
cient matrices A and B are symmetric, if the matri-
ces M,C and K are symmetric, as is usually the case
in structural dynamics applications (cf. Gérardin and
Rixen [39]). We assume that the coefficient matrix of
the linear system

Bż = Az + F(t) (4)

can be diagonalized using the eigenvectors of the gen-
eralized eigenvalue problem

(
A − λ jB

)
v j = 0, j = 1, . . . , 2n, (5)

via the linear transformation z = Vw, where w ∈ C
2n

represents the modal variables and V = [v1, . . . ,
v2n] ∈ C

2n×2n is themodal transformationmatrix con-
taining the eigenvectors. The diagonalized linear ver-
sion of (4) with forcing is given by

ẇ = �w + ψ(t), (6)

where � = diag (λ1, . . . , λ2n), ψ j (t) = ṽ jF(t)
ṽ jBv j

, where

ṽ j denotes the j th row of thematrixV−1. Furthermore,
if thematricesA andB are symmetric, thenV−1 = V�.

Remark 1 We have assumed autonomous nonlineari-
ties S,R in Eqs. (1) and (3) since this is relevant for

structural dynamics systems, but the following treat-
ment also allows for time dependence in S orR. Specif-
ically, all the following results hold for nonlineari-
ties with explicit time dependence as long as the time
dependence is quasi-periodic (cf. Eq. (2))with the same
frequency basis � as that of the external forcing f(t).

2.1 Periodically forced system

We first review a classic result for periodic solutions in
periodically forced linear systems (cf. Burd [40]).

Lemma 1 If the forcing F(t) is T -periodic, i.e., F(t +
T ) = F(t), t ∈ R, and the non-resonance conditions

λ j �= i
2π

T
�, � ∈ Z, (7)

are satisfied for all eigenvalues λ1, . . . , λ2n defined in
(5), then there exists a unique T -periodic response to
(4), given by

z(t) = V
∫ T

0
G(t − s, T )V−1F(s) ds, (8)

where G(t, T ) is the diagonal matrix of periodic
Green’s functions for the modal displacement vari-
ables, defined as

G(t, T ) = diag (G1(t, T ), . . . ,G2n(t, T )) ∈ C
2n×2n,

G j (t, T ) = eλ j t
(

eλ j T

1 − eλ j T
+ h(t)

)
, j = 1, . . . , 2n,

(9)

with the Heaviside function h(t) given by

h(t) :=
{
1 t ≥ 0

0 t < 0
.

Proof We reproduce the proof for completeness in
“Appendix A”. 	

Remark 2 Theuniform-in-time supnormof theGreen’s
function (9) can be bounded by the constant Γ (T )

defined as

Γ (T ) := max
1≤ j≤n

T max(
∣∣eλ j T

∣∣ , 1)
∣∣1 − eλ j T

∣∣

≥ max
0≤t<T

∥∥∥∥

∫ T

0
‖G(t − s, T )‖0 ds

∥∥∥∥
0
. (10)

We detail this estimate in “Appendix F”.
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The Green’s functions defined in (9) turn out to play
a key role in describing periodic solutions of the full,
nonlinear system aswell.We recall this in the following
result (see eg. Bobylev et al. [27]).

Theorem 1 (i) If z(t) is a T−periodic solution of the
nonlinear system (3), then z(t)must satisfy the integral
equation

z(t) = V
∫ T

0
G(t − s, T )V−1 [F(s) − R(z(s))] ds.

(11)

(ii)Furthermore, any continuous, T−periodic solution
z(t) of (11) is a T−periodic solution of the nonlinear
system (3).

Proof We reproduce the proof for completeness in
“AppendixB”.The termV−1 [F(t) − R(z(t))] is treated
as a periodic forcing term in (6) for a T -periodic z(t)
and Lemma 1 is used to prove (i). Statement (ii) is then
a direct consequence of the Leibniz rule. 	


2.2 Quasi-periodically forced systems

The above classic results on periodic steady-state solu-
tions extend to quasi-periodic steady-state solutions
under quasi-periodic forcing. This observation does not
appear to be available in the literature, which prompts
us to provide full detail.

Let the forcing F(t) be quasi-periodic with fre-
quency basis � ∈ R

k(k > 1), i.e.,

F(t) =
∑

κ∈Zk

Fκe
i〈κ,�〉t , (12)

where each member of this k-parameter summation
represents a time-periodic forcing with frequency
〈κ,�〉, i.e., forcing with period

Tκ = 2π

〈κ,�〉 .
Here, T0 = ∞ formally corresponds to the period of
the mean F0 of F(t).

Lemma 2 If the forcing is quasi-periodic, as given by
(12), then under the non-resonance conditions

λ j �= i
2π

Tκ
�, � ∈ Z, j ∈ {1, . . . , 2n}, κ ∈ Z

k ,

(13)

there exists a unique quasi-periodic steady-state
response to (4) with the same frequency basis �. This
steady-state response is given by

z(t) = V
∑

κ∈Zk

∫ Tκ

0
G(t − s, Tκ )V−1F(s) ds. (14)

Furthermore, z(t) is quasi-periodicwithFourier expan-
sion

z(t) = V
∑

κ∈Zk

H(Tκ )V−1Fκe
i〈κ,�〉t , (15)

whereH(Tκ ) is the diagonalmatrix of the amplification
factors, defined as

H(Tκ ) = diag (H1(Tκ ), . . . , H2n(Tκ )) ∈ C
2n×2n,

Hj (t, T ) = 1

i 〈κ,�〉 − λ j
, j = 1, . . . , 2n . (16)

Proof The proof is a consequence of the linearity of
(4) along with Lemma 1, followed by the explicit eval-
uation of the integrals in (14). We give the details in
“Appendix C”. 	

Remark 3 The maximum of Hj (Tκ ) can be bounded
by the constant hmax, defined as

max
1≤ j≤2n
κ∈Zk

∣
∣Hj (Tκ )

∣
∣

= max
1≤ j≤2n
κ∈Zk

∣∣∣∣
1

i 〈κ,�〉 − λ j

∣∣∣∣

= max
1≤ j≤2n
κ∈Zk

1

(〈κ,�〉 − Im(λ j ))2 + Re(λ j )2

≤ max
1≤ j≤2n

1

Re(λ j )2
= 1

min1≤ j≤2n Re(λ j )2
=: hmax.

(17)

We note that the constant, hmax, increases as the real
part of the minimal eigenvalue tends to zero (i.e., with
decreasing damping values)

In analogy with Theorem 1, we present here an inte-
gral formulation for steady-state solutions of the non-
linear system (3) under quasi-periodic forcing.

Theorem 2 (i) If z(t) is a quasi-periodic solution of
the nonlinear system (3) with frequency basis �, then
the nonlinear function R(z(t)) is also quasi-periodic
with the same frequency basis � and z(t) must satisfy
the integral equation:
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z(t) = V
∑

κ∈Zk

∫ Tκ

0
G(t − s, Tκ )V−1

× [F(s) − R(z(s))] ds . (18)

(ii) Furthermore, any continuous, quasi-periodic
solution z(t) of (18), with frequency basis�, is a quasi-
periodic solution of the nonlinear system (3).

Proof The proof is analogous to that for the periodic
case (cf. Theorem 1). Again, the term F(t) − R(z(t))
is treated as a quasi-periodic forcing term. 	

Remark 4 With the Fourier expansion z(t) =∑

κ∈Zk zκei〈κ,�〉t , Eq. (18) can be equivalently written
as

zκ = VH(Tκ )V−1 [Fκ − Rκ {z}] , κ ∈ Z
k , (19)

where Rκ {z} are the Fourier coefficients of the quasi-
periodic function R(z(t)), defined as

Rκ {z} := lim
t→∞

1

2t

t∫

−t

R(z(t))e−i〈κ,�〉tdt. (20)

If we express the quasi-periodic solution using toroidal
coordinates θ ∈ T

k such that z(t) = u(�t), where
u : Tk �→ R

2n is the torus function, thenwecan express
the Fourier coefficients as

Rκ {u} := 1

(2π)k

∫

Tk
R(u(θ))e−i〈κ,θ〉tdθ . (21)

This helps to avoid the infinite limit in the inte-
gral (20) that can pose numerical difficulties (cf.
Schilder et al. [41], Mondelo González [42]. To this
end, we have used the torus coordinates for the formu-
lation of quasi-periodic oscillations in our supplemen-
tary MATLAB® code.

The present integral equation formulation (11), (18)
assumes the knowledge of the eigenvectors and eigen-
values of the linearized system. These are usually com-
puted numerically and may pose a computational chal-
lenge for very high-dimensional systems. Nonetheless,
this computation needs to be performed only once for
the full system (and not repeatedly for each forcing
frequency). For this reason, it is expected that diag-
onalizing the system at the linear level forms only a
fraction of the total computational cost for the forced

response and backbone curves. The special case of pro-
portional damping and purely position-dependent non-
linearities further alleviates these computational chal-
lenges by reducing the dimensionality to half, as we
discuss in the following section.

2.3 Special case: structural damping and purely
geometric nonlinearities

The results in Sects. 2.1 and 2.2 apply to general
first-order systems of the form (3). The special case
of second-order mechanical systems with proportional
damping and purely geometric nonlinearities, how-
ever, is of significant interest to structural dynamicists
(cf. Gérardin and Rixen [39]). These general results
can be simplified for such systems, resulting in integral
equations with half the dimensionality of Eqs. (11) and
(18), as we discuss in this section.

We assume that the damping matrix C satisfies the
proportional damping hypothesis, i.e., can be expressed
as a linear combination of M and K. We also assume
that the nonlinearities depend on the positions only, i.e.,
we can simply write S(x). The equations of motion are,
therefore, given by

Mẍ + Cẋ + Kx + S(x) = f(t). (22)

Then, the real eigenvectors u j of the undamped eigen-
value problem satisfy

(
K − ω2

0, jM
)
u j = 0 ( j = 1, 2, . . . , n) , (23)

where ω0, j is the eigenfrequency of the undamped
vibration mode u j ∈ R

n . These eigenvectors (or
modes) can be used to diagonalize the linear part of (22)
using the linear transformation x = Uy, where y ∈ R

n

represents themodal variables andU = [u1, . . . ,un] ∈
R
n×n is themodal transformationmatrix containing the

vibration modes. Thus, the decoupled system of equa-
tions for the linear system,

Mẍ + Cẋ + Kx = f(t), (24)

is given by

U�MUÿ + U�CUẏ + U�KUy = U�f(t). (25)
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Specifically, the j th mode (y j ) of equation (25) is cus-
tomarily expressed in the vibrations literature as

ÿ j + 2ζ jω0, j ẏ j + ω2
0, j y j = ϕ j (t), j = 1, . . . , n,

(26)

where ω0, j =
√

u�
j Ku j

u�
j Mu j

are the undamped natural fre-

quencies; ζ j = 1
2ω0, j

(
u�
j Cu j

u�
j Mu j

)
are the modal damping

coefficients; and ϕ j (t) =
(

u�
j F(t)

u�
j Mu j

)
are the modal par-

ticipation factors. The eigenvalues for the correspond-
ing full system in phase space can be arranged as fol-
lows

λ2 j−1,2 j =
(
−ζ j ±

√
ζ 2
j − 1

)
ω0, j , j = 1, . . . , n.

(27)

With the constants

α j := Re(λ2 j ), ω j := |Im(λ2 j )|, β j := α j + ω j ,

γ j := α j − ω j, j = 1, . . . , n, (28)

we can restate Lemma 1 specifically for linear systems
with proportional damping as follows.

Lemma 3 For T -periodic forcing f(t), i.e., f(t+T ) =
f(t), t ∈ R, T > 0 and under the non-resonance con-
ditions (7), there exists a unique T-periodic response
for system (24), given by

x(t) = U
∫ T

0
L(t − s, T )U�f(s) ds, (29)

where L(t, T ) is the diagonal Green’s function matrix
for the modal displacement variables defined as

L(t, T ) = diag (L1(t, T ), . . . , Ln(t, T )) ∈ R
n×n,

L j (t, T )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

eα j t

ω j

[
eα j T

[
sinω j (T+t)−eα j T sinω j t

]

1+e2α j T −2eα j T cosω j T
+ h(t) sinω j t

]

, ζ j < 1

eα j (T+t)
[(

1−eα j T
)
t+T

]

(
1−eα j T

)2 + h(t)teα j t , ζ j = 1

1
(β j−γ j )

[
eβ j (T+t)

1−eβ j T
− eγ j (T+t)

1−eγ j T
+ h(t)

(
eβ j t − eγ j t

)]
, ζ j > 1

,

j = 1, . . . , n (30)

and ϕ(s) = [ϕ1(s), . . . , ϕn(s)]� is the forcing vector
in modal coordinates.

Proof See “Appendix D”. 	

The periodic Green’s function L j (t, T ) for a single-

degree-of-freedom, underdamped harmonic oscillator
has already been derived in the controls literature (see,
e.g., Kovaleva [43], p. 19., formula (1.40), or Babit-
sky [44] p. 90). They also note a simplification when
the periodic forcing function has an odd symmetry
with respect to half the period (e.g., sinusoidal forc-
ing), in which case the integral can be taken over just
half the period with another Green’s function. Koval-
eva [43] also lists the Green function without damping
for the case of a multi-degree-of-freedom system with-
out damping, in transfer-functionnotation. In summary,
formula (30) does not seem to appear in the vibrations
literature, but earlier controls literature has simpler
forms of it (single-degree-of-freedommodal formwith
damping, or multi-dimensional form without damping
in modal coordinates), albeit for the underdamped case
only.

Kovaleva [43] also observes for undamped multi-
degree-of-freedom systems that an integral equation
with this Green’s function can be written out for non-
linear systems, and then refers to Rosenwasser [45] for
existence conditions and approximate solution meth-
ods. Chapter 4.2 of Babitsky and Krupenin [46] also
discusses this material in the context of the response of
linear discontinuous systems, citing Rosenwasser [45]
for a similar formulation. We formalize and generalize
these discussions as a theorem here:

Theorem 3 (i) If x(t) is a T-periodic solution of the
nonlinear system (22), then x(t) must satisfy the inte-
gral equation

x(t) = U
∫ T

0
L(t − s, T )U� [f(s) − S(x(s))] ds ,

(31)

with L defined in (30).
(ii) Furthermore, any continuous, T-periodic solu-

tion of x(t) of (31) is a T-periodic solution of the non-
linear system (22).

Proof This result is just a special case of Theorem 1,
with the specific form of the Green’s function listed in
(30). 	

Remark 5 Once a solution to (31) is obtained for the
position variables x (cf. Sect. 3 for solution methods),
the corresponding velocity ẋ can be recovered as

123



320 S. Jain et al.

ẋ(t) = U
∫ T

0
J(t − s, T )U� [f(s) − S(x(s))] ds,

where J(t − s, T ) = diag (J1(t − s, T ), . . . ,

Jn(t − s, T )) ∈ R
n×n is the diagonal Green’s matrix

whose diagonal elements are given by

J j (t, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eα j t

ω j

[
eα j T

[
ω j

(
cosω j (T+t)−eα j T cosω j t

)
+α j

(
sinω j (T+t)−eα j T sinω j t

)]

1+e2α j T −2eα j T cosω j T
+

h(t)
(
ω j cosω j t + α j sinω j t,

)]
ζ j < 1

eα j (T+t)
[(

1−eα j T
)
(1+α j t)+α j T

]

(
1−eα j T

)2 + h(t)
(
eα j t + α j teα j t ,

)
ζ j = 1

1
(β j−γ j )

[
β j e

β j (T+t)

1−eβ j T
− γ j e

γ j (T+t)

1−eγ j T
+ h(t)

(
β j eβ j t − γ j eγ j t

)]
, ζ j > 1

, (32)

as shown in “Appendix D”.

Finally, the following result extends the integral
equation formulation of Theorem 3 to quasi-periodic
forcing.

Theorem 4 (i) If x(t) is a quasi-periodic solution of
the nonlinear system (22) with frequency basis �, and
the nonlinear function S(x(t)) is also quasi-periodic
with the same frequency basis�, then x(t)must satisfy
the integral equation:

x(t) = U
∑

κ∈Zk

∫ Tκ

0
L(t − s, Tκ )U�[f(s) − S(x(s))] ds

(33)

(ii) Furthermore, any continuous quasi-periodic solu-
tion x(t) to (33), with frequency basis �, is a quasi-
periodic solution of the nonlinear system (1).

Proof This theorem is just a special case of Theorem 2.
	


In analogy with Remark 4, we make the follow-
ing remark for geometric nonlinearities and structural
damping.

Remark 6 With the Fourier expansion x(t) =∑
κ∈Zk xκei〈κ,�〉t , Eq. (33) can be equivalently writ-

ten as the system

xκ = UQ(Tκ )U� [fκ − Sκ {x}] , κ ∈ Z
k , (34)

where

Q(Tκ ) = diag (Q1(Tκ ), . . . , Qn(Tκ )) ∈ C
n×n,

is the diagonal matrix of the amplification factors,
which are explicitly given by

Q j (Tκ )

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
(i〈κ,�〉−α j )

2+ω2
j
, ζ j <1

1
(i〈κ,�〉−α j )

2 , ζ j =1, j =1, . . . , n,

1
(β j−i〈κ,�〉)(γ j−i〈κ,�〉) , ζ j > 1,

(35)

as derived in “Appendix I”.

Remark 7 The non-resonance conditions (7) and (13)
are generically satisfied by dissipative systems as
described in this section since none of the eigenvalues
(27) are purely imaginary.

2.4 The unforced conservative case

In contrast to dissipative systems, which have isolated
(quasi-) periodic solutions in response to (quasi-) peri-
odic forcing, unforced conservative systemswill gener-
ally exhibit families of periodic or quasi-periodic orbits
(cf. Kelley [47] or Arnold [48]). The calculation of
(quasi-) periodic orbits in an autonomous system such
as

Bż = Az + R(z) , (36)

is different from that in the forced case mainly due to
two reasons:

1. The frequencies of such (quasi-) periodic oscilla-
tions are intrinsic to the system. This means that
the time period T , or the base frequency vector �,
of the response is a priori unknown.
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2. Any given (quasi-) periodic solution z(t) to the
autonomous system (36) is a part of a family of
(quasi-) periodic solutions, with an arbitrary phase
shift θ ∈ R.

Nonetheless, Theorems 1–4 still hold for system (36)
with the external forcing function set to zero. Special
care needs to be taken, however, in the numerical imple-
mentation of these results for unforcedmechanical sys-
tems, as we shall discuss in “Appendix J.1.1”.

3 Iterative solution of the integral equations

We would like to solve integral equations of the form
(cf. Theorems 1 and 3)

z(t) =
∫ T

0
VG(t − s, T )V−1 [F(s)

−R(z(s))] ds, t ∈ [0, T ] (37)

to obtain periodic solutions, or integral equations of the
form (cf. Theorem 2 and 4)

z(t) = V
∑

κ∈Zk

H(Tκ)V−1 (Fκ − Rκ {z}) ei〈κ,�〉t (38)

to obtain quasi-periodic solutions of system (3). In the
following, we propose iterative methods to solve these
equations. First, we discuss a Picard iteration and then
subsequently a Newton–Raphson scheme.

3.1 Picard iteration

Picard [49] proposed an iteration scheme to show local
existence of solutions to ordinary differential equa-
tions, which is also used as practical iteration scheme to
approximate the solutions to boundary value problems
in numerical analysis (cf. Bailey et al. [50]). We derive
explicit conditions on the convergence of the Picard
iteration when applied to Eqs. (37), (38).

3.1.1 Periodic response

We define the right-hand side of the integral equation
(11) as the mapping GP acting on the phase space vec-
tor z, i.e.,

z(t) = GP (z) (t) :=
∫ T

0
VG(t − s, T )V−1

× [F(s) − R(z(s))] ds, t ∈ [0, T ]. (39)

Clearly, a fixed point of the mapping GP in (39) cor-
responds to a periodic steady-state response of system
(1) by Theorem 1. Starting with an initial guess z0(t)
for the periodic orbit, the Picard iteration applied to the
mapping (37) is given by

z�+1 = GP (z�) , � ∈ N. (40)

To derive a convergence criterion for the Picard itera-
tion, we define the sup norm ‖·‖0 = maxt∈[0,T ] |·| and
consider a δ−ball of C0-continuous and T -periodic
functions centered at z0:

Cz0
δ [0, T ] :=

{
z : [0, T ] → R

2n | z ∈ C0[0, T ],
z(0) = z(T ), ‖z − z0‖0 ≤ δ

}
. (41)

We further define the first iterate under the map GP as

E(t) = GP (z0)(t) =
∫ T

0
VG(t − s, T )V−1

× [F(s) − R(z0(s))] ds, t ∈ [0, T ], (42)

and denote with Lz0
δ a uniform-in-time Lipschitz con-

stant for the nonlinearity R(z) with respect to its argu-
ment z within Cz0

δ [0, T ]. With that notation, we obtain
the following theorem for the convergence of a Picard
iteration performed on (37)

Theorem 5 If the conditions

Lz0
δ <

1

a ‖V‖ ∥∥V−1
∥
∥Γ (T )

, (43)

δ ≥ ‖E‖0
1 − ‖V‖ ∥∥V−1

∥∥ Lz0
δ Γ (T )

, (44)

hold for some real number a ≥ 1, then the mapping
GP defined in Eq. (37) has a unique fixed point in the
space (41) and this fixed point can be found via the
successive approximation

z�+1(t) = GP (z�) (t) =
∫ T

0
VG(t − s, T )V−1

× [F(s) − R(z�(s))] ds, � ∈ N (45)

Proof The proof relies on the Banach fixed point theo-
rem.We establish that the mapping (37) is well defined
on the space (41). Subsequently, we prove that under
conditions (43), (44), themapping (37) is a contraction.
We detail all this in “Appendix G”. 	
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Remark 8 If the nonlinearity R(z) is not only Lips-
chitz but also of class C1 with respect to z, then condi-
tion (43) can be more specifically written as

max
1≤ j≤n

max|z−z0|≤δ

∣
∣DR j (z)

∣
∣ <

1

aΓ (T ) ‖V‖ ∥∥V−1
∥∥ .

(46)

Remark 9 In case of geometric (purely position depen-
dent) nonlinearities and proportional damping (cf. Sect.
2.3), we can avoid iterating in the 2n−dimensional
phase space by defining the iteration as

x�+1(t) = LP (x�) (t) :=
∫ T

0
UL(t − s, T )U�

× [f(s) − S(x)] ds, t ∈ [0, T ]. (47)

The existence of the steady-state solution and the con-
vergence of the iteration (47) can be proven analo-
gously.

Babistky [44] derives via transfer functions an itera-
tion similar to (45) but without an explicit convergence
proof. He asserts that the iteration is sensitive to the
choice of the initial conditions z0. We can directly con-
firm this by examining condition (44). Indeed, the norm
of the initial error ‖E‖0 is small for a good initial guess.
Therefore, the δ-ball in which the condition (43) on the
Lipschitz constant needs to be satisfied can be selected
small.

When no a priori information about the expected
steady-state response is available,we can select z0(t) ≡
0. Then, the termE(0, t) is equal to the forced response
of the linear system [cf. Eq. (42)]. In this case, the Lip-
schitz constant needs to be calculated for a δ−ball cen-
tered at the origin.

The constant Γ (T ) [cf. Eq. (10)] affects the con-
vergence of the iteration (45). Larger damping (i.e.,
smaller eRe(λ j )T ), larger distance of the forcing fre-
quency 2π/T from the natural frequencies (i.e., larger
|1−eλ j T |), and higher forcing frequencies (i.e., smaller
T ) all make the right-hand side of (43) larger and
hence are beneficial to the convergence of the itera-
tion. Likewise, a good initial guess (i.e., smaller ‖E‖0)
and smaller nonlinearities (i.e., smaller

∣∣DSj (x)
∣∣ ) all

make the left-hand side of (43) smaller and hence are
similarly beneficial to the convergence of the iteration.
In the context of structural vibrations, higher frequen-
cies, smaller forcing amplitudes, and forcing frequen-
cies sufficiently separated from the natural frequencies

of the system are realistic and affect the convergence
positively. At the same time, low damping values in
such systems are also typical and affect the conver-
gence negatively.

An advantage of the Picard iteration approach we
have discussed is that it converges monotonically, and
hence, an upper estimate for the error after a finite num-
ber of iterations is readily available as the sup norm of
the difference of the last two iterations. This can be
exploited in numerical schemes to stop the iteration
once the required precision is achieved.

3.1.2 Quasi-periodic response

Wenow consider the existence of a quasi-periodic solu-
tion under a Picard iteration of Eq. (18), which has
apparently been completely absent in the literature. We
rewrite the right-hand side of the integral equation (18)
as the mapping

z(t) = GQ(z) (t) := V
∑

κ∈Zk

H(Tκ)V−1

× (Fκ − Rκ {z}) ei〈κ,�〉t , (48)

where we have made use of the Fourier expansion
defined in Remark 4.

We consider a space of quasi-periodic functionswith
the frequency base�. Similarly to the periodic case (cf.
Sect. 3.1.1), we restrict the iteration to a δ−ballCz0

δ (�)

centered at the initial guess z0 with radius δ, i.e.,

Cz0
δ (�) :=

{
z(θ) : T

k → R
2n | z ∈ C0,

‖z − z0‖0 ≤ δ
}

, (49)

where the sup norm ‖·‖0 = maxθ∈Tk |·| is the uniform
supremum norm over the torus Tk . We then have the
following theorem.

Theorem 6 If the conditions

Lz0
δ <

1

a ‖V‖ ∥∥V−1
∥∥ hmax

, (50)

δ ≥ ‖E‖0
1 − 2 ‖V‖ ∥∥V−1

∥∥ Lz0
δ hmax

, (51)

hold for some real number a ≥ 1, then the mapping
GQ defined in Eq. (48) has a unique fixed point in the
space (49) and this fixed point can be found via the
successive approximation

z�+1(t) = GQ(z�) (t), � ∈ N. (52)
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Proof The is analogous to the proof of Theorem 5. We
first establish that the mapping (48) is well defined in
the space (49). In “AppendixH”,we detail that themap-
ping (48) is a contraction under the conditions (50) and
(51).

Remark 10 In case of geometric (position-dependent)
nonlinearities andproportional damping,wecan reduce
the dimensionality of the iteration (52) by half, using
(34). This results in the following, equivalent Picard
iteration:

x�+1(t) = LQ(x�) (t) := U
∑

κ∈Zk

Q(Tκ )U�

× [fκ − Sκ {x�}] ei〈κ,�〉t , � ∈ N. (53)

The existence of the steady-state solution and the con-
vergence of the iteration (53) can be proven analo-
gously.

As in the periodic case, the convergence of the itera-
tion (52) depends on the quality of the initial guess and
the constant hmax [cf. Eq. (17)], which is the maximum
amplification factor. Low damping results in a higher
amplification factor [cf. Eq. (17)] and will therefore
affect the iteration negatively, which is similar to the
criterion derived in the periodic case.

3.1.3 Unforced conservative case

In the unforced conservative case, z(t) ≡ 0 is the trivial
fixed point of themapsGP andGQ . Thus, by Theorems
5 and 6, the Picard iteration with an initial guess in the
vicinity of the originwouldmake the iteration converge
to the trivial fixed point. In practice, the simple Picard
approach is found to be highly sensitive to the choice
of initial guess for obtaining non-trivial solution in the
case of unforced conservative systems. Thus, in such
cases, more advanced iterative schemes equipped with
continuation algorithms are desirable, such as the ones
we describe next.

3.2 Newton–Raphson iteration

So far, we have described a fast iteration process and
gave bounds on the expected convergence region of this
iteration. We concluded that if the iteration converges,
it leads to the unique (quasi-) periodic solution of the
system (1). As discussed previously (cf. Sect. 3.1), our

convergence criteria for the Picard iteration will not be
satisfied for near-resonant forcing and low damping.
However, even if the Picard iteration fails to converge,
one or more periodic orbits may still exist.

A common alternative to the contraction mapping
approach proposed above is the Newton–Raphson
scheme (cf., e.g., Kelley [51] ). An advantage of this
iteration is its quadratic convergence if the initial guess
is close enough to the actual solution of the problem.
This makes this procedure also appealing for a con-
tinuation setup. We first derive the Newton–Raphson
scheme to periodically forced systems and afterward
to quasi-periodically forced systems.

3.2.1 Periodic case

To set up a Newton–Raphson iteration, we reformulate
the fixed point problem (37) with the help of a func-
tional F P whose zeros need to be determined:

F P (z) := z − GP (z) = z −
∫ T

0
VG(t − s, T )V−1

× [F(s) − R(z(s))] ds = 0. (54)

Starting with an initial solution guess z0, we formulate
the iteration for the zero of the functional F P as

zl+1 = zl + μl ,

−F P (zl) = DF P (zl)μl , l ∈ N ,
(55)

where the second equation in (55) can be written using
the Gateaux derivative of F P of

−F P (zl) = DF P (zl)μl

= dF P (zl + sμl)

ds

∣
∣∣∣
s=0

= μl +
∫ T

0
VG(t − s, T )V−1 DR (z(s))|z=zl

μl(s)ds. (56)

Equation (56) is a linear integral equation in μl , where
zl is the known approximation to the solution of (54)
at the lth iteration step.

3.2.2 Quasi-periodic case

In the quasi-periodic case, the steady-state solution of
system (1) is given by the zeros of the functional
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FQ(z) := z − GQ(z) = z −
∑

κ∈Zk

VH(Tκ )V−1

× (Fκ − Rκ {zl}) ei〈κ,�〉t . (57)

Analogous to the periodic case, the Newton–Raphson
scheme seeks to find a zero of FQ via the iteration:

zl+1 = zl + νl ,

−FQ(zl) = DFQ(zl)νl .
(58)

To obtain the correction step νl , the linear system of
equations

−FQ(zl) = DFQ(zl)νl

= νl + V
∑

κ∈Zk

H(Tκ )V−1 (Fκ −{DR(zl)νl}κ ) ei〈κ,�〉t

(59)

needs to be solved for νl . The Fourier coefficients
{DR(zl)νl}κ in (59) are then given by the formula

{DR(zl(t))νl}κ
= lim

τ→∞
1

2τ

∫ τ

−τ

DR(z(t))νl(t)e−i〈κ,�〉tdt .

Remark 11 As noted in Introduction, the results in
Sects. 3.1.2 and 3.2.2 hold without any restriction on
the number of independent frequencies allowed in the
forcing function f(t). This enables us to compute the
steady-state response for arbitrarily complicated forc-
ing functions, as long as they are well approximated
by a finite Fourier expansion. Thus, the treatment of
random-like steady-state computations is possible with
the methods proposed here.

Discussion of the iteration techniques and numerical
solution

The Newton–Raphson iteration offers an alternative
to the Picard iteration, especially when the system is
forced near resonance, and hence, the convergence of
the Picard iteration cannot be guaranteed. At the same
time, the Newton–Raphson iteration is computation-
ally more expensive than the Picard iteration for two
reasons: First, the evaluation of the Gateaux deriva-
tives (56) and (59) can be expensive, especially if the
Jacobian of the nonlinearity is not directly available.
Second, the correction step μl or νl at each iteration

involves the inversion of the corresponding linear oper-
ator in Eq. (56) or (59), which is costly for large sys-
tems.

Regarding the first issue above, the tangent stiffness
is often available in finite-element codes for structural
vibration. Nonetheless, there are many quasi-Newton
schemes in the literature that circumvent this issue by
offering either a cost-effective but inaccurate approx-
imation of the Jacobian (e.g., the Broyden’s method
[52]), or avoid the calculation of the Jacobian alto-
gether (cf. Kelley [51]).

For the second challenge above, one can opt for
the iterative solution of the linear system (56) or (59),
which would circumvent operator inversion when the
system size is very large. A practical strategy for
obtaining force response curves of high-dimensional
systems would be to use the Picard iteration away
from resonant forcing and switch toward the Newton–
Raphson approachwhen the Picard iteration fails. Even
though the Newton–Raphson approach has better rate
of convergence (quadratic) as compared to the Picard
approach (linear), the computational complexity of a
single Picard iteration is an order of magnitude lower
than that of Newton–Raphson method (simply because
of the additional costs of Jacobian evaluation and inver-
sion involved in the correction step). In our experi-
ence with high-dimensional systems, when the Picard
iteration converges, it is significantly faster than the
Newton–Raphson in terms of CPU time, even though
it takes significantly more number of iterations to con-
verge.

Both the Picard and the Newton–Raphson iter-
ation are efficient solution techniques for specific
forcing functions. However, to obtain the steady-
state response as a function of forcing amplitudes
and frequencies, numerical continuation (cf. Dankow-
icz and Schilder [37], Doedel et al. [35], Dhooge et al.
[36]) is required. We discuss numerical continuation in
the context of the proposed integral equations approach
in “Appendix J.1”.

In the case of multiple coexisting equilibrium posi-
tions in the unforced-damped system, the persistence
of these solutions as k-dimensional tori under small
(quasi-) periodic forcing can be deduced by the gen-
eral results of Haro and de la Llave [53]. Depending
on the specific application, a selection of these solu-
tions can be numerically continued with the described
techniques. To explore bifurcation phenomena, such as
merging of such solutions, advanced continuation tech-
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niques, such as those of Dankowicz and Schilder [37],
Doedel et al. [35] and Dhooge et al. [36] are needed.

Furthermore, note that z(t) in Eqs. (37) and (38)
is a continuous function of time that cannot gener-
ally be obtained in a closed form and, therefore, must
be numerically approximated (cf. Kress [54], Zey-
man [55], Atkinson [56]). We discuss the numeri-
cal solution procedure for such integral equations in
“Appendix J”.

In the supplementary MATLAB® code, we have
implemented a simple yet powerful collocation-based
approach for the numerical approximation of the peri-
odic solution, and a Galerkin projection approach
using a Fourier basis for the quasi-periodic case. We
have also implemented the Picard and the Newton–
Raphson approaches for the iterative solution of the
integral equations, as discussed above. While perform-
ing numerical continuation, we make use of both these
techniques in the sense described above, i.e., we use the
fast Picard approach away from resonance and switch
to the use of the Newton–Raphson approach when the
Picard approach fails. In our experience, this combina-
tion was found to be very effective in obtaining forced
response curves/surfaces for periodic as well as quasi-
periodic cases.

4 Numerical examples

To illustrate the power of our integral-equation-based
approach in locating the steady-state response, we con-
sider two numerical examples. The first one is a two-
degree-of-freedom system with geometric nonlinear-
ity. We apply our algorithms under periodic and quasi-
periodic forcing, as well as to the autonomous sys-
tem with no external forcing. We also treat a case of
non-smooth nonlinearities. For periodic forcing, we
compare the computational cost with algorithm imple-
mented in the po toolbox of the state-of-the-art con-
tinuation software coco [37]. Subsequently, we per-
form similar computations for a higher-dimensional
mechanical system.

4.1 2-DOF example

We consider a two-degree-of-freedom oscillator shown
in Fig. 1. The nonlinearity S is confined to the first
spring anddepends on the displacement of thefirstmass
only. The equations of motion are

m
m

k

c

k, S

c

k

c

f1

q1 q2

Fig. 1 Two-mass oscillator with the non-dimensional parame-
ters m, k and c

[
m 0
0 m

]
q̈ +

[
2c −c
−c 2c

]
q̇ +

[
2k −k
−k 2k

]
q +

[
S(q1)
0

]

=
[
f1(t)
f2(t)

]
. (60)

This system is a generalization of the two-degree-
of-freedom oscillator studied by Szalai et al. [57],
which is a slight modification of the classic example
of Shaw and Pierre [4]. Since the damping matrix C is
proportional to the stiffness matrix K, we can employ
the Green’s function approach described in Sect. 2.3.
The eigenfrequencies and modal damping of the lin-
earized system at q1 = q2 = 0 are given by

ω0,1 =
√

k

m
, ω0,2 =

√
3k

m
, ζ1 = cm

2ω0,1
,

ζ2 = cm

2ω0,2
.

With those constants, we can calculate the constants α j

and ω j [cf. Eq. (28)] for the Green’s function L j in Eq.
(30). We will consider three different versions of sys-
tem (60): smooth nonlinearity with periodic and sub-
sequently quasi-periodic forcing; smooth nonlinear-
ity without forcing; discontinuous nonlinearity without
forcing.

4.1.1 Periodic forcing

First, we consider system (60) with harmonic forcing
of the form

f1 = f2(t) = A sin(Ωt), (61)

and a smooth nonlinearity of the form

S(q1) = 0.5q31 , (62)

which is the same nonlinearity considered by Szalai
et al. [57]. The integral-equation-based steady-state
response curves are shown in Fig. 2 for a full fre-
quency sweep and for different forcing amplitudes. As
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Fig. 2 Nonlinear frequency response curves obtained using
sequential continuation with the Picard iteration (blue) and
Newton–Raphson iteration (red) on example (60) with the non-
linearity (62) and forcing (61). (Color figure online)

expected, our Picard iteration scheme (blue) converges
fast for all frequencies in case of low forcing ampli-
tudes. For higher forcing amplitude, the method no
longer converges in a growing neighborhood of the res-
onance. To improve the results close to the resonance,
we employ the Newton–Raphson scheme of Sect. 3.2.
We see that the latter iteration captures the periodic
response even for larger amplitudes near resonances
until a fold arises in the response curve. We need more
sophisticated continuation algorithms to capture the
response around such folds.

Performance comparison between the integral equa-
tions and the po toolbox of cocoAs shown in Table 1,
the integral equation approach proposed in the present
paper is substantially faster than the po toolbox for
continuation of periodic orbits with the MATLAB®-
based continuation package coco [37] for low enough
amplitudes. However, as the frequency response starts
developing complicated folds for higher amplitudes
(cf. Fig. 3), a much higher number of continuation
steps are required for the convergence of our sim-
ple implementation of the pseudo-arc-length contin-
uation (cf. the third column in Table 1). Since coco
is capable of performing continuation on general prob-
lems with advanced algorithms, we have implemented
our integral equation approach in coco in order to
overcome this limitation. As shown in Table 1, the
integral equation approach, along with coco’s built-
in continuation scheme, is much more efficient for

Fig. 3 Steady-state responses obtained for Example 1 [with non-
linearity (62) and forcing (61)] from different continuation tech-
niques.Numerical continuation usingcoco or pseudo-arc-length
technique is able to capture the fold appearing in the response
curve for A = 0.1 [cf. Fig. 3, Table 1]

high-amplitude loading than any other method we have
considered.

The integral-equation-based continuation was per-
formed with nt = 50 time steps to discretize the solu-
tion in the time domain. On the other hand, the po
toolbox in coco performs collocation-based continua-
tion of periodic orbits, whereby it is able to modify the
time-step discretization in an adaptive manner to opti-
mize performance. In principle, it is possible to build an
integral-equation-based toolbox in coco, which would
allow for the adaptive selection of the discretization
steps. This is expected to further increase the perfor-
mance of integral equations approach, when equipped
with coco for continuation.

4.1.2 Quasi-periodic forcing

Unlike the shooting technique reviewed earlier, our
approach can also be applied to quasi-periodically
forced systems (cf. Theorems 2 and 4). Therefore, we
can also choose a quasi-periodic forcing of the form

f2(t) = 0, f1 = 0.01(sin(Ω1t) + sin(Ω2t)) ,

κ1Ω1 + κ2Ω2 �= 0 , κ1, κ2 ∈ Z − {0}, (63)

in Example 2, with the nonlinearity still given by Eq.
(62). Choosing the first forcing frequency Ω1 close to
the first eigenfrequency ω1 and the second forcing fre-
quencyΩ2 close toω2, we obtain the results depicted in
Fig. 4a. We show the maximal displacement as a func-
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Table 1 Comparison of
computational performance
for different continuation
approaches

Forcing
amplitude (A)

Computation time [seconds (# continuation steps)]

po-toolbox of
coco

Integral eq. with
in-house continuation

Integral eq. with
coco continuation

0.01 16 (88 steps) 0.15 (28 steps) 2 (56 steps)

0.05 26 (124 steps) 3.89 (700 steps) 5 (110 steps)

0.1 32 (139 steps) 298.73 (38537 steps) 8 (160 steps)

0

0.05

1.9

0.1

0.15

0.2

m
ax

im
al

 d
is

pl
ac

em
en

t q
1

0.25

0.3

1.8

Ω2

1.7
1.05

Ω1

11.6 0.950.9

(a) (b)

Fig. 4 a Response curve for Example 1 with the nonlinearity
(62) and the forcing (63), and the non-dimensional parameters
m = 1, k = 1 and c = 0.02; b number of iterations needed on
the construction of Fig. 4a. Red curves bound the a priori guar-

anteed region of convergence for the Picard iteration. The white
region is the domain where this iteration fails, and we employ
the Newton–Raphson scheme. (Color figure online)

tion of the two forcing frequencies, which are always
selected to be incommensurate; otherwise, the forcing
would not be quasi-periodic. We nevertheless connect
the resulting set of discrete points with a surface in
Fig. 4a for better visibility.

To carry out the quasi-periodic Picard iteration (53),
the infinite summation involved in the formula has to be
truncated. We chose to truncate the Fourier expansion
once its relative error iswithin 10−3. If the iteration (53)
did not converge, we switched to the Newton–Raphson
scheme described in Sect. 3.2.2. In that case, we only
kept the first three harmonics as Fourier basis.

Figure 4b shows the number of iterations needed
to converge to a solution with this iteration procedure.
Especially away from the resonances, a low number
of iterations suffices for convergence to an accurate
result. Also included in Fig. 4b are the conditions (50)
and (51), which guarantee the convergence for the iter-
ation to the steady-state solution of system (1). Out-
side the two red curves, both (50) and (51) are sat-

isfied and, accordingly, the iteration is guaranteed to
converge. Since these conditions are only sufficient
for convergence, the iteration converges also for fre-
quency pairs within the red curves. The number of
iterations required increases gradually and within the
white region bounded by green lines, the Picard iter-
ation fails. In such cases, we proceed to employ the
Newton– Raphson scheme (cf. Sect. 3.2.2).

4.1.3 Non-smooth nonlinearity

As noted earlier, our iteration schemes are also appli-
cable to non-smooth system as long as they are still
Lipschitz. We select the nonlinearity of the form

S(q1) =
{

αsign(q1)(|q1| − β), for |q1| > β,

0, otherwise,
(64)
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(a) (b)

Fig. 5 a Graph of the non-smooth nonlinearity (64); b response curve for Example 1 with the nonlinearity (64) and the forcing (61);
parameters: m = 1, k = 1 and c = 0.02, α = β = 0.1

m

k, κ

c

f1

x1

k, κ

c

... m

k, κ

c

fn

xn

k, κ

c

Fig. 6 An n-mass oscillator chainwith coupled nonlinearity.We
select the non-dimensional parameters m = 1, k = 1, κ = 0.5
and c = 1

which represents a hardening (α > 0) or softening
(α < 0) spring with play β > 0. The spring coefficient
is given by tan−1(α), as depicted in Fig. 5a.

If we apply the forcing

f1(t) = 0.02 sin(Ωt), f2(t) = 0

to system (60) with the nonlinearity (64), our itera-
tion techniques yield the response curve depicted in
Fig. 5b. The Picard iteration approach (47) converges
for moderate amplitudes, also in the nonlinear regime
(|q1| > β). When the Picard iteration fails at higher
amplitudes, we employ the Newton–Raphson itera-
tion. These results match closely with the amplitudes
obtained by numerical integration, as seen in Fig. 5b.

4.2 Nonlinear oscillator chain

To illustrate the applicability of our results to higher-
dimensional systems andmore complex nonlinearities,
we consider a modification of the oscillator chain stud-
ied by Breunung and Haller [58]. As shown in Fig. 6,

the oscillator chain consists of nmasses with linear and
cubic nonlinear springs coupling every pair of adjacent
masses. Thus, the nonlinear function S is given as:

S(x) = κ

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

x31 − (x2 − x1)3

(x2 − x1)3 − (x3 − x2)3

(x3 − x2)3 − (x4 − x3)3

...

(xn−1 − xn−2)
3 − (xn − xn−1)

3

(x2 − x1)3 + x3n

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

The frequency response curve obtainedwith the iter-
ation described in Sect. 3.2 for harmonic forcing is
shown in Fig. 7 for 20 degrees-of-freedom. We also
include the frequency response obtained with the po-
toolbox of coco [37] with default settings for compar-
ison. The integral equations approach gives the same
solution as the po-toolbox of coco, but the differ-
ence in run times is stunning: the po-toolbox of coco
takes about 12min and 59s to generate this frequency
response curve, whereas the integral equation approach
with a naive sequential continuation strategy takes 13s
to generate the same curve. This underlines the power
of the approaches proposed here for complex mechan-
ical vibrations.

5 Conclusion

Wehavepresented an integral equation approach for the
fast computation of the steady-state response of nonlin-
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Fig. 7 Comparison of frequency sweeps produced using differ-
ent continuation techniques for a 20-DOF oscillator chain with
coupled nonlinearity

ear dynamical systems under external (quasi-) periodic
forcing. Starting with a forced linear system, we derive
integral equations that must be satisfied by the steady-
state solutions of the full nonlinear system. The kernel
of the integral equation is a Green’s function, which
we calculate explicitly for general mechanical systems.
Due to these explicit formulae, the convolutionwith the
Green’s function can be performedwithminimal effort,
thereby making the solution of the equivalent integral
equation significantly faster than full time integration
of the dynamical system. We also show the applicabil-
ity of the same equations to compute periodic orbits of
unforced, conservative systems.

Weemploy a combinationofPicard and theNewton–
Raphson iterations to solve the integral equations for
the steady-state response. Since the Picard iteration
requires only a simple application of a nonlinear map
(and no direct solution via operator inversion), it is
especially appealing for high-dimensional system. Fur-
thermore, the nonlinearity only needs to be Lipschitz
continuous, therefore our approach also applies to non-
smooth systems, as we demonstrated numerically in
Sect. 4.1.3. We establish a rigorous a priori estimate
for the convergence of the Picard iteration. From this
estimate, we conclude that the convergence of the
Picard iteration becomes problematic for high ampli-
tudes and forcing frequencies near resonance with an
eigenfrequency of the linearized system. This can also
be observed numerically in Example 4.1.1, where the
Picard iteration fails close to resonance.

To capture the steady-state response for a full fre-
quency sweep (including high amplitudes and resonant

frequencies), we deploy the Newton–Raphson itera-
tion once the Picard iteration fails near resonance. The
Newton–Raphson formulation can be computationally
intensive as it requires a high-dimensional operator
inversion, which would normally make this type of
iteration potentially unfeasible for exceedingly high-
dimensional systems. However, we circumvent this
problemwith theNewton–Raphsonmethodusingmod-
ifications discussed in Sect. 3.2.

We have further demonstrated that advanced
numerical continuation is required to compute the
(quasi-) periodic response when folds appear in solu-
tion branches. To this end, we formulated one such con-
tinuation scheme, i.e., the pseudo-arc-length scheme,
in our integral equations setting to facilitate captur-
ing response around such folds. We also demonstrated
that the integral equations approach can be coupled
with existing state-of-the-art continuation packages to
obtain better performance (cf. Sect. 4.1.1).

Compared to well-established shooting-based tech-
niques, our integral equation approach also calcu-
lates quasi-periodic responses of dynamical systems
and avoids numerical time integration. The latter can
be computationally expensive for high-dimensional or
stiff systems. In the case of purely geometric (position-
dependent) nonlinearities, we can reduce the dimen-
sionality of the corresponding integral iteration by half,
by iterating on the position vector only. For numer-
ical examples, we show that our integral equation
approach equipped with numerical continuation out-
performs available continuation packages significantly.
As opposed to the broadly used harmonic balance pro-
cedure (cf. Chua and Ushida [24] and Lau and Che-
ung [25]), our approach also gives a computable and
rigorous existence criterion for the (quasi-) periodic
response of the system.

Alongwith this work, we provide aMATLAB® code
with a user-friendly implementation of the developed
iterative schemes. This code implements the cheap and
fast Picard iteration, as well as the robust Newton–
Raphson iteration, along with sequential/pseudo-arc-
length continuation.Wehave further testedour approach
in combination with the MATLAB®-based continua-
tion package coco [37] and obtained an improvement
in performance. One could, therefore, further add an
integral-equation-based toolbox to cocowith adaptive
time steps in the discretization to obtain better effi-
ciency.
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A Proof of Lemma 1

The general solution of (6) is given by the classic vari-
ation of constants formula

w(t) = e�tw(0) +
∫ t

0
e�(t−s)ψ(s) ds. (65)

A T -periodic solution w0(t) of (6) must satisfy (65),
resulting in

w0(T ) = e�Tw0(0) +
∫ T

0
e�(T−s)ψ(s) ds = w0(0).

(66)

Since the matrix
[
I − e�T

]
is invertible due to the non-

resonance condition (7), this allows us to solve Eq. (66)
for a unique initial condition w0(0) as (cf. Burd [40],
Chapter 2)

w0(0) =
[
I − e�T

]−1
∫ T

0
e�(T−s)ψ(s) ds. (67)

Substituting the unique initial condition from (67) into
the general solution (65) provides us an explicit expres-
sion of the unique T -periodic solution w0(t) to sys-
tem (6) as

w0(t) = e�t
[
I − e�T

]−1
∫ T

0
e� (T−s)ψ(s) ds

+
∫ t

0
e�(t−s)ψ(s) ds

= e�T
[
I − e�T

]−1
∫ T

0
e�(t−s)ψ(s) ds

+
∫ t

0
e�(t−s)ψ(s) ds

= e�T
[
I − e�T

]−1
∫ t

0
e�(t−s)ψ(s) ds

+ e�T
[
I − e�T

]−1
∫ T

t
e�(t−s)ψ(s) ds

+
∫ t

0
e�(t−s)ψ(s) ds

=
∫ t

0

[
e�T

[
I − e�T

]−1 + I
]
e�(t−s)ψ(s) ds

+
∫ T

t
e�T

[
I − e�T

]−1
e�(t−s)ψ(s) ds

=
∫ T

0

[
e�T

[
I − e�T

]−1 + h(t − s)I
]
e�(t−s)

︸ ︷︷ ︸
G(t−s,T )

ψ(s) ds ,

(68)

where G(t, T ) is a diagonal matrix with the entries
given by (9). Using the linear modal transformation
z = Vw, we find the unique T -periodic solution to
system (4) in the form

z(t) = V
∫ T

0
G(t − s, T )ψ(s) ds.

B Proof of Theorem 1

If z(t) is a T -periodic solution of (3), then it satisfies
the linear inhomogeneous differential equation

Bż = Az + F(t) − R(z(t)),

where we view F(t)−R(z(t)) as a T−periodic forcing
term. Thus, according to Lemma 1, we have

z(t) = V
∫ T

0
G(t − s, T )V−1 [F(s) − R(z(s))] ds,

as claimed in statement (i).
Now, let z(t) be a continuous, T−periodic solu-

tion to (11). After introducing the notation χ(t) =
V−1 [F(t) − R(z(t))], we have

z(t) = V
∫ T

0
G(t − s, T )χ(s) ds,

= Ve�t
(
I − e�T

)−1
∫ T

0
e�(T−s)χ(s) ds

+ V
∫ t

0
e�(t−s)χ(s) ds , (69)

where (69) is a direct consequence of (68). By the con-
tinuity of z(t), χ(t) is also at least C0 (F is at least C0

and R is Lipschitz). Thus, for any t ∈ [0, T ], the right-
hand side of (69) can be differentiated with respect to
t according to the Leibniz rule, to obtain
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dz(t)
dt

= V�e�t
(
I − e�T

)−1
∫ T

0
e�(T−s)χ(s) ds

+ V�

∫ t

0
e�(t−s)χ(s) ds + V�χ(t)

= V�V−1z(t)

+ V�χ(t) [using (69)]

= V�V−1z(t) + V�V−1 [F(t) − R(z(t))] ,

which implies

B
dz(t)
dt

= Az(t) + F(t) − R(z(t)),

as claimed in statement (ii).

C Proof of Lemma 2

By the linearity of (4), one can verify that the sum of
periodic solutions given by Lemma 1 for each periodic
forcing summand in (12) is the unique, bounded solu-
tion of (4). In case of a forcing written as a Fourier
series, we can carry out the integration appearing in
Lemma 1 for each summand in this bounded solution
explicitly in diagonalized coordinates z = Vw. With
the notation ψκ = V−1Fκ , we then obtain for the j th
degree of freedom:

w j (t) =
∑

κ∈Zk

∫ Tκ

0
G j (t − s, Tκ )ψκ, j e

i〈κ,�〉s ds

=
∑

κ∈Zk

∫ Tκ

0
eλ j t

(
eλ j Tκ

1 − eλ j Tκ
+ h(t)

)
ψκ, j e

i〈κ,�〉s ds

=
∑

κ∈Zk

∫ t

0
eλ j (t−s)

(
1

1 − eλ j Tκ

)
ψκ, j e

i〈κ,�〉s ds

+
∑

κ∈Zk

∫ Tκ

t−s
eλ j (t−s)

(
eλ j Tκ

1 − eλ j Tκ

)
ψκ, j e

i〈κ,�〉s ds

=
∑

κ∈Zk

eλ j t
(

1

1 − eλ j Tκ

)
ψκ, j

∫ t

0
e−λ j s ei〈κ,�〉s ds

+
∑

κ∈Zk

eλ j t
(

eλ j Tκ

1 − eλ j Tκ

)
ψκ, j

∫ Tκ

t
e−λ j s ei〈κ,�〉s ds

=
∑

κ∈Zk

eλ j t
(

1

1 − eλ j Tκ

)
ψκ, j

1

i 〈κ,�〉 − λ j

e(i〈κ,�〉−λ j )s
∣∣∣
s=t

s=0

+
∑

κ∈Zk

eλ j t
(

eλ j Tκ

1 − eλ j Tκ

)
ψκ, j

1

i 〈κ, �〉 − λ j

e(i〈κ,�〉−λ j )s
∣∣∣
s=Tκ

s=t

=
∑

κ∈Zk

eλ j t
(

1

1 − eλ j Tκ

)
ψκ, j

1

i 〈κ,�〉 − λ j

[
e(i〈κ,�〉−λ j )t − 1 + eλ j Tκ (e(i〈κ,�〉−λ j )Tκ

− e(i〈κ,�〉−λ j )t )
]

=
∑

κ∈Zk

eλ j tψκ, j
1

i 〈κ,�〉 − λ j

1

1 − eλ j Tκ

[
(1 − eλ j Tκ )(e(i〈κ,�〉−λ j )t ) − 1 + ei〈κ,�〉Tκ

]

=
∑

κ∈Zk

1

i 〈κ,�〉 − λ j
ψκ, j e

i〈κ,�〉t .

D Explicit Green’s function for mechanical
systems: Proof of Lemma 3

The first-order ODE formulation for (26) is given by

d

dt

(
y j
ẏ j

)
=
(
0 1
−ω2

0, j −2ζ jω0, j

)

︸ ︷︷ ︸
A j

(
y j
ẏ j

)
+
(

0
ϕ j (t)

)
,

j = 1, . . . , n. (70)

By the classic variation of constants formula for first-
order systems of ordinary differential equations, the
general solution of (70) is of the form
(
y j (t)
ẏ j (t)

)
= N( j)(t)

(
y j (0)
ẏ j (0)

)

+
∫ t

0
N( j)(t − s)

(
0

ϕ j (s)

)
ds, j = 1, . . . , n,

(71)

with N(t) = eA j t denoting the fundamental matrix
solution for the j th mode with N(0) = I. Thus, the
homogeneous (unforced) version of (26), the explicit
solution can be obtained as
(
y j (t)
ẏ j (t)

)
= N( j)(T )

(
y j (0)
ẏ j (0)

)
, j = 1, . . . , n.

(72)

Since F(t) is uniformly bounded for all times and all
A j matrices are hyperbolic (ζ j > 0 for j = 1, . . . , n),
then a unique uniformly bounded solution exists for the
2n-dimensional system of linear ordinary differential
equations (ODEs) (70) (see, e.g., Burd [40]). The ini-
tial condition

(
y j (0), ẏ j (0)

)
for the unique T -periodic
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solution of (71) is obtained by imposing periodicity,
i.e., y j (0) = y j (T ) for j = 1, . . . , n and is given by

(
y j (0)
y j (0)

)
= 1

1 − Trace
(
N( j)(T )

)+ det
(
N( j)(T )

)
∫ T

0

⎛

⎝

(
1 − N ( j)

22 (T )
)
N ( j)
12 (T − s) + N ( j)

12 (T )N ( j)
22 (T − s)

(
1 − N ( j)

11 (T )
)
N ( j)
22 (T − s) + N ( j)

21 (T )N ( j)
12 (T − s)

⎞

⎠ ϕ j (s) ds.

(73)

Finally, the unique periodic response
(
y j (t), ẏ j (t)

)
is

obtained by substituting the initial condition (73) into
the Duhamel’s integral formula (71) as

(
y j (t)
ẏ j (t)

)
= N( j)(t)

1 − Trace
(
N( j)(T )

)+ det
(
N( j)(T )

)
∫ T

0

⎛

⎝

(
1 − N ( j)

22 (T )
)
N ( j)
12 (T − s) + N ( j)

12 (T )N ( j)
22 (T − s)

(
1 − N ( j)

11 (T )
)
N ( j)
22 (T − s) + N ( j)

21 (T )N ( j)
12 (T − s)

⎞

⎠ ϕ j (s) ds

+
∫ t

0
N( j)(t − s)

(
0

ϕ j (s)

)
ds, j = 1, . . . , n . (74)

With the notation introduced in (28), i.e.,

α j := Re(λ2 j ), ω j := |Im(λ2 j )|, β j := α j + ω j ,

γ j := α j − ω j, j = 1, . . . , n,

the specific expressions for the fundamental matrix of
solutions of (70) in the underdamped, the critically
damped and overdamped cases are given by

N( j)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eα j t

ω j

(
ω j cosω j t − α j sinω j t sinω j t

−α2
j sinω j t − ω2

j sinω j t ω j cosω j t + α j sinω j t

)

, ζ j < 1
(
eα j t − α j teα j t teα j t

−α2
j te

α j t eα j t + α j teα j t

)

, ζ j = 1

1
β j−γ j

(
β j eγ j t − α j eβ j t eβ j t − eγ j t

γ jβ j
(
eγ j t − eβ j t

)
β j eβ j t − γ j eγ j t

)

, ζ j > 1

, j = 1, . . . , n . (75)

Furthermore, we have

TraceN( j)(t) =

⎧
⎪⎨

⎪⎩

2eα j t cosω j t , ζ j < 1

2eβ j t , ζ j = 1

eβ j t + eγ j t , ζ j > 1

, j = 1, . . . , n .

detN( j)(t) =

⎧
⎪⎨

⎪⎩

e2α j t , ζ j < 1

e2β j t , ζ j = 1

e(β j+γ j )t , ζ j > 1

, j = 1, . . . , n .

(76)

Thus, we can explicitly compute the particular periodic
solution given in (74) using (75) as

y(t) =
∫ T

0
L(t − s, T )ϕ(s) ds, L(t − s, T )

= diag (L1(t − s, T ), . . . , Ln(t − s, T )) ∈ R
n×n,

ẏ(t) =
∫ T

0
J(t − s, T )ϕ(s) ds, J(t − s, T )

= diag (J1(t − s, T ), . . . , Jn(t − s, T )) ∈ R
n×n,

with the diagonal elements of the Green’s function
matrices L, J defined in (30) and (32), i.e.,
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L j (t, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eα j t

ω j

[
eα j T

[
sinω j (T+t)−eα j T sinω j t

]

1+e2α j T −2eα j T cosω j T
+ h(t) sinω j t

]

, ζ j < 1

eα j (T+t)
[(

1−eα j T
)
t+T

]

(
1−eα j T

)2 + h(t)teα j t , ζ j = 1

1
(β j−γ j )

[
eβ j (T+t)

(
1−eγ j T

)
−eγ j (T+t)

(
1−eβ j T

)

1−eγ j T −eβ j T +e(γ j+β j )T
+ h(t)

(
eβ j t − eγ j t

)
]

, ζ j > 1

,

J j (t, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eα j t

ω j

[
eα j T

[
ω j

(
cosω j (T+t)−eα j T cosω j t

)
+α j

(
sinω j (T+t)−eα j T sinω j t

)]

1+e2α j T −2eα j T cosω j T
+

h(t)
(

1
ω j

cosω j t + α j sinω j t
)] , ζ j < 1

eα j (T+t)
[(

1−eα j T
)
(1+α j t)+α j T

]

(
1−eα j T

)2 + h(t)
(
eα j t + α j teα j t

)
, ζ j = 1, j = 1, . . . , n.

1
(β j−γ j )

[
β j e

β j (T+t)
(
1−eγ j T

)
−γ j e

γ j (T+t)

j

(
1−eβ j T

)

1−eγ j T −eβ j T +e(γ j+β j )T
+ h(t)

(
β j eβ j t − γ j eγ j t

)
]

, ζ j > 1

Finally, the linear periodic response xP (t) in the
original system coordinates can then obtained by the
linear transformation xP (t) = Uy(t) as

xP (t) = U
∫ T

0
L(t − s, T )U�f(s) ds.

E Derivative of Green’s function with respect to T

The derivative with respect to the time period T of the
first-order periodic Green’s function G given in (9) is
simply given by

∂G j

∂T
(t, T ) = λ j e

λ j t eλ j T

(1 − eλ j T )2
, j = 1, . . . , 2n .

(77)

We also provide the derivative of the Green’s function
Lwith respect to T to ease the computation of the Jaco-
bian of the zero function in during numerical contin-
uation. This is obtained by simply differentiating (30)
with respect to T. We use a symbolic toolbox for this
procedure:

dL j

dT
(t, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eα j (t+T )

ω j

(
1+e2α j T −2eα j T cosω j T

)2
[
ω j cosω j (T + t) + α j sinω j (T + t) −

2eα j T
(
ω j cosω j t + α j sinω j t

)+ e2α j T
(
α j sinω j (t − T ) + ω j cosω j (t − T )

)] , ζ j < 1

α j e
α j (t+T )

(eα j T −1)2

[
t + T − 2teα j T + 1 − 2eα j T (T−t (eα j T −1))

(eα j T −1)

]
ζ j = 1, j = 1, . . . , n.

1
(β j−γ j )

[(
β j−(γ j+β j )e

γ j T
)
eβ j (T+t)+

(
(γ j+β j )e

β j T −γ j

)
eγ j (T+t)

1−eγ j T −eβ j T +e(γ j+β j )T
+

(
eβ j (T+t)

(
1−eγ j T

)
−eγ j (T+t)

(
1−eβ j T

))(
γ j e

γ j T +β j e
β j T −(γ j+β j )e(

γ j+β j )T
)

(
1−eγ j T −eβ j T +e(γ j+β j )T

)2

⎤

⎥
⎦

, ζ j > 1

F Proof of Remark 2

We derive an estimate for the sup norm of the inte-
gral of the operator norm of the Green’s function, i.e.,
for
∫ T
0

∥∥G j (t − s, T )
∥∥ ds defined in equation (9). For

t > s, we start by noting that
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∣
∣G j (t − s, T )

∣
∣ =

∣∣
∣∣e

λ j (t−s)
(

1

1 − eλ j T

)∣∣
∣∣

≤
∣
∣∣eλ j (t−s)

∣
∣∣

1
∣∣1 − eλ j T

∣∣

≤ max(
∣∣eλ j t

∣∣ , 1)
∣∣1 − eλ j T

∣∣ , 0 ≤ s ≤ t < T .

For the case T > s > t , we obtain
∣∣G j (t − s, T )

∣∣

=
∣∣∣
∣e

λ j (t−s)
(

eλ j T

1 − eλ j T

)∣∣∣
∣

≤ max

(∣∣∣
∣

(
eλ j T

1 − eλ j T

)∣∣∣
∣ ,
∣∣∣
∣e

λ j (t−T )

(
eλ j T

1 − eλ j T

)∣∣∣
∣

)

≤ max(
∣∣eλ j t

∣∣ , 1)
∣∣1 − eλ j T

∣∣ , 0 ≤ s ≤ t < T .

The upper bounds on the Green’s function in the two
intervals are equal and we therefore obtain
∥∥∥
∥

∫ T

0
‖G(t − s, T )‖ ds

∥∥∥
∥
0

= max
t∈[0,T ]

∫ T

0
‖G(t − s, T )‖ ds

≤ max
t∈[0,T ]

∫ T

0
max
1≤ j≤n

max(
∣∣eλ j t

∣∣ , 1)
∣∣1 − eλ j T

∣∣ ds

≤ max
1≤ j≤n

T max(
∣∣eλ j T

∣∣ , 1)
∣∣1 − eλ j T

∣∣ =: Γ (T ).

G Proof of Theorem 5

In the following, we derive conditions under which the
mapping H defined in equation (37) is a contraction
mapping. We rewrite (37) as

z(t) = ΥP (F(t) − R(z(t)))

:=
∫ T

0
VG(t − s, T )V−1 [F(s) − R(z(s))] ds,

where ΥP is a linear map representing the convolution
operation with the Green’s function. Specifically, we
define the space of n-dimensional periodic T -periodic
functions as

Pn := {p : R → R
n,p ∈ C0,p(t) = p(t+T )∀t ∈ R}.

(78)

Under the non-resonance condition (7), the linear map

ΥP : P2n → P2n, ΥPp = V
∫ T

0
G(t − s, T )V−1p(s) ds

is well defined, i.e.,ΥP maps T -periodic functions into
T -periodic functions. Indeed, for any p ∈ P2n , let
q = ΥPp. We have

q(t) = V
∫ T

0
G(t − s, T )V−1p(s) ds

= V
∫ T

0
G(t + T − (s + T ), T )V−1p(s) ds

= V
∫ T

0
G(t + T − (s + T ), T )V−1p(s + T ) ds

= V
∫ 2T

T
G(t + T − σ, T )V−1p(σ ) dσ

= q(t + T ) ,

i.e., q ∈ P2n .
Since the space (41) consists of periodic functions,

we know that it is well defined in the space Cz0
δ [0, T ].

Therefore, by the Banach fixed point theorem, the inte-
gral equation (37) has a unique solution if the map-
ping H is a contraction of the complete metric space
Cz0

δ [0, T ] into itself for an appropriate choice of the
radius δ > 0 and the initial guess z0.

To find a condition under which this holds, we first
note that for ‖z−z0‖0 ≤ δ, Eq. (37) gives

|H(z(t))| =
∣∣
∣
∣

∫ T

0
VG(t − s, T )V−1[F(s) − R(z0(s))

+R(z0(s)) − R(z(s))] ds
∣∣
∣
∣

=
∥
∥∥
∥

∫ T

0
VG(t − s, T )V−1 [F(s) − R(z0(s))] ds

∥
∥∥
∥
0

+
∥
∥∥
∥

∫ T

0
VG(t − s, T )V−1 [R(z0(s)) − R(z(s))] ds

∥
∥∥
∥
0

≤ ‖E(z0, t)‖0 + ‖V‖ ∥∥V−1
∥∥ Lz0

δ ‖z − z0‖0
∫ T

0
‖G(t − s, T )‖ ds

≤ ‖E(z0, t)‖0 + ‖V‖ ∥∥V−1
∥
∥ Lz0

δ δ
∥
∥∥
∥

∫ T

0
‖H(t − s, T )‖ ds

∥
∥∥
∥
0

≤ ‖E(z0, t)‖0 + δ ‖V‖ ∥∥V−1
∥
∥2 Lz0

δ Γ (T ),

where Lz0
δ denotes a uniform-in-time Lipschitz con-

stant for the function S(z) with respect to its argument
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zwithin the ball |z − z0| ≤ δ, and Γ (T ) is the constant
defined in (10). The initial error term E(t) is defined in
Eq. (42). Taking the sup norm of both sides, we obtain
that ‖H(z)‖0 ≤ δ, and hence

H : Cz0
δ [0, T ] → Cz0

δ [0, T ]
holds, whenever condition (44) holds.

Similarly, for two functions z, z̃ ∈ Cz0
δ [0, T ], Eq.

(37) gives the estimate

|H(z(t)) − H(z̃(t))|

≤
∣∣
∣∣

∫ T

0
VG(t − s, T )V−1 [R(z(s)) − R(z̃(s))

]
ds

∣∣
∣∣

≤ 2 ‖V‖ ∥∥V−1
∥∥ Lz0

δ

∫ T

0
‖G(t − s, T )‖ ds |z(t) − z̃(t)|

≤ 2 ‖V‖ ∥∥V−1
∥
∥ Lz0

δ

∥∥
∥∥

∫ T

0
‖G(t − s, T )‖ ds

∥∥
∥∥
0
‖z − z̃‖0

≤ 2 ‖V‖ ∥∥V−1
∥
∥ Lz0

δ Γ (T ) ‖z − z̃‖0 .

Taking the sum norm of both sides then gives that H
is a contraction mapping on Cz0

δ [0, T ] if

2 ‖V‖
∥∥∥V−1

∥∥∥ Lz0
δ Γ (T ) < 1/a, (79)

holds for some real number a ≥ 1. Solving equation
(79) for Lz0

δ , we obtain condition (43).

H Proof of Theorem 6

We show here that the mappingH defined in the quasi-
periodic case (cf. equation (48)) is a contraction on the
space (49) if the conditions (50) and (51) hold. The con-
vergence estimate for the iteration (52) is then similar
in spirit to the periodic case (cf. “Appendix G”).

We rewrite (38) as

z(t) = ΥQ(F(t) − R(z(t)))

:= V
∑

κ∈Zk

H(Tκ)V−1 (Fκ − Rκ {z}) ei〈κ,�〉t ,

where ΥQ is a linear map representing the convolution
operation with the Green’s function. Similarly to the
periodic case, we define the space of n-dimensional
quasi-periodic functions with frequency base vector �

as

Q2n := {p : Tk → R
n,p ∈ C0}. (80)

Furthermore, we note that under the non-resonance
condition (7), the linear map

ΥQ : Q2n → Q2n, ΥQq

= V
∑

κ∈Zk

∫ Tκ

0
G(t − s, Tκ )V−1q(s) ds

is well defined, i.e., ΥQ maps any quasi-periodic func-
tion q with frequency base vector � to quasi-periodic
functions with the same frequency base vector �. This
is a direct consequence of the linearity of the ΥQ and
definition of ΥP in “Appendix G”.

Since the mapping (48) is well defined in the space
Cz0

δ (�) defined in (49), we have by the Banach fixed
point theorem that the integral equation (48) has a
unique solution if themappingH is a contraction of the
complete metric space Cz0

δ (�) into itself for an appro-
priate choice of the radius δ > 0. In a similar spirit
as in the periodic case we search for conditions under
which the space Cz0

δ (�) is mapped to itself. Therefore,
we take the sup norm of the mapping (48) applied to
an element from Cz0

δ (�) and obtain

|H(z(t))|

=
∣∣
∣∣∣∣
V
∑

κ∈Zk

H(Tκ)V−1 [Fκ − Rκ {z0}

+Rκ {z0} − Rκ {z}] ei〈κ,�〉t
∣∣∣
∣∣∣

≤
∥∥∥∥
∥∥
V
∑

κ∈Zk

H(Tκ)V−1 [Fκ − Rκ {z0}] ei〈κ,�〉t
∥∥∥∥
∥∥
0

+
∥∥∥∥∥
∥
V
∑

κ∈Zk

H(Tκ)V−1 [Rκ {z0} − Rκ {z}] ei〈κ,�〉t
∥∥∥∥∥
∥
0

≤ ‖E(z0, t)‖0 + ‖V‖
∥∥∥V−1

∥∥∥ hmax

×
∥∥∥
∥∥∥

∑

κ∈Zk

[Rκ {z0} − Rκ {z}] ei〈κ,�〉t
∥∥∥
∥∥∥
0

≤ ‖E(z0, t)‖0 + ‖V‖
∥∥∥V−1

∥∥∥ hmax

× ‖R(z0(s), s) − R(z(s), s)‖0
≤ ‖E(z0, t)‖0 + δ ‖V‖

∥∥∥V−1
∥∥∥ hmaxL

z0
δ ,

where we have used that the Fourier series of the
nonlinearity

∑
k Rκ {z}ei〈κ,�〉tconverges to the func-
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tionR(z, t). Due to the Lipschitz continuity of the non-
linearity and the forcing, this holds.Wefinally conclude
thatCz0

δ (�) is mapped to itself, if condition (51) holds.
Similarly, for two function z, z̃ inCz0

δ (�), we obtain

|H(z(t)) − H(z̃(t))|

≤
∣∣∣∣
∣∣

∑

κ∈Zk

VH(Tκ)V−1 [Rκ {z} − Rκ {z̃}] ei〈κ,�〉t
∣∣∣∣
∣∣

≤ 2 ‖V‖
∥∥∥V−1

∥∥∥ hmaxL
z0
δ ‖z − z̃‖0 .

Therefore, the iteration (48) is a contraction on the
space Cz0

δ (�), if the condition

2 ‖V‖
∥∥∥V−1

∥∥∥ hmaxL
z0
δ <

1

a
a ∈ R, a > 1, (81)

holds, which we reformulate in (50).

I Explicit expressions for Fourier coefficients
in Remark 6

To obtain the amplifications factors given in (35), we
carry out the integration explicitly, we diagonalize
the system with the matrix of the undamped mode
shapes U, (i.e., let x = Uy) and introduce the notation
ψκ = U�fκ . Assuming an underdamped configuration
(ζ j < 1), we obtain for the j th degree of freedom

w j (t) =
∑

κ∈Zk

∫ Tκ

0
L j (t − s, Tκ )ψ j,κe

i〈κ,�〉s ds

=
∑

κ∈Zk

∫ Tκ

0

eα j (t−s)

ω j

[
eα j Tκ

[
sinω j (Tκ + t − s) − eα j Tκ sinω j (t − s)

]

1 + e2α j Tκ − 2eα j Tκ cosω j Tκ

+ h(t − s) sinω j (t − s)

]

ψ j,κe
i〈κ,�〉s ds

=
∑

κ∈Zk

∫ t

0

eα j (t−s)

ω j
sinω j (t − s)ψ j,κe

i〈κ,�〉s ds

+
∑

κ∈Zk

∫ Tκ

0

eα j (t−s)

ω j

[
eα j Tκ

[
sinω j (Tκ + t − s) − eα j Tκ sinω j (t − s)

]

1 + e2α j Tκ − 2eα j Tκ cosω j Tκ

]

ψ j,κe
i〈κ,�〉s ds

=
∑

κ∈Zk

eα j t

ω j
ψ j,κ

∫ t

0
sinω j (t − s)e(i〈κ,�〉−α j )s ds +

∑

κ∈Zk

eα j (Tκ+t)

ω j

(
1

1 + e2α j Tκ − 2eα j Tκ cosω j Tκ

)

ψ j,κ

×
[∫ Tκ

0
e(i〈κ,�〉−α j )s sinω j (Tκ + t − s) ds − eα j Tκ

∫ Tκ

0
e(i〈κ,�〉−α j )s sinω j (t − s) ds

]

=
∑

κ∈Zk

eα j t

ω j
ψ j,κ

e(i〈κ,�〉−α j )s
(
ω j cosω j (t − s) + (i 〈κ,�〉 − α j ) sinω j (t − s)

)

((i 〈κ,�〉 − α j )2 + ω2
j )

∣∣
∣∣∣

s=t

s=0

+
∑

κ∈Zk

eα j (Tκ+t)

ω j

⎡

⎣
e(i〈κ,�〉−α j )s

(
ω j cosω j (Tκ + t − s) + (i 〈κ,�〉 − α j ) sinω j (Tκ + t − s)

)∣∣s=Tκ

s=0
(
1 + e2α j Tκ − 2eα j Tκ cosω j Tκ

) (
(i 〈κ,�〉 − α j )2 + ω2

j

)

⎤

⎦ψ j,κ

−
∑

κ∈Zk

eα j (2Tκ+t)

ω j

⎡

⎣
e(i〈κ,�〉−α j )s

(
ω j cosω j (t − s) + (i 〈κ,�〉 − α j ) sinω j (t − s)

)∣∣s=Tκ

s=0
(
1 + e2α j Tκ − 2eα j Tκ cosω j Tκ

) (
(i 〈κ,�〉 − α j )2 + ω2

j

)

⎤

⎦ψ j,κ

=
∑

κ∈Zk

1

(i 〈κ,�〉 − α j )2 + ω2
j

ψ j,κe
i〈κ,�〉t .
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For the critically damped configuration (ζ j = 1), we
obtain

w j (t) =
∑

κ∈Zk

∫ Tκ

0
L j (t − s, Tκ )ψ j,κe

i〈κ,�〉s ds

=
∑

κ∈Zk

∫ Tκ

0

[
eα j (Tκ+t−s)

[(
1 − eα j T

)
(t − s) + Tκ

]

(
1 − eα j Tκ

)2

+ h(t − s)(t − s)eα j (t−s)

]

ψ j,κe
i〈κ,�〉s ds

=
∑

κ∈Zk

eα j tψ j,κ

∫ t

0
(t − s)e(i〈κ,�〉−α j )s ds

+
∑

κ∈Zk

eα j (Tκ+t)

(
1 − eα j Tκ

)2 ψ j,κ

∫ Tκ

0

[(
1 − eα j Tκ

)
(t − s) + Tκ

]
e(i〈κ,�〉−α j )s ds

=
∑

κ∈Zk

1

(i 〈κ,�〉 − α j )2
ψ j,κe

i〈κ,�〉t .

Finally, for the overdamped configuration (ζ j > 1), we
obtain

w j (t) =
∑

κ∈Zk

∫ Tκ

0
L j (t − s, Tκ )ψ j,κe

i〈κ,�〉s ds

=
∑

κ∈Zk

∫ Tκ

0

[
eβ j (Tκ+t−s)

(
1 − eγ j Tκ

)− eγ j (Tκ+t−s)
(
1 − eβ j Tκ

)

(β j − γ j )

(
1 − eγ j Tκ − eβ j Tκ + e(γ j+β j)Tκ

)

+h(t − s)
(
eβ j (t−s) − eγ j (t−s)

)

(β j − γ j )

]

ψ j,κe
i〈κ,�〉s ds

=
∑

κ∈Zk

ψ j,κ

(β j − γ j )

[
eβ j t

∫ t

0
e(i〈κ,�〉−β j )s ds − eγ j t

∫ t

0
e(i〈κ,�〉−γ j )s ds

]

+
∑

κ∈Zk

ψ j,κ

[(
1 − eγ j T

)
eβ j (T+t)

∫ Tκ

0 e(i〈κ,�〉−β j )s ds − (
1 − eβ j T

)
eγ j (T+t)

∫ Tκ

0 e(i〈κ,�〉−γ j )s ds
]

(β j − γ j )(1 − eγ j Tκ − eβ j Tκ + e(γ j+β j)Tκ )

=
∑

κ∈Zk

1

(β j − i 〈κ,�〉)(γ j − i 〈κ,�〉)ψ j,κe
i〈κ,�〉t .

J Numerical solution procedure

The numerical approximation of the solution z(t) to
integral equations such as (37) and (38) is performed
via the finite sum

zm(t) =
m∑

j=1

cmjbmj (t),

where cmj is the unknown coefficient attached to the
chosen basis function bmj (t). The basic idea of all
related numerical methods is to project the solution
onto a suitable finite-dimensional subspace to facilitate
numerical computations. These projectionmethods can
be broadly divided into the categories of collocation
and Galerkin methods (cf. Kress [54]).

If the basis functions bmj are chosen to perform a
collocation-type approximation, the integral equation
will be guaranteed to be satisfied at a finite number of
collocation points. Specifically, ifm collocation points
t (m)
1 , t (m)

2 . . . , t (m)
m ∈ [0, T ] are chosen, the integral

equation is reduced to solving a finite-dimensional sys-
tem of (nonlinear) algebraic equations in the coeffi-
cients cmj :

zm(t j ) = GP (zm) (t j ), j = 1, . . . ,m. (82)

Equation (82) needs to be solved for the unknown coef-
ficients cmj ∈ R

2n for all j ∈ {1, . . . ,m}. Note that

under the non-resonance conditions (7), the Green’s
function G is bounded in time. Then, the collocation
method with linear splines will converge to the exact
solution for the linear integral equation at each iteration
step (cf. Kress [54], chapter 13). Furthermore, if the
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exact solution z is twice continuously differentiable in
t , we also obtain an error estimate for the linear spline
collocation approximate solution zm as

‖zm − z‖∞ ≤ M‖z̈‖∞�2,

where � is the spacing between the uniform colloca-
tion points and M is an order constant depending upon
the Green’s function G.

Alternatively, the Galerkin method can be chosen to
approximate the solution of Eqs. (37) and (38) using
Fourier basis with harmonics of the base frequencies,
followed by a projection onto the same basis vectors,
given by

∫ Tj

0
zm(s)bmj (s) ds

=
∫ Tj

0

∑

κ∈Zk

VH(Tκ )V−1 (Fκ − Rκ {zm})

ei〈κ,�〉sbmj (s) ds , j = 1, . . . ,m, (83)

where bmj (t) = ei〈κ j ,�〉t are the Fourier basis func-
tions, with the corresponding time periods Tj =

2π〈κ j ,�〉 . Due to the orthogonality of these basis func-

tion, system (83) simplifies to

cmj =
∑

κ∈Zk

VH(Tκ )V−1 (Fκ − Rκ {zm}) ,

j = 1, . . . ,m

which is a system of nonlinear equations for the
unknown coefficients cmj .

In the frequency domain, this system of coefficient
equations are the same as that obtained from the multi-
frequency harmonic balancemethod after finite trunca-
tion (see, e.g., Chua and Ushida [24] or Lau and Che-
ung [25]). Our explicit formulas in (35), however,
should speed up the calculations relative to a general
application of the harmonic balance method. The same
scheme applies in the periodic case. For both cases
(periodic and quasi-periodic), the error due to the omis-
sion of higher harmonics in harmonic balance proce-
dure is not well understood (see our review of the avail-
able results on the periodic case in Introduction ). For
the quasi-periodic case, no such error bounds are known
to the best of our knowledge.

Equations (37) and (38) are Fredholm integral equa-
tions of the second kind (cf. Zemyan [55]). Fortu-
nately, the theory and solution methods for integral

equations of the second kind are considerably sim-
pler than for those of the first kind. We refer to
Atkinson [56] for an exhaustive treatment of numeri-
cal methods for such integral equations. Our supple-
mentary MATLAB® code provides the implementa-
tion details of a simple yet powerful collocation-based
approach for the periodic case, and a Galerkin pro-
jection using a Fourier basis for the quasi-periodic
case.

J.1 Numerical continuation

A simple approach is to use sequential continuation,
in which the frequency (or time period) of oscillation
is treated as a continuation parameter (multi-parameter
in case of quasi-periodic oscillations). This parameter
is varied in small steps and the corresponding (quasi)
periodic response is iteratively computed at each step.
The solution in any given step is typically used as initial
guess for the next step. Such an approachwill generally
fail near a fold bifurcation with respect to one of the
base frequencies�. In such cases, more advanced con-
tinuation schemes such as the pseudo-arc-length con-
tinuation are required.

The pseudo-arc-length approach. We briefly explain
the steps involved in numerical continuation for cal-
culation of periodic orbits using the pseudo-arc-length
approach, which is commonly used to track folds in
a single-parameter solution branch. We seek the fre-
quency response curve of system (22) as a family of
solutions to

N (x, T ) := x −
∫ T

0
UL (t − s; T (p))U�

(f(s) − S(x(s))) ds = 0, (84)

with the fictitious variable p parameterizing the solu-
tion curve (x, T ) of equation (84). If (x, T ) is a regular
solution for equation (84), then the implicit function
theorem guarantees the existence of a nearby unique
solution. The tangent vector t to the solution curve
at (x, T ) is given by the null-space of the Jacobian
DN |(x,T ), i.e., t can be obtained by solving the sys-
tem of equations

DN |(x,T ) t = 0,

〈t, t〉 = 1,
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where the second equation specifies a unity constraint
on the length of the tangent vector to uniquely identify
t. This tangent vector gives a direction on the solution
curve along which p increases. Starting with a known
solution u0 := (x0, T0) on the solution branch with the
corresponding tangent direction vector t0 and a pre-
scribed arc-length step size �p, we obtain a nearby
solution u by solving the nonlinear system of equations

N (u) = 0,

〈u − u0, t0〉 = �p.

This system can again be solved iteratively using,
e.g., the Newton–Raphson procedure, with the Jaco-
bian given by [DN , t0]�. We need the derivative of
N (x, T ) with respect to T to evaluate this Jacobian,
which can also be explicitly computed using the deriva-
tive of the Green’s function L or G with respect to T .
These expressions are detailed in “Appendix E” and
implemented in the supplementary MATLAB® code.

Although this pseudo-arc-length continuation is able
to capture folds in single-parameter solution branches,
it is not the state-of-the-art continuation algorithm.
More advanced continuation schemes, such as the
atlas algorithm of coco [37], enable continuation
with multi-dimensional parameters required for quasi-
periodic forcing. In this work, we have implemented
our integral equations approach with the MATLAB®-
based continuation package coco [37] .

J.1.1 Continuation of periodic orbits in the
conservative autonomous setting

As remarked earlier, conservative autonomous systems
have internally parameterized periodic orbits a priori
unknownperiod.Moreover, each (quasi-) periodic orbit
of such a system is part of a family of (quasi-) periodic
trajectories with the solutions differing only in their
phases. A unique solution is obtained using a phase
condition, a scalar equation of the form

p(z(t)) = 0, (85)

which fixes a Poincare section transverse to the
(quasi-) periodic orbit in the phase space. The choice
of this section is arbitrary but often involves setting the
initial velocity of one of the degrees of freedom to be
zero, i.e., letting

p(z) = ẋk(0) = 0,

asserting that the initial velocity at the kth degree of
freedom is zero. As the solution time period T is
unknown,Eqs. (84), (85) have an equal number of equa-
tions and variables (x, T ). Thus, there is no parameter
among the variables, which can be used for the contin-
uation of a given solution.

In the literature, this issue is avoided by introducing
a fictitious damping parameter, say d, and establishing
the existence of a periodic orbit if and only if d = 0,
i.e., in the conservative limit (Muñoz-Almaraz et al.
[59]). With this trick, we reformulate the integral equa-
tion (84) (with forcing f(t) ≡ 0 ) to find periodic orbits
of the system

Mẍ + dKẋ + Kx + S(x) = 0. (86)

Periodic solutions to this system are created through a
Hopf bifurcation that occurs precisely at the conserva-
tive limit of system (86) (d = 0). It can be shown that
the damping parameter maintains a zero value along
the periodic solution-branch obtained at the bifurca-
tion point. Advanced continuation algorithms can then
be used to detect such a Hopf bifurcation and to make
a switch to the periodic solution branch (cf. Galán-
Vioque and Vanderbauwhede [60]).

A similar continuation procedure can be carried out
in our integral equation approach. The periodic solu-
tion, however, technically does not arise from a Hopf
bifurcation, because the non-resonance conditions (7)
and (13) are violated at the Hopf bifurcation point.
Nonetheless, continuation of a given solution point on
the solution branch is possible using standard continu-
ation algorithms. In this conservative autonomous set-
ting, a given solution of system (84), (85) may again be
continued in the (x, T, d) space using, e.g., the pseudo-
arc-length approach.
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