
Frequency response based identification of nonlinear oscillators

Thomas Breununga,∗, Balakumar Balachandrana

aDepartment of Mechanical Engineering, University of Maryland, College Park, Glenn L. Martin Hall, 4298 Campus
Drive, Maryland 20742, College Park, United States

Abstract

Experimental modal analysis is commonly used to identify models for the vibratory behavior of structures.
This is done by conducting a set of experiments to obtain the structure’s governing equations and information
in the form of eigenfrequencies, mode shapes, and damping. However, linearity of the test structure is
assumed within this identification procedure. Hence, as it stands, experimental modal analysis is not readily
applicable to build models when nonlinearities are present through, for example, friction, (electro-) magnetic
fields, or large deformations. To identify governing equations for such systems, a robust and systematic
identification procedure is proposed in this article. The identification routine is formulated in the frequency
domain, and a noise reduction scheme and a simplification routine are employed to obtain sparse and robust
models. The identification procedure is implemented in an automated script (FrID), which is applied to
forced response measurements stemming from structures with magnets, clamps, and bolted joints as well as
systems with multiple active modes and internal resonances. The identified governing equations accurately
fit the experimentally obtained frequency response measurements and can also be utilized to extrapolate the
response for different forcing amplitudes. Moreover, nonlinear modes of the underlying conservative system
can be computed from the identified governing equations.

Keywords: system identification, frequency response curve, structural dynamics, multi-degree-of-freedom
systems, nonlinear vibrations, experimental modal analysis

1. Introduction

The dynamic behavior of structures is commonly assessed via modal analysis and the associated exper-
imental implementation, which is referred to as experimental modal analysis [1]. Assuming linearity of the
test structure, the considered system is characterized via a set of mode shapes, eigenfrequencies, and possibly,
damping ratios. However, in many engineering applications, phenomena such as backlash, fluid-structure
interactions, or joint friction introduce discernible nonlinear behavior. The associated dynamics cannot be
adequately captured with linear models stemming from experimental modal analysis. Unfortunately, no
universal methodology to derive governing equations of nonlinear, oscillatory equations from experimental
measurements is currently available.

During modal testing, structures are most commonly excited by exciters or impacts. Within impact test-
ing, the structure is excited by a hammer or impactor and the free, decaying structural response is recorded.
Such tests can be conducted quickly and require limited instrumentation. Hence, free-decay measurements
remain an appealing procedure for testing nonlinear structures. For example Nonlinear AutoRegressive Mov-
ing Average models with eXogenous inputs (i.e. NARMAX-models) [2], the Hilbert transformation [3], and
methods based on extraction of zero-crossings [4] have been utilized to identify nonlinear oscillators from
free-decay measurements. However, most of these methods have been developed for single degree-of-freedom
systems. Notably, NARMAX models can be built for multi-degree-of-freedom systems. An application of
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such black-box models to vibration data remains challenging, as these approaches can result in unstable
models [5]. Moreover, the repeatability of impact testing is a fundamental issue [1]. Hence, the results need
to be verified via laborious repetitions (e.g., [6]).

On the other hand, shaker testing is highly repeatable and controllable. Thus, this testing type is a natural
candidate for the characterization of nonlinear systems, despite the considerable instrumentation needed and
possible shaker-structure interactions [7]. A variety of excitations such as (pseudo-) random, periodic, or
sine-sweep/chirp signals can be generated with shakers. Out of these excitation signals, periodic forcing has
received considerable attention, and hence, the response of nonlinear systems to periodic forcing has been
extensively studied (e.g., [8–10]). Moreover, forced response curves, defined as the structure’s steady state
response to harmonic excitation, are a vital part of, for example, turbomachinery design [11, 12], automotive
testing [13], and performance evaluations of (aero-) space structures [14, 15]. Therefore, it is of utmost
importance to derive nonlinear models that accurately fit forced response measurements.

Feldman [16] proposed a method to identify amplitude dependent damping and eigenfrequencies of a
single-degree-of-freedom system based on forced response measurements. Therein, the Hilbert transformation
is employed. This signal transformation can be, most appropriately, interpreted as shifting the signal’s phase
by π/2. While this method has been used for identification of nonlinear systems [17], it is fundamentally
limited to responses with a single active mode. To a certain extent, this limitation can be overcome by filtering
a multi-mode response. However, the effects of modal interactions (e.g., [18, 19]), internal resonances, and
closely spaced modes cannot be captured.

Higher order transfer functions offer another approach to nonlinear system identification (e.g., [20–22]).
The theoretical underpinning of such approaches is the representation of input-output relationships of non-
linear systems in Volterra series [23]. Volterra series can be interpreted as a nonlinear extension of the
Dunhamel integral. By transforming the Volterra series to the frequency domain, one obtains higher order
transfer functions. These functions can be experimentally determined by using either harmonic or random
inputs [24]. However, the convergence properties of the generally infinite Volterra series are unclear. Fur-
thermore, frequency responses of nonlinear systems with multiple coexisting responses cannot be captured
with Volterra series.

Polynomial nonlinear state-space models have been utilized to model dynamics in the discrete time
domain [25]. Therein, the dynamics are approximated by polynomials of the past states and past control
inputs. As such, those models represent a subclass of NARMAX models and they have been extensively used
to model, for example, hysteretic systems [26], aero-engine components [27], flow-induced vibrations [28],
and wing systems [29]. However, based on Volterra series one assumes a unique steady state response in this
modelling approach [25]. Thus, systems with multiple, coexisting steady states, often observed in nonlinear
structural dynamics [8, 30, 31] cannot be captured. Moreover, it has been observed that the obtained models
are strongly input-dependent and perform poorly for forcing close to nonlinear resonances [5, 32].

Alternative system identification methods rely on the concept of so called nonlinear normal modes [30, 33].
These nonlinear modes are families of periodic orbits of conservative systems and their frequency-amplitude
relationship has been denoted as a nonlinear continuation of eigenfrequencies. Methods such as response-
controlled stepped-sine testing [34], control-based continuation [35], and phase-locked-loop testing [36] have
been used to experimentally identify nonlinear modes and examine the dynamics of nonlinear oscillators.
With the help of control algorithms, a detailed picture of the forced response curve, including even unstable
branches, can be obtained. Recently, nonlinear modes have been utilized to perform model selection and
updating in a Bayesian framework [37]. However, the reliance on a control strategy adds additional experi-
mental complexity. Furthermore, these methods are restricted to response patterns that can be approximated
by a single vibration mode.

Furthermore, system identification methods relying on restoring surfaces have been proposed [38]. Ini-
tially Chebyshev series expansion have been utilized to approximate nonlinearities. Subsequently, this ex-
pansion has been replaced with polynomials of the states [39] and extensions to multi-degree-of-freedom
systems have been proposed [40]. Recently, the restoring surface method has been coupled with reduced or-
der modelling strategies [41] and subspace identification methods [42]. These methods allow for visualization
of the nonlinearities, which in turn can yield valuable insights. However, the restoring surface method has
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high demands on the quality of the supplied data [43] and often requires additional steps to find numerically
stable solutions [44].

Similarly, Adams and Allemang [45] propose a nonlinear system identification technique by interpreting
the nonlinearity as an internal feedback loop. This frequency domain technique was subsequently converted
to the time domain [46] to leverage the robustness and performance of subspace algorithms. Later, Kerschen
and Noël [47] proposed a frequency domain subspace identification routine. These techniques have been ap-
plied, for example, to space structures [48]. Moreover, the identified models can be utilized to compute forced
response curves based on the harmonic balance procedure coupled with continuation techniques [49]. Re-
cently, the feedback interpretation has also been combined with a Kalman filter identification procedure [50].
However, with all of these methods, one assumes that the functional form of the nonlinearities is exactly
known.

Yasuda and collaborators [51–53] have utilized the harmonic balance procedure to identify systems from
simulated data. Subsequently, Feeny et al. [54] have applied Yasuda’s method to identify a model for a
forced magneto-elastic resonator operating in the chaotic regime. However, the obtained eigenfrequencies
and damping values differ significantly from the corresponding actual values. In other applications [55–58],
researchers have resorted to specific, single degree-of-freedom models. Recently, similar techniques have been
applied to isolated resonances of multi degree-of-freedom systems [44] yielding a set of candidate models.
Therein, the functional form of the equation of motion is generally assumed to be known and only the
parameter estimation is performed. However, the detection and characterization of the nonlinearity, which
are other essential steps of the system identification process [17], have not been carried out.

The general equation discovery tool SINDy [59] could be utilized to obtain governing equations from
measurements. However, SINDy is sensitive to noise, and hence, primarily applied to synthetic data sets [59,
60]. Therefore, additional modifications of the originally formulated sparse regression have been proposed,
and applications to some experimental data have been reported [61–68]. However, in all the applications
reported, the underlying regression is formulated in the time domain. For modal testing of linear systems,
on the other hand, time-domain and frequency-domain based methods have been proven to be successful in
practice [1, 7, 69]. Therein, each domain is associated with unique advantages. Thus, it is expected that both
domains will be of importance when testing nonlinear structures. However, sparse regressions algorithms
have been exclusively formulated in the time domain.

To overcome some of these limitations, a robust system identification procedure to deduce governing
equations of nonlinear oscillators from the frequency responses data is presented and experimentally validated
in this article. Therein, the advantages of frequency domain for structural dynamics are combined with model
selection algorithms formulated for general dynamical systems in the time domain. As such, the proposed
method can be viewed as a frequency-domain extension of the popular SINDy algorithm [59] for structural
dynamics. More specifically, the identification procedure is performed in the frequency domain and linear
as well as nonlinear terms are modeled via a rich base of library functions (cf. Section 2.3). This modelling
approach results in a set of linear equations, and a least squares solution is sought. To this end, noise
reduction and simplification routine are employed to obtain interpretable and robust governing equations,
which accurately capture the measured forced response (cf. Section 2.4). Thereby, all three steps of nonlinear
system identification, which are detection, characterization, and parameter estimation [17], are performed.
This procedure is implemented in an automated script FrID1 (cf. Section 2.5).

The capabilities of the identification routine are illustrated through application to different nonlinear
oscillators (cf. Section 3). Within these experiments, magnets (Section 3.1), clamps (Section 3.2), and bolted
joints (Section 3.3) cause nonlinear behavior. The identified nonlinear oscillatory equations are interpretable,
and the emergence of the identified terms can be related to physical sources. The derived governing equations
prove to be robust, and the responses can be extrapolated for different forcing levels. Moreover, conservative
nonlinear modes can be computed from the identified models. In addition to single degree-of-freedom systems,
FrID is applied to experiments with two and three closely spaced modes (cf. Section 3.1.2), and notably,
a structure with an internal resonance (cf. Section 3.1.3). Also, for these systems, the obtained governing

1The MATLAB script FrID is publicly available at https://github.com/tbreunung/FrID.
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equations accurately capture the individual modes as well as their interactions. Overall, nonlinear oscillators
from frequency response measurements are reliably identified, and thus, a pathway to experimental nonlinear
modal analysis is provided.

2. Methods

Due to the importance of the forced response in applications, it is natural to employ such measurements to
identify the governing equations of nonlinear structures. This motivates the system identification procedure
proposed in this article. More specifically, an algorithm is developed to obtain sparse governing equations
from a set of forced response measurements of a nonlinear structure.

In the following, the utilized class of models (cf. Section 2.1) and the required forced response measure-
ments are described (cf. Section 2.2). Both are subsequently transformed into the frequency domain (cf.
Section 2.3) yielding a set of linear equations for system identification (cf. Section 2.4). Within the proposed
identification procedure, the effects of noise are reduced (cf. Section 2.4.1), linear dependencies are removed
(cf. Section 2.4.2), and a simplification routine is carried out (cf. Section 2.4.3) to yield sparse and robust
governing equations of nonlinear structures. These steps then are collected into an automated algorithm,
which is described in Section 2.5.

2.1. Nonlinear oscillator models

In the following, the general class of nonlinear oscillatory systems

q̈+N(q̇,q) = f(t; Ω), q ∈ RN , (1)

is fitted to measured forced response curves. The vector q consists of the generalized coordinates and f(t; Ω)
is the vector associated with the external forcing. The internal forces N(q̇,q) in equation (1) depend on the
position q and velocity q̇ and can include linear and nonlinear stiffness, damping, and potentially, additional
terms. The internal forces are modeled as the sum

N(q̇,q) :=

P∑
p=1

Npgp(q̇,q), (2)

where the parameter vectors Np are unknown and gp(q̇,q) denote known, scalar functions, which are referred
to as library functions. The choice of the library function can be based on, for example, physical insights or
experimental experience. In general, the functions gp(q̇,q) can contain linear and nonlinear terms and can
include conservative terms as well as non-conservative terms (i.e., damping). A natural candidate for the
library functions are polynomials, which can approximate any continuous, real-valued function (cf. Stone-
Weierstrass Theorem in, e.g., [70]). Hence, polynomial functions have been extensively used in the modeling
of nonlinear oscillators (cf., e.g., [8]). It is generally recommended to include a variety of library functions so
that the measured response can be easily captured. In the upcoming developments, it is shown how possible
redundancies, spurious parameters, and overfitting are automatically avoided.

Model (1) is formulated in a set of coordinates so that the mass matrix is the identity matrix. This
is not a restriction, since mechanical systems with non-identity mass matrix M can be converted into the
model (1) by, for example, right multiplying the equations of motion with M−1. Thus, instead of assuming a
model with non-identity mass matrix M, one can assume model (1) without loss of generality. An important
consequence of this observation is that the linear part of N that is proportional to the displacement q is
generally not a positive definite stiffness matrix K, rather, the general matrix M−1K.

2.2. Shaker testing

To obtain forced response curves of structures via shaker testing, a periodic signal is supplied to the
exciter and the resulting periodic steady state vibrations are measured. In the following, the forcing period
is denoted by T and the angular frequency by Ω = 2π/T . For each frequency, measurements from N different
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structural locations can be taken (e.g., with multiple or roving sensors). These multi-channel signals are
grouped into the signal vector

sm(t; Ωm) =


qm(t; Ωm) position measurement

q̇m(t; Ωm) velocity measurement

q̈m(t; Ωm) acceleration measurement

, m = 1, ...,M, (3)

which is indexed with the integer m since such steady state measurements are repeated for various excitation
frequencies Ωm. The total number of measurements is denoted by M . For vibration testing, these signals
sm are generally positions qm, velocities q̇m, or accelerations q̈m as indicated in equation (3).

It is assumed that for each generalized coordinate in equation (1), a corresponding measurement is taken
(cf. equation (3)). Sometimes more measurements than the number of degrees of freedom (i.e., modes)
are taken to resolve mode shapes [7]. In other applications, for example, structural health monitoring, the
number of channels can be less than the number of degrees of freedom. Both of these scenarios; that is,
more sensors than the number of degrees of freedom and less measurements than the number of degrees of
freedom, can be considered in the future.

In the following, it is assumed that only position, velocity, or acceleration measurements are available.
Notably, no measurement of the excitation is required. Only periodicity of the excitation needs to be ensured.
This assumption is motivated by the most elementary shaker test set-up, wherein a periodic signal is supplied
to the exciter, but the exact amplitudes of the resulting force acting on the test structure are unknown. Of
course, load cells can be used to measure the force acting on the structure.

2.3. Frequency domain

Periodic signals are most appropriately described in the frequency domain. In practice, a time series of
a periodic signal consisting of thousands of samples can be accurately represented with a few amplitudes.
This explains the popularity of the frequency domain in vibration engineering. Furthermore, sophisticated
signal processing and filtering tools are available for enhancing the signal to noise ratio. In this spirit, the
external excitation is expanded in a Fourier series

f(t; Ω) =

K∑
k=−K

f (k)eikΩt, (4)

wherein the complex amplitudes f (k) are unknown since no measurement of the forcing is available. In shaker
testing, often sinusoidal signals are supplied to the exciter, and hence, it is reasonable to assume that the
generated forcing can be modeled with a single harmonic. However, it is well known that vibration exciters
commonly excite higher harmonics [71]. To account for such effects, higher harmonics are included in the
Fourier series expansion (4) of the external periodic forcing.

The exponential functions in the Fourier series in equation (4) are selected for notational convenience. The
expansion (4) as well as the upcoming developments can be equivalently formulated by utilizing trigonometric
functions (i.e., sine and cosine functions).

In the frequency domain, velocity and acceleration signals can be recovered from measurements of the
position. The Fourier transformation

q(k)
m :=

1

T

∫ T

0

qm(t; Ωm)e−ikΩmt dt, (5)

yields the complex amplitudes q
(k)
m . The Fourier-integral (5) can be evaluated via the FFT-algorithm or

by numerical quadrature of the integral (5)2. Both approximations introduce artifacts, most prominently

2In FrID, the integral (5) is approximated by using the right Riemann sum.
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aliasing and spectral leakage [7, 10]. To avoid aliasing the sampling frequency needs to be chosen at least
two times higher than the highest relevant frequency. In practice, higher sampling frequencies are preferred.
Aliasing can be reduced by selecting appropriate filter functions [7, 10]. After utilizing equation (5), the
velocities q̇ and accelerations q̈ can be obtained as follows:

qm(t; Ωm) =

K∑
k=−K

q(k)
m eikΩmt, ⇔ q̇m(t; Ωm) =

K∑
k=−K

ikΩmq(k)
m eikΩmt,

⇔ q̈m(t; Ωm) = −
K∑

k=−K

k2Ω2
mq(k)

m eikΩmt.

(6)

For measurements of the velocities and accelerations, similar conversions can be made. As indicated in
equation (6), in the frequency domain, positions, velocities, and accelerations are easily converted without
relying on numerical differentiation or integration. To convert the model for the internal forces N into the
Fourier domain, the library functions gp are projected onto the Fourier modes

g(k)p,m :=
1

T

∫ T

0

gp(q̇m(t; Ωm),qm(t; Ωm))e−ikΩmt dt, (7)

wherein the positions q and velocities q̇ are either retained directly from the measurements sm or via the

conversion (6) from the Fourier coefficients q
(k)
m . After substituting the model (2) into equation (1) and

utilizing the Fourier expansions of the library functions (7) and forcing (4), the result is

K∑
k=−K

(
−k2Ω2

mq(k)
m +

P∑
p=1

Npg(k)pm − f (k)

)
eikΩmt = 0, m = 1, ...,M, (8)

whereby the parameter vectors Np and forcing amplitudes f (k) are unknown. It is noted that equation (8)
is linear in these unknown parameters. Now, any periodic function f(t) is equal to zero if and only if all
its Fourier coefficients f (k) are identically zero. This fact can be deduced by observing that the Fourier
transformation is invertible and that all Fourier coefficients of the Fourier transformation of zero are equal
to zero. Applying these arguments to equation (8) implies that each summand of the left-hand side needs
to be equal to zero yielding

−k2Ω2
mq(k)

m +

P∑
p=1

Npg(k)pm − f (k)
!
= 0, −K ≤ k ≤ K, m = 1, ...,M. (9)

Equation (9) can also be derived by a Galerkin projection of equation (8) onto its Fourier modes or by
imposing harmonic balance [8, 72]. For the following developments, it is most illustrative to write down the
j-th row of equation (9) for all Fourier modes between −K and K which are given by

−K2Ω2
mq

(−K)
jm +N1

j g
(−K)
1m +N2

j g
(−K)
2m +... +NP

j g
(−K)
Pm −f

(−K)
j = 0,

−(−K + 1)2Ω2
mq

(−K+1)
jm +N1

j g
(−K+1)
1m +N2

j g
(−K+1)
2m +... +NP

j g
(−K+1)
Pm −f

(−K+1)
j = 0,

...
...

...
...

...
...

−K2Ω2
mq

(K)
jm +N1

j g
(K)
1m +N2

j g
(K)
2m +... +NP

j g
(K)
Pm −f

(K)
j = 0,

m = 1, ...,M.

(10)
The unknowns in equations (10), which are the coefficients of the library functions N1

j , N
2
j ,..., N

P
j and the

external forcing f
(−K)
j , f

(−K+1)
j ,..., f

(K)
j , can be summarized in the following vector

pj :=
[
N1

j , N
2
j , ..., N

P
j , f−K

j , f−K+1
j , ..., fK

j

]⊤ ∈ RP+(2K+1). (11)
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Moreover, after introducing the notation

Am :=


g
(−K)
1m g

(−K)
2m ... g

(−K)
Pm −1 0 ... 0

g
(−K+1)
1m g

(−K+1)
2m ... g

(−K+1)
Pm 0 −1 ... 0

...
...

. . .
...

...
. . .

...

g
(K)
1m g

(K)
2m ... g

(K)
Pm 0 0 ... −1

 ∈ R(2K+1)×P+(2K+1),

Bm
j :=

[
K2Ω2

mq
(−K)
jm , (−K + 1)2Ω2

mq
(−K+1)
jm , ...,K2Ω2

mq
(K)
jm

]⊤
∈ R2K+1,

(12)

equations (10) can be summarized as

Ampj = Bm
j , m = 1, ...,M. (13)

Stacking the matrices Am and vectors Bm
j for all M measurements as follows

A :=


A1

A2

...
AM

 ∈ RM(2K+1)×P+(2K+1), Bj =


B1

j

B2
j
...

BM
j

 ∈ R(2K+1)M , (14)

allows one to condense the equations (10) to

Apj = Bj , j = 1, ..., N, (15)

for each coordinate j. The linear systems (15) are the fundamental equations for the proposed system
identification procedure. If measurements of the excitation were available, they can be incorporated by
deleting the last 2K + 1 columns of the matrices Am (cf. equation (12)) respectively A, deleting the last
2K + 1 entries of the vector with unknowns pj (cf. equation (11)) and including the measured forcing
amplitudes into Bm

j (cf. equation (12)) respectively Bj . However, throughout this article, the amplitudes
of the external forces are assumed to be unknown.

If enough measurements have been collected (at least M > 1+P/(2K+1)), then the linear systems (15)
are overdetermined and can be solved for the parameter vector pj by minimizing the least squares errors, or
equivalently, the geometric distance between Apj and Bj . A similar procedure has been applied to less gen-
eral equations than equation (1) in, for example, the studies [51–57]. However, this straightforward approach
with the general model (2) will result in an overfit consisting of many spurious parameters, lacking extrapo-
lation capabilities, limited interpretability and often yielding unstable simulation results. To overcome these
shortcomings, a systematic treatment of noise as well as judicious simplification are employed.

2.4. Identification

The linear equations (15) serve as a starting point to identify nonlinear oscillatory equations of the
form (1). Due to the introduction of an abundance of library functions (2) and measurement noise, three
essential steps have to be carried out to yield a reliable identification procedure. In the first step, coefficients
below the noise floor are truncated as described in Section 2.4.1. Subsequently, linear dependencies in the
equations (15) are removed (cf. Section 2.4.2), and as a final step, spurious parameters are removed via a
simplification routine in Section 2.4.3.

2.4.1. Noise

Any measurement is invariably corrupted by noise. To illustrate the employed, simple noise reduction
procedure, a Fourier transformation of a prototypical measurement of a steady state response is shown in
Fig. 13. The excitation frequency is 39.5 Hz and the first three harmonics at about 40 Hz, 80 Hz, and 120

3The measurement shown in Fig. 1 stems from the experiment described in Section 3.1 and shown in Fig. 4.
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Hz are clearly discernible. Higher harmonics from the fourth harmonic to the sixth harmonic (160 Hz, 200
Hz, and 240 Hz) can also be distinguished. The amplitudes of remaining higher harmonics (i.e., higher than
six) and the amplitudes at frequencies that are at non-integer multiples of the excitation frequency of 39.5
Hz cannot be distinguished from the noise floor. This noise floor is estimated by calculating the amplitudes

σ(Ω,m) :=
1

TN

∥∥∥∥∥
∫ T

0

sm(t)e−ikΩt dt

∥∥∥∥∥
1

, for Ω such that |nΩm − Ω| > 0.1Ωm, (16)

where the last condition ensures that the frequency Ω is not an integer multiple of the excitation frequency
Ω. The threshold value of 0.1Ωm ensures that Ω will be at least differ by 10% from the excitation frequency
Ωm and its integer multiples. This threshold value can be adjusted as appropriate. However, in their
experiments, the authors have not observed any significant dependency of identified parameters on this
threshold value. Equation (16) yields the average absolute value of the N amplitudes (i.e., one per each
measurement channel). This is achieved by utilizing the 1-norm, which is a sum of the absolute values
(rather than the squared absolute values as the standard 2-norm) and subsequently dividing by the number
of entries N .

100 200 300 400 500
10−10

10−8

10−6

10−4

noise floor

Frequency (Hz)

A
m
p
li
tu
d
e
(V

)

Figure 1: Representative amplitude spectrum of measured steady state response.

Generally, the value of the amplitude σ(Ω,m) will depend on the frequency Ω and the measurement m.
An average noise floor is given by the expected value

σ̄ = E(σ(Ω,m)), (17)

which is independent of the frequency Ω and the measurement m. The expected value (17) can be estimated
by using the standard Monte-Carlo estimator; that is, by averaging over sufficiently many measurements m
and frequencies Ω.

The constant noise floor shown in Fig. 1 can be related to the classical white noise model. For other
noise models, for example, with frequency dependent intensities [73], the estimation technique (17) can be
adjusted appropriately. The estimated noise floor (17) is utilized in two instances. First, when calculating

the amplitudes q
(k)
m from the measurements sm (cf. equation (5)), all entries with an absolute value less

than two times the noise floor are set to zero, since these values cannot be reliably distinguished from the
noise floor. This is done before reconstruction of the other measurements such as velocities or accelerations
via equation (6) and before projecting the library functions on the Fourier modes in equation (7). Second,
each entry of the matrix A and vectors Bj that is not at least two times larger than the noise floor is set to
zero. This minimizes the number of spurious and unreliable coefficients in the linear equations (15). Hence,
the identification procedure is robust to noise.
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2.4.2. Linear dependencies

When equations (15) are solved for the least squares minimum, then, one essentially seeks a linear
combination of the columns of the matrix A that approximates the vector Bj the best. This can be
problematic, if two column vectors of A point in the same, or almost the same, direction, or more generally,
the columns of A are linearly dependent. In this case, the identified parameters are not robust with respect
to small changes in A and Bj . To alleviate this problem, the column space of A is checked for linear
dependencies iteratively.

Denoting the columns of A and entries of the parameter vector pj as

A = [a1,a2, ...,aP+2K+1] , pj =
[
p1j , p

2
j , ..., p

P+2K+1
j

]⊤
, (18)

then, a reduced matrix Ã without linear dependencies and reduced unknown vector p̃j can be constructed
iteratively as follows. Starting with the first column a1 the next column a2 is projected into the direction
of a1. If the length of this projection is of similar length as the vector a2 then a2 primarily points in the
direction of a1, and hence, both vectors are almost linearly dependent. If, on the other hand, the magnitude
of the projection of a2 in the direction of a1 is small compared to the magnitude of a2, then the vectors a1
and a2 point in different directions. Only in this case the vector a2 and the corresponding unknown p2

j are

included in the reduced matrix Ã respectively vector p̃j .
For the remaining columns ak, this process is repeated. In this case, ak is projected into the column

space of Ã. This projection is carried out by multiplying ak with the projection matrix P = Ã(Ã∗Ã)−1Ã∗.
Here, the matrix Ã∗ denotes the Hermitian transpose of Ã that is computed by transposing Ã and taking
the complex conjugate of each entry. As illustrated in Fig. 2, the multiplication of P with ak yields the
vector v, which is inside the column space of Ã. Two distinct cases are shown in Fig. 2. For the column
ak1

, the magnitude of the projection into the column space Ã is almost as large as the magnitude of ak1
,

and hence, the column ak1 is not included into Ã (cf. the vectors ak1 and Pak1 in Fig. 2). The magnitude
of the projection of ak2 on the other hand is small compared to the length of ak2 , and hence, the column
ak2

will be included into Ã upon the next iteration.

Column space of 

Figure 2: Linear projection into the column space of Ã utilizing the projection matrix P. The column ak1
has a large projection

into the column space of Ã, and hence, this column is not included in Ã. The column ak2
is almost orthogonal to the column

space of Ã and hence will be included into Ã.

An algorithmic implementation of the described procedure is given in algorithm 1, where the threshold
to determine a different direction of the column ak and its projection onto the column space of Ã is set to
0.95. The reduction algorithm 1 yields the following reduced linear system:

Ãp̃j = Bj . (19)
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Algorithm 1: Reduce linear dependencies

Result: Reduced matrix Ã and reduced parameter vector p̃j

Ã = a1

p̃j = p1j
k=2
while k ≤ P + 2K + 1 do

Ã∗ = Ā⊤ // Compute the Hermitian transpose by transposing Ã and then complex

conjugating each entry

P := Ã(Ã∗Ã)−1Ã∗ // Compute projection matrix

v := Pak // Project the k-th column of A into the column space of the reduced

matrix Ã
if |v|/|ak| < 0.95 then // Compare the length of v with magnitude of the column ak

Ã =
[
Ã,ak

]
// include ak into the reduced matrix

p̃j = [p̃j , pk] // update the parameter vector

end

end

2.4.3. Simplification

After minimizing the effects of noise and reducing linear dependencies in the matrix A, the vector
of unknowns p̃j in equation (19) still consists of numerous parameters due to the excessive use of library
functions in the model of the internal forces (2). Hence, a least squares solution of equation (19) would result
in complicated models with poor extrapolation capabilities and leading to, most likely, unstable simulation
results. Thus, the number of unknowns in equation (19) needs to be reduced.

In the following, a simplification is in line with the sparsification for general dynamical system recently
popularized in [59] and further advocated in [74]. Therein, it is argued that a sparsification yields not only
simpler, but also more general models with better extrapolation capabilities. Various techniques for perform-
ing variable selection to obtain sparse models have been proposed. For example, Brunton et al. [59] propose
to remove small coefficients. However, damping coefficients of mechanical oscillators are generally small, yet
crucial to accurately capture the forced dynamics. Thus, the simplification strategy [59] appears to be inad-
equate for weakly damped, nonlinear oscillators. Alternatively, a ℓ1 regularization of the least squares cost
function has been advocated within the last absolute shrinkage and selection operator (LASSO) [75]. How-
ever, the arising optimization is difficult to solve, and numerical techniques have to be employed. Thereby,
computation times become significant and additional tuning parameters arise.

A forward stepwise selection procedure [76, 77] is employed to reduce the unknowns p̃j and obtain a
sparse model (1). In the beginning of this procedure, a single entry of the vector p̃j is selected to be non-
zero. To determine the corresponding entry, a greedy algorithm is iterated through all entries of the vector
p̃j and the entry minimizing the least squares residual the most is selected. Then, the relative residual error

|Ãjp̃j −Bj |
|Bj |

, (20)

is compared to a predefined tolerance ε. If the relative residual error (20) is less than the error tolerance
ε, then, the parameter selection is terminated. Otherwise, the procedure is continued and a second non-
zero entry in the vector p̃j is selected, while keeping the previously found entry constant. This procedure
is repeated until the relative residual error (20) falls below the tolerance ε or all entries of the vector p̃j

are non-zero and the standard least squares fit is reached. The theoretical properties of forward stepwise
algorithms are not well understood, but these algorithms generally perform very well in finding sparse subset
of variables [77]. For asymptotically small error tolerances ε → 0, the forward stepwise selection procedure
leads to the standard least squares solution.
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2.5. FrID: An automated identification package

The developments of the previous sections can be assembled into an automatic identification proce-
dure yielding simple governing equations of nonlinear oscillators from frequency response measurements. A
schematic overview is given in Fig. 3 and the following steps are implemented in the automated MATLAB
script FrID4:

1. Transformation into 
frequency domain

2. Reduce Noise

3. Remove linear 
dependencies

4. Simplify 

Figure 3: Overview of sequence of steps in system identification procedure implemented in FrID.

1. Frequency domain: Compute the Fourier series of the steady state responses and obtain the amplitudes

q
(k)
m (cf. equation (5)).

Remark: If amplitudes and phases are recorded, then the time signal can be deduced from those, or
alternatively, the steps (2) and (3) can be omitted.

2. Reduce Noise: First, estimate the noise floor (cf. Section 2.4.1) and truncate the Fourier amplitudes

q
(k)
m below the noise floor. Then, recompute the time series of the position and velocity of the steady

state response and project the library functions gp(q̇,q) onto the Fourier modes (cf. equation (7)). For
each degree of freedom, build the linear system (15) and set every entry of the matrix A and vectors
Bj below the noise floor to zero.

3. Remove linear dependencies: Remove linear dependent columns of the matrices A (cf. Section 2.4.2).

4. Simplify: Identify a simple model by a forward stepwise selection, which successively leads to selection
of non-zero coefficients in the parameter vector p̃j that reduce the residual the most (cf. Section 2.4.3).

The library functions implemented in FrID are polynomials in the positions q and velocities q̇. For
example, selecting a polynomial model of order two for a two degree-of-freedom system (N = 2) with the

positions q = [q1, q2]
⊤
and velocities q̇ = [q̇1, q̇2]

⊤
yields a library consisting of the following 14 functions: q1,

q2, q̇1,q̇2, q
2
1 , q1q2, q1q̇1, q1q̇2, q

2
2 , q2q̇1, q2q̇2, q̇

2
1 , q̇1q̇2, and q̇22 . In general, for a N -degree-of-freedom system,

by utilizing polynomials of order up to P one obtains the following number of library functions

P∑
p=1

(
2N + p− 1

p

)
. (21)

Depending on the application, alternative library functions can be selected.

4FrID is publicly available at https://github.com/tbreunung/FrID.
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3. Results and Discussion

The capabilities of the proposed identification procedure (implemented in FrID) are demonstrated by
using response measurements from a variety of systems. First, magento-mechanical oscillator systems with
one, two, and three degrees of freedom, including a configuration with an internal resonance are considered
in Section 3.1. Subsequently, governing equations for the same mechanical oscillator without magnets are
identified (cf. Section 3.2). As a final application example, FrID is applied to an external data set [78] of a
beam with bolted joints (cf. Section 3.3).

Numerical simulations are utilized to validate the identified models. In general, the procedure of stepped
sine testing (e.g., [7]) is emulated numerically. After selecting a starting frequency, the identified governing
equations (1) are numerically integrated by using MATLAB’s ode45 routine and the integration is continued
until a steady state is observed. This steady state is recorded, and then, the frequency is increased (stepped
sine up) or decreased (stepped sine down) and the simulations are restarted from the previously observed
steady state. This sequential continuation ensures that hysteric regions with multiple coexisting steady
state responses can be explored. More advanced continuation packages, such as AUTO [79], COCO [80], or
MATCONT [81] could be further utilized to reveal more detailed features of forced response curves, such as
unstable branches. However, such solutions are generally not observable in experiments.

3.1. Magneto-mechanical Oscillator

As a first demonstration, FrID is applied to forced response measurements of the experiment shown
in Fig. 4. The frame is moved horizontally via a shaker, and thereby, a base excitation is supplied to the
mounted cantilevers. Magnets are attached to the end of each cantilever as well as on the opposite side at the
frame. These magnets induce nonlinear force-tip-deflection relationships, which give rise to nonlinear forced
response curves. The cantilever deflections are measured with strain gauges attached to the cantilevers close
to the mount. Strain gauges are used to get a measure of the beam deformation. A strain gauge’s output
voltage is proportional to the local strain of the cantilever, which in turn can be related to the tip deflection
of the beam. In the following, the strain gauge signal is treated as position measurement (cf. equation (3)),
keeping in mind that the strain gauge signal is proportional to the tip deflection. The sampling frequency
of the recorded strain gauge signals is 1.0 kHz.

In the experiments, a sinusoidal control signal is supplied to the shaker and the actual load acting on
the structure is not measured. This set-up without a load cell resembles the most basic set-up of shaker
testing. In some shaker tests, it is observed that the forcing level decreases close to resonance due to shaker-
structure interaction. However, based on the specification of the utilized shaker (Brüel & Kjær 4811) and
selected excitation mechanism (base excitation), it is reasonable to assume a constant forcing level for this
experiment. Possible additional higher harmonics in the forcing are accounted for via the Fourier expansion
of the external forcing (4).

A varying number of cantilevers can be mounted in the set-up shown in Fig. 4. Thereby, the capabilities
of FrID for single and multi-degree-of-freedom systems can be evaluated. While the cantilevers are coupled
through the base plate, the inter-cantilever coupling can also be enhanced by adding coupling springs as
shown in Fig. 4. Macroscopically, all cantilevers have approximately the same properties, most importantly,
eigenfrequencies of the excited first bending mode. As appropriate, magnetic masses can be attached to the
cantilevers to shift these eigenfrequencies (cf., e.g., the far-right cantilever in Figure 4). This tuning allows
one to observe closely spaced modes as well as structures with internal resonance.

In the following, several configurations of the experimental set-up shown in Fig. 4 are considered. First,
a single cantilever is mounted and from the measured forced response a single-degree-of-freedom oscillator
is identified with FrID. Subsequently, two and three cantilever systems are considered in Section 3.1.2 and
multi-degree-of-freedom oscillators are identified with FrID. Finally, in Section 3.1.3, a structure with an
internally resonance and two interacting modes is investigated.

3.1.1. Single degree-of-freedom system

After mounting a single cantilever in the experimental arrangement, supplying a periodic excitation, and
varying the excitation frequency close to the cantilever’s first bending mode frequency (approximately 40.0
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Figure 4: In-line oscillator experiment with three mounted cantilevers. The base plate is attached to an electrodynamic shaker.

Hz), the forced response shown in Fig. 5a is obtained. The excitation frequency is changed by 0.05 Hz every
thirty seconds. This slow sweep rate is selected to ensure that the observed vibration patterns are close to
a steady state. Depending on the sweep direction (increasing or decreasing the forcing frequency), different
branches of steady state responses can be observed. Two distinct steady state responses are measured for
excitation frequencies between 39.0 Hz and 41.0 Hz.
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Figure 5: Single Cantilever System: (a) Measured forced response. (b) Measured and simulated forced responses.

On applying FrID to the measured forced response shown in Figure 5a, the result is the following model
in non-dimensional coordinates

q̈ + cq̇ + kq + k2q
2 + k3q

3 = f cos(Ωt),

c = 3.16, k = 56983.86, k2 = 10141.92, k3 = 15563.51, f = 733.96,
(22)

where the non-dimensional coordinate q is related to the strain gauge voltage s by the factor α = 1.54·10−4 V5

5The non-dimensionalization constant α is selected so that the maximal amplitude of the forced response in non-dimensional
coordinates is equal to one.
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In Tab. 1, the forward stepwise selection leading to model (22) is illustrated. The library functions in the
expansion (2) consist of all polynomials of the position q and velocity q̇ up to order three. The first term
included is the linear stiffness reducing the relative residual error to 0.6. Successively, nonlinear stiffness,
external forcing, and linear damping are included in the identified model. The identification procedure is
terminated once the relative residual error falls below 0.01. Some of the terms included in the function
library, such as more complex damping terms of the form q̇3 and q2q̇, are not included in the final model.

Table 1: Overview of the forward stepwise selection that leads to model (22).

Iteration 1 2 3 4 5 6

Included term q q2 q3 f (−1) f (1) q̇

Relative residual error 0.6 0.042 0.018 0.015 0.012 0.009

Omitted terms: qq̇, q̇2, q2q̇, qq̇2, q̇3, f (−2), f (2).

In total, the identified model (22) has five parameters, which can all be related to physical sources. Linear
and cubic stiffness terms have extensively been used to model magneto-mechanical oscillators similar to the
experiment shown in Fig. 4 (cf., e.g., [8, 54, 82, 83]). This modeling is confirmed by the FrID algorithm.
Quadratic stiffness terms are associated with asymmetries and in the magneto-mechanical oscillator shown
in Fig. 4 asymmetries arise through, for example, asymmetric clamping of the cantilever and non-perfectly
aligned magnets. A similar observation was also made in an earlier study of the same system [73]. Within
the identification procedure, the asymmetry present in the data is automatically detected and modeled via
a quadratic stiffness term.

Although damping is often nonlinear, it is macroscopically often modeled with linear damping terms. For
the measurement data shown in Fig. 5a, the identification procedure confirms the linear damping hypothesis
although more complex, nonlinear damping terms, for example, q̇3 or q2q̇, have been included in the function
library for model (2) (cf. Tab. 1). The excitation is modeled as a single harmonic, although higher harmonics
are included in Fourier expansion of the forcing function (4). However, these terms are eliminated within the
simplification routine detailed in Section 2.4.3. Simulating the model (22) for forcing frequencies close to 40
Hz yields the forces response curve shown in Fig. 5b. Indeed, the simulated forced response of model (22)
matches well with the measured forced response curve.

Moreover, it is worth discussing hyperparameters selected within FrID. To arrive at model (22), two
Fourier modes are kept in the expansion (K = 2 in equation (5)), the threshold ε for the relative error
tolerance is set to 0.01 (cf. Section 2.4.3), and polynomials of the position q and velocity q̇ up to order three
are selected as library functions in the expansion (2). In the following, these hyperparameters are varied.

An increase in the number of Fourier modes K results in a larger linear system (15), and a higher number
of parameters are required within FrID to minimize the fitting residual. Generally, this yields more complex
models. For example, by increasing the number of harmonics K to three and keeping the error tolerance
ε fixed, the nonlinear damping term q̇q2 and a second harmonic in the forcing function are automatically
included in the identified model. The simulated force response curve of this more complex model closely
reassembles the result shown in Fig. 5b. Furthermore, by keeping K = 3 and increasing the error tolerance
ε to 0.011, one recovers a model of the form of equation (22). The same observations are made when the
number of harmonics in the expansion (5) is increased beyond three (K > 3). This indicates the robustness
of the identified model (22). For a single harmonic (K = 1), FrID is found to fail in identifying the quadratic
nonlinearity in the model (22). This can be related to the fact that even powers of single-harmonic signals
generate frequency content at even harmonics K = 0, 2, 4, ..., but not at the fundamental harmonic K = 1.
Thus, even polynomials do not arise in equations (9) for K = 1, and even polynomials gp(q, q̇) are removed
within the FrID algorithm. Hence, it is recommended to keep more than the fundamental harmonic in the
expansion (5) to identify asymmetries.

Next, the degree of the utilized polynomials gp(q, q̇) in the expansion (5) is varied. If polynomials with
a higher degree than three are included in the expansion (5), those terms are automatically removed by the
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FrID algorithm, and hence, the same model (22) is obtained. If only second order polynomial and linear
terms are included in the expansion (5), then FrID is found to fail in capturing the measured forced response.
This is expected, since linear and quadratic models cannot capture the hardening behavior shown in Fig. 5a
(cf., e.g., [8]). In practice, when utilizing a polynomial expansion (5), it is recommended to successively
increase the degree of polynomials until no change in the model identified by FrID is observed.

Finally, the selection of the relative error tolerance ε (cf. Section 2.4.3) is discussed. Selecting a high
threshold leads to an inaccurate model, while low values tend to result in overly complex models. To observe
this behavior, the relative fitting residual is monitored during the forward stepwise selection procedure (cf.
Section 2.4.3). The first term included in the model (22) is the linear stiffness, reducing the relative residual
error to about 0.6. Then, the nonlinear stiffness terms are included in the model (22) reducing the relative
residual error to a few percent. Subsequently, damping and forcing terms are identified. The remaining terms
reduce the relative fitting residual only marginally (less than 0.01) indicating their insignificance. Generally,
it is recommended to terminate the forward stepwise selection procedure, when the inclusion of additional
terms only marginally reduces the residual error. For nonlinear structures such as the magneto-mechanical
oscillator shown in Fig. 4, physical insights can also be employed to terminate the forward stepwise selection
procedure. More specifically, models of nonlinear structures are expected to consist of terms from the
following four categories: i) linear stiffness, ii) nonlinear stiffness, iii) damping, and iv) forcing terms. Hence,
the forward stepwise selection can be terminated once a term from each of the four categories is found.

In Appendix A, the equation discovery tool SINDy [59] is utilized in an attempt to identify governing
equations from the measurements shown in Fig. 5a. Herein, forced response data as well as additional
resonance decay measurements are employed. Only the values of the linear stiffness and damping identified
by SINDy are close to the values reported in equation (22). The nonlinear terms identified by the SINDy
algorithm are more complex and cannot be related to physical effects. More crucially, the forced response
measurements are not well captured by the SINDy models (cf. Fig. A.1 in Appendix A).

The unsuccessful attempts to utilize SINDy [59] prompt the authors to point out differences between
SINDy and FrID. Primarily, SINDy is a time domain technique in which one seeks to minimize the modeling
error at every time step whereas with FrID, one minimizes the fitting error in the frequency domain (cf.
equation (9)). Additionally, the minimization procedures between FrID and SINDy differ and with FrID,
one employs an explicit routine to reduce the effects of noise (cf. Section 2.4.1). Indeed, SINDy is known
to be sensitive to noise and ensemble methods (Ensemble-SINDy) have been proposed to alleviate this
shortcoming [60]. Therein, the SINDy algorithm is used to construct an ensemble of models, and subsequently
the ensemble members are averaged. Unfortunately, this approach does not yield an improvement compared
to the standard SINDy procedure for the measurements shown in Fig. 5a (cf. Appendix A).

The model (22) is further tested by verifying its extrapolation capabilities for different forcing ampli-
tudes. There is often no a priori guarantee that identified models for a given excitation level can also yield
meaningful results for other forcing amplitudes. Indeed, often in structural dynamics, it is found that models
extrapolate poorly (e.g., [5, 32, 84]). This behavior can be a indication of overfitting to experimental data.
Since the identified model (22) has only five parameters, an overfit seems unlikely. Moreover, it has been
advocated [74] that sparsity is an ultimate regularizer in data-driven system identification that allows for
better extrapolation and generalization capabilities. To verify this claim, the experiment is repeated for
shaker control signals with different amplitudes. While the shaker control signal for the experiments shown
in Fig. 5 has an amplitude of 1.5 V, forced response curves for excitation levels of 0.5 V, 1.0 V, and 2.0 V are
measured. Then, simulations are carried out with the model (22) for the adjusted forcing amplitude values
of 244.65(= 733.96/1.5 · 0.5), 489.31(= 733.96/1.5 · 1), and 978.61(= 733.96/1.5 · 2). The measurements and
simulation results are included in Fig. 6.

Overall, the numerically computed forced responses match well with the experimental results, although
some discrepancies are discernible. Especially, for the highest amplitude level and high amplitude responses, a
mismatch between the numerically predicted and experimentally measured forced response curve is observed.
The model (22) reaches its domain of validity and physical effects, not detectably present for the excitation
level of 1.5 V are noticeable. The mismatch can be reduced by fitting a polynomial model to the measured
response curve for the excitation level of 2.0 V. The resulting model is in the form of model (22) but the
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Figure 6: Single cantilever experiment: Simulated (solid lines), measured forced response curves (markers) and conservative
nonlinear mode (CNM, gray dashed line).

parameter values are found to change. While the linear damping c, the linear stiffness k, and the forcing
amplitude f remain almost unchanged, the quadratic stiffness term k2 decreases to 7533.34 and the cubic
stiffness k3 increases to 20857.4.

Additionally, families of periodic orbits of the underlying conservative system can be computed from the
obtained model (22). These families of periodic orbits, which are also denoted as nonlinear modes, have
been extensively used to analyze the dynamics of nonlinear structures [30]. For example, their amplitude
frequency dependency often aligns with the maxima of the forced response curve [85]. The conservative
nonlinear modes are computed for the conservative and unforced part of the model (22), which is obtained
by setting the damping c and excitation amplitude f to zero. The numerical continuation package coco [80]
is then utilized to compute the conservative nonlinear modes. The amplitude frequency relationship of the
nonlinear modes of the conservative is included in Fig. 6. Except for the highest forcing level wherein the
softening effect is not captured by model (22), the maxima of the forced response curves align well with
the amplitude-frequency relationship of the conservative nonlinear mode. This further demonstrates the
robustness and universality of the obtained model (22).

3.1.2. Multi-degree-of-freedom systems

After applying FrID to measurements obtained with a single mounted cantilever in the experiment shown
in Fig. 4, the capabilities of FrID for the identification of multiple-degree-of-freedom systems are illustrated.
To this end, two and three cantilevers are mounted in the experimental arrangement (cf. Fig. 4).

Small weights are added to the individual beams to detune their eigenfrequencies so that multiple distinct
peaks are discernible in the frequency response shown in Fig. 7. In addition to the magnitude of the individual
amplitudes |q1j |, the sums of the magnitude of the individual amplitudes are included in Fig. 7. In these curves,
one can clearly discern two respectively three distinct peaks. The case of nearly identical beams resulting in
a single peak in the frequency response (i.e., a structure with an internal resonance) is considered in the next
section. Despite the detuning, the first eigenfrequencies of the cantilevers remain close. In the case of two
cantilevers, the two response peaks are two Hz apart (approx. 5% of the eigenfrequencies), and in the case of
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the three cantilevers, all three response peaks are located within 6 Hz (approx. 15% of the eigenfrequencies).
Coupling springs between adjacent cantilevers enhance the coupling between the oscillators. Indeed, for

the two cantilever case, both strain signals q1 and q2 have a response maximum close to 41 Hz and a jump
down is observed at 43.0 Hz (cf. Fig. 7a). Similarly, jumps at 36.6 Hz, 41.1 Hz, and 43.2 Hz are observable
for all three cantilevers (cf. Fig. 7b). Due to this interaction, each resonance peak cannot trivially be fitted
by using a single mode model, rather a model that can capture multiple modes simultaneously is necessary.
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Figure 7: Multi-degree-of-freedom system: Measured (markers) and simulated forced response curves (solid lines). (a) Two
cantilever system. (b) Three cantilever system.

For the two-cantilever system, the model

q̈1 +η1q
2
1 q̇1 +k1q1 + k21q

2
1 + k31q

3
1 + ν1q̇

2
1q1 +k12q2 = f1 sin(Ωt),

q̈2 +η2q
2
2 q̇2 +k2q2 + k22q

2
2 + k32q

3
2 + ν2q̇

2
2q2 +k21q1 = f2 sin(Ωt+ ϕ2),

(23)

is automatically identified by applying the FrID scheme. The numerical values are reported in Tab. 2 and
the strain gauge signals have been non-dimensionalized with the constant α = 1.65 · 10−4 V. The internal
forces are approximated by polynomials of degree three, which results in 32 possible parameters in model (2).
Only 12 of these parameters are included in the final model (23). In total, the model (23) is parameterized
by 15 parameters.

Table 2: Identified parameters of the model (23) for the two-cantilever experiment shown in Fig. 7a.

DOF
damping conservative terms

coupling
excitation

ηj kj k2j k3j νj fj ϕj

j = 1 22.79 59943.65 18463.52 20413.45 -0.2 k12 = −1994.98 386.54 -

j = 2 15.34 67166.37 4063 10243.7 -0.08 k21 = −3957.4 403.93 0.02

Similarly, for the three-cantilever system, with the FrID algorithm, the following model is automatically
identified:

q̈1 +c1q̇1 +k1q1 + k21q
2
1 + k31q

3
1 + ν1q̇

2
1q1 +k12q2 = f1 sin(Ωt),

q̈2 +η2q
2
2 q̇2 +k2q2 + k22q

2
2 + k32q

3
2 + ν2q̇

2
2q2 +k21q1 + k23q3 = f2 sin(Ωt+ ϕ2),

q̈3 +η3q
2
3 q̇3 +k3q3 + k23q

2
3 + k33q

3
3 + ν3q̇

2
3q3 +k32q2 = f3 sin(Ωt+ ϕ3),

(24)
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The numerical values are reported in Tab. 3 and the strain gauge signals have been non-dimensionalized
with the constant α = 2.93 ·10−4 V. In model (24), the internal forces N(q̇,q) are parameterized by utilizing
only 19 out of 83 possible parameters. Overall, the model (24) consists of 24 parameters.

Table 3: Identified parameters of the model (24) for the three-cantilever experiment shown in Fig. 7b.

DOF
damping conservative terms

coupling
excitation

cj ηj kj k2j k3j νj fj ϕj

j = 1 2.5 - 43678.86 9467.96 20879.32 -0.17 k12 = −2950.2 221.57 -

j = 2 - 105.01 60666.38 38422.86 99154.94 -0.99
k21 = −3644.6

172.47 -0.05
k23 = −3180.9

j = 3 - 55.97 67119.81 6913.4 38420.19 -0.33 k32 = −5928.85 219.55 -0.02

To obtain models (23) and (24) with the parameter values summarized in Tab. 2 and Tab. 3, three
Fourier modes are kept in the Fourier expansion (5) (K = 3) and polynomials of order three are selected
in the expansion (2). In Tab. 4 and 5 an overview of the forward stepwise selection procedures leading to
the models (23) and (24) is provided. These hyperparameter choices are based on the heuristics detailed
in Section 3.1.1. More specifically, the degree of the polynomials included in the expansion (2) is increased
until a further increase in the degree of polynomials does not change the identified model, and the relative
error threshold ε is selected so that the linear stiffness, nonlinear stiffness, damping, and forcing terms are
included in the identified model. Furthermore, including more than three harmonics in the in the Fourier
expansion (5) does not alter the models (23) and (24).

Table 4: Overview of the forward stepwise selection leading to model (23).

Iteration 1 2 3 4 5 6 7 8

j = 1
Included term q1 q21 q31 q2 q̇21q1 f

(−1)
1 q21 q̇1 f

(1)
1

Relative residual error 0.123 0.092 0.064 0.044 0.034 0.03 0.026 0.02

j = 2
Included term q2 q32 q1 q22 f

(−1)
2 f

(1)
2 q̇22q2 q22 q̇2

Relative residual error 0.074 0.049 0.033 0.025 0.022 0.018 0.014 0.009

Table 5: Overview of the forward stepwise selection leading to model (24).

Iteration 1 2 3 4 5 6 7 8 9

j = 1
Included term q1 q31 q21 q2 q̇21q1 f

(−1)
1 f

(1)
1 q̇1 -

Relative residual error 0.127 0.091 0.062 0.050 0.044 0.04 0.037 0.035 -

j = 2
Included term q2 q1 q22 q32 q3 q̇22q2 f

(−1)
2 f

(1)
2 q22 q̇2

Relative residual error 0.168 0.127 0.102 0.073 0.043 0.035 0.03 0.024 0.016

j = 3
Included term q3 q2 q32 f

(−1)
3 f

(1)
3 q23 q̇23q3 q23 q̇3 -

Relative residual error 0.099 0.063 0.040 0.034 0.027 0.019 0.015 0.01 -

A number of conclusions can be drawn from the identified models (23) and (24). Most importantly, both
models consist of linear, quadratic, and cubic stiffness terms. This is expected, since the same observation
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has also been made for the single cantilever experiment (cf. Section 3.1.1) and the captured physical effects
remain the same. Additionally, internal forces proportional to q̇2j qj arise for all coordinates. While the origin
of these terms is unclear, they are conservative as they could arise through a position dependent mass matrix.

The connecting springs between the oscillators are automatically identified as linear spring coefficients
and the spring coupling between only neighboring oscillators is correctly predicted. More specifically, the
coefficients kji (j ̸= i) in the identified models (23) and (24) indicate coupling between the j-th cantilever
and the i-th cantilever. The coefficients k12 and k21 account for coupling between the first and the sec-
ond cantilever, whereas the parameters k23 and k32 correspond to coupling between the second and third
coordinates in equation (24). Moreover, the first coordinate of the three degree-of-freedom model (24) is
not coupled to the third coordinate. This coupling topology corresponds to the coupling springs added in
the experiment (cf. Fig. 4) and is automatically identified purely from experimental measurements. It is
noted that the coupling spring coefficients are not symmetric (cf. k12 ̸= k21 and k23 ̸= k32 in Tab. 2 and 3).
This observation is not in contradiction with the fact that stiffness matrices in mechanics are commonly
symmetric and positive definite. As pointed out earlier, the model (1) is formulated in a set of coordinates
so that the mass matrix is the identity matrix. Indeed, different masses attached to the cantilevers in the
experiments (cf. the right cantilever in Fig. 4) give rise to a non-symmetric matrix M−1K.

The identified damping is primarily nonlinear, with the exception of the first coordinate in the three-
cantilever experiment (24). Damping remains a nonlinear effect [30], which is challenging to identify and
often simply assumed to be linear. With the considered multi-degree-of-freedom examples, the linear damping
hypothesis is overwhelmingly rejected, and nonlinear damping is found to describe the measured response
curves more accurately. The underlying physical effects of this particular damping remain to be explored.

Simulating the responses of systems (23) and (24) with the parameters given in Tab. 2 and Tab. 3 yields
the response curves shown in Fig. 7. Overall, the forced response is accurately captured with the identified
models.

3.1.3. Structure with internal resonance

Structures with internally resonance continue to pose a challenge to many competing system identification
procedures [15–17, 34, 36], as a single active mode of vibration in these procedures is implicitly assumed.
However, the response of a system with an internal resonance cannot be approximated by using a single
isolated mode. On the other hand, no such assumption is made within FrID. Therefore, one can capture
modal interactions. To demonstrate this capability, a system with an internal resonance is investigated. In
practice, internal resonances often arise due to underlying symmetries present in many structures.

The frequency response curves of two cantilevers with approximately equal eigenfrequencies are shown
in Fig. 8. Depending on the excitation frequency, one, two, three, or four different steady state vibrations
are observed. Apart from the main branch, two isolated response branches are observed. Along these
isolated modes, one cantilever vibrates with a high amplitude, whereas the other cantilever vibrates with
a significantly lower amplitude. Due to this energy confinement, such response patterns have also been
described as localized modes [86–88], and recently, the effects of noise on such localized modes have been
studied [89]. Experimentally, the isolated localized modes are realized by manual perturbations. More
specifically, high amplitude vibrations on the main branch with 39.5 Hz are realized and then one of the
cantilevers is perturbed manually, which triggers the corresponding beam to vibrate with a lower amplitude.
This procedure realizes a localized mode. The remaining branch of the localized mode is then obtained by
sweeping up or down.

Selecting the same hyperparameters as detailed in Section 3.1.2, with FrID, one identifies exactly the
same form of model as the model (23) in Section 3.1.2, despite the more intricate frequency response curve
shown in Fig. 8. This similarity is expected, as the two experimental systems are similar with the same
underlying physical effects. However, the utilized cantilevers, connecting springs, and added masses differ;
therefore, the identified parameter values change. The numerical values for the system with the internally
resonance are listed in Tab. 6 and the strain gauge signals have been non-dimensionalized with the constant
α = 1.82 · 10−4 V. The linear eigenfrequencies are 37.54 Hz and 37.36 Hz, which indicates a 1:1 frequency
relationship. In Tab. 7, the authors provide an overview of the model selection procedure leading to the final
model (23) with the parameters summarized in Tab. 6.
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Figure 8: Forced response curves of a structure with a one-to-one internal resonance.

Table 6: Identified parameters of the model (23) for the internal resonance case 8.

DOF
damping conservative terms

coupling
excitation

ηj kj k2j k3j νj fj ϕj

j = 1 17.17 55631.64 - 20991.87 -0.14 k12 = −904.55 340.22 -

j = 2 29.06 55092.26 9802.31 31607.74 -0.29 k21 = −518.47 273.87 -0.01

Table 7: Overview of the forward stepwise selection leading to the identified parameters of the model (23) for the internal
resonance case 8.

Iteration 1 2 3 4 5 6 7 8

j = 1
Included term q1 q21 q31 q̇21q1 q2 f

(−1)
1 q21 q̇1 f

(1)
1

Relative residual error 0.131 0.093 0.035 0.029 0.027 0.024 0.022 0.018

j = 2
Included term q2 q32 q22 q̇22q2 q1 f

(−1)
2 q22 q̇2 f

(1)
2

Relative residual error 0.097 0.062 0.038 0.028 0.024 0.021 0.017 0.011

As in the experiments, additional steps are required to capture the isolated branches of the forced response
curves with numerical simulations. Similar to the experimental procedure, an initial condition on the main
branch with high amplitude vibrations at 39.5 Hz is selected, and then, the initial position of one of the
degrees-of-freedom is perturbed numerically. This perturbation causes the corresponding response coordinate
to oscillate with a lower amplitude, and thereby, one realizes a localized mode. The remaining branch of
the localized mode is then obtained by successively increasing or decreasing the excitation frequency. Many
competing system identification procedures for nonlinear systems rely on a single mode approximation and
they cannot be applied to the response data shown in Fig. 8. On the other hand, by using FrID, an accurate
and simple model is identified. As shown in Fig. 8, the simulated forced response of the model (23) with the
identified parameters listed in Tab. 6 matches well with the experimentally observed forced response.
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3.2. Clamping nonlinearities

To further illustrate the universality of FrID, this scheme is applied to the data from the experiment shown
in Fig. 4 without magnets. While in the previous experiments, the attached magnets significantly impact
the force-deflection curve of the cantilevers, two magnets have been removed for the experiments discussed
in this section (cf. Figure 9a)6. The measured forced response curves are shown in Fig. 9b. Therein, it is
observed, that the frequency at which the maximal response amplitude occurs changes with the excitation
level. This characteristic can only be observed for nonlinear structures.
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Figure 9: Clamping nonlinearities: (a) Mounted cantilever without magnets at the tip and on the opposite side at the frame.
(b) Measured (markers) and simulated (solid lines) forced response curves as well as the conservative nonlinear mode (CNM,
dashed gray line).

After applying FrID to the forced response curve with the maximal excitation level, the result is the
oscillatory system

q̈ + cq̇ + νq2q̇ + kq + k3q
3 + k5q

5 = f cos(Ωt), (25)

with the parameters

c = 4.2 ν = 7.13, k = 84748.84, k3 = −6042.78, k5 = 2424.39, f = 821.77, (26)

wherein the strain gauge signals have been non-dimensionalized by dividing with the constant α = 1.7266 ·
10−4 V. To this end, polynomials of order five are included in the expansion (2), the error tolerance ε is set
to 0.5%, and three harmonics are kept in the Fourier expansion (5) within the FrID algorithm. Moreover,
in Tab. 7, the authors provide an overview of the model selection procedure leading to the final model (25)
with the parameter values (26).

The simulated forced response curves are shown in Fig. 9b. For the excitation level of 1.0 V, the forcing
amplitude f is set to 410.89(= 821.77/2) and for the excitation level of 1.5 V, the forcing amplitude is set
to 616.33(= 821.77/2 · 1.5). The forced response curves obtained from the simulations are found to agree

6Admittedly, this experiment stems from an attempt to first verify FrID’s performance with response measurements of a
linear oscillator.
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Table 8: Overview of the forward stepwise selection leading to model (25).

Iteration 1 2 3 4 5 6 7

Included term q q3 f (−1) f (1) q̇ q2q̇ q5

Relative residual error 0.03 0.021 0.018 0.014 0.007 0.005 0.005

Omitted terms: q2, qq̇, q̇2, q̇2q, q̇3, q4, q3q̇, q2q̇2, qq̇3, q̇4, q4q̇, q3q̇2, q2q̇3, qq̇4, q̇5.

well with the measurements. Moreover, conservative nonlinear modes for the model are calculated with the
continuation package coco [80]. These nonlinear modes align well with the response maxima, which further
illustrates the universality and extrapolation capabilities of the identified model (25).

The frequency at which the maximal response occurs decreases with increasing excitation level (cf.
Fig. 9b). Between the excitation levels 1.0 V and 1.5 V, the response peak shifts by approximately 0.3 Hz
whereas from 1.5 V to 2.0 V, a shift by only 0.1 Hz is observed. Thus, the softening trend decreases at higher
amplitudes. This behavior is denoted as softening-hardening characteristics and is also observed in similar
experiments (e.g., [90, 91]). The initial softening can be related to micro-slip in the bolts [92, 93], whereas
the hardening could stem from geometric effects of beam bending [8]. Although this softening-hardening
behavior is directly not discernible from a single response curve, with FrID, one remarkably identifies a model
accurately reproducing this characteristic from a single response curve. In the model (25), the negative cubic
spring coefficient k3 captures the initial softening, and a positive quintic spring coefficient k5 captures the
hardening behavior at higher amplitudes.

The main source of the damping in the experimental arrangement shown in Fig. 9a is the clamp. While
it could be idealized as a clamped boundary, a characterization as a bolted joint is more realistic. Bolted
joints generally induce nonlinear damping effects, which are accurately captured in the model (25). The
FrID scheme includes the linear damping coefficient c and a nonlinear damping of the form q2q̇. Also, in
the experiments with attached magnets from the previous Section 3.1, either linear or nonlinear damping
terms of the form q2q̇ are included (cf. the models (22), (23), and (24)). Hence, it can be concluded that
the damping is most accurately described by including both terms. In some experiments, the effects of the
linear or the nonlinear damping term are negligible, and thus, the corresponding term is eliminated during
the identification process.

3.3. Joint nonlinearities

As a final demonstration, the FrID scheme is applied to the external data set [78] containing response
measurements of a structure with a bolted joint. The application of FrID to this external data set further
illustrates the universality and flexibility of the proposed identification routine.

Many engineering structures feature joints and often these joints have a severe impact on the structure’s
dynamics [94–96]. This importance motivates many researchers to investigate jointed structures. Amongst
them, Jin et al. [90] perform a series of shaker experiments on a structure, which consists of two beam halves
jointed together by three bolts (cf. Figure 10a). The assembly is 28.35 inches long, 0.5 inches thick, and 1
inch wide. This experimental set-up is a modification of a beam investigated by Brake, Schwingshackl, and
Reuss [97] and more details can be found in the associated literature [90, 98]. The published free response
data [78] has been extensively used for system identification, whereas the forced response data has been less
studied. To the best of the author’s knowledge, no equations of motion have been identified.

The external measurements [78] have a number of differences compared to the response data utilized in
the previous sections (Sections 3.1 and 3.2). Most importantly, the data [78] contains only measurements of
the first harmonic. Hence, only those data can be employed for fitting and the Fourier expansions (4), (6),
and (7) are terminated after one term retaining only the equations for K = 1 and K = −1. Moreover,
polynomials up to a degree of five are kept in the expansion (2) and the error tolerance ε is set to 0.15%.
On application of the FrID scheme to the forced response curves [78], the result is the model

q̈ + cq + νq2q̇ + kq + k3q
3 + k5q

5 = βf cos(Ωt), (27)
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Figure 10: System with joint nonlinearities: (a) Experimental set-up∗ (b) Measured (markers) and simulated (solid lines) forced
response curves.
∗ Figure reprinted from [98], with permission from Elsevier.

with the parameters

c = 1.63 Ns/(kg m), ν = 2 · 108 Ns/(kg m3), β = 0.5 1/kg,

k = 2.55 · 105 N/(kg m), k3 = −6.69 · 1010 N/(kg m3), κ5 = 4.63 · 1021 N/(kg m5),
(28)

which are all mass normalized7. The forward stepwise selection procedure is summarized in Tab. 9. It
is noted that the model of the beam with joint nonlinearities (27) corresponds to the identified model for
the earlier investigated clamped beam (25). This agrees with the expectation that similar physical effects,
softening-hardening behavior and nonlinear damping, give rise to the same functional form. Of course, the
individual parameters are found to differ (cf. equation (28) and equation (26)).

The simulated forced response curves are found to capture the measured response curves well. Some
discrepancies for the highest and lowest forcing amplitudes are noticeable. These differences can be related
to two facts. First, within the numerical simulations, the forcing amplitude was kept constant according
to the nominal values (f = 0.2, 0.5, 1, 1.5 N), whereas in reality, the forcing amplitudes are not constant
and vary up to 30 %. Furthermore, only the amplitudes and phases of the first harmonic are available for

7With the modal mass of m = 1.55 kg reported in [90], the equation (27) and the parameter values (28) can be rewritten
such that equation (27) is a force balance equation.
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Table 9: Overview of the forward stepwise selection leading to model (27).

Iteration 1 2 3 4 5 6 7

Included term q f (−1) f (1) q2q̇ q̇ q5 q3

Relative residual error 0.01 0.008 0.006 0.003 0.002 0.002 0.001

Omitted terms: q2, qq̇, q̇2, q̇2q, q̇3, q4, q3q̇, q2q̇2, qq̇3, q̇4, q4q̇, q3q̇2, q2q̇3, qq̇4, q̇5.

fitting. With such data, the FrID scheme cannot be used to identify even polynomials (e.g., q2, q̇q, or q̇2),
which could, however, be present. Incorporating richer measurements could enhance the accuracy of the fit
further. Nevertheless, the simple and interpretable model (27) accurately captures the forced response data
(cf. Fig. 10b).

As an alternative to FrID, the recently introduced data-driven system identification tool SSMLearn [99]
could be employed to derive a model for the forced response of the jointed structure. However, as the
developers of this algorithm admit, SSMLearn is limited to weak forcing, and currently, cannot model the
forced response data of the jointed structure shown in Fig. 10 [100]. On the other hand, the FrID-model (27)
can be used to accurately capture the forced response data [78] (cf. Fig. 10b).

4. Concluding Remarks

In this article, an automated identification procedure to determine sparse governing equations of non-
linear oscillators from forced response measurements has been presented and experimentally validated. The
approach relies on an expansion of steady state measurements in the frequency domain and an approximation
of the internal forces with an abundance of library functions (cf. equation (2)). As a result, one obtains
equations linear in the unknown parameters, which can be found by minimizing the least squares residual.
To increase the robustness, extrapolation capabilities, and interpretability of the obtained equations, three
essential steps are performed. First, the noise floor is estimated from the measurements and coefficients
below the noise floor are truncated. Subsequently, approximate linear dependencies are removed, and only
terms reducing the residual significantly are included in final equations of motion. Within these steps the
abundance of library functions is reduced and spurious terms from the identified equations of motion are
removed. As a result, this procedure yields basic and robust governing equations of nonlinear oscillators.

All aforementioned steps are assembled in the automated MATLAB package FrID8, which is then applied
to a variety of forced response measurements. In these experiments, geometry, as well as, magnets (cf.
Section 3.1), clamps (cf. Section 3.2), and joints (cf. Section 3.3) induce nonlinearities. Additional to
single-degree-of-freedom systems, two- and three-degree-of-freedom systems, including one with an internal
resonance are considered. For all these systems, the FrID scheme is found to be reliable in identifying robust
and interpretable governing equations. The simulated forced response curves of these models match well with
the measured steady state responses. For the obtained measurements, the FrID scheme is found to outperform
the competing equation discovery tools SINDy [59] and SSMLearn [99]. Thus, the developed scheme opens
up the opportunity to reliably identify nonlinear oscillators from frequency response measurements, and
thereby, provides a robust basis to extend modal testing to nonlinear structures.

The FrID scheme can only benefit from application to as many forced response measurements as possible.
Such applications could in turn inspire, for example, alternative simplification routines (cf. Section 2.4.3),
weighted norms for the least squares fit and other application specific modifications. Structures with stops
or clearances could be an interesting application for FrID. Since such systems are commonly modeled by
utilizing non-smooth functions, it will be crucial to assess the capabilities of polynomials to fit the forced
response, and possibly, include more appropriate library functions in the model (2). Moreover, joints and

8FrID is publicly available at https://github.com/tbreunung/FrID.

24

https://github.com/tbreunung/FrID


friction phenomena often require considerable modeling efforts. The macroscopic effects of such phenomena
can be captured with the FrID algorithm, which is found to yield basic, data-driven reduced order models.

Similarly, application of FrID to more structures with multiple nonlinear resonances is a natural con-
tinuation of this work. Within this article, applications to structures with two and three closely spaced
resonances as well as a structure with an internal resonance are presented. The models obtained through
the FrID scheme are found to accurately capture the forced response of the underlying structure and include
coupling between the modes. Additional structures with multiple internal resonances could be considered as
well.

To the best of the authors’ knowledge, the FrID scheme is the first system identification tool for nonlinear
oscillators based on a sparse regression in the frequency domain. While it is demonstrated that this approach
has advantages compared to an approach based on regression in the time domain (i.e. SINDy [59] and
its variants [60]) for the frequency response measurements obtained in this article, it is anticipated that
time-domain-based identification routines can be improved and that both approaches would offer unique
advantages for individual applications. Similar to modal testing for linear structures [1, 7, 69], a mutual
coexistence of methods based in the frequency domain and the time domain is expected.

The presented system identification procedure is a black-box, data-driven approach, which, to a large
extent, is agnostic to the underlying physical aspects such as sensor location, exciter location, and exciter
input in the test set-up. Of course, this black-box, data-driven approach can only yield meaningful models
if the supplied measurement data is rich enough to characterize the observed dynamics. While this is the
case for the experiments utilized in this article, in practice, sensor type, sensor placement, data-acquisition
system, and excitation location need careful consideration. While some guidelines are available for linear
modal analysis [7], less experience is available for nonlinear structures. All these aspects remain important
research directions for the identification of nonlinear structures.

Moreover, in this article, it is assumed that one measurement channel is available for each generalized
coordinate. The cases of abundant measurements (more measurements than coordinates/modes) and sparse
sensors (less measurements than coordinates/modes) could be considered in the future. Additional measure-
ments could be used for cross-validation to further improve the robustness of the obtained model, whereas
sensor placement for sparse measurements could be a further topic for research. Finally, the number of
degrees of freedom required to capture the structure’s nonlinear forced response needs to be obtained from
measurements, as it is commonly done for linear structures by using stabilization diagrams.
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A. Applying the SINDy algorithm [59] for single degree-of-freedom system studied in Sect. 3.1.1

The equation discovery tool SINDy [59] can be applied to first order systems of the form

ẋ = f(x) =

P∑
p=1

Npgp(x). ( A.1)

As equation ( A.1) indicates, SINDy [59] also relies on expansion of the unknown dynamics through a set
of library functions similar to the expansion in equation (2) and subsequent regression promoting sparsity
of the fitted equations. To utilize SINDy for the forced response data from Section 3.1.1, external periodic
forcing is added to model ( A.1), resulting in

ẋ = f(x) =

P∑
p=1

Npgp(x) +

K∑
k=1

(
f (k)s sin(Ωt) + f (k)c cos(Ωt)

)
. ( A.2)

With this modification, SINDy has the same set of basis functions as FrID and the transformation x = [q, q̇]
⊤

transform model (1) into system ( A.2). It is noted that SINDy requires the knowledge of the velocities
and accelerations, which are not recorded in the experiments of Section 3.1.1. To this end, the positions
measurements are transformed into the frequency domain (cf. equation (6)) to recover the time series of the
acceleration and the velocity. With the choice of the sparsity promoting parameter λ = 0.01, the SINDy
algorithm is found to yield the equations

ẋ1 = x2

ẋ2 = −64033.56x1 − 3.25x2 − 27910894.52x2
1 + 3168.43x1x2 + 412.05x2

2 + 10964647.35x1x
2
2 + 5457.6x3

2

− 0.048 sin(Ωt)

( A.3)

The SINDy algorithm successfully recovers the second order nature of the supplied data (cf. the first line of
equation ( A.3)) and also the values of the identified linear stiffness and damping coefficients are close to the
values identified by FrID (cf. equation (22)). The linearized eigenfrequency of system ( A.3) is approximately
40.3 Hz and within the frequency range expected from the experimental data (cf. Fig. 5a). However, some of
the nonlinear terms identified by SINDy are difficult to relate to physical sources (e.g., the term x1x2 = qq̇)
and the SINDy-model ( A.3) consists of more nonlinear terms than the FrID-model (22). To yield a sparser
model, the SINDy-parameter λ can to be increased. However, the first coefficient that would be removed is
the external forcing, when λ exceeds 0.048. This yields an unforced system with the trivial forced response
q̇ = q = 0. A simulation of the forced response of system ( A.3) yields the forced response curve included in
Fig. A.1a (cf. SINDy with decay data). The computed forced response does not match the experimentally
observed response. The main branch of the simulated forced response has significantly smaller amplitudes
than the measured values, and close to resonance, large jumps to amplitudes four times higher than the
measured values are predicted.

Attempts to increase the accuracy of the fit by allowing for more parameters in the SINDy algorithm were
unsuccessful. For example, decreasing the tuning parameter λ yields models with more nonlinear terms than
equation ( A.3). However, the additionally included terms are small and no change of the simulated response
is observed. Moreover, increasing the degree of polynomials in SINDy’s library of nonlinear functions yields
models for which the forced response escapes to infinity for the simulated sweeps.

An additional identification with the SINDy algorithm is attempted by utilizing resonance decay mea-
surements (e.g., [102]). Therein, a shaker is utilized to excite the nonlinear structure close to a resonance
maximum. Then, the excitation source is turned off and the arising free decay measurements are recorded.
The autonomous SINDy-model ( A.1) can be utilized for this type of data. In a second step, periodic exci-
tation is added to the SINDy-model to compare the results to the forced response measurements included
in Section 3.1.1.
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Figure A.1: Comparison with SINDy for the single degree-of-freedom system from section: (a) Measured and simulated forced
response curves. (b) Resonance decay measurements and fit obtained with SINDy.

For the single degree-of-freedom system from Section 3.1.1, the excitation level of 2.0 is selected to ensure
that the vibrations amplitudes shown in Fig. 5a are within the amplitude range of the resonance decay.
Then, the high amplitude vibrations close to 42.0 Hz are realized, the shaker is turned off, and the decaying
response is measured. This resonance decay measurement is shown in Fig. A.1b. When this data is used
with the SINDy algorithm, one obtains the system

ẋ1 = x2,

ẋ2 = −5.35 · 104x1 − 2.38x2 − 3.07 · 107x2
1 − 1.25 · 104x1x2 − 152.92x2

2 − 2.89 · 1011x3
1 + 5.06 · 107x2

1x2

− 8.56 · 106x1x
2
2 − 2.8 · 103x3

2 + 4.51 · 109x2
1x

2
2 + 8.5 · 106x1x

3
2 + 2.3 · 104x4

2 + 1.43 · 109x1x
4
2 + 1.12 · 106x5

2.

( A.4)

To achieve an accurate fit with the resonance decay measurements, polynomials of up to order five need
to be included in SINDy’s library of nonlinear functions. Similar to the forced case, the values of the
linear stiffness and damping coefficients are close to the values identified with FrID (cf. equation (22)).
However, the nonlinear terms identified by SINDy are significantly more complex than the terms included
in equation (22).

To emulate a forced response, single harmonic forcing is added to the second coordinate of equation ( A.4)
and the forced response is simulated. The forcing amplitude was selected so that the amplitudes of the
simulations and measurements match for an excitation frequency of 38.0 Hz. This simulated forced response
is shown in Fig. A.1a (cf. SINDy with decay data). While the low amplitude branch is captured, the
resonance peak and the high amplitude branch are completely missed. Attempts to increase the accuracy of
the simulated forced response by including more or less polynomials in SINDy’s library of nonlinear functions
or a variation of the specific parameter λ did not yield a system with a forced response curves that match
the measurement better than equation ( A.4).

The task of identifying a system from free decay measurements and then predicting a forced response is
an extrapolation (from unforced measurements to forced response). This is generally a more challenging task
than fitting on the same forced response measurements as done when obtaining the SINDy-model ( A.3) or
the FrID-model (22). In either case, starting from forced response data or resonance decay measurements,
both SINDy-models ( A.3) and ( A.4) do not capture measured forced response (cf. Fig. A.1a).

In a final attempt, the Ensemble-SINDy algorithm [60] is applied to the forced response measurements
from Section 3.1.1 and the decay measurement shown in Fig. A.1b. With Ensemble-SINDy, an ensemble of
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models are constructed by utilizing a bootstrapping technique and subsequent application of the standard
SINDy-algorithm. A final model is then obtained by taking the mean of median of coefficients of the identified
models. Unfortunately, this approach does not result in any major changes compared to results obtained
with the standard SINDy-algorithm. While the parameter values reported in the equations ( A.3) and ( A.4)
change slightly, the functional form of the equations equations ( A.3) and ( A.4) (i.e., the identified terms)
remains the same and, more crucially, the results shown in Fig. A.1 do not change. Thus, the ensemble
techniques proposed in [60] are found to be not sufficient to identify an accurate model for single degree-of-
freedom system studied in Sect. 3.1.1.
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