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Prediction of freak waves 
from buoy measurements
Thomas Breunung * & Balakumar Balachandran 

Freak or rogue waves are a danger to ships, offshore infrastructure, and other maritime equipment. 
Reliable rogue wave forecasts could mitigate this risk for operations at sea. While the occurrence of 
oceanic rogue waves at sea is generally acknowledged, reliable rogue wave forecasts are unavailable. 
In this paper, the authors seek to overcome this shortcoming by demonstrating how rogue waves 
can be predicted from field measurements. An extensive buoy data set consisting of billions of waves 
is utilized to parameterize neural networks. This network is trained to distinguish waves prior to an 
extreme wave from waves which are not followed by an extreme wave. With this approach, three 
out of four rogue waves are correctly predicted 1 min ahead of time. When the advance warning time 
is extended to 5 min, it is found that the ratio of accurate predictions is reduced to seven out of ten 
rogue waves. Another strength of the trained neural networks is their capabilities to extrapolate. 
This aspect is verified by obtaining forecasts for a buoy location that is not included in the networks’ 
training set. Furthermore, the performance of the trained neural network carries over to realistic 
scenarios where rogue waves are extremely rare.
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Rogue waves, which are waves larger than waves corresponding to an average sea state, continue to endanger 
offshore infrastructure and ships (e.g. the recently publicized incident1). Indeed, the loss of super-carriers2, 
destruction of offshore equipment3, and injuries to sailors and passengers4,5 have been linked to occurrences 
of rogue waves. Although this danger has inspired significant research efforts, the emergence of a rogue wave 
remains unpredictable.

The unpredictability of rogue waves can be underpinned by assuming that the wave formation is caused 
by a superposition of elementary waves with unknown phases. According to this popular theory, constructive 
interference of several elementary waves, which are either modelled with single harmonics or a more complex 
functions results in the formation of a large wave6–8. To observe such a superposition, the phases of the individual 
waves need to the appropriately synchronized. However, state-of-the-art, operational ocean models9,10 do not 
yield information on the wave phases. Rather, it is generally acknowledged that it is impossible to determine the 
phases of ocean waves, and rather a random distribution of the phases is assumed12. Thus, in this setting, rogue 
waves are inherently unpredictable. Indeed, phase resolving ocean wave models have been identified as being 
crucial for predicting the emergence of rogue waves13.

On the other hand, rogue waves can be formed by modulation instabilities, most prominently, the Benjamin-
Feir instability2,7,14–16. Within this mechanism, a single wave train becomes unstable under the addition of appro-
priately selected modulations. As this instability develops on a slow time scale, in principle, one could, at least in 
principle, predict the occurrence of this instability with significance advance time. However, most observations 
of the Benjamin-Feir instability are based on either simplified equations, such as the nonlinear Schrödinger 
equation and its extensions17, or idealized wave tank experiments18–20. Due to the lack of conclusive evidence 
for developing modulation instabilities under realistic conditions, the relevance of this instability for the real 
ocean has been questioned6,21,22.

Leaving aside theoretical discussions on rogue wave formation mechanisms, researchers have proposed practi-
cal approaches to forecast rogue waves. For example, average sea parameters such as significant wave height, peak 
period, and skewness have been related to rogue wave occurrences23–25. In general, the excess kurtosis can be 
most directly linked to extreme waves26,27, and this parameter is utilized within the core of an operational rogue 
wave forecast28. However, researchers have pointed out that a high kurtosis is an effect of extreme waves and this 
does not necessarily indicate causality21,23,29. Moreover, the Benjamin-Feir index can be computed from wave 
spectra26, and in principle, one can predict rogue waves caused by this instability type. However, two extensive 
analyses on available buoy data21,30 have demonstrated that all these indicators do not correlate with rogue wave 
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occurrences in practice. More recently, a data-driven strategy to forecast individual waves has been proposed and 
real-time forecasts of two rogue waves have been obtained31. However, a systematic assessment on the predict-
ability of rogue waves in terms of, for example, the forecasting horizon and accuracy, is not currently available.

In summary, it is unclear whether rogue waves are predictable at all, and hence, no rogue wave forecasting 
algorithm is available. Through this study, the authors aim to fill this gap by predicting the emergence of rogue 
waves from field data recorded with surface buoys. This represents an advancement in two major directions. 
First and foremost, from a practical perspective, these predictions pave a path to rogue wave forecasting sys-
tems that could be employed to enable safer offshore operations. Additionally, the sufficiency of current ocean 
wave measurements to predict rogue waves is investigated. Second, from a theoretical viewpoint, the presented 
investigations also shed light into the considerations about the predictability of rogue waves, and in turn, on the 
underlying rogue wave formation mechanisms.

The buoy measurements considered in this article are single point observations of the sea surface elevation as 
shown in Fig. 1. Rogue waves are predicted from such measurements as follows. Based on measurement taken 
over a duration of tdata (cf. the green frame in Fig. 1), a rogue wave forecasting system needs to decide whether 
a rogue wave will occur within the duration tadv or not. For the measurement shown at the top of Fig. 1, the 
prediction should be ‘no rogue wave will occur’ while for the time series shown in the bottom, a rogue wave 
forecasting system should issue a warning. This understanding naturally gives rise to the following classification: 
i) ‘non-rogue-wave’ samples that are wave recordings after which no rogue wave occurs and ii) ‘rogue-wave’ 
samples that are sea surface measurements preceding a rogue wave. It is important to note that for meaningful 
advance warning times tadv > 0 selected in the following, the rogue wave itself is not included in the rogue-wave 
samples. Furthermore, the focus of this approach is solely on forecasting rogue wave occurrences within the 
advance warning time tadv . Other characteristics, such as the height of the rogue wave, are not predicted, but 
could be obtained in future studies.

Fundamentally, if rogue waves are predicable, then there is a functional relationship between the waves 
that have occurred prior to the rogue wave event (i.e., inside the green frame in the bottom of Fig. 1) and the 
rogue wave event itself (cf. the red frame in the bottom of Fig. 1). If this functional relationship exists, it can be 
approximated with a universal function approximation. Thus, employing a universal function approximator can 
reveal if rogue waves are predictable.

In this work, neural networks, more specifically long short-term memory networks32, are utilized to predict 
rogue waves. With their universal function approximation capabilities33 these networks have, at least in principle, 
the capabilities to uncover any functional relationship to predict rogue waves, if such a functional relationship 
exists. This non-parametric model choice is also owed to the complexity of the oceanic environment, the sparsity 
of available buoy measurements, and the unclear formation mechanisms of rogue waves at sea, as it alleviates the 
necessity to rely on modelling assumptions. Furthermore, with the selection of neural networks, recent advances 
of non-parametric, model-agnostic, and data-driven modelling approaches in engineering and applied sciences 
are leveraged34,35.

Figure 1.   Two measurements of the sea surface elevation. While a rogue wave occurred in the time series 
shown in the bottom at about 35 min, no rogue wave emerges in the measurements shown in the top. Based on 
the recordings of length tdata (i.e., prior to the rogue wave event for the measurements shown in the bottom), a 
rogue wave forecasting system decides whether a rogue wave with an advance warning time of tadv will occur or 
not.
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Methods
The buoy data36 is utilized to parameterize neural networks for rogue wave predictions as illustrated in Fig. 1. In 
the following, the authors provide an overview of the buoy data used. Subsequently, the extracted rogue waves, 
and the utilized neural networks are detailed.

Buoy data
The data set is provided and maintained by the Coastal Data Information Program (CDIP), Scripps Institution 
of Oceanography36. In total, this database comprises measurements from 172 buoys. These buoys are either 
Datawell directional waveriders MkIII37 or Datawell directional waveriders MkIV38. Amongst other sensors, 
these surface buoys are equipped with accelerometers from which the buoy’s vertical displacement is deduced. 
After internal signal processing, for example, bandpass filtering, the buoy’s vertical displacements are sent ashore 
and stored. The sampling rates of the stored data are 1.28 Hz for the MkIII version and 2.56 Hz for the MkIV 
system. In general, these surface buoys closely follow the sea surface elevation and are commonly utilized to 
deduce the sea surface elevation. It is noted surface buoys have a tendency to avoid large wave crests through 
lateral movements39 and linearize the wave profiles40,41. Nevertheless, buoy measurements have been extensively 
validated11,39,42, and in conjunction with laser measurements, buoy measurements yield the most reliable and 
extensive rogue wave observations7.

The CDIP-buoys are primarily located near the shores of the continental US (cf. Fig. 2a) while some buoys 
are located near Pacific Islands. The buoys located in sounds and lakes are excluded in the following as this study 
focuses on the occurrences of oceanic rogue waves. More specifically, recordings from buoys with the CDIP 
identifier number 175, 177, 204, 205, 221, 230, 248, 251, and 253 are not considered. Waves measured at these 
sheltered locations differ noticeably from recordings from the open ocean. The water depths at which the ocean 
buoys are deployed vary considerably from a few meters to more than 4000 m (cf. Fig. 2b). While many buoys 
are located in shallow water, more than 20 buoy are deployed in deep water with a depth of more than 500 m. 
More information on the buoy network, including interactive maps and plotting tools can be found in36 and the 
accompanying websites.

The observation network covers a large area, and hence, buoys are usually separated by several kilometers. 
Since rogue waves are inherently localized in space and time, the spatial resolution is to coarse and irregular to 
trace the evolution of individual rogue waves. Thus, the space-time evolution of individual rogue waves cannot 
be followed in this data set. Hence, no spatial information on the rogue waves is kept and no predictions on the 
evolution of a rogue wave in space is made in the following. To realize such predictions, measurements with 
higher spatial resolution need to be considered.

The measurement starts and durations vary from buoy to buoy. In total more than 20 billion ( 20 · 109 ) sam-
ples of sea surface elevation are contained in the data set36. This sample size is equivalent to 16 million half hour 
intervals or 880 years of consecutive data. Before organizing the buoy measurements into data sets and identify-
ing individual rogue waves, this vast data set is quality controlled. The employed quality control is detailed in 
the Supplementary Material S.1).

In Fig. 3 an overview over the quality controlled wave data is provided. Therein, the intensities are plotted on 
a logarithmic scale to emphasize the tails of the distributions. The significant wave height Hs is calculated as four 
times of the standard deviation of the sea surface elevation. This significant wave height ranges from less than 
one meter to more than 10 m. Calculating the relative depth by multiplying the peak wave number kp with the 
deployment depth reveals that most wave measurements are classified as deep (55%) or intermediate water waves 
(45%). Only a marginal portion of shallow water waves is included (cf. Fig. 3a). Furthermore, the relative wave 

Figure 2.   Buoy network36: (a) Location of the ocean buoys36. Additional buoy are located near Floripa (Brazil), 
Anuu (American Samoa), Saipan (US), Guam (US), Palau (Marshall Islands) and Majuro (Marshall Islands). 
The figure was generated using MATLAB® (Version: R2021a) . (b) The mooring depth on the individual buoys 
shown in a histogram. The water depth varies from a few meters up to more than 4000 m.
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height H/Hs , defined as the quotient of the the maximal wave height H (from through to crest) within the half 
hour intervals and the significant wave height Hs , is between one and two for most measurements (cf. Fig. 3b). 
However, for some recordings larger relative wave heights H/Hs are reported. More specifically, about 1.23% of 
the half-hour measurements contain a wave with a relative wave height larger than two ( H/Hs > 2 ) and only 
0.14% contain a wave with a relative wave height larger than 2.2 ( H/Hs > 2.2 ). Those samples are characterised 
as rogue waves in the following section.

Rogue waves
After passing through the quality control (cf. Supplementary Material S.1), the 30-min long measurements are 
scanned for rogue waves. To this end, the significant wave height Hs is calculated (four times of the standard 
deviation of the sea surface elevation), and the wave heights H (from through to crest) and the crest heights ηc 
are extracted. Then, the following three rogue wave definitions 

from the literature (cf., e.g.,4,7,21,22,25,30,43) are considered. If one of the definitions (1) is satisfied, then the 
corresponding sea surface measurement is normalized by the significant wave height and stored. Therein, each 
definition is treated separately, and this yields three different collections of rogue waves. Before storing, each 
time series is shifted so that the rogue wave occurs at minute twenty-five. Since this shifting could corrupt the 
extracted rogue waves with measurements that did not pass the quality control, the shifted time series is quality 
controlled again (cf. Supplementary Material S.1). As a final check, ten percent of all saved rogue wave samples 
are randomly selected for visual inspection and no irregularities are detected. Admittedly, the authors have 
iteratively designed the quality control in Supplementary Material S1 such that only physical rogue waves remain 
in the final data sets. More specifically, starting with only the first two quality flags yields rogue waves data sets 
with the irregularities shown in Supplementary Figure S.1. Subsequently, imposing the three additional quality 
flags, based on physical insights, removes all unrealistic rogue wave recordings.

Along with the rogue wave samples, sea surface measurements without rogue wave events are stored. In 
Supplementary Table S.1 (cf. Supplementary Material S.3) the authors provide a detailed overview over the 
extracted rogue waves. For each rogue wave sample, a time series without a rogue wave from the same buoy is 
randomly selected and stored. Thereby, control times series are obtained, which differ from stored rogue wave 
samples only in the aspect that they do not include a rogue wave. The obtained data sets are summarized in 

(1a)
H

Hs
> 2.2,

(1b)
H

Hs
> 2,

(1c)
ηc

Hs
> 1.25,

Figure 3.   Overview over the extracted wave data36. The intensities are plotted in a logarithmic scale to 
emphasize the tails of the distributions: (a) significant wave height ( Hs ) versus relative depth defined as peak 
wave wave number ( kp ) times deployment depth (d). (b) Significant wave height ( Hs ) versus relative wave height 
( H/Hs).
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Table 1. This procedure yields data sets with an equal number of samples with and without rogue waves. For 
future applications, the ratio between rogue-wave samples and non-rogue-wave samples could be varied. Due 
to the large sample sizes and the random selection of the control time series, it expected that those yield a good 
representation of commonly occurring sea states in the ocean.

Comparing definitions (1a) and (1b) reveals that the rogue wave contained in the data set A are also part of 
the data set B. This is not necessarily true for the data set C, which contains rogue waves with large crest heights, 
rather than large wave heights as the data sets A and B. However, a large overlap between the data set C with the 
other two data sets is expected.

Neural networks
Traditionally, neural networks have been employed, for example, image recognition44, language translation45, 
and speech recognition46. More recently, the use of these networks has shown promising progress for challenging 
problems, such as protein folding47, global weather forecasting48, and large language modelling49. Deep neural 
networks hold the promise for approximating any functional relationship between input data and output data33, 
if enough data for parameter tuning is available and if the envisioned functional relationship exists. Hence, at 
least in principle, those can be utilized to forecast rogue waves. If successful not only a very practical rogue wave 
forecasting system can be obtained but also the predictability of rogue waves can be quantified by using field 
measurements.

Recurrent neural networks with long short-term memory (LSTM)32 are employed within this work. Initial 
attempts with alternative architectures, more specifically convolutional neural networks and transformer net-
works, yielded results inferior to the results obtained with LSTM-networks. Exploring alternative network archi-
tectures will remain an important direction for future research. Recurrent neural network have been developed 
for tasks with sequential data and feature hidden, internal states, which can be used to store the temporal history 
of the data35,46. As a distinction, LSTM-networks are designed to flexibly erase and retrain their internal states. 
Such networks have been utilized to obtain data-driven forecasts of complex systems, such as high-dimensional, 
chaotic systems50, extreme events51, and ocean waves31.

From each sample, a recording with the duration tdata is extracted. For the rogue-wave samples, this record-
ing ends tadv prior to the rogue wave event, yielding the advance warning time tadv (cf. Fig. 1). In this setting, 
the neural network is utilized to distinguish between time series before a rogue wave event and measurements 
which do not precede a rogue wave. This approach differs from common forecasting approaches31,50,51 and the 
forecasting problem has been rephrased into a time series classification task. This shift is motivated, first, by 
the high maturity of neural network architectures in classification tasks, while applications to time series data 
is comparably still less common. Moreover, from a practical perspective, it is of foremost interest to know if a 
rogue wave occurs or not. Information about the height of the rogue wave or other intermediate sea surface 
elevations are of secondary importance. Future studies could increase the forecasting content to, for example, 
also generating a prediction for the rogue wave height.

The utilized neural network architecture is illustrated in Fig. 4. First, NL LSTM-layers alternate with layers 
performing batch-normalization. Each LSTM-layer consists of NLSTM hidden units arranged in parallel. The 
batch-normalization layers scale each state to have zero mean and unit variance. These layers are followed by 
a dropout layer that is used to set every feature to zero with a probability of pD . The dropout layer have been 
designed to avoid overfitting52, which is a common issue for neural networks with many parameters53. As a final 
layer, a fully connected layer is used at the end of the network. This layer is used to reduce the feature size to the 
number of output classes (i.e., two in this paper). Moreover, a nonlinear, sigmoid activation function is included.

The output of the network is a two-dimensional probabilistic classifier with the probabilities pRW and pNRW . 
These probabilities indicate the likelihood with which the supplied sample belongs to one of the corresponding 
classes; that is, non-rogue-wave sample and rogue-wave sample. To yield a definitive prediction, the class with 
the higher probability is selected as the forecast.

Following the common procedure, the data sets are randomly split into training (64 %), validation (16 %), 
and testing (20 %) data. The testing data is reserved to evaluate the final performance of the neural network. For 
parameter tuning, only the training and validation data are used with the network. The weights of the neural 
networks are obtained via the stochastic gradient implemented within the Adam optimizer54. The learning rate 
is scheduled following the cosine-decay with an initial learning rate of 0.001. The final hyperparameter choice 
is reported in Table 2.

With the hyperparameter choice given in Table 2, the network has 3182 trainable parameters. This number 
is relatively small compared to employed neural networks for other applications. The hyperparameter selection 
has been compared to results of state-of-the-art hyperparameter tuning algorithms55 and self-programmed 
random grid searches. Those approaches can only sometimes increase the performance further, indicating that 

Table 1.   Overview of the prepared data sets.

Data set
Rogue wave
definition

Number of samples
with rogue waves

Number of samples
without rogue wave

A (1a) 19 · 103 19 · 103

B (1b) 172 · 103 172 · 103

C (1c) 27 · 103 27 · 103
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the simple choice reported in Table 2 is near optimal. Selecting these values also allows the authors to utilize a 
single network architecture in all experiments. More extensive parameter tuning studies could be an appealing 
future approach to increase the forecasting accuracy.

The networks are constructed by using Tensorflow56 (version 2.9.1) and the training is conducted either by 
utilizing a local NVIDIA Quadro P1000 GPU unit or a NVIDIA A100 GPU unit made available via the University 
of Maryland supercomputing resources.

Results
In the following, results of rogue wave forecasting are presented. In all cases, 20 min of measurements are 
made available to the neural network ( tdata = 20 min in Fig. 1), while the advance warning time is varied. First, 
perfectly balanced datasets containing an equal number of samples prior to a rogue wave and samples without 
a rogue wave are utilized to train neural networks for rogue wave forecasting. Subsequently, the extrapolation 
capabilities of the trained neural network are verified. Finally, the real ocean is emulated by considering a heavily 
imbalanced dataset, which contains a surplus of non-rogue-wave samples and only very few samples preceding 
a rogue wave.

Balanced data sets
First, the data set A consisting of about 40 thousand samples (cf. Table 1) is considered. Selecting an advance 
warning time tadv of 1 min yields the result shown in Fig. 5a. The prediction of the neural network can be that 
either a ‘rogue wave will happen’ or a ‘no extreme wave will occur’ and the combination with the the truth; that 
is, either ‘rogue wave occurred’ or ‘no extreme wave observed’, yields the following four combinations: ‘True 
positive’, ‘True negative’, ‘False positive’, and ‘False negative’.

About 3000 rogue waves are correctly predicted by the neural network (cf. ‘True positive’ in Fig. 5a), which 
is about 77% out of all rogue-wave samples (2902 out of 3757). Hence, about three out of four rogue waves are 
correctly forecast 1 min in advance. Similarly for about 2800 samples no-rogue wave warning is issued from the 
neural network, which amounts to 75 percent of all non-rogue-wave samples. The two fields ‘False negative’ and 
‘False positive’ summarize the wrong predictions from the neural network. In total, the network misses to alert 
for 855 rogue waves or equivalently about 23 percent. Similarly, in one out of four cases, network predicts an 
upcoming rogue wave although no such wave occurred in reality (cf. ‘False positive’ in Fig. 5a)

The total accuracy (percentage of correct predictions) of the trained neural network on the testing data set is 
76 percent or equivalently three out of four predictions of the neural network are correct. The 95% confidence 
interval of this binomial distribution57 is estimated to be less than 1%. About 3000 rogue waves have been cor-
rectly predicted. To the best of the authors’ knowledge, this is the most extensive rogue wave prediction experi-
ment that has been carried out with field data.

During the advance warning time safety can be enforced by, for example, seeking shelter, performing an 
emergency shutdown, or maneuvering, to minimize the impacts of an approaching rogue wave. Hence, it is of 
practical importance to maximize the advance warning time. Therefore, the advance warning time is increased in 

Figure 4.   Architecture of the utilized LSTM-network.

Table 2.   Values of the hyperparameter.

Parameter Values

Number of hidden states NLSTM 10

Number of stacked Layer NL 4

Dropout probability pD 0.05

Batchsize 32
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1-min increments. For each advance warning, time a neural network is retrained and its performance is evaluated. 
Selecting tdata = 20 min yields the maximal advance warning time of 5 min with the compiled data set, since 25 
min of sea surface elevation prior to every rogue wave are stored in the data sets (cf. Section “Rogue waves”). The 
results of these experiments are included in Fig. 5b. Therein, it is discernible that the number of correct predic-
tions remains high for all advance warning times while a decrease of the forecasting accuracy from 76 percent 
to 73 percent is noted. Generally, a declining accuracy with increased advance warning time is expected, as one 
expects a lower correlation between waves separated further in time. However, as shown in Fig. 6, this decline is 
rather gradual. This slow decay of the forecasting accuracy indicates that rogue wave predictions with advance 
warning time of multiple minutes are within the realm of possibility.

After utilizing the data set A for the forecasting experiments, the data sets corresponding to the two alternative 
rogue wave definitions (1b) and (1c) are investigated. Selecting an advance warning time tadv of 1 min yields the 
results shown in Fig. 6. For both data sets, a good portion of the upcoming rogue wave is correctly predicted: 
in total about 25.000 rogue waves for data set B (cf. ‘True Positive’ in Fig. 6a) and approximately 4000 rogue 
waves for data set C (cf. ‘True Positive’ in Fig. 6b). Moreover, 70% of the non-rogue-wave samples are correctly 
detected for the data set B, and similarly, 67% for data set C. The percentage of correct predictions is 72% for 
data set B and 69%for data set C.

The forecast accuracy for both data sets B and C (cf. Fig. 6) is less than the accuracy obtained for data set A 
(cf. Fig. 5a). More specifically, a difference of 4 percent between the accuracy for data set A and accuracy for data 
set B is observed (76 percent for data set A compared to 72 for data set B). Data set B contains data set A and is 
about ten times larger than data set A (cf. Table 1). These observations allow for the following conclusion. First, 
due to the larger size of data set B, it is expected that a network with a higher number of parameters is necessary 
to capture an underlying function distinguishing rogue-wave samples from non-rogue-wave samples. Hence, 

Figure 5.   Predictions from the LSTM-network for testing portion of the data set A ( H/Hs > 2.2) : (a) 
Confusion matrix with 95% confidence intervals for an advance warning time tadv of 1 min. (b) Variations of 
the prediction accuracies with respect to advance warning time. The shaded regions demarcate 95% confidence 
intervals.

Figure 6.   Predictions with 95% confidence intervals from the LSTM-network for testing data with an advance 
warning time tadv of 1 min: (a) Data set B ( H/Hs > 2) . (b) Data set C ( η/Hs > 1.25).
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one can explain the decreased performance with the network architecture (cf. Fig. 4) and hyperparameter choice 
(cf. Table 2). Furthermore, one could expect that the larger data set B would allow one to tune a more powerful 
network architecture with a higher number parameters. However, preliminary hyperparameter tuning with the 
architecture shown in Fig. 4 was not found to yield a significant performance increase. On the other hand, more 
data does not necessarily imply that a higher accuracy is achievable. Indeed, the additional samples included in 
data set B could diminish the differences between the two classes, and hence, could make forecasting more chal-
lenging. The presented forecasting experiments seem to suggest that a less strict rogue wave definition (compare 
definition (1b) and (1a)) impedes correct rogue wave forecasts. Indeed, the larger threshold in the definition for 
the data set A yields more extreme rogue waves (i.e., further in the tail of the wave distribution) compared the 
lower threshold for data set B. Thus, one can hypothesize that those more outstanding samples share common 
patterns or characteristics, which makes them easier to predict.

The accuracy for the data set C is less than that for the data sets A and B. Data set C is about two times larger 
than data set A, and five times smaller than data set B. A distinction of data set C is that the rogue wave defini-
tion relies on the crest height ηc compared to the wave height H (from crest to trough) for data sets A and B. 
Thus, data set is not necessarily a part of data set B (or A), although a large overlap is expected. From a purely 
data-driven perspective, one can conclude that reliance on the crest height makes rogue waves more difficult to 
predict. It is especially notable, that the percentage of detected rogue waves is comparable to that obtained for 
data set B, while a comparably high percentage of false alarms are raised (cf. ‘False Positive’ in Fig. 6b). In the 
experiments conducted in this work, it is found that the neural network tends to overpredict the likelihood of 
rogue wave occurrences.

Extrapolation—zero‑shot experiment
After successfully predicting thousands of rogue waves, the following question arises: How valuable or uni-
versal are the trained neural networks for rogue wave forecasting? In practise rogue wave forecasts should not 
be restricted to the measurement locations included in the training data, but also be valid for other locations. 
This requires one to evaluate the trained network for locations not included in the training data (i.e. zero-shot 
learning58). Now, if the rogue wave forecasting function approximated by the trained networks is truly universal, 
then this approximation should also carry over to locations not contained in the training data. In general, as 
neural networks are poor extrapolators, it is not self-evident whether the rogue wave forecasts obtained in the 
preceding section are useful for any locations other than the buoy locations contained in the training data (cf. 
Fig. 2). However, if the training data is extensive enough and comprises all typical sea states, then data stemming 
from a new buoy location could be similar enough to the training data such that the neural network’s predic-
tions are accurate for the new buoy location as well. In this case, the trained neural network would indeed be a 
universal rogue wave predictor. The prepared buoy data36 consists of thousands of rogue waves (cf. Table 1) and 
millions of non-rogue waves, which, in principle, could enable universal rogue wave forecasts.

To test the universality of the neural networks, the forecasting experiments presented in the preceding section 
are repeated while excluding one buoy from the data set. More specifically, all measurements from CDIP Buoy 
067 are removed from the data set A. Then, a neural network is retrained on the remaining buoy data (excluding 
Buoy 067), and rogue wave predictions are made for the measurements from Buoy 067. Buoy 067 is located near 
San Nicholas Island off the coast of Los Angeles (cf. Fig. 7a). The water depth at this location is 315 m. In total, 
331 rogue waves with a wave height exceeding the significant wave height by a factor of 2.2 ( H/Hs > 2.2 ) were 
detected at this location. These rogue waves and corresponding non-rogue-wave samples are excluded from the 
training data utilized to parameterize the neural network. The distance from the location of Buoy 067 to the next 
nearest buoy is about 30 km. Due to this large separation, the individual waves measured with Buoy 067 differ 

Figure 7.   Extrapolation of the LSTM network to Buoy 067: (a) Location of the CDIP Buoy 067. The Figure was 
generated using MATLAB® (Version: R2021a). (b) Predictions with 95% confidence intervals from the neural 
network for the Buoy 067.
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from the recordings of the other buoys in the network. Hence, no knowledge of the specific sea surface elevation 
at this measurement location is available to the neural network while training.

For an advance warning time tadv of 1 min, the neural network is found to show the same performance on 
the remaining buoy data as discussed in the preceding Section “Balanced data sets”. Now, evaluating the neural 
network on the measurements from Buoy 067 yields the forecasts shown in Fig. 7b. In total, 251 out of the 331 
rogue waves are correctly predicted by the neural network. The same number of correct predictions is obtained 
for the non-rogue-wave samples. The percentage of accurate predictions is comparable to the performance on 
balanced data set (cf. Fig. 5a).

To further investigate the network’s extrapolation capabilities, the zero-shot experiment is repeated for two 
additional buoys. For a second trial, Buoy 132, located on the eastern shore of US close to Jacksonville, Florida, 
is selected. The deployment depth is 15 m that is significantly more shallow than the water depth for Buoy 067 
(315 m). The distance from Buoy 132 to the nearest buoy included in the data set is about 80 km. As a final trail, 
Buoy 166 is selected. This buoy has not only the deepest deployment depth of the data set (4254 m), but is also 
extremely remotely located in the Pacific. The nearest buoy included in the data set is more than 900 km away 
from Buoy 166. For both experiments, the shallow water Buoy 132 and the extremely remote Buoy 166 in deep 
water, the network’s forecasting accuracy is 75% (cf. Supplementary Fig. S.2 in Supplementary Material S.2).

In summary, the extrapolation experiments for all three locations; that is, deep water buoy at the US west 
coast, shallow water buoy at the US east coast, and a remote buoy in the Pacific, yield a comparable accuracy to 
the forecast accuracy when measurements from these locations are included in the training data. This exem-
plifies the extrapolation capabilities of the trained neural network. Based on the conducted experiment, the 
approximated functional relationship between waves preceding a rogue wave and the rogue wave event does 
indeed seem universal.

Unbalanced data sets—employment in the real ocean
In the two preceding sections, the performance of neural networks to forecast emerging rogue waves is demon-
strated with perfectly balanced data sets containing an equal number of rogue-wave and non-rogue-wave samples. 
However, in reality, rogue waves are rare and non-rogue-wave samples prevail. This observation stimulates the 
following question: How do neural network approaches perform in a more realistic setting when non-rogue wave 
samples are dominant in the data collected? To answer this question, an unbalanced data set emulating realistic 
conditions at sea is considered.

The neural network for rogue wave prediction can be trained offline before employment of the system. Hence, 
during training, the ratio between rogue-wave and non-rogue-wave samples can be arbitrarily controlled and 
it does not necessarily need to represent the ratio observed in the real ocean. In the following, the training data 
is selected to be perfectly balanced, which allows to utilize the neural network trained in the Section “Balanced 
data sets”. In general, the ratio that maximizes the forecasting system’s performance would be most favorable. This 
optimization is remains an important aspect to explore in future studies. Once employed, the ratio is determined 
by the condition at sea and cannot be arbitrarily controlled. Therefore, the testing data for the neural network 
needs to contain a vast majority of non-rogue wave samples to emulate the real ocean.

To emulate realistic conditions at sea, the testing portion of data set A is enriched by 2.8 million non-rogue-
wave samples. This number corresponds to twenty percent of all 14 million quality controlled 30-min long time 
windows obtained from the buoy data36. Thereby, only 0.14 percent of the samples in the testing data are rogue-
wave samples (equal to 3800 rogue-wave samples). After evaluating the trained neural network for an advance 
warning time tadv of 1 min on the enriched testing data set, the result shown in Fig. 8 is obtained. Therein, the 
number of correctly predicted and missed rogue waves is the same as in Fig. 5a. This is to be expected since the 
rogue wave samples and trained neural network are the same.

Figure 8.   Predictions and confidence intervals from the LSTM-network for unbalanced testing data with a 
realistic ratio of rogue-wave samples to non-rogue-wave samples.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16048  | https://doi.org/10.1038/s41598-024-66315-3

www.nature.com/scientificreports/

For the non-rogue-wave samples, the neural network is found to overwhelmingly correctly predict no upcom-
ing rogue waves. The percentage of ‘True Negatives’ is similar to that seen in Fig. 5a, while the absolute number 
is significantly higher. This indicates that the performance of the neural networks trained with balanced data 
sets carries over to realistic conditions with an overwhelming majority of non-rogue-wave samples. Hence, 
the neural networks trained in the Section “Balanced data sets” can be readily employed in realistic condition 
without sacrificing accuracy.

From Fig. 8, one can also discern that for such unbalanced data sets the total prediction accuracy, defined as 
the number of correct predictions divided by the number of all predictions, is not a good performance metric 
to maximize. The total accuracy from Fig. 8 is about 75% . This performance is easily exceeded by the trivial 
prediction ‘no rogue wave will occur’ for all samples, which yields a total accuracy of 99.86%. However, this 
prediction does not capture a single rogue wave, and hence, this is not a useful rogue wave predictor. For the 
balanced data sets discussed in the Sections “Balanced data sets” and “Extrapolation—zero-shot experiment”, 
this issue does not arise.

Discussion
In the preceding section, thousands of rogue waves are predicted from buoy data. More specifically, neural 
networks were found to be able to predict three out of four rogue waves minutes in advance. The trained neural 
networks are found to extrapolate well to new buoy locations, indicating the universality of the approximated 
forecasting function. Moreover, the performance of the neural networks is found to carry over to realistic con-
ditions with an abundance of non-rogue-wave samples. These encouraging results deserve further discussion.

The correct predictions of thousands of rogue waves from measurement are unprecedented in the literature, 
and as such, demarcates a significant step towards reliable rogue wave forecasting. However, the fact that about 
three out of four rogue waves are predicted also implies that one out of four rogue waves is not predicted and 
that a significant number of false alarms are issued (cf. Fig. 8). For an operational system, this accuracy has to be 
increased further. To this end, the data-driven approach taken can be altered by employing more powerful neural 
network architectures. For example, transformers with multi-head attention59 or encoder-decoder networks60 
could be utilized. However, it needs to be noted that these network architectures come with a higher number of 
parameters, and usually more data is necessary for training. To this end, de-spiking algorithms (e.g.64) could be 
employed to remove spikes detected in the quality control rather then discarding the corresponding measure-
ment (cf. Supplementary Material S1). This could increase the number of detected rogue waves. If the growing 
data set36 does not suffice, then alternative ocean wave measurements need to be obtained.

Moreover, the fact that three out of four rogue waves are predicted sheds light on the answer to the following 
basic question: Is the occurrence of a rogue wave predictable? Based on the current work, one can state that some 
rogue waves are predictable but this does not conclusively rule out the theory of superposition of elementary 
waves with random phases7 implying unpredictability of rogue waves. Indeed, theoretically, a portion of the 
missed rogue waves could be generated by this mechanism. To further investigate the generation mechanisms 
of rogue waves, one could dissect the rogue wave data set (cf. Table 1) into rogue waves that seem predictable 
and the remaining extreme waves which are not predicted by the neural network. A subsequent analysis could 
reveal fundamental differences between the two postulated rogue wave types and help to refine the rogue wave 
definitions as pointed out in reference21.

The data-driven approach presented draws its power from its model agnostic generality and the universal 
function approximation capabilities of the utilized neural network. Besides rogue wave predictions, no direct 
physical insights are gained, at first. However, future studies could lead to more physical insights. For example, 
information about the water depth, wind speed, or buoy location could be supplied to the neural network and 
the impacts of these parameters on the forecasting accuracy can be observed. Especially, supplying wind speed 
seems a promising direction, as it is generally acknowledged that wind is a key factor for the generation of ocean 
waves12. Moreover, tools and procedures from explainable or interpretable artificial intelligence could be utilized 
to gain further insights into the forecasting function approximated by the neural network. Indeed, decision 
trees61, saliency methods62, or integrated gradients63 have been used to explain deep neural networks for time 
series classifications. An application of these methods to the trained neural networks could reveal additional 
insights into the physical mechanisms of rogue wave formations.

The buoy data utilized in this study are single point observations and it is quite remarkable that with such 
limited information accurate forecasts are possible. Since waves travel in space, it is expected that a rogue 
wave predicted for a certain location will also be observed for other locations in the direction of travel. Hence, 
incorporating spatial observations of sea surface elevation into this data-driven approach would most likely 
significantly increase the forecasting accuracy as well as the advance warning time. Moreover, one could also 
capture application scenarios, where a warning from a sensor (buoy or optical measurement system) could be 
issued for a location (i.e., a ship or offshore platform) located nearby. Thus, enriching the presented approach 
by incorporating spatial information is an appealing future direction of research. To this end, a large number of 
quality-controlled sea surface measurements with a high-resolution in space and time are required. However, 
due to the difficulties measuring ocean wave at sea11 quality controlled and highly sampled measurements of 
ocean waves remain limited.

In the work presented, the neural networks have been trained to answer the following fundamental question: 
Will a rogue wave occur in tadv minutes? The question is simplified as much as possible to increase the forecasting 
success of the neural network. Therein, the underlying assumption is that a simpler question implies a simpler 
function for the neural network to approximate. If one were to obtain information about the height as well as 
impact time of the upcoming rogue wave, that information would also be of relevance in practice. To this end, 
one could utilize the data prepared in this article to forecast the heights of upcoming rogue waves. Moreover, 
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one could also prepare the data sets to predict the time when a rogue wave occurs. While these ideas can spur 
promising future directions, it needs to be pointed out that more information that is desired will only make 
forecasts more challenging in all likelihood. Undoubtedly, more data will be required for parameter tuning of 
more powerful neural networks.

Concluding remarks
In this study, impending freak or rogue waves are predicted from buoy data. The publicly available buoy data36 is 
scanned for rogue waves and thousands of 30-min long windows containing a rogue wave are extracted. Subse-
quently, ocean waves prior to the rogue wave event are extracted. These measurements are paired with recordings 
of equal length without rogue waves. Subsequently, an LSTM-network is utilized to distinguish between the two 
classes, namely, (i) waves preceding a rogue wave and (ii) waves not immediately followed by a rogue wave. This 
network is then used to predict rogue waves.

For an advance warning time of 1 min, three out of four (= 75%) rogue waves with a wave height exceeding 
the significant wave height by a factor of 2.2 ( H/Hs > 2.2 ) are predicted with the considered neural network. 
With an increase in the advance forecasting time, the accuracy of the rogue wave forecast is found to decrease. 
For example, for an advance forecasting time of 5 min, the neural network predicts only 73% of the supplied 
rogue waves. Similarly, altering the rogue wave definition by lowering the threshold ( H/Hs > 2 ) or considering 
the crest height ηc ( ηc/Hs > 1.25 ) is found to slightly lower the forecast accuracy.

Additionally, the extrapolation capabilities of the trained neural network are tested, and it is demonstrated 
that the neural network extrapolates well to new buoy data. Indeed, withholding all measurements of specific 
buoys (i) deep water buoy of the coast of Los Angeles, (ii) shallow water buoy of the east coast of Florida, and 
(iii) a remote buoy in the Pacific) and subsequently testing the network’s performance on the withheld data also 
yields an accuracy of about 75% . This suggests that the trained neural network can serve as a rogue wave warn-
ing system for alternate locations. Moreover, this also indicates the universality of the approximated rogue wave 
prediction function. Finally, it is demonstrated that the performance of the neural network trained on balanced 
data sets with an equal number of rogue-wave samples and non-rogue-wave samples carries over to a real ocean, 
where a much higher percentage of non-rogue-wave samples is observed.

As discussed, future studies could improve the accuracy and advance warning time of this data-driven 
approach by, for example, by employing more powerful neural networks, supplying more physical information, 
or incorporating spatial wave measurements. To this end, more data will most likely be necessary to parameterize 
networks with a higher number of parameters and new sources with higher spatial resolution are required. It is 
expected that such approaches can improve the prediction accuracies obtained in this work.

Furthermore, despite the black-box character of the presented data-driven approach, physical insights can be 
gained. Within this work, it is clarified that rogue waves are to a large extent predicable with an advance warning 
time of a few minutes. Moreover, by systematically supplying or withholding information for the neural network, 
the importance of physical parameters for rogue wave predictions could be explored further. In addition, tools 
from explainable artificial intelligence could be used to study the parameterized networks in depth. Therein, it 
will be beneficial that the trained network consists of only about 3200 trainable parameters, which is a relatively 
low number compared to many state-of-the-art neural networks. Given that a freak wave or a rogue wave in the 
ocean is an example of extreme event, it is conceivable that the findings from the present work could also be 
utilized for predicting the occurrence of other extreme events in, for example, combustion processes65, seismic 
activity66 and possibly, climate67 based on observations.

Data availability
The ocean buoy data is publicly available36. All scripts, including the trained neural networks are publicly available 
at https://​github.​com/​tbreu​nung/​Freak-​wave-​forec​asting. The data sets compiled and prepared are available at 69.
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