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A B S T R A C T
Reliable ocean wave forecasts are critical for reducing the risk posed by extreme waves for ships and
offshore infrastructure. Despite insights gained from theoretical investigations and constantly improv-
ing operational wave forecasting systems, the emergence of extreme waves remain unpredictable. In
this article, the authors propose a data-driven modeling approach to generate high resolution wave
forecasts for capturing individual waves, including rogue waves. To this end, a decomposition of
the sea surface into a set of rapid oscillations and slowly varying amplitudes is utilized. The slow
amplitude variations are subsequently forecasted by using universal, data-driven methods. In this
approach, the extrapolation range of the data-driven techniques is extended by the slowness of the
amplitude variations. The method’s capabilities are demonstrated by using available measurements
from an experimental wave tank and field data from ocean buoys.

1. Introduction
Ocean wave forecasting and rouge wave1 predictions in

particular are of paramount importance for the safety of
maritime operations and infrastructure in the ocean. Such
extreme waves continue to endanger ships, damage offshore
structures, and cause serious injuries to sailors (Didenkulova
et al., 2006; Dysthe et al., 2008; Kharif and Pelinovsky,
2003).

Modern, operational ocean wave forecasting systems
rely on ocean wave spectra (Komen et al., 1996). Two well-
known examples are the WAM model (The Wamdi Group,
1988) and Wavewatch III (Tolman, 1991). These models can
yield accurate predictions over multiple days and can provide
a globally consistent picture (Janssen et al., 2005). The core
of such models is an action balance equation governing
the time evolution of the wave spectra. The action balance
equation can be parameterized in various forms to include
numerous physical effects such as wind input, dissipation,
and nonlinear wave interactions (Cavaleri et al., 2007). Espe-
cially, the nonlinear wave interactions have been identified as
a crucial driving mechanism for wave growth (Hasselmann
et al., 1973). A parameterized form of the resonant four-
wave interactions (Hasselmann, 1962) is commonly used to
model wave interactions in spectral wave models. However,
a scaling analysis indicates that these terms do not capture
the Benjamin-Feir instability (Janssen, 2003), a prominent
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1Rogue or freak waves are individual waves that are significantly

higher than the surrounding waves. Mathematically, rogue waves have been
defined as waves with a crest height 𝜂𝑐 exceeding the significant wave height
𝐻𝑠 by a factor of 1.25 (𝜂𝑐∕𝐻𝑠 > 1.25) (Haver, 2000; Dysthe et al., 2008).
Further, 𝐻𝑠 is defined as four times the standard deviation of the surface
elevation. Alternative criteria relate the wave height 𝐻 (measured from
trough to crest) to the significant wave height (Haver, 2000; Dysthe et al.,
2008).

candidate for explaining the formation of extreme waves.
More importantly, the action balance equation is parame-
terized to govern waves spectra with a spatial resolution
of several kilometers and time steps ranging hours. This
coarse model resolution fundamentally limits the use of
these spectral models to resolve individual waves such as
rogue waves, which are inherently localized in time and
space. Finally, with these spectral wave models, one can not
resolve the phase of ocean waves, which are necessary for
the prediction of individual waves (Alam, 2014).

A more detailed picture on individual waves can be
obtained from tools developed for computational fluid dy-
namics. For example, higher order spectral methods (Toffoli
et al., 2010; Bitner-Gregersen et al., 2014), boundary ele-
ment methods (Fochesato et al., 2007), smoothed particle hy-
drodynamics (Chakraborty and Balachandran, 2021), or har-
monic polynomial cell methods (Zhao et al., 2020) have been
used to study and model extreme waves. Therein, researchers
consider idealized scenarios, such as modeling an experi-
mental wave tank or a periodic domain. These idealizations
impede straightforward extensions of such computational
results to the real ocean. Despite the development of fast
numerical solvers and efficient utilization of computational
resources, resolving a sizable part of an ocean under realistic
condition remains currently infeasible with tools from com-
putational fluid dynamics. Furthermore, the computational
times even for small, idealized domains remain significant.
Hence, real time forecasts cannot be obtained.

Another frequent starting point to study ocean waves is
the classical analysis of Stokes (Stokes, 1880). A pertur-
bation expansion of Stokes’ solution can lead to the non-
linear Schrödinger equation (Kharif and Pelinovsky, 2003;
Farazmand and Sapsis, 2019). For certain boundary condi-
tions (e.g. periodic domain), this equation can be solved in
closed form via the inverse scattering transformation (Os-
borne, 2002). Besides classical soliton solutions (Ablowitz
and Clarkson, 1991), many other solutions featuring ex-
treme waves have been found (Chabalko et al., 2014; Moitra
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et al., 2016). Moreover, further extensions of the nonlinear
Schrödinger to include higher order terms have been pro-
posed (Dysthe, 1979). Recently, a stochastic phase model
has been proposed (Birkholz et al., 2016; Wang and Bal-
achandran, 2018), which can accurately reproduce a-priori
known extreme waves. These analysis can lead to impor-
tant insights into rogue wave formations. For example the
Benjamin-Feir instability (Benjamin and Feir, 1967; Yuen
and Lake, 1980), linear focusing, and wave-current interac-
tion can be used to explain the occurrence of an extreme
wave (Kharif and Pelinovsky, 2003). Within these models,
however, assumption such as unidirectionality, stationarity,
or a narrow band process are made, all of which do not hold
in reality. Thus, the applicability of such models to realistic
scenarios remains limited. Indeed, two recent extensive data
analysis on buoy data (Cattrell et al., 2018; Häfner et al.,
2021) reveal that classical rogue wave indicators such as
the Benjamin-Feir index (Mori et al., 2011), which has
been designed to indicate the aforementioned Benjamin-Feir
instability, poorly correlate with rogue wave occurrences.

A plethora of data-driven methods have been proposed
and utilized to analyze general time series. Their application
to fluid mechanics has been recently summarized (Brunton
et al., 2020). Methods such as singular spectrum analysis
(SSA) (Vautard and Ghil, 1989) or linear embeddings via a
dynamics mode decomposition (DMD) (Schmid, 2010) are
based on delay embedding or the trajectory matrix (Broom-
head and King, 1986). A theoretical underpinning of such
approaches can be the Koopman operator (Rowley et al.,
2009). Similarly, recurrent neural networks (Goodfellow
et al., 2016), temporal convolutional neural networks (Lea
et al., 2016) and, recently, transformers (Vaswani et al.,
2017) are appealing black box models for general time
series forecasting. In essence the promise of such approaches
is to approximate any arbitrary input-output relationship
given that enough data for parameter fitting is available.
While the aforementioned approaches are fundamentally
interpolative, forecasting requires extrapolation. Hence, the
applicability of such methods for wave forecasting remains
unclear. While a recurrent neural network has recently been
utilized to forecast rogue waves (Kagemoto, 2020, 2022),
within this approach only the crest heights and trough depth
are forecasted but no information when a wave occurs is
provided. Moreover, the forecast range is not specified and
it unclear whether this approach can yield forecasts in real
time. Moreover, due to their black-box character only limited
insights on the physical driving mechanisms for extreme
wave formation can be obtained.

In summary, available ocean wave models are designed
for time and length scales larger than individual extreme
waves, whereas tools from computational fluid dynamics
remain too expensive to generate meaningful forecasts. Sim-
plified equations on the other hand seem not to capture
the physics leading to rogue waves in realistic scenarios.
Moreover, black-box data-driven methods suffer from lim-
ited interpretabilty and poor extrapolation capabilities.

To overcome some of the aforementioned shortcom-
ings and enable wave forecasting with a high temporal
resolution2 on intermediate time scales, the authors com-
bine the strengths of established ocean waves models with
recent data-driven methods. To this end a decomposition
of the ocean surface elevation into rapid oscillations with
slowly varying amplitudes is utilized. The time variations of
the amplitudes are subsequently forecasted by fitting linear
auto regressive models via a dynamic mode decomposi-
tion (DMD) (Schmid, 2010) and recurrent neural networks
with long short-term memory cells (LSTM) (Hochreiter and
Schmidhuber, 1997). The decomposition into slowly varying
amplitudes, in turn, extends the extrapolation range of the
data-driven methods utilized to forecast the time varying
amplitudes. The approach’s capabilities to accurately fore-
cast ocean waves in realistic scenarios are demonstrated by
applying it to measurements from an experimental wave
tank (Eeltink, 2022) and available buoy data (CDIP Buoy
data, 2022).

2. Methods
Only a few measuring systems can be used to accurately

capture individual waves, in particular, rogue waves (Dysthe
et al., 2008) and the methods within this article are developed
and tested keeping the current limitations and challenges
of measuring ocean surface elevations in mind. Arguably
the most accessible and best controlled recordings of sea
surface elevation are single point observations stemming
from surface buoys. Therefore, the following developments
focus on this type of measurements. However, the proposed
methodology can, at least in principle, be extended to incor-
porate spatially distributed observations.

The real time ocean wave forecasting methodology pro-
posed consists of three main steps. These steps are sketched
in Figure 1. At first, a wave model is fitted to the recorded
data. Within this model, the ocean surface elevation is de-
composed into rapid oscillations with a slowly varying spec-
trum. The wave model is described and motivated in Sec-
tion 2.1 and the fitting procedure is detailed in Section 2.2.

The slowly varying amplitudes are then forecasted with
data-driven methods. Therein, the extrapolation capabilities
of the black-box, data driven methods are extended by the
gradual nature of the amplitude variation. These data-driven
forecasting methods are described in Section 2.3.

Finally, the extrapolated slowly varying amplitudes are
synthesized to yield real time forecasts of the sea surface
elevation. Therein, the computational time spent to generate
forecasts diminishes the effective forecasting horizon. To

2To resolve extreme waves, the temporal resolution needs to be fine
enough to capture individual waves. Thus, for ocean waves, which are
primarily observed within the frequency band between 0.02 Hz and 0.6
Hz (Hasselmann et al., 1973), the sampling rate should be higher than
1.2 Hz. Indeed, the buoy data (CDIP Buoy data, 2022) utilized within
this manuscript stems from Datawell directional wave riders (Datawell
B.V., 2020), which generate recordings of the ocean surface elevation at
a sampling rate of 1.28 Hz.
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Figure 1: Sketch illustrating the three main steps involved for real time ocean wave forecasting. In the bottom the measured sea
surface elevation is shown in blue, while the forecast is shown in red.

minimize this time, a multi-step procedure enabling real time
forecasts of ocean waves is described in Section 2.4.
2.1. Wave Model

Harmonic functions are natural candidates to model the
everlasting recurrence and shapes of ocean waves. Indeed,
Stokes’ classic perturbation analysis (Stokes, 1880) of the
Bernoulli equation for irrotational flows with a free surface
leads to waves expressed in terms of harmonic functions.
In the same vein, wave spectra (The Wamdi Group, 1988;
Tolman, 1991) prescribing the amplitudes and frequencies
of ocean waves are central to the state-of-the-art opera-
tional wave forecasting systems. In such models, ocean
waves are separated into rapid oscillations (frequencies) and
slowly varying spectrum (amplitudes) (Komen et al., 1996).
This separation of time scales is motivated by theoretical
considerations (Hasselmann, 1962; Komen et al., 1996)
and can be confirmed by field observations (Hasselmann
et al., 1973) indicating that the spectrum varies slowly in
time and space. Similarly, analyses leading to the nonlinear
Schrödinger equation and associated extensions (Kharif and
Pelinovsky, 2003; Farazmand and Sapsis, 2019; Dysthe,
1979) are based on slowly perturbed harmonic waves. For a
single point, fixed observer all of the aforementioned mod-
eling approaches and field observations can be summarized

in the form of the following wave model

𝜂𝑓 (𝑡) =
𝑁
∑

𝑛=1

(

𝑢𝑛(𝜀𝑡) cos(𝜔𝑛𝑡) + 𝑣𝑛(𝜀𝑡) sin(𝜔𝑛𝑡)
)

+ 𝑢0(𝜀𝑡), 0 < 𝜀 ≪ 1,

(1)

where 𝜂𝑓 denotes the sea surface elevation, 𝜔𝑛 are fre-
quencies and the integer 𝑁 is the number of frequencies.
The amplitudes 𝑢𝑛 and 𝑣𝑛 vary in time and 𝑢0 is used to
model a slowly varying drift. The small parameter 𝜀 is used
to describe the slow time variations of the amplitudes. A
detailed comparison of common wave models with the wave
model (1) is included in Appendix A.

It is noted, that with the model (1), there is a nonlinear
dependence on the frequencies 𝜔𝑛 and a linear dependence
on the amplitudes. Instead of two amplitudes for each fre-
quency model (1) can be rewritten to have one amplitude and
a phase 𝜙𝑛 for each frequency. However, such a reformulated
model would be nonlinear in the phase variables 𝜙𝑛.

To employ the model (1) for forecasting, its parameters,
more specifically the ampliltudes 𝑢𝑛(𝜀𝑡) and 𝑣𝑛(𝜀𝑡) as well
as the frequencies 𝜔𝑛 need to obtained. Within this article,
these parameters are obtained by fitting the surface elevation
𝜂𝑓 (𝑡) from the model (1) to measured surface elevations 𝜂(𝑡).
The fitting procedure employed will be detailed in the next
section.
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2.2. Fitting the wave model (1)
To generate forecasts, the modelled surface elevation 𝜂𝑓of the wave model (1) is needs to be fitted to measured

surface elevations 𝜂(𝑡). Technically, the function (1) can be
used to fit any arbitrary continuous function over a finite
time interval with arbitrary precision. Since the aim of this
work is to forecast ocean waves, more specifically their crest
heights and trough depths, the intermediate values between
the troughs and crests are of secondary importance. Thus,
the intermediate values are discarded and only the trough
depths and crest heights are kept for fitting in the following.
This procedure reduces the number of data points within
a given time interval and thus a more accurate fit can be
achieved with less parameters. The obtained time series is
non-uniform in time and will be denoted by 𝜂(𝑡𝑗), where 𝑡𝑗denotes the 𝑗-th time instance.

The model (1) is fitted by minimizing the following cost
function3

Ξ(𝜔𝑛, 𝑢𝑛(𝑡), 𝑣𝑛(𝑡)) ∶= ‖𝜂(𝑡) − 𝜂𝑓 (𝑡)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

accurate fit
+ 1

𝜀

[

‖�̇�0(𝑡)‖2 +

[ 𝑁
∑

𝑛=1

(

‖�̇�𝑛(𝑡)‖2 + ‖�̇�𝑛(𝑡)‖2‖
)

]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
slowly varying amplitudes

+ 𝛼
‖

‖

‖

‖

‖

‖

𝑁
∑

𝑛=1
−𝑢𝑛(𝑡)𝜔𝑛 sin(𝜔𝑛𝑡) + 𝑣𝑛(𝑡)𝜔𝑛 cos(𝜔𝑛𝑡)

‖

‖

‖

‖

‖

‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
extreme value

,

(2)

where the norm ‖ ‖

2 denotes the sum of squares over all
time instances 𝑡𝑗 , ‖𝜂(𝑡)‖2 ∶= ∑

𝜂(𝑡𝑗)2.
Each summand in equation (2) is used to ensure that

the model (1) accurately represents the ocean surface as
indicated. The first term ensures that the fit 𝜂𝑓 is close to
the measured surface elevation 𝜂. The second term penalizes
time variations in the amplitudes, and enforces a slowly
varying spectrum. It is scaled by the inverse of the parameter
𝜀 which, in turn, controls the slowness of the amplitude
variations. As such 𝜀 has to be set to a small value to be
consistent with the theory (Hasselmann, 1962; Komen et al.,
1996) and observations (Hasselmann et al., 1973). The last
term is the time derivative of the fitting function 𝜂𝑓 , in
which the small time variations of the amplitudes have been
neglected. Enforcing a small time derivative of 𝜂𝑓 at the time
instances 𝑡𝑗 ensures that the values 𝜂𝑓 (𝑡𝑗) are indeed extreme
values, namely, crests and troughs. The scaling parameters 𝛼
and 𝜀 are treated as user defined input parameters.

3In the cost function (2), the time dependence of the amplitudes on the
slow time scale 𝜀𝑡 it not explicitly included. The notation in equation (1)
follows the mathematical convention to ensure a small time derivative of
the amplitudes as follows d/dt 𝑢𝑛(𝜀𝑡) = 𝜀𝜕𝑡𝑢𝑛(𝜀𝑡). In the constructed cost
function (2), this slow time variation is ensured by scaling the second sum-
mand by 1∕𝜀 without requiring the amplitudes to depend on a artificially
introduced slow time scale. Hence, the dependence on the amplitudes on
the slow time scale is not explicitly shown in the following.

Often the amplitudes of ocean wave models are obtained
by the means of Fourier transformation, in particular, the
algorithmic implementation of it, namely, the fast Fourier
transformation (FFT). While the Fourier transformation is
defined for signals over infinite long time intervals, mea-
surements on the other hand are only obtainable for finite
times. Thus, transforming a measurement into the Fourier
domain always requires a continuation of the finite time mea-
surements outside of the measurement window. Commonly,
a periodic continuation is assumed. Such an assumption is
avoided by obtaining the frequencies via the minimization

arg min
𝜔𝑛,𝑢𝑛(𝑡),𝑣𝑛(𝑡)

Ξ(𝜔𝑛, 𝑢𝑛(𝑡), 𝑣𝑛(𝑡)), (3)

which is nonlinear in the frequencies𝜔𝑛, since 𝜂𝑓 (𝑡) depends
nonlinearly on the frequencies 𝜔𝑛 (cf. equation (1)). To
reduce computational burden and avoid spurious solutions,
the minimization (3) is solved in two steps.

In the first step, the amplitudes are kept constant (𝑢𝑛(𝑡) =
𝑢𝑛 and 𝑣𝑛(𝑡) = 𝑣𝑛) which yields

arg min
𝜔𝑛,𝑢𝑛,𝑣𝑛

Ξ(𝜔𝑛, 𝑢𝑛, 𝑣𝑛). (4)

The minimization (4) can be numerically solved to obtain
an approximate, local minimum. To this end, MATLAB’s
nonlinear least squares solver lsqnonlin is used. Therein, it
is observed that the obtained minimum strongly depends on
the initial values for frequencies𝜔𝑛 provided to the nonlinear
optimization routine. To avoid non-optimal solutions with
large residuals, a Monte-Carlo strategy is employed. The
optimization (4) is repeated with multiple initial guesses for
the frequencies. The initial values are selected by sampling
the uniform distibution within the interval between 0.02
Hz and 0.6 Hz, which is the typical frequency band for
ocean waves (Hasselmann et al., 1973). Subsequently, the
parameters yielding the lowest residual are selected.

In the second step, the frequencies are fixed to the values
obtained in the first step and the amplitudes are allowed to
vary in time, yielding

arg min
𝑢𝑛(𝑡),𝑣𝑛(𝑡)

Ξ(𝜔𝑛, 𝑢𝑛(𝑡), 𝑣𝑛(𝑡)). (5)

Since the wave model (1) is linear in the amplitudes, the first
and third summand in the cost function (2) are quadratic.
Approximating the time derivatives of the amplitudes in the
cost function (2) with finite differences yields a quadratic
cost function. Thus, the minimization (5) can be solved
in closed form. Obtaining this solution is computational
significantly cheaper than the solution strategy employed for
the minimization (4).

The outcomes of the described fitting procedure are 𝑁
frequencies 𝜔𝑛 and 2𝑁 + 1 time series of slowly varying
amplitudes 𝑢𝑛 and 𝑣𝑛. To obtain forecasts, the model (1)
needs to be evaluated outside the fitting interval. The fre-
quencies 𝜔𝑛 are constant by assumption, but the slowly
varying amplitudes 𝑢𝑛(𝑡) and 𝑣𝑛(𝑡) need to be extrapolated.
The methods employed for this forecasting task are detailed
in the next section.
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2.3. Forecasting
Forecasting requires to evaluate the wave model (1)

outside the fitting interval. To this end, the slowly varying
amplitudes 𝑢𝑛(𝑡) and 𝑣𝑛(𝑡) need to be extrapolated. Due to the
lack of established models prescribing the time variations
of the slowly varying amplitudes, data-driven, black-box
methods are utilized. These methods can be most concisely
summarized as the mapping

𝐳(𝑡𝑗+1) = 𝐟 (𝐳(𝑡𝑗),𝐩), (6)
which maps the current, abstract state 𝐳(𝑡𝑗) forward in time.
The vector 𝐩 is a fixed parameter vector. The state vector
𝐳(𝑡𝑗) will generally consist of the following:

i. the amplitudes 𝑢𝑛 and 𝑣𝑛 at the current time instance 𝑡𝑗(𝑢𝑛(𝑡𝑗) and 𝑣𝑛(𝑡𝑗) )
ii. amplitudes at previous time instances 𝑢𝑛(𝑡𝑗−1), 𝑢𝑛(𝑡𝑗−2),..., 𝑢𝑛(𝑡𝑗−𝑀 ) and 𝑣𝑛(𝑡𝑗−1), 𝑣𝑛(𝑡𝑗−2), ..., 𝑣𝑛(𝑡𝑗−𝑀 )

iii. a set of hidden states.
Equation (6) is a dynamical system in the discrete time

domain. If a function 𝐟 and its parameters 𝐩 are selected, then
the forecasts are generated by applying the dynamical sys-
tems recursively to data. More specifically, given an initial
state 𝐳(𝑡𝑗) consisting of slowly varying amplitudes 𝑢𝑛 and 𝑣𝑛and, potentially, hidden states, the dynamical system (6) is
used to generate the forecast 𝐳(𝑡𝑗+1). From this state the new
amplitudes 𝑢𝑛(𝑡𝑗+1) and 𝑣𝑛(𝑡𝑗+1) can be deduced. Applying
𝐟 to the new state 𝐳(𝑡𝑗+1) yields the amplitudes 𝑢𝑛(𝑡𝑗+2)and 𝑣𝑛(𝑡𝑗+2). This procedure is repeated until a specified
forecasting horizon is reached.

To use function (6) for forecasting the functional rela-
tionship 𝐟 and its associated parameters 𝐩 need to be de-
termined. For the functional form 𝐟 (model selection) linear
auto regressive models and recurrent neural networks with
LSTM cells (Hochreiter and Schmidhuber, 1997) are used.
It is anticipated that the slow variations of the amplitudes
extend the extrapolation range of these fundamentally inter-
polative approaches. Once a model is selected, the param-
eters 𝐩 need to be obtained (parameter fitting/tuning). The
two distinct model choices and the therein employed tuning
methods are detailed in the next two sections.
2.3.1. Linear models

Within linear autoregressive models of the form

𝑢𝑛(𝑡𝑙) =
𝑀
∑

𝑚=1
𝛽𝑚𝑢𝑛(𝑡𝑙−𝑚), (7)

it is assumed that the current value 𝑢𝑛(𝑡𝑙) is given by a linear
combination of the previous 𝑀 values. The integer 𝑀 de-
notes the order of the autoregressive model. The coefficients
𝛽𝑚 are scalars and these coefficients are usually obtained
by fitting the model (7) to data. For this purpose, the non-
uniform time series of the amplitudes (cf. Section 2.1) are
smoothly interpolated (spline interpolation) to yield uniform
time series 𝑢𝑛(𝑡) and 𝑣𝑛(𝑡).

The coefficients 𝛽𝑚 are obtained with two different meth-
ods. First, they are obtained by constructing the linear system

⎡

⎢

⎢

⎢

⎣

𝑢𝑛(𝑡𝑀 )
𝑢𝑛(𝑡𝑀+1)
𝑢𝑛(𝑡𝑀+2)

⋮

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐮𝑢𝑛

=
⎡

⎢

⎢

⎢

⎣

𝑢𝑛(𝑡𝑀−1) 𝑢𝑛(𝑡𝑀−2) … 𝑢𝑛(𝑡0)
𝑢𝑛(𝑡𝑀 ) 𝑢𝑛(𝑡𝑀−1) … 𝑢𝑛(𝑡1)
𝑢𝑛(𝑡𝑀+1) 𝑢𝑛(𝑡𝑀 ) … 𝑢𝑛(𝑡2)

⋮ ⋮ … ⋮

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀𝑢𝑛

⎡

⎢

⎢

⎢

⎣

𝛽1
𝛽2
⋮
𝛽𝑚

⎤

⎥

⎥

⎥

⎦

⏟⏟⏟
𝜷𝑢𝑛

,

(8)
where the amplitudes 𝑢𝑛(𝑡𝑗) are known and the coefficients
𝛽𝑚 are unknown. The coefficients 𝛽𝑚 are then obtained by
minimizing the error 𝐮𝑢𝑛 −𝐀𝑢𝑛𝜷𝑢𝑛 in the least squares sense.
The solution of this minimization is available in closed form
and can be computed with ease. Owing to the least squares
minimization, the obtained model is referred to as LSQ
model.

The matrix𝐀𝑢𝑛 is also known as trajectory matrix (Broom-
head and King, 1986) and plays an essential part in the
singular spectrum analysis (Vautard and Ghil, 1989) as well
as in the dynamic mode decomposition (DMD) (Schmid,
2010). This decomposition is based on the matrix equation

⎡

⎢

⎢

⎢

⎣

𝑢𝑛(𝑡𝑀 ) 𝑢𝑛(𝑡𝑀−1) … 𝑢𝑛(𝑡1)
𝑢𝑛(𝑡𝑀+1) 𝑢𝑛(𝑡𝑀 ) … 𝑢𝑛(𝑡2)
𝑢𝑛(𝑡𝑀+2) 𝑢𝑛(𝑡𝑀+1) … 𝑢𝑛(𝑡3)

⋮ ⋮ … ⋮

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀2
𝑢𝑛

=
⎡

⎢

⎢

⎢

⎣

𝑢𝑛(𝑡𝑀−1) 𝑢𝑛(𝑡𝑀−2) … 𝑢𝑛(𝑡0)
𝑢𝑛(𝑡𝑀 ) 𝑢𝑛(𝑡𝑀−1) … 𝑢𝑛(𝑡1)
𝑢𝑛(𝑡𝑀+1) 𝑢𝑛(𝑡𝑀 ) … 𝑢𝑛(𝑡2)

⋮ ⋮ … ⋮

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀1
𝑢𝑛

⎡

⎢

⎢

⎢

⎣

𝛽1 1 0 …
𝛽2 0 1 …
𝛽3 0 0 ⋱
⋮ ⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜷∗
𝑢𝑛

,

(9)
wherein the matrix 𝜷∗

𝑢𝑛
advances the trajectory matrix𝐀1

𝑢𝑛
by

one time step. Introducing the singular value decomposition
of the generally non rectangular matrix 𝐀1

𝑢𝑛
= 𝐔𝚲𝐕𝑇 ,

where 𝚲 is a diagonal, rectangular matrix and 𝐔 and 𝐕 are
orthogonal and right multiplying equation (9) with 𝐕𝚲−1𝐔𝑇

yields
𝜷∗
𝑢𝑛

= 𝐕𝚲−1𝐔𝑇𝐀2
𝑢𝑛
, (10)

whereby the coefficients 𝛽𝑚 can be obtained. The resulting
model will be denoted as DMD model. DMD and its variants
have been successfully applied to numerous data sets in fluid
dynamics (Schmid, 2010, 2022).
2.3.2. Recurrent Neural Networks

In contrast to linear autoregressive models (cf. Sec-
tion 2.3.1), the relationship between the current and previous
values can be nonlinear for recurrent neural networks. The
strength of neural networks is the capability to approximate
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any functional relationship between input and output. Thus,
at least in principle, a neural network can approximate the
current values from previous values, if such a functional
relationship exits. Machine learning approaches have been
successfully applied in numerous areas, including fluid dy-
namics (Brunton et al., 2020) and ocean waves (Agrawal and
Deo, 2002). To overcome the vanishing gradient problem
while training recurrent neural networks for long time series,
LSTM cells have been proposed (Hochreiter and Schmidhu-
ber, 1997). Like any other recurrent neural network, LSTM
cells feature internal states. As a distinction, LSTM cells
are designed to flexibly retain or erase the internal states.
Thereby, dependencies between values distant (in time) can
be detected. The input-output relationship for LSTM cells
is nonlinear and can be found, for example, in the ref-
erences (Hochreiter and Schmidhuber, 1997; Goodfellow
et al., 2016).

LSTM

LSTM

LSTM

LSTM-layer

NLSTM :

Number of

hidden units

Fully Connected 

Layer

NF : Number of

extracted features

0/1

0/1

0/1

Dropout Layer

pD : Dropout

probability

Repeat NL times

OutputInput

Figure 2: Architecture of the neural network utilized for ocean
wave forecasting.

Within this work, the neural network architecture sketched
out in Figure 2 is utilized. The first layer consists of 𝑁𝐿𝑆𝑇𝑀LSTM cells in parallel, commonly, denoted as hidden units.
Subsequently, a fully connected layer follows, through which,
one selects 𝑁𝑓 features from the output of the LSTM cells.
This layer is connected to a dropout layer, which sets each
feature to zero with a probability of 𝑝𝐷. The dropout layer
is designed to prevent overfitting, a common issue with
neural networks (Shalev-Shwartz, 2014). These three layers
(LSTM, fully connected and dropout) are then repeated
for 𝑁𝐿 times. The weights of the involved functions are
tuned with the stochastic optimizer Adam (Kingma and Ba,
2015)4.

4The various hyper parameters have been selected based on the best
performance. More specifically, the number of layers, number of hidden
LSTM units, the dropout rate, and the feature size of the fully connected
layer have been varied. The performance of the selected combination was
found to be optimal for the trials conducted within this manuscript.

2.4. Real time forecasting strategy for buoy data5
As indicated in Figure 1, for each supplied measurement,

an individual wave model (1) and forecasting method (linear
methods or LSTM network, cf. Section 2.3) are parame-
terized. Thus, the time required to fit the wave model (1),
reduces the useful forecasting horizon and hence it should
be kept minimal (cf. also Figure 1). To this end, a multi-
step forecasting strategy that is illustrated in Figure 3 is
employed. All durations given in Figure 3 are approximate
and the actual durations will vary depending on the selected
parameters, such as the number of harmonics 𝑁 or 𝜀 as well
as the underlying data employed for the fitting6.

time

Buoy measurement

≈ 3 min

≈ 15 min

≈ 17 min

Frequencies 𝜔𝑛

Amplitudes
𝑢𝑛(𝑡) and 𝑣𝑛(𝑡)

Forecast

Frequencies 𝜔𝑛

Initial condition

[1.] Solve nonlinear
optimization (4)

Duration: 2-10 min

[2.] Solve linear 
optimization (5)
Duration: <10 sec

[3.] Fit dynamical system
Linear models: <10 sec
LSTMs: ≈ 2 min 

[4.] Run dynamical 
system

Figure 3: Forecasting strategy to enable real time forecasts.

The proposed methodology is constructed such that it
can run in parallel while measurements are being made. The
following time line lists the subsequent steps yielding ocean
wave forecasts in real time:

Step 1 (0-3 minutes): For the first three minutes, the sur-
face elevation is measured and no computations are carried
out, since no data are available.

Step 2 (3-15 minutes): After three minutes of ocean sur-
face elevations are recorded, the nonlinear optimization (4)
is solved with this data. This step takes about two to twelve
minutes, due to the employed Monte-Carlo strategy. During
this time, data recording is of course continued; however, the
recorded data is not fed into the minimization (4).

Step 3 (15-17 minutes): The frequencies 𝜔𝑛 obtained in
the first optimization (4) are then utilized within the second
subsequent optimization (5). Since the minimum is available
in closed form, this step only takes a few seconds. The

5The employed strategy is only used for the field measurements from
ocean buoys (cf. Section 3.2). Real time forecasts for wave tank data (cf.
Section 3.1) are not obtained, since the available measurements are rather
short (about 40 seconds).

6All computations have been performed by using MATLAB R2021a
on Windows PC with Intel Core i7-8700 @ 3.2 GHz and 8GB RAM. Of
course, the hard- and software of a real forecasting system will most likely
differ. The observations and timings in this sections merely indicate that the
computational burden is manageable and forecasts in real time are within
reach. Indeed, the forecasts for the field measurements are obtained in real
time with the computational hardware used.
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data recorded while solving equation (4) are used within the
quadratic minimization (5).

Once the time varying amplitudes 𝑢𝑛(𝑡) and 𝑣𝑛(𝑡) have
been obtained, the parameters for the forecasting methods
(cf. Section 2.3) are tuned. The computational burden to
fit the linear systems is minimal. Since the LSTM network
requires a nonlinear minimization, it takes significantly more
time to obtain the parameters. After parameterizing the
dynamical systems, time series can be generated almost
instantly. The dynamical systems are initialized at the last
known sample point (before fitting them). Thus, about the
first two minutes of the generated time series are not fore-
casts as this time is already in the past, in practice.

Step 4 (after 17 minutes): All time series produced after
about 17 minutes are then meaningful forecasts as indicated
in Figure 3

It is noted, that the minimization (4) is solved only for
the first three minutes of measurement while the optimiza-
tion (5) is carried out for the first fifteen minutes. Of course,
the obtained frequencies optimized for the first three minutes
will be generally different than the frequencies optimized
over the whole fifteen minutes. However, as previously
mentioned, observations and most wave models indicate that
the dominant frequencies in the ocean change only slowly.
Thus, it is reasonable to expect that the frequencies obtained
by optimizing with three minutes of measurements will also
be a good choice to decompose the whole fifteen minute
measurement window7.

3. Results
To demonstrate the applicability and capability of the

proposed methodology in Section 2, it is first applied to
recordings from an experimental wave tank (Eeltink, 2022).
The data from this well controlled experiment serves as a
first viability test. Second, this methodology is applied to
field measurements from ocean buoys (CDIP Buoy data,
2022) to demonstrate the applicability of the developed
approach in realistic conditions. This demonstration exem-
plifies that the proposed methodology is robust to noise and
other disturbances present in field measurements.
3.1. Experimental wave tank

The proposed approach (cf. Section 2) is applied to
recordings from an experimental wave tank (Eeltink, 2022)8.
This data stems from an investigation on wave breaking (Eeltink
et al., 2022). The wave tank is 40 m long, 2.7 m wide,
and 0.8 m deep, and the waves are generated by a piston
wave maker positioned at one end of the tank (cf. Figure 4).

7Indeed, within this work, it is observed that solving the minimiza-
tions (4) and (5) for fifteen minutes leads only to minor improvements
compared to the employed strategy. For example, decomposing ten 15-
minute windows of buoy measurements with the employed strategy leads to
an average mean square error of 3.8%, whereas performing both minimiza-
tions (4) and (5) for fifteen minutes yields an average error of 3.5%.

8As noted in Section 2.4, the forecasting strategy shown in Figure 3 is
not employed, since the available measurements are relatively short (about
40 seconds). Rather, the minimizations (4) and (5) are solved over the same
time span.

In the experiments, a perturbed plane wave is generated to
trigger the modulation instability and the surface elevation
has been measured by twelve waves gauges. The sampling
rate for these measurements is 400 Hz. More details on
the experimental setting and generated waves can be found
in (Eeltink et al., 2022).

Figure 4: Sketch of the experimental wave tank. The �rst wave
gauge is closest to the wave maker, whereas the seventh wave
gauge is located towards the middle of the wave tank.

The proposed methodology is first applied to individ-
ual recordings from the first and seventh wave gauges (cf.
Figure 4). After that, all 258 available measurements are
considered and average statistics are presented.
3.1.1. Individual time series

In the following, two individual time series from one
experiment are considered. In the experiment, the wave
maker is used to generate a wave with a carrier band of 1.3
Hz and two equal side bands with a modulation frequency
of 0.13 Hz and normalized amplitudes of 0.025. First, the
measurements from wave gauge closest to the wave maker
are considered (cf. Figure 4). For this wave gauge, the
recorded waves are similar to the generated waves by the
wave maker. Second, the measured surface elevation from
the seventh wave gauge is forecasted with the proposed
methodology. Since complex processes such as modulation
instability and wave breaking alter the generated wave, the
wave measurements from the seventh wave gauge differ
significantly from the initiated part of a wave.
First wave gauge: Considering an individual recording
from the wave gauge closest to the wave maker, the obtained
spectrum is shown in Figure 5a. The depicted spectrum of
the surface elevation is estimated by Welch’s method (Welch,
1967). The carrier frequency at 1.3 Hz and the side bands are
clearly discernible in Figure 5a.

As a first step, the wave model (1) is fitted to the
data (Eeltink, 2022) as described in Section 2.1. For this pur-
pose, one Fourier mode (𝑁 = 1), the parameter controlling
the slowness 𝜀 = 10−3 and 𝛼 = 10 are selected. Moreover,
the nonlinear minimization (4) is started from one thousand
choices for the initial frequency9. As shown Figure 5b, the
fitted surface elevation closely resembles those of the actual
measurements. The relative mean square error is about 0.1
percent.

9Since the carrier frequency is known in this example (1.3 Hz) this
steps could be skipped. In reality, the carrier frequency is unknown, and
hence it is treated as an unknown in the following. The minimization (4)
indeed yields a dominant frequency of 1.305, which differs by less than one
percent from the actual value.
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Figure 5: Wave measurements at gauge closest to the wave maker. The wave maker is used to initiate a wave of the form
𝜂𝑤𝑚(𝑡) = 0.95 sin(1.3 ⋅ 2𝜋𝑡) + 0.025 sin((1.3 + 0.13)2𝜋𝑡) + 0.025 sin((1.3 − 0.13)2𝜋𝑡). 5a: Spectrum of surface elevation. 5b: Measured
and �tted surface elevation for the �rst 22 seconds.

The slowly varying amplitudes are shown in Figure 6a.
As enforced by the cost function (2), the amplitudes vary
slowly compared to the fast variation of the surface elevation
(cf. Figure 5b). After fitting the model (1) for the first 22
seconds, the three different dynamical models presented in
Section 2.3 are utilized to forecast the time evolutions of the
amplitudes. The order for the linear autoregressive models
was set to 𝑀 = 100 for both, the LSQ model and the DMD
model. The LSTM architecture consist of three repeated
layers. The number of LSTM cells 𝑁𝐿𝑆𝑇𝑀 is set to 32 for
the first, 16 for the second, and 8 for the last LSTM layer. The
number of features for the three fully connected layers 𝑁𝑓was 100 for the first, and 50 for the second and third layer.
The dropout portability 𝑝𝐷 was kept constant at 5%.

The forecasted amplitude variations are included in Fig-
ure 6a. All three models pick up the general variations of the
amplitudes. Their performance is discernible from the mean
square error of three forecasts shown in Figure (6b). Therein,
a fit of model (1) over all 44 seconds is considered as the
ground truth. Additionally, the errors of two benchmarks are
included. Within these two benchmarks, the variability of
the amplitudes is ignored and only a single constant value
for each amplitude is forecasted. For the first benchmark,
the predicted value is the last known value after about 22
seconds, and hence, the name last sample. Furthermore, the
forecast training mean is for the mean value over the first
22 seconds for the upcoming amplitudes. As indicated in
Figure 6b, all three dynamical models can be used to improve
the predictions from two simple benchmarks. Hence, the
dynamical models can be used to successfully forecast the
slowly evolving envelope. Especially, in the first ten seconds,
the DMD model and LSTM model perform significantly
better than the benchmarks and the LSQ model.

As the final outcome of the forecasting methodology,
time series of surface elevations as the final outcome are
shown in Figures 6c and 6d. In both forecasts, the rising and

falling wave envelope is accurately captured, although some
deviations are visible. The average error in the predicted
wave crests and trough depths (mean difference between the
yellow diamonds and blue crosses in Figures 6c and 6d) is
about three millimeters.
Seventh wave gauge: While the wave dynamics close to
the wave maker is clearly dominated by single harmonic (cf.
Figure 5a), this spectrum evolves and gets distorted further
away from the wave maker. Besides the triggered modulation
instability, more complex processes such as wave breaking
are expected to alter the spectrum. Indeed, the wave spec-
trum recorded at the seventh wave gauge has more dominant
side bands as well as a broader frequency spectrum (cf.
Figure 7a). These features could challenge the simplistic
wave model (1). However, as shown in Figure 7b, the surface
elevation at the seventh wave gauge can be accurately fitted
by using the same parameters as for the first wave gauge;
that is, 𝛼 = 10, 𝜀 = 10−3 and, most importantly, a single
frequency 𝑁 = 1. It is remarkable that the wave model (1)
can resolve the complex spectrum shown in Figure 7a with
a single frequency.

The fitted time evolutions of the amplitudes for the first
22 seconds and the subsequent forecasts from the three
dynamical models are shown in Figure 8a. Similarly as
for the first wave gauge, the dynamical models capture the
variations from the fitted data. The mean square error shown
in Figure 8b reveals that LSTM model performs the best,
while the LSQ model improves the simple benchmark from
the training mean only marginally.

Additionally, the predicted surface elevations from the
DMD model respectively LSTM model are depicted in Fig-
ures (8c) and (8d). Both predictions are accurate for the
next twenty seconds, although some deviations in the LSTM
model are visible. The average error of the forecasted wave
crests and trough depths is 3 mm for the DMD model and
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Figure 6: Forecasts for the �rst wave gauge. 6a: Fitted and forecasted time varying amplitudes. *The slow �ow I is obtained for the
�rst 22 seconds only and used for �tting the dynamical models. Slow �ow II is �tted over the whole 44 second interval and used
to compute the error shownin Figure 6b. 6b: Mean square errors in the time varying amplitudes for the various dynamical models
(cf. Section 2.3) and two benchmarks. 6c: Forecasted (DMD model), �tted, and measured surface elevations. 6d: Forecasted
(LSTM model), �tted and measured surface elevation.
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Figure 7: Wave measurements at the seventh wave gauge. The wave maker is used to initiate a wave of the form 𝜂𝑤𝑚(𝑡) =
0.95 sin(1.3 ⋅2𝜋𝑡)+0.025 sin((1.3+0.13)2𝜋𝑡)+0.025 sin((1.3−0.13)2𝜋𝑡). 7a: Spectrum of surface elevation. 7b: Measured and �tted
surface elevation for the �rst 22 seconds.
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Figure 8: Forecasts for the seventh wave gauge. 8a: Fitted and forecasted time varying amplitudes. *The slow �ow I is obtained for
the �rst 22 seconds only and used for �tting the dynamical models. Slow �ow II is �tted over the whole 44 second interval and used
to compute the error shown in Figure 8b. 8b: Mean square error of the time varying amplitudes for the various dynamical models
(cf. Section 2.3) and two benchmarks. 8c: Forecasted (DMD model), �tted, and measured surface elevations. 8d: Forecasted
(LSTM model), �tted and measured surface elevation.

4 mm for the LSTM model. It is interesting to note that the
LSTM model performs better than the DMD model when
considering the mean square error of the varying amplitudes.
However, the LSTM model performs worse when consider-
ing the actual wave crests and troughs.

After considering two individual recordings of a single
experiment, in the next section, the proposed methodol-
ogy is applied to all available recordings of regular waves
from (Eeltink, 2022).
3.1.2. Comprehensive comparison including all

available measurements
As a final demonstration, all 258 measurements of reg-

ular waves from (Eeltink, 2022) are used to test the pro-
posed forecasting strategy. Each measurement is divided
into two sequences of equal length. The first half is used
to fit the model (1) and train the dynamical models (cf.
Section 2.3). Subsequently, these models are employed to
forecast a surface elevation for the remaining half. The crest

heights and trough depths are extracted from these time
series. These values are then compared to the crests and
troughs from the measurements and an average error is
computed. In addition to the LSQ, DMD, and LSTM model,
a benchmark is included. In this benchmark, a single wave
train is forecasted. Its amplitude corresponds to the mean of
the absolute value of the crest heights and trough depths and
the period is twice the mean duration between consecutive
crests and troughs. Moreover, the wave model (1) is fitted for
the whole measurement. The error from this fitting indicates
how well the wave model (1) can be used to capture the wave
dynamics.

Averaging the mean crest height and trough depth error
over all 258 measurements yield the average errors shown
in Figure 9. The average crest heights and trough depths
errors for the wave gauge closest to the wave maker are
depicted in Figure 9a. In this case, the average error from
the DMD model is almost 50% less than the error from the
simple benchmark. For the seventh wave gauge shown in
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Figure 9: Average crest heights and trough depths error for all 258 regular wave measurements from (Eeltink, 2022). The numbers
denote mean and standard deviation for the various models. 9a: Wave gauge closest to the wave maker. 9b: Seventh wave gauge.

Figure 9b, an improvement in the linear models of about
30% is obtained compared to the benchmark. Moreover, it
is clearly discernible that the obtained fit for the seventh
wave gauge is less accurate than for the first wave gauge.
A reason for this discrepancy is the more complex wave
profiles measured at the seventh wave gauge (compare also
Figures 5a and 7a). Allowing for more than one frequency in
the wave model (1) (𝑁 > 1) would allow to fit more complex
wave envelopes and therefore could reduce the fitting error
significantly. This approach will be examined further in the
next section featuring buoy measurements (CDIP Buoy data,
2022).

In conclusion, the proposed forecasting strategy yields
accurate forecasts for the experimental wave tank data (Eeltink,
2022). The slowly varying amplitudes can be extrapolated to
yield forecasts for a duration as long as the training data.
An improvement in terms of wave height forecasting of
almost 50% is achieved. This application demonstrates that
the envisioned strategy can work with wave measurements.

The authors emphasize that the performance demon-
strated should not be taken as an absolute measure. Indeed,
the performance of the proposed models can be, most cer-
tainly, significantly improved by tuning the various involved
hyperparameters. Especially, given the very regular and
recurrent wave patterns a better performance of the LSTM
networks seems achievable. In reality, however, the ocean
will drastically differ from the unidirectional and regular
patterns created in the wave tank. Thus, such an envisioned
numerical exercise would have only limited implications for
practical ocean wave forecasting. To this end, an application
to field measurements is inevitable. This is considered in the
following section.
3.2. Field measurements from ocean buoys

After validating the proposed wave forecasting method-
ology on measurements obtained in an experimental wave

tank, field measurements from ocean buoys (CDIP Buoy
data, 2022) are analyzed. These measurements are recorded
by Datawell directional waverider MkIII (Datawell B.V.,
2020). Among other quantities, MkIII buoys measure verti-
cal accelerations, which are subsequently processed, filtered
and integrated to yield sea surface elevations. The sampling
rate for the buoy’s vertical displacement measurements
is 1.28 Hz. These sea surface elevation measurements are
used for fitting and forecasting in the following10. This data
serves as a realistic benchmark to also demonstrate that the
proposed methodology is suitable for the noise levels and
disturbances present in ocean surface measurements.

In the following, the buoy data (CDIP Buoy data, 2022)
is decomposed by using 𝑁 = 16 Fourier modes in the
model (1). Moreover, the parameters 𝜀 = 10−3 and 𝛼 = 0.5
for the cost function (2) are selected. The order for the linear
dynamical systems was set to 𝑀 = 50 for the DMD model
and 𝑀 = 100 for the LSQ model. The LSTM network
consists of one stacked layer with 𝑁𝐿𝑆𝑇𝑀 = 200 LSTM
units, a fully connected layer extracting 𝑁𝑓 = 100 features,
and a dropout layer with probability 𝑝𝐷 = 0.1.

At first, measurements from a buoy near San Nicholas
Island are considered. Subsequently, the capabilities of
the proposed methodology are demonstrated for alternative
buoy locations, including open, deep water and coastal,
shallow water. The discussion is concluded by forecasting
two rogue waves measured by the buoy near San Nicholas
Island.

10It is noted, that surface buoys move laterally and tend to avoid large
wave crests (Dysthe et al., 2008). Since, MkIII-buoys also pick up lateral
displacements (Datawell B.V., 2020), the model (1) could, at least in
principle, be extended to incorporate these measurements. However, to keep
the wave model (1) simple and allow for fast computations, the lateral
buoy movement is ignored in this study. It is implicitly assumed that the
measurements are from a laterally fixed observer such as the wave gauges
in the experimental wave tank in Section 3.1.
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Figure 10: Obtained �t of measured ocean surface elevation (CDIP Buoy data, 2022) for �ve minutes. The parameters for the
cost function (2) are set to 𝑁 = 16, 𝜀 = 10−3, and 𝛼 = 0.5. 10a: Measured and �tted sea surface elevations. 10b: Slowly varying
amplitudes.

3.2.1. San Nicholas Island (CDIP Buoy 067)
At first, measurements from a Datawell directional wa-

verider MkIII (Datawell B.V., 2020) near San Nicholas
Island off the coast from Los Angeles (CDIP Buoy 067)
between Feb., 9th 2018 and Mar., 5th 2019 are considered.
A representative outcome of the employed fitting strategy
is shown in Figure 10a. Therein, the ocean surface mea-
surements (CDIP Buoy data, 2022) are decomposed into
ocean waves with slowly varying spectrum, whereby only
the wave crests and troughs are kept for fitting (blue crosses
in Figure 10a). As enforced by the cost function (2), the
fitted model (1) resembles closely the measured sea surface
elevation. Moreover, the amplitudes indeed vary slowly as
illustrated in Figure 10b. The relative error for the time series
shown in Figure 10a is less than one percent. Repeating
the fitting for one hundred randomly selected measurements
with the aforementioned parameters yields an average rel-
ative error of 3.7 percent with a standard deviation of 2.9
percent.

A forecast for the amplitude 𝑢7 is displayed in Figure 11.
Therein, the wave model (1) and dynamical systems are
fitted for the first thirteen minutes and, subsequently, three
forecasts are obtained. Whereas the time series generated by
the linear models fluctuate less, the more complex LSTM
model is found to forecast some of the variations in true time
series (Slow flow II). Overall, the correct trend is predicted
by all three models.

After obtaining forecasts for the slowly varying ampli-
tudes, these time series are inserted into the wave model (1)
to yield forecasts for the future sea surface elevation (cf.
synthesis in Figure 1). From these predictions, the extreme
values are extracted, which yields forecasts for the upcoming
wave heights and trough depths.

The performance of the proposed forecasting strategy
is evaluated by randomly selecting one hundred windows
from the buoy close to San Nicholas Island. Seven minutes
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Figure 11: Fitted and forecasted amplitude 𝑢7. *The slow �ow
I is obtained for the �rst 13 minutes only and used for �tting
the dynamical models. Slow �ow II is �tted over the whole 20
minutes.

of sea surface are forecasted and the first two minutes are
discarded, which is the duration needed to generate forecasts
following the strategy illustrated in Figure 3. Then, the crest
heights and trough depths are extracted from the five minute
time series and compared to the truth.

The authors have plotted the observed versus the pre-
dicted crest heights and trough depths in Figure 12. The
line 𝑥 = 𝑦 indicating a perfect prediction is included for
comparison. The forecasts from the DMD model, shown
in Figure 12a, depart farther from the 𝑥 = 𝑦-line than the
prediction from the LSTM model depicted in Figure 12b.
The higher correlation coefficient of the LSTM forecast
also indicates a higher accuracy of the predictions from the
LSTM model compared to the linear DMD model. Overall,
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Figure 12: Observed crest heights and trough depths versus the predictions for the measurements from a buoy located near San
Nicholas island (water depth: 262m) from (CDIP Buoy data, 2022). The correlation coe�cient (r) is also included. Both �gures
show the forecasts of about 9000 crest heights and trough depths. 12a: Predictions from the DMD model. 12b: Predictions from
the LSTM network.

Table 1

San Nicholas Island: Correlation coe�cient, root mean square error (RMSE), and mean absolute error (MAE) for the various
models for three di�erent forecasting horizons. The statistics are based on up to 9000 crest heights and trough depths.

Forecast Correlation RMSE MAE
horizon LSQ DMD LSTM Ben. 1 Fit LSQ DMD LSTM Ben.1 Fit LSQ DMD LSTM Ben.1 Fit

1 min. 0.88 0.88 0.91 0.85 0.97 0.4 0.4 0.33 0.41 0.18 0.27 0.27 0.21 0.31 0.12
3 min. 0.88 0.87 0.9 0.85 0.97 0.41 0.42 0.34 0.41 0.18 0.27 0.29 0.22 0.31 0.12
5 min. 0.86 0.85 0.9 0.85 0.97 0.42 0.44 0.34 0.41 0.19 0.28 0.29 0.22 0.31 0.12

1 The benchmark consists of a single wave train. The amplitude and frequency of this wave train are extracted from the training
data.

about 9000 predictions of wave heights and trough depths
are obtained for each model.

The accuracy of the three models is further summarized
in Table 1. As in the earlier analysis of the data from the
experimental wave tanks (cf. Section 3.1), a benchmark
forecast consisting of a single wave train with the mean crest
heights and trough depths from the training data is included.
Moreover, the fitting error is also incorporated in Table 1,
which allows to assess the accuracy of the wave model (1).

As Table 1 indicates, the linear models (DMD and LSQ)
can only slightly outperform the benchmark. Their perfor-
mance clearly deteriorates with time. The LSTM network
on the other hand clearly outperforms the benchmark in both
error norms as well as in terms of a higher correlation coef-
ficient. This performance is observed for all time instances.
The relatively small fitting error indicate that the wave
model (1) can accurately and reliably capture the complex
sea surface elevations arising in field measurements.

The mean absolute error corresponds to the mean aver-
age crest height/trough depths error which is also shown in
Figure 13a. In this error norm, the LSTM model is found to
perform the best, improving the benchmark by about 30%.

To further indicate that the proposed strategy can also
accurately predict large waves, the highest crest respectively
deepest troughs from the forecasts are compared to the
measurements in Figure 13b. Also, in this comparison, the
LSTM model is found to perform superior, improving the
two linear models by about 30%.
3.2.2. Alternative buoy locations - Deep and shallow

water
The wave model (1) and fitting strategies are not location

specific, and hence, this methodology can be applied to
measurements from any other buoy location. To demonstrate
this universality, two additional buoys are selected. The first
buoy is located near Maui, Hawaii (CDIP Buoy 187) and
the other one in the Onslow Bay, North Carolina (CDIP
Buoy 217). While the buoy in Hawaii is employed in a water
depths of 200 m, which is comparable to the buoy close
to San Nicholas Island, the buoy in the Onslow bay on the
other hand is deployed in significantly more shallow water
with a depths of 30 m. In shallow, coastal water, effects
such as refraction from the shoreline and shoaling impact
the observed waves (Reeve et al., 2018). Considering data
from a shallow water buoy helps to verify the capabilities
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Figure 13: Crest heights and trough depths obtained for one hundred randomly selected windows from a buoy located near San
Nicholas island (water depth: 262m) from (CDIP Buoy data, 2022). The numbers denote mean and standard deviation for the
various models. 13a: Average error considering all crests and troughs. 13b: Average error of the highest crest/deepest trough.

Table 2

Maui: Correlation coe�cient, root mean square error (RMSE), and mean absolute error (MAE) for the various models for three
di�erent forecasting horizons. The statistics are based on up to 10000 crest heights and trough depths.

Forecast Correlation RMSE MAE
horizon LSQ DMD LSTM Ben.1 Fit LSQ DMD LSTM Ben.1 Fit LSQ DMD LSTM Ben.1 Fit

1 min. 0.85 0.84 0.89 0.84 0.98 0.41 0.42 0.34 0.4 0.17 0.25 0.27 0.21 0.3 0.12
3 min. 0.82 0.84 0.91 0.85 0.98 0.42 0.43 0.31 0.39 0.17 0.26 0.27 0.20 0.29 0.12
5 min. 0.75 0.81 0.91 0.85 0.97 0.49 0.44 0.31 0.38 0.18 0.29 0.29 0.20 0.29 0.12

1 The benchmark consists of a single wave train. The amplitude and frequency of this wave train are extracted from the training
data.

of the proposed forecasting approach to adjust to different,
realistic environments.

The performance demonstration from the previous sec-
tion is repeated for the two aforementioned buoy locations.
One hundred windows are randomly selected to generate
five minute real-time forecast each. Then, the forecasted
crest heights and trough depths are compared with the cor-
responding true values. The arising errors and correlations
are listed in Table 2 for the buoy near Maui and in Table 3
for the buoy in the Onslow Bay.

For the data from Maui, the models show a similar
performance as in the previous forecasting experiment based
on the field data recorded close to San Nicholas Island.
The wave model (1) can be used to accurately capture the
measured sea surface elevations. The linear models, deterio-
rate even faster, and after five minutes, the RMSE is lager
than the benchmark and the correlation coefficient is less
than the benchmark. The LSTM model on the other hand
outperforms the benchmark model.

The trends from the previous two experiments is con-
firmed for the shallow water buoy in the Onslow Bay. It is
notable, that the simple benchmark performs very well for
this example (cf. Table 3). This indicates a more regular
wave pattern for this shallow water example. The mean

absolute error corresponding to the mean crest height/trough
depths error is also shown in Figure 14 along with the
average error for the highest crest/deepest trough for the two
locations. In this error norm, the LSTM model is found to
perform the best. The prediction from this model are, on
the average, about 30% more accurate than the benchmark.
Furthermore, the LSTM model is also found to outperform
the linear models in predicting large ocean waves.
3.2.3. Rogue wave forecasting

The section is concluded by focusing on the two largest
rogue waves in the recordings of the buoy near San Nicholas
island. The first rogue wave occurred on Dec. 1st at about
3:00 UTC. A crest height of 6.9 m was measured (wave
height: 11.7 m) while the significant wave height 𝐻𝑠 was
5.13 m. The second extreme wave occurred on January, 19th
at about 1:00 UTC. The measured crest height was 5.5 m
(wave height 9 m) and the significant wave height 𝐻𝑠 was
3.9 m. The forecast from the LSTM model for the first rogue
wave is shown in Figure 15a, while the prediction for the
second rogue wave is depicted in Figure 15b. Although the
full extent of both rogue waves is clearly underestimated in
Figure 15, the rise and fall of the wave envelope are correctly
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Table 3

Onslow Bay: Correlation coe�cient, root mean square error (RMSE) and mean absolute error (MAE) for the various models for
three di�erent forecasting horizons. The statistics are based on up to 13000 crest heights and trough depths.

Forecast Correlation RMSE MAE
horizon LSQ DMD LSTM Ben.1 Fit LSQ DMD LSTM Ben.1 Fit LSQ DMD LSTM Ben.1 Fit

1 min. 0.83 0.87 0.93 0.87 0.97 0.27 0.25 0.19 0.23 0.12 0.15 0.16 0.12 0.18 0.08
3 min. 0.81 0.78 0.89 0.87 0.97 0.27 0.29 0.21 0.23 0.12 0.16 0.17 0.12 0.18 0.08
5 min. 0.71 0.74 0.86 0.87 0.97 0.34 0.31 0.24 0.23 0.12 0.18 0.18 0.12 0.18 0.08

1 The benchmark consists of a single wave train. The amplitude and frequency of this wave train are extracted from the training
data.
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Figure 14: Crest heights and trough depths obtained for one hundred randomly selected windows. The bouys are located near
Maui (water depth: 200 m) for the results shown in 14a and 14b and in the Onslow Bay (water depth: 20 m) for the results
shown in 14c and 14d. 14a and 14c: Average error considering all crests and troughs. 14b and 14d: Average error of the highest
crest/deepest trough.

predicted. In both examples of Figure 15, the rogue wave is
predicted about one minute in advance.

4. Discussion
As demonstrated in Section 3, the proposed methodol-

ogy can be used to accurately predict upcoming ocean waves

with a high temporal resolution. This capability ultimately
enables forecasts of rogue waves (cf. Figure 15). In the
following, the assumptions and limitations of the proposed
methodology are summarized and possible extensions are
discussed.
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Figure 15: Forecasted sea surface elevation for the two rogue wave events close to San Nicholas Island. The measurements and
�t are included for comparison. 15a: Rogue wave occurred on Dec. 1st. 15b: Rogue wave occurred on Jan. 19th.

The developed methodology is proposed for single point
observations, in accordance with the current limited, high-
resolution (in time) field measurements of sea surface el-
evation stemming from surface buoys (CDIP Buoy data,
2022). However, the wave model (1) and the utilized fitting
strategies can in principle be extended to incorporate spatial
dependencies. For this purpose, validated high-resolution
(in time and space) sea surface measurements need to be
available. In this setting, a predicted rouge wave at a single
location could also serve as an extreme wave indicator for
locations in the travel direction of the extreme wave. Hence,
the time that a rogue wave can be predicted in advance could
be increased by spatial observations.

Motivated by the necessity of resolving individual waves
for rogue waves predictions, the developed forecasting strat-
egy is used to generate forecasts of the raw sea surface with
a sampling rate of about 1 Hz. This sampling interval is
considerable shorter than the sampling interval of current
operational wave forecasting models based on ocean spectra
(about 30 minutes). This capability comes with the price that
the forecasts are only meaningful for intermediate time spans
of several minutes (cf. Section 3), compared to the multi-day
ahead predictions of spectral wave models. Of course, it will
be of immediate interest to increase the forecasting horizon
as well as accuracy. However, the proposed deterministic
approach will be fundamentally limited to intermediate time
scales (in the range of minutes), since long-range forecasts
with spectral wave models are based on stochastic models.
The occurrence of individual extreme wave, however, is not
discernible from such models.

Moreover, in the proposed methodology the authors treat
the individual supplied measurements completely indepen-
dent. For each time series, new parameterizations of the
wave model (1) and the forecasting methods (linear or LSTM
network) are obtained. This procedure is motivated by the
fact that individual recordings can be separated by month
or even years in time and stem from completely different
buoy locations (cf. Section 3.2.2). In this setting, it is unclear

whether these measurements are correlated. Within the pro-
posed method, no relationship is assumed, which is clearly a
conservative assumption. A more extensive analysis on the
buoy data could be used to extract common patterns from
distant (in time and location) buoy measurements and utilize
those in forecasting tasks.

Finally, the wave model (1) as well as the forecasting
methods (cf. Section 2.3) do not require location specific
tuning. For the shallow water example in Section 3.2.2 the
performance of the linear models deteriorates significantly.
On the other hand the performance of benchmark improved,
which indicates a more regular behaviour of the measured
ocean waves. This regularity suggest that a location specific
tuning of the hyperparameter for the linear models could
help improving their performance.

5. Conclusions
The wave model (1) is utilized to generate high resolu-

tion forecasts of the sea surface elevation in real time. The
model (1) is fitted to available measurements by using the
cost function (2) and decomposing a ocean wave into fast
oscillations and slowly varying amplitudes. This decompo-
sition is inspired from common wave models and available
field observations. Moreover, this separation of time scales
is beneficially utilized to extend the extrapolation range of
the universal, black-box models such as linear autoregressive
models and a neural network with LSTM cells utilized to
forecast the amplitude variations.

The proposed strategy is first tested on measurements
from an experimental wave tank (Eeltink, 2022). The wave
tank measurements can be efficiently decomposed and the
upcoming wave can be accurately forecasted. Herein, the
more complex wave patterns at the seventh wave gauge pose
a greater challenge than more regular waves observed at the
first wave gauge closest to the wave maker. The linear au-
toregressive model performance is found to be comparable
to the neural network approach for this data set.
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The field measurements from ocean buoys (CDIP Buoy
data, 2022) can also be efficiently decomposed into fast
oscillations and slowly varying amplitudes. Employing the
strategy illustrated in Figure 3, real time forecasts were
obtained. Therein, the crest heights and trough depths pre-
dicted with the LSTM model were found to be more accurate
than the linear models and relevant benchmark. Moreover,
the proposed strategy is found to perform equally well for
measurements from buoys employed in deep, open water
and coastal, shallow water. Finally, the work is concluded
by obtaining real time forecasts of two rogue waves. These
predictions are obtained one minute in advance.

It will be the authors’ constant effort to increase the
forecasting accuracy as well as the horizon. To this end, the
harmonic functions in the wave model (1) can be replaced
with more complex functions. These could be either physi-
cally motivated such as Stokes waves or solitons (Ablowitz
and Clarkson, 1991) or learned from data. Another approach
could include alternative neural network architectures, for
example, encoder-decoder networks.

Within this work, two rogue waves have been predicted
about one minute in advance. To confidently use the pro-
posed approach for rogue wave forecasting, a broader val-
idation on measurements of extreme waves is desirable.
Furthermore, the systematic underestimation of the highest
crests could be further analyzed and corrective measures
could be proposed and tested.

Moreover, the utilized decomposition of data into rapid
oscillations and slowly varying spectrum can also be applied
in contexts beyond ocean wave forecasting. Indeed, a sim-
ilar separation of time scales have been observed in other
branches of environmental science as well as in various areas
such as mechanical vibrations or laser physics. It would be
of interest to explore the capabilities of the model (1) along
with the cost function (2) for these applications.
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A. Comparison of common wave models with
the wave model (1)

Stokes analyzed the Bernoulli equation for irrotational
flows (Stokes, 1880). Assuming a small wave steepness, he
performed a perturbation expansion which, up to the third
order, yields the following wave profile

𝜂(𝑥, 𝑡) =𝑎 cos(𝑘𝑥 − 𝜔𝑡) + 𝑎
2
(𝑘𝑎) cos(2(𝑘𝑥 − 𝜔𝑡))

+ 3𝑎
8
(𝑘𝑎)2 cos(3(𝑘𝑥 − 𝜔𝑡)),

(A.1)

where 𝑎 is an amplitude and 𝑘 is the wave number (cf.
also (Whitham, 2011; Rahman, 1995)). The product 𝑘𝑎,
also denoted as wave steepness is the small parameter in
the Stokes’ expansion. The wave model (1) can represent a
simple superposition of multiple Stokes waves (A.1) for a
fixed observer (𝑥 = 𝑐𝑜𝑛𝑠𝑡.). In this setting, the amplitudes
𝑢𝑛 and 𝑣𝑛 are constant and the higher order terms are either
negligible (small 𝑘𝑎) or can be represented by including
additional harmonics in the wave model (1).

In state-of-the-art operational wave forecast systems,
one carefully solves parameterized versions of the action-
balance equation (Komen et al., 1996). Therein, waves trains

Breunung and Balachandran: Preprint submitted to Elsevier Page 18 of 19

http://dx.doi.org/10.1115/1.4042065
http://dx.doi.org/https://doi.org/10.1016/j.wavemoti.2007.01.003
http://www.deeplearningbook.org
http://dx.doi.org/10.1017/S0022112062000373
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1017/S0022112010001217
https://archive.org/details/mathphyspapers01stokrich/page/n213/mode/2up
https://archive.org/details/mathphyspapers01stokrich/page/n213/mode/2up
http://dx.doi.org/10.1017/S002211201000385X
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/https://doi.org/10.1016/0167-2789(89)90077-8
http://dx.doi.org/https://doi.org/10.1016/0167-2789(89)90077-8
http://dx.doi.org/10.1146/annurev.fl.12.010180.001511
http://dx.doi.org/10.1146/annurev.fl.12.010180.001511
http://dx.doi.org/https://doi.org/10.1016/j.euromechflu.2020.02.006
http://dx.doi.org/https://doi.org/10.1016/j.euromechflu.2020.02.006


Data-driven, high resolution ocean wave forecasting and extreme wave predictions

are modelled as

𝜂(𝑥, 𝑡) =
𝑁
∑

𝑛=1

(

𝑎𝑛(𝜀𝐱, 𝜀𝑡)𝑒𝑖(𝐤𝑛(𝜀𝐱,𝜀𝑡)𝐱−𝜔𝑛(𝜀𝐱,𝜀𝑡)𝑡)

+�̄�𝑛(𝜀𝐱, 𝜀𝑡)𝑒−𝑖(𝐤𝑛(𝜀𝐱,𝜀𝑡)𝐱−𝜔𝑛(𝜀𝐱,𝜀𝑡)𝑡)
)

, 0 < 𝜀 ≪ 1,
(A.2)

where �̄�𝑛 is the complex conjugate of the amplitude 𝑎𝑛.
The number of Fourier modes 𝑁 can be finite or infinite
depending on the application. In model (A.2), one allows for
spatial and temporal variations of the amplitudes 𝑎𝑛(𝜀𝐱, 𝜀𝑡),the frequencies 𝜔𝑛(𝜀𝐱, 𝜀𝑡), and the wave numbers 𝐤𝑛(𝜀𝐱, 𝜀𝑡).These variations are generally slow (Komen et al., 1996) as
indicated by the small parameter 𝜀. Assuming a constant ob-
server 𝐱 = 𝐱𝑐 and introducing the mean frequencies 𝜔𝑛 ∶=
1∕𝑇 ∫ 𝑇

0 𝜔𝑛(𝜀𝐱𝑐 , 𝜀𝑡)𝑑𝑡, equation (A.2) can be rewritten

𝜂(𝑥, 𝑡) =
𝑁
∑

𝑛=1

⎛

⎜

⎜

⎜

⎝

𝑎𝑛(𝜀𝐱𝑐 , 𝜀𝑡)𝑒𝑖(𝐤𝑛(𝜀𝐱𝑐 ,𝜀𝑡)𝐱𝑐+(𝜔𝑛−𝜔𝑛(𝜀𝐱𝑐 ,𝜀𝑡))𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑣𝑛(𝜀𝑡)

𝑒−𝑖𝜔𝑛𝑡

+ �̄�𝑛(𝜀𝐱𝑐 , 𝜀𝑡)𝑒−𝑖(𝐤𝑛(𝜀𝐱𝑐 ,𝜀𝑡)𝐱𝑐+(𝜔𝑛−𝜔𝑛(𝜀𝐱,𝜀𝑡))𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̄�𝑛(𝜀𝑡)

𝑒𝑖𝜔𝑛𝑡

⎞

⎟

⎟

⎟

⎠

=
𝑁
∑

𝑛=1

(

𝑣𝑛(𝜀𝑡)𝑒−𝑖𝜔𝑛𝑡 + �̄�𝑛(𝜀𝑡)𝑒𝑖𝜔𝑛𝑡
)

,

(A.3)
which is the complex equivalent to the wave model (1).
While the time variations of the amplitudes are driven by
physically motivated source terms, black-box, data-driven
methods are utilized in the proposed method.

The nonlinear Schrödinger equation arises in the context
of ocean waves as a governing equation of an amplitude of a
modulated, single wave train (Kharif and Pelinovsky, 2003).
The results are based on a perturbation approach assuming
weak nonlinearities and, additionally, a single dominant
frequency as well as slowly varying amplitudes (Zakharov,
1968). In essence, the nonlinear Schrödinger equation gov-
erns the amplitude 𝑢(𝜀𝑥, 𝜀𝑡) of the wave train

𝜂(𝑥, 𝑡) ∶= 𝑢(𝜀𝑥, 𝜀𝑡)𝑒𝑖(𝑘𝑥−𝜔𝑡) + 𝑢(𝜀𝑥, 𝜀𝑡)𝑒−𝑖(𝑘𝑥−𝜔𝑡),
0 < 𝜀 ≪ 1.

(A.4)

Similarly, the higher order extensions of the nonlinear
Schrödinger equation such as those discussed in refer-
ence (Dysthe, 1979) rely on the same assumption. The
ansatz (A.4) is equivalent to the wave model (1) with a single
wave train (𝑁 = 1).
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