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Spectral submanifolds (SSMs) have recently been
shown to provide exact and unique reduced-order
models for nonlinear unforced mechanical vibrations.
Here, we extend these results to periodically or
quasi-periodically forced mechanical systems,
obtaining analytic expressions for forced responses
and backbone curves on modal (i.e. two dimensional)
time-dependent SSMs. A judicious choice of the
parametrization of these SSMs allows us to simplify
the reduced dynamics considerably. We demonstrate
our analytical formulae on three numerical examples
and compare them to results obtained from available
normal-form methods.

1. Introduction
In drawing conclusions about a nonlinear mechanical
system, an engineering analyst usually faces the
challenge of high dimensionality and complex dynamic
equations. To reduce simulation time and deduce general
statements, it is desirable to reduce the dimension of the
system and simplify the resulting reduced equations of
motion.

For linear systems, decomposition into normal modes
is a powerful tool to derive reduced-order models.
While the lack of the superposition principle makes
such a decomposition impossible for nonlinear systems,
various definitions of nonlinear normal modes (NNMs)
are also available in the literature (cf. [1–3]). Specifically,
Rosenberg [1] defines a NNM as a synchronous periodic
orbit of a conservative system. Later, Shaw & Pierre [2]
extended this definition to dissipative systems, by
viewing a NNM as an invariant manifold tangent to
a modal subspace of an equilibrium point. Sought,

2018 The Author(s) Published by the Royal Society. All rights reserved.
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in practice, via a Taylor expansion, these manifolds serve as nonlinear continuations of the
invariant modal subspaces spanned by the eigenvectors of the linearized system. Owing to their
invariance, these manifolds are natural candidates for model order reduction.

While there are generally infinitely many Shaw-Pierre-type surfaces for each modal subspace
(cf. [4]), Haller & Ponsioen [3] have shown that, under appropriate non-resonance conditions,
there is a unique smoothest one, which they called a spectral submanifold (SSM). When the
underlying modal subspace is the one with the slowest decay, the dynamics on its corresponding
SSM serves as the optimal, mathematically exact reduced-order model for the system dynamics
(see [3]). Applications of this model reduction approach appear in Jain et al. [5] and Szalai et al. [6].
Ponsioen et al. [7] provide an automated computation package for two-dimensional SSMs of a
general autonomous, nonlinear mechanical system.

While most of the above work focuses on unforced (autonomous) mechanical systems, here we
explore further the utility of SSMs for forced dissipative nonlinear mechanical systems. For this
class of systems, the existence, uniqueness and regularity of SSMs have been clarified by Haller &
Ponsioen [3], relying on the more abstract invariant manifold results of Haro & de la Lave [8]. In
this context, a NNM is defined as the continuation of the trivial hyperbolic fixed point of the time-
independent system under the addition of a small time-dependent forcing with a finite number
of frequencies. Depending on the frequency content of the time-varying terms, this continuation
is a periodic or quasi-periodic orbit (cf. [3]). The SSM will be a time-dependent surface with the
same frequency basis. This SSM is then tangent to the NNM along directions associated with a
spectral subspace of the linearization.

The first attempt to construct such a non-autonomous SSM can be found in Jiang et al. [9],
who formally reduce an externally forced, dissipative mechanical system to a two-dimensional
time-varying invariant manifold. While their results are promising even for high-amplitude
oscillations, they are only able to carry out the reduction numerically for fixed parameter values,
aided by a Galerkin projection. Therefore, their study is limited to specific examples and symbolic
equations from which general conclusions about the forced response could be derived are not
obtained. Furthermore, the uniqueness, existence and smoothness of their assumed invariant
manifold remains unclear from their procedure.

Extending this approach to systems with time-periodic coefficients in their linear part, Sinha
et al. [10] and Gabale & Sinha [11] expand the assumed invariant manifold in a multivariate
Taylor-Fourier series, obtaining the unknown coefficients from the invariance of the manifold.
With unclear uniqueness, existence and smoothness properties of the manifold, however, the
series expansion remains unjustified. Furthermore, the approach does not yield generally
applicable closed formulae and hence numerical integration is required to analyse the reduced
model.

A generally applicable procedure for the simplification of the (formally) reduced dynamics is
the method of normal forms (cf. e.g. [12]). The method applies a series of smooth transformations
to obtain a Taylor series of the original dynamical equations, which contain only the terms
essential for the dynamics. Jezequel & Lamarque [13] demonstrate the potential of normal
forms for mechanical vibrations after the system is transformed to first-order phase-space form.
Neild & Wagg [14] give an alternative formulation of the normal form procedure that is directly
applicable to second-order mechanical systems. As all state variables are transformed, the
resulting dynamics have the same dimensionality as the original system and no model-order
reduction is achieved. Furthermore, both of these normal form approaches start from conservative
systems and treat damping as a small bifurcation parameter. Therefore, the unfolding from the
conservative limit has to be discussed for every damping type separately.

Touzé & Amabili [15] seek to unite normal form theory with model-order reduction for the first
time. After a normal form transformation, they restrict their calculations to heuristically chosen
submanifolds. As pointed out by the authors, a strict time-varying normal form is not computed.
Instead, the forcing is inserted directly into the normal form. This represents phenomenological
forcing aligned with a curvilinear coordinates, rather than a specific physical forcing applied to
the system.
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Owing to the essential nonlinear relationship between forcing and response amplitude of
nonlinear systems, a single response curve for a given forcing is meaningless for different forcing
amplitudes. To summarize responses obtained from different forcing amplitudes, one may choose
to collect distinguished points of various response curves in the same diagram. For instance,
Nayfeh & Mook [16] and Cveticanin et al. [17] call the curve formed by the loci of the maximal
response amplitude the backbone curve. Cveticanin et al. [17] further trace fold points of the forced
response and relate them to the maximum amplitude. Both Nayfeh & Mook [16] and Cveticanin
et al. [17], however, compute the backbone curves only for low-dimensional specific examples.
Furthermore, Peeters et al. [18] trace the frequencies at which the forced response is 90◦ out of
phase to the forcing.

An alternative given by Klotter [19] and continued by Rosenberg & Atkinson [20] is the
definition of the backbone curve as the frequency–amplitude relationship of a periodic solution
family of the conservative unforced limit of the system. Additional arguments are necessary to
justify the relevance of these curves for forced-damped vibrations. Hill et al. [21,22], Kerschen
et al. [23] and Peeters et al. [18] observe that along each NNM (i.e. periodic orbit) of the
conservative limit, weak viscous damping can be cancelled by an appropriately chosen external
periodic forcing. Under such forcing, the conservative set of NNMs will form the backbone
curves. For a general damped and forced nonlinear system, however, the relevance of periodic
orbits of the conservative limit for the forced response is not well understood. Recently, Hill
et al. [22] observed numerically that major parts of such NNMs are non-robust and therefore
irrelevant for the forced response. They propose a robustness measure to assess the relevance
of the conservative NNMs for the forced response. Kerschen et al. [23] and Peeters et al. [18]
mention specific examples in which the forced response of an almost conservative system will be
close to the periodic orbits of the conservative system. As the backbone curve is obtained for the
unforced conservative limit in these examples, another method is needed to actually calculate the
maximum amplitude for a given forcing. Hill et al. [21] present an energy transfer-based method
for this purpose. They also give, however, a counterexample in which the conservative backbone
curve has no relevance for the forced response.

Parallel to theoretical considerations, backbone curves have been approximated in
experiments through the force appropriation method. In this method, the nonlinear system is forced
with a harmonic forcing such that the response has a 90◦ phase lag in a modal degree of freedom.
While this force appropriation procedure is plausible for linear viscous damping (or nonlinear
damping that is an odd function of the velocities), the approach has remained unjustified for
general, nonlinear damping (cf. [18]).

An experimental alternative to the force appropriation is the resonance decay method, in which
the system is forced, such that its response is close to an envisaged invariant surface of the
conservative limit. Then the forcing is turned off and the instantaneous amplitude–frequency
relationship is identified by signal processing. Peeters et al. [18], however, relate this curve, which
is essentially a feature of the damped system, to the orbits of the conservative system only
phenomenologically.

We also note that force appropriation and the resonance decay aim to reconstruct NNMs of
the conservative limit. The set formed by these orbits is expected to deviate from the forced
response of the actual dissipative system for larger amplitudes and larger damping. As a recent
development, Szalai et al. [6] compute the backbone curves from the frequency–amplitude
relationship of decaying vibrations on SSMs reconstructed from measured data. A connection
with the backbone curve obtained from the forced response, however, is not immediate.

In summary, available approaches to compute forced response via model reduction for
nonlinear mechanical systems suffer either from heuristic steps or omissions in the reduction
procedure, or from an unclear relationship between backbone-curve definitions different from
the one relevant for forced-damped vibrations in a practical setting. In this work, we seek
to eliminate these shortcomings simultaneously. First, we employ a mathematically justified
reduction process to time-dependent SSMs in the presence of general damping and forcing.
Second, with universal, system-independent formulae for the dynamics on the SSM at hand,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 J

un
e 

20
22

 



4

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180083

...................................................

we derive explicit, leading-order approximations to the actually observed backbone curve of the
time-dependent, dissipative response. We show how all this can be achieved without the use of
extensive numerics (such as numerical continuation or numerical time integration) or extensive
numerical experimentation (force appropriation and resonance decay).

Our results are based on a parametrization of an autonomous SSM that can be continued
under the addition of small external forcing (§3). Via a simplification of the resulting reduced
dynamics on the non-autonomous SSM, we can directly solve for the amplitudes of the forced
response, restricting our focus to oscillations near the origin. Without any further restrictions,
we calculate backbone curves, stability of the forced response and the amplitude–frequency
relationship explicitly (§4). We then demonstrate the performance of our explicit backbone-curve
formulae in three numerical examples, on which we also compare our results to those obtained
from prior methods for approximating forced responses and backbone curves (§5).

2. Set-up
We consider a general, quasi-periodically forced, nonlinear, N-degree-of-freedom mechanical
system of the form

Mq̈ + (C + G)q̇ + (K + N)q + fnlin(q, q̇) = εfext(Ω1t, . . . ,Ωkt), q ∈ R
N , 0 ≤ ε� 1,

and fnlin(q, q̇) =O(|q|2, |q||q̇|, |q̇|2), fext(Ω1t, . . . ,Ωkt) =∑
k∈Zk fk

ext ei〈k,Ω〉t, k ≥ 1,

⎫⎬
⎭
(2.1)

where M is a symmetric, positive-definite matrix; the stiffness matrix K and the damping matrix
C are symmetric, positive semi-definite; the matrix of the follower forces N and the gyroscopic
matrix G are skew-symmetric; and the nonlinear forcing vector fnlin(q, q̇) is at least quadratic in
its arguments. Observe that q ≡ 0 is an equilibrium of the unforced system (ε= 0). The external
forcing εfext does not depend on the generalized coordinates or velocities and has finitely many
rationally incommensurate frequencies (Ω1, . . . ,Ωk). As such, fext admits a convergent Fourier
representation with frequency base vector Ω = (Ω1, . . . ,Ωk), as indicated.

We denote the eigenvalues of the linearized system (2.1) by λ1, . . . , λ2N , with multiplicities and
conjugates included. We assume an underdamped configuration, i.e. complex eigenvalues with
non-zero imaginary part and negative real part. Owing to the importance of the eigenvalues with
the smallest real part for the existence of the non-autonomous SSM (cf. [3]), we denote one of
these eigenvalues by λmin and order all eigenvalues as follows:

λj = λ̄j+N , Im(λj)> 0, Re(λmin) ≤ Re(λj)< 0, j = 1, . . . , N. (2.2)

By (2.2) the q ≡ 0 equilibrium of the unforced limit of (2.1) is asymptotically stable. This context
is relevant for vibrations of lightly damped structures.

To obtain the first-order equivalent system, we define the matrices

A =
(

0 I
−M−1(K + N) −M−1(C + G)

)
, Gnlin(x) =

(
0

M−1fnlin(x)

)

and gk
ext =

(
0

M−1fk
ext

)
, Gext(Ω1t, . . . ,Ωkt) =

∑
k∈Zk

gk
ext ei〈k,Ω〉t.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)

By letting x = (q, q̇) in (2.1) and the definitions (2.3), we obtain the first-order equivalent system

ẋ = Ax + Gnlin(x) + εGext(Ω1t, . . . ,Ωkt). (2.4)

We define the matrices

Λ = diag(λ1, . . . , λ2N), V = [v1, . . . , v2N], vj =
(

ej
λjej

)
, (2.5)
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where vj is the eigenvector of (2.4), corresponding to the eigenvalue λj and to the mode shape ej
of the linear part of (2.1). We assume that the matrix A is semisimple and therefore Λ = V−1AV
holds. An equivalent autonomous version of the non-autonomous system (2.4) can be obtained
by introducing the phases

φj =Ωjt, j = 1, . . . , k, (2.6)

which yield (
ẋ
φ̇

)
=
[

Ax + Gnlin(x) + εGext(φ)
Ω

]
. (2.7)

For system (2.4) or its equivalent autonomous form (2.7), we now restate the main results of
Haller & Ponsioen [3]. We consider eigenspaces of system (2.4) of the form

E = span{v1, . . . , vs, vN+1, . . .vN+s}, (2.8)

with their smoothest nonlinear continuation defined as follows.

Definition 2.1. A SSM, W(E), corresponding to the eigenspace E defined in (2.8) is an invariant
manifold of the system (2.4) with the following properties:

(i) W(E) has the same dimensions as E (i.e. dim(W(E)) = 2s) and perturbs smoothly from E
at x = 0 under the addition of the nonlinear and O(ε) terms of system (2.4);

(ii) W(E) is strictly smoother than any other invariant manifold satisfying (i).

From now on, we assume that the non-resonance conditions

s∑
j=1

mjRe(λj) 
= Re(λn), n = s + 1, . . . , N, 2 ≤
s∑

j=1

mj ≤Σ(E), mj ∈ N, (2.9)

hold, with the absolute spectral quotient Σ(E) defined as

Σ(E) = Int

(
Re(λmin)

maxj=1,...,s(Re(λj))

)
, (2.10)

where the operator Int(·) extracts the integer part of its argument. Then we have the following
results on the SSMs of the general mechanical system (2.4):

Theorem 2.2. Assume that the non-resonance conditions (2.9) are satisfied for an eigenspace E defined
in (2.8). Then the following statements hold:

(i) The SSM, W(E), for system (2.4) uniquely exists in the class of CΣ(E)+1 manifolds.
(ii) A parametrization W : R

2s → R
2N of the invariant manifold W(E) can be approximated in a

neighbourhood of the origin as a polynomial in the parametrization variable z, with coefficients
depending on the phase variables φ, i.e.

x = W(z, φ), z ∈ R
2s, (2.11)

(iii) There exist a polynomial function R(z, φ), defined on an open neighbourhood of x = 0, such that
the invariance condition

AW(z, φ) + G(W(z, φ)) + εGext(φ) = DzW(z, φ)R(z, φ) + DφW(z, φ)Ω . (2.12)

holds. Therefore, the dynamics on the SSM (i.e. the reduced dynamics) are governed by

ż = R(z, φ). (2.13)

(iv) The parametrization W(z, φ), as well as the reduced dynamics R(z, φ), are robust with respect to
changes in the parameters.
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Proof. This is a restatement of the main theorem by Haller & Ponsioen [3] (Theorem 4), deduced
from more abstract results on invariant manifolds of Haro & de la Lave [8] (Theorem 4.1) in our
current setting. �

If the non-resonance conditions are satisfied for the general mechanical system (2.1),
theorem 2.2 establishes the existence, smoothness and uniqueness of the SSM tangent to a modal
subspace of interest. Owing to the smooth persistence of the SSM with respect to the small
parameter ε, the parametrization of the SSM, as well the reduced dynamics, can be expanded
in ε. As the forcing in equation (2.4) is of the first order in ε, the leading-order approximations to
the SSM (W0) and to the dynamics (R0) do not depend on the phase variables φ. Specifically, we
have

W(z, φ) = W0(z) +
∞∑

l=1

εlWl(z, φ)

and R(z, φ) = R0(z) +
∞∑

l=1

εlRl(z, φ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.14)

where the subscripts of W and R indicate the order in the ε expansion. As a consequence, we have
the following corollary.

Corollary 2.3. If, in addition to the inner non-resonance conditions (2.9), the outer non-resonance
conditions

s∑
j=1

mjλj 
= λn, n = 1, . . . , s, 2 ≤
s∑

j=1

mj ≤Σ(E), mj ∈ N, (2.15)

hold for the eigenspace E defined in (2.8), then R0(z,φ) can be chosen linear in z.

Proof. This corollary follows directly from the work of Cabré et al. [24] for discrete mappings
(Theorem 1.1) and is also stated by Szalai et al. [6]. These results are applicable here because W0
and R0 are autonomous. �

To conveniently express the polynomial expansions of W(z, φ) and R(z, φ), we use the multi-
index notation

Wl(z, φ) =
∑

m∈N
2s
0

wm
l (φ)zm, wm

l ∈ C
2N

and Rl(z, φ) =
∑

m∈N
2s
0

rm
l (φ)zm, rm

l ∈ C
2s,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.16)

where the superscript m indicates the associated monomial of the coefficient vectors wm
l and rm

l .

3. Spectral submanifolds for the forced system
Given a parametrization of the SSM, W(E), and its reduced dynamics for the autonomous limit
of (2.1) (ε= 0), we now consider the continuation of these under the addition of small forcing
terms. We truncate the parametrization W(z, φ) and the associated reduced dynamics R(z, φ)
at O(ε|z|, ε2). With the notation (2.16), the series expansion (2.14) of W(z, φ) and R(z, φ) can be
rewritten as

W(z, φ) = W0(z) + εw0
1(φ) + O(ε|z|, ε2)

and R(z, φ) = R0(z) + εr0
1(φ) + O(ε|z|, ε2).

⎫⎬
⎭ (3.1)

The equations (3.1) reveal that only the unknown coefficient vectors w0
1(φ) and r0

1(φ) need to be
computed to achieve the desired O(ε|z|, ε2) accuracy.

First, we discuss a general leading-order parametrization W0 and its dynamics R0, then we
modify this parametrization to accomodate the near-resonant nature of conjugate eigenvalue
pairs that arises under weak damping (cf. [6]).
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(a) General parametrization
For a general parametrization truncated at O(ε|z|, ε2), we state the result in the following lemma;

Lemma 3.1. If the non-resonance conditions (2.9) are satisfied for the spectral subspace (2.8) of
system (2.4), then the coefficient vectors w0

1(φ) and r0
1(φ) of parametrization W(z, φ) and the dynamics

R(z, φ) are given by

w0
1 =

∑
k∈Zk

V(i〈k,Ω〉I − Λ)−1V−1gk
ext ei〈k,φ〉 (3.2a)

and

r0
1 = 0. (3.2b)

Proof. The non-resonance conditions (2.9) ensure the existence of the SSM, therefore the
parametrization and the reduced dynamics can be expressed in the form (2.14). Substituting
this series expansion into the invariance condition (2.12) and comparing terms of equal order
in ε and z, we obtain the expressions (3.2a) and (3.2b). We detail this coefficient comparison in
appendix Aa. �

The specific form of W0 and R0 depends on the choice of the modal subspace (2.8). Cabré
et al. [24] point out that the parametrization of SSM is not unique, even though the SSM is.
Because of the conditions (2.2), the inverse in formula (3.2a) is non-singular. Still, if the norm
of the damping matrix C is small and a harmonic 〈k,Ω〉 is near-resonant, i.e.

〈k,Ω〉 ≈ Im(λl), (3.3)

then small denominators arise in equation (3.2a). These denominators would restrict the domain
of validity of our calculations. To avoid this issue, we will eliminate small denominators by
keeping terms in R(z, φ) that could otherwise be eliminated from the reduced dynamics.

(b) Forced response of the nonlinear mechanical system
Having identified terms that potentially contain small denominators, we continue by keeping
additional terms in the reduced dynamics to ascertain that no small denominators arise in the
parametrization. To construct frequency–amplitude response curves, we now assume canonical
single-harmonic forcing (k = 1) in the form of

fext = f cos(Ωt) = f
eiΩt + e−iΩt

2
. (3.4)

Therefore, only the forcing terms g±1
ext (cf. equation (2.3)) are non-zero. The period of the

forcing (3.4) is T = 2π/Ω . We restrict our calculations to the case when W(E) is two-dimensional
(s = 1), which are tangent to an eigenspace

El = span{vl, vl+N}. (3.5)

We denote the parametrization variable for the corresponding SSM W(El) by z = [zl, z̄l]T. As
the eigenvalues λl and λl+N are complex conjugates (cf. condition (2.2)), the internal resonance
conditions (2.15) are technically satisfied and the dynamics R0(z) could be chosen linear. As noted
by Szalai et al. [6], however, the near-resonance relationships

(m + 1)λl + mλl+N ≈ λl, mλl + (m + 1)λl+N ≈ λl+N , m ≤ M, (3.6)

between complex conjugate eigenvalues always hold for small damping (i.e. 2M|Re(λl)| � 1). The
weaker the damping, the higher the value of the positive integer M needs to be set. Removing the
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corresponding terms from the dynamics would lead to small denominators in the parametrization
W0 of the SSM. To this end, we keep such near-resonant terms in R0(z) by letting

R0(z) =
[
λlzl
λ̄lz̄l

]
+

M∑
m=1

[
βmzm+1

l z̄m
l

β̄mzm
l z̄m+1

l

]
+ O(z2M+3). (3.7)

The order of the autonomous SSM and its associated dynamics in the parametrization variable
z is 2M + 1. For instance, for the choice of M = 1, a parametrization the autonomous SSM W0(z)
and its associated dynamics R0(z) are of order three in z. For this case, a formula for the constant
β1 in (3.7) for the general mechanical system (2.4) with diagonalized linear part is given by Szalai
et al. [6], which we recall in appendix B for completeness.

For increasing accuracy or large-amplitude oscillations it is desirable to compute (3.7) for a
higher choice of M (M> 1). To compute the arising constants βm of the reduced dynamics (3.7) the
invariance condition (cf. appendix Aa equation (A 3)) has to be solved for a polynomial W0(z) and
R0(z) manually or the automated computation package of Ponsioen et al. [7] can be used. For the
calculation of the O(5) SSM (M = 2), we provide a Matlab script as the electronic supplementary
material.

As for the computation of W0 in the M = 1 case, Szalai et al. [6], showed that a two-dimensional
SSM, W(El), of the unforced limit of system (2.1) can be constructed if the further non-resonance
conditions

m1λl + m2λ̄l 
≈ λj, j 
= l, l + N and 1 ≤ m1 + m2 ≤Σ(El) (3.8)

are satisfied.
To study the continuation of the autonomous SSM from Szalai et al. [6] under the addition of

the small forcing terms defined in (3.4), we rescale the parametrization variable

z �→ ε1/(2M+2)z =μz (3.9)

and truncate all formulae for the SSM and its reduced dynamics at order μ2M+3 in the following.
Higher-order approximations could be obtained in a similar fashion.

To explicitly construct an approximation to the SSM, we define the matrices S+ and S−

elementwise as

S+
jm = δjm − δljδlm, S− = δjm − δ(l+N)jδ(l+N)m, j, m = 1, . . . , 2N. (3.10)

Both matrices (S+ and S−) equal the identity, except that the element S+
ll is zero and the (l + N)th

entry on the main diagonal of S− is zero. Furthermore, we denote the jth row of the inverse of the
eigenvector matrix V by tj, i.e.

[t1, t2, . . . , t2N] = V−1, tj ∈ C
1×2N , j = 1, . . . , 2N. (3.11)

We then have the following result for the autonomous SSM and its associated reduced dynamics.

Theorem 3.2. If the non-resonance conditions (2.9) and (3.8) hold for the subspace EL (cf.
equation (3.5)) for the general mechanical system (2.1) under the canonical single-harmonic forcing (3.4),
then the O(μ2M+3) approximation of the parametrization and its reduced dynamics can be written in the
form

W(z,Ωt) = W0(z) + μ2M+2w0
1(Ωt) + O(μ2M+3) (3.12a)

and
R(z,Ωt) = R0(z) + μ2M+2r0

1(Ωt) + O(μ2M+3), (3.12b)

where the coefficient vectors w0
1 and r0

1 are given by

w0
1 = VS+(iΩI − Λ)−1V−1g(1)

ext eiΩt + VS−(−iΩI − Λ)−1V−1g(−1)
ext e−iΩt (3.13a)

and

r0
1 = rc

[
eiΩt

−e−iΩt

]
, rc = tlg

(1)
ext. (3.13b)
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Proof. As the non-resonance conditions (2.9) hold, the existence of the SSM can be guaranteed.
Given that the additional non-resonance conditions (3.8) also hold, the result from Szalai et al. [6]
also applies and we can select the parametrization variable such that the reduced dynamics of the
autonomous limit of system (2.1) is of the form (3.7). Substituting the series expansion (2.14) and
the scaling (3.9) into the invariance condition (2.12) and comparing terms of equal order in μ, we
obtain equations (3.12a) and (3.12b). We solve the arising equation at order μ2M+2 eliminating
small denominators and obtain the explicit equations for w0

1 and r0
1 (cf. equations (3.13a)

and (3.13b)). We give the detailed derivations in appendix Ab. �

Remark 3.3. The constant rc in equation (3.13b) is the component of the forcing vector f in
equation (3.4) falling in the subspace El defined in (3.5).

Remark 3.4. As we assume non-zero real part for the eigenvalues λj (cf. condition (2.2)), the
inverse in (3.13a) is non-singular. By construction, the matrices S± cancel out the terms with small
denominators in the parametrization.

Remark 3.5. The non-resonance conditions (3.8) are violated for internally resonant structures.
In this case, the system dynamics cannot be reduced to a two-dimensional SSM; rather, a higher-
dimensional SSM needs to be constructed. Specific formulae for the reduction of an autonomous
system to a higher-dimensional SSM (W0 and R0, for s> 1) have not yet been obtained in the
literature, even though they can, in principle, be deduced from the invariance condition (2.12).

Theorem 3.2 leads to the following corollary.

Corollary 3.6. The eigenvectors vj can be normalized such that rc is purely imaginary.

Proof. The proof relies on the fact that we can multiply the eigenvectors with a complex constant
such that equation (3.15) holds. We detail this in appendix Ad. �

Remark 3.7. In the case of purely symmetric system matrices in (2.1) (N = 0 and G = 0) and
structural damping (C = αmM + αkK,αk,αm ∈ R), the mode shapes ej (cf. equation (2.5)) can be
mass-normalized, i.e. for the matrix of mode shapes E = [e1, . . . , eN]

E−1ME = I (3.14)

holds. Then the constant rc turns out to be always purely imaginary, which we also derive in
appendix Ad.

Based on corollary 3.6, we can assume a purely imaginary constant rc without loss of generality.
We denote the imaginary part of rc by r, i.e.

r = Im(rc). (3.15)

To determine the steady-state response of (2.1), we seek for T-periodic orbits of the reduced
dynamics (3.12b). To this end, we transform the parametrization variables to polar coordinates
by letting

zl = ρ eiθ . (3.16)

Furthermore, we separate the real and imaginary parts of the reduced dynamics (3.7) as

Re(R0(z)) = a(ρ) = Re(λl)ρ +
M∑

m=1

Re(βm)ρ2m+1 (3.17a)

and
1
ρ

Im(R0(z)) = b(ρ) = Im(λl) +
M∑

m=1

Im(βm)ρ2m. (3.17b)

By formula (3.13b), if the forcing vector f is perpendicular to the subspace El, then rc is zero. In
that case, system (3.12b) has a fixed point at the origin, which is asymptotically stable, because of
the conditions (2.2). In general, however, r is non-zero, in which case we obtain the following:
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Theorem 3.8. With the transformation (3.16) and the notation introduced in (3.17a) and (3.17b), the
following specific expressions for T-periodic orbits of the reduced dynamics (3.12b) on the time-dependent
SSM W(El) for non-zero r hold:

(i) Amplitude of the periodic response: The amplitudes of the T-periodic orbits of (3.12b) are given by
the zeros of the equation

f (ρ,Ω) := [a(ρ)]2 + [b(ρ) −Ω]2ρ2 − ε2r2. (3.18)

(ii) Phase shift of the periodic response: For a given amplitude ρ of the periodic response, the phase
shift ψ between the T-periodic orbit and the external forcing fext is

ψ = arccos
(

[Ω − b(ρ)]ρ
εr

)
. (3.19)

(iii) Stability of the periodic response: The stability of the T-periodic response with amplitude ρ is
determined by the eigenvalues of the Jacobian

J(ρ) =

⎡
⎢⎣

∂a(ρ)
∂ρ

[Ω − b(ρ)]ρ

∂b(ρ)
∂ρ

− Ω − b(ρ)
ρ

a(ρ)
ρ

⎤
⎥⎦ . (3.20)

Proof. This result can be deduced by substitution of the transformation (3.16) into the reduced
dynamics (3.12b) and solving the resulting equations for T-periodic orbits. We carry out these
computations in detail in appendix Ad. �

The constants βm, necessary to compute a(ρ) and b(ρ), can be obtained from the invariance of
the SSM (cf. equation (2.12)). Depending on the order of the SSM (M) specific formulae for βm can
be taken from Szalai et al. [6] or appendix B (M = 1), the Matlab script provided as the electronic
supplementary material (M = 2) or the automated computation package of Ponsioen et al. [7].

4. Analytic results on backbone curve, periodic responses and their stability
Having derived condensed formulae for the amplitude (3.18) and the stability (3.20) of the forced
response of system (2.1), we can now analytically compute backbone curves and stability regions.
Furthermore, we obtain below the forced response in physical coordinates.

(a) Backbone curve
As mentioned in the Introduction various definitions of the backbone curve can be found
in the literature. The definition by Klotter [19], as the frequency–amplitude relationship of
the conservative unforced limit, was adopted by Rosenberg & Atkinson [20]. This definition,
however, has two major drawbacks. First, a general justification for the relevance of this
curve for the response of the forced-damped system (2.1) is not available to the best of our
knowledge. Furthermore, due to the no-damping assumption, it is challenging to observe this
curve experimentally. The definition by Nayfeh & Mook [16] and Cveticanin et al. [17] of the
backbone curve as the curve connecting points of maximal response amplitude as a function of an
external forcing frequency, defines a relevant and experimentally observable curve. We formalize
this definition here as follows.

Definition 4.1. The backbone curve of the mechanical system (2.1) is the curve of maximal
amplitude of the periodic response on the SSM (3.12a) as a function of the frequency of the external
forcing (3.4).

The function (3.18) relates implicitly the response amplitude ρ with the forcing amplitude r
and frequency Ω , and hence summarizes information about a whole family of response curves.
The maximal amplitude location of each such curve is a single point on the backbone curve by
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definition 4.1. By definition 4.1, points on the backbone curve can be identified by equating the
derivative of the amplitudes with respect to the forcing frequency Ω with zero. To find these
locations, first note that implicit differentiation of (3.18) gives

∂f (ρ,Ω)
∂Ω

= −2(b(ρ) −Ω)ρ2. (4.1)

To identify the frequency Ω =Ωmax, at which the amplitude of the forced response of (2.1) is at a
maximum, we equate the expression (4.1) with zero. Solving forΩmax from the resulting equation,
we obtain

Ωmax(ρmax) = b(ρmax) = Im(λl) +
M∑

m=1

Im(βm)ρ2m
max. (4.2)

The maximal response amplitude ρmax parametrizes the backbone curve. The phase shift
between response and excitation along the backbone curve is given by

ψ(ρmax) = π

2
, (4.3)

as one obtains from (3.19) by substituting ρ = ρmax and Ω =Ωmax. Peeters et al. [18] derived a
similar 90◦ phase lag, under the assumption of structural damping. Equation (4.3) confirms this
conclusion for any damping, that is a polynomial function of positions and velocities.

The SSM construction described by Haller & Ponsioen [3] for dissipative systems does not
apply to conservative mechanical systems as the q = 0 equilibrium is not hyperbolic in that
case. The Lyapunov subcentre-manifold theorem for autonomous conservative systems (cf. [25]),
however, guarantees the existence of an unique analytic invariant manifold tangent to the
modal subspace (3.5) under appropriate non-resonance conditions. These Lyapunov subcentre-
mainfolds (LSMs) are then filled with periodic orbits. If, in addition to the forcing, the linear and
nonlinear damping are also of first order in ε, the ε→ 0 limit of system (2.1) is conservative and
unforced. Then, by the uniqueness of the LSM (cf. [25]) and the continuity of the expansions (2.14)
of the SSM, it is reasonable to expect that the SSM limits on the LSM. A mathematical proof for
this expectation, however, is not available yet.

We obtain the conservative limit of the reduced dynamics (3.12b) by taking the limits
ε→ 0, Re(λl) → 0 and Re(βm) → 0 (m = 1, . . . , M). Transforming this limit to poolar coordinates,
we obtain the same frequency–amplitude relationship as given by the backbone curve (4.2).
Therefore, we can confirm analytically that the frequency–amplitude relationship of the
conservative limit is an O(μ2M+3) approximation to actual backbone curve. The closeness of the
two curves assumed by, e.g. the resonance decay method, has only been argued heuristically by
Peeters et al. [18].

We further note that the backbone curve (4.2) is the same as derived by Szalai et al. [6], who
define the backbone curve as the frequency–amplitude relationship of the decaying response
along an SSM. From their calculations, however, the relevance of this curve to the forced response
of system (2.1) is not immediate. Our derivations clarify here this relevance.

The backbone curve (4.2) is independent of the forcing amplitude. This fact is clear for the
undamped and unforced frequency–amplitude relationship, as there is no forcing in the system,
but the same result also follows directly from our analytical calculations for the damped-forced
mechanical system (2.1). The forcing amplitude determines the location along the backbone curve,
where the maximum of the response curve can be found. To obtain the maximum response
amplitude for a given forcing, equation (3.18) has to be solved. Along the backbone curve (3.18)
simplifies to

f (ρmax) =
[

Re(λl)ρmax +
M∑

m=1

Re(βm)ρ2m+1
max

]2

− ε2r2, (4.4)

which can have multiple solutions for ρmax.
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unstable

r

rcrit

r0

b(rmax)

W +
crit

W1(r0) W2(r0)

W
–

cri
t

W
Im(ll)

r
2 e2r2 – a(r)2

Figure 1. Sketch of a typical forced response for a third-order SSM approximation (M= 1) and a nonlinearity with a stiffening
effect (Im(β1)> 0).

We obtain a parametrization of the forced response in the (ρ,Ω) parameter space, by solving
equation (3.18) for Ω :

Ω(ρ) = b(ρ) ± 1
ρ

√
ε2r2 − a(ρ)2, (4.5)

where only real values of Ω are meaningful. Equation (4.5) reveals that the forced response is
symmetric with respect to the backbone curve (cf. figure 1). For a given amplitude ρ = ρ0 one or
two forced responses with that amplitude may exist. If there is only one such response, it must lie
on the backbone curve (4.2).

In practice, the forcing frequencyΩ is known and the amplitude ρ needs to be determined as a
function ofΩ , by solving for the zeros of the function (3.18). If the order of the SSM W(El) is three
(M = 1), we can solve (3.18) for ρ analytically. For higher-order approximations to W(El), such an
analytic solution is unavailable and hence numerical solvers must be used.

(b) Stability of the periodic response
To obtain stability regions of the forced response, we apply the Routh–Hurwitz criterion to the
Jacobian (3.20). We conclude that

Re(λl) +
M∑

m=1

(m + 1) Re(βm)ρ2m < 0 (4.6)

and
a(ρ)
ρ

∂a(ρ)
∂ρ

< [Ω − b(ρ)]
[
ρ
∂b(ρ)
∂ρ

− (Ω − b(ρ))
]

(4.7)

must hold to ensure the asymptotic stability of the forced response. At bifurcations of the
response, the inequalities (4.6) and (4.7) become equalities. According to (4.6), up to M bifurcation
values for ρcrit may arise. These bifurcations appear along straight lines in the (ρ,Ω) parameter
space. From equation (4.7), we obtain that these lines satisfy the equations

Ω±
crit(ρ) = b(ρ) +

M∑
m=1

m Im(βm)ρ2m ±

√√√√√
[ M∑

m=1

m Im(βm)ρ2m

]2

− a(ρ)
ρ

∂a(ρ)
∂ρ

. (4.8)
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These functions divide the (ρ,Ω) parameter into stable and unstable regions, as indicated in
figure 1. If the real parts of the parameters βm are zero or small (a(ρ) ≈ 0), the graph of Ω−

crit
coincides with the backbone curve (cf. figure 1).

(c) The periodic response in physical coordinates
Periodic orbits of (3.12b) are related to periodic orbits in the original physical coordinates via the
parametrization (3.12a). Along the periodic response, the parametrization variable is a complex
exponential with amplitude ρ and with the frequency equal to the excitation frequency Ω (cf.
equation (3.16)). We insert this exponential into the leading-order expression W0 for the SSM
W(El). As W0 is a polynomial of zl and z̄l (cf. equation (2.16)), substitution of complex exponential
creates higher harmonics (nΩ), whereas the amplitude ρ is exponentiated.

Through the time-varying parametrization w0
1, terms for the first harmonic arise

(cf. equation (3.13a)), with their amplitudes given by

W± = V S±(±iΩI − Λ)−1V−1g±1. (4.9)

With that notation we obtain for the complex amplitudes xjΩ of the jth harmonic of the forcing
frequency Ω as

xjΩ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M∑
m=0

ρ2m+j ejiψ(ρ)w(m+j,m)
0 + δ1jεW

+, 0 ≤ j ≤ M,

M∑
m=0

ρ2m+j e−jiψ(ρ)w(m,m+j)
0 + δ−1jεW

−, −M ≤ j< 0,

(4.10)

where the coefficients w(m+j,m)
0 are set to zero if the corresponding coefficient is higher than

the computed order of W0 (2m + j> 2M + 1). From these formulae, one obtains the amplitudes
and phases of the response for the fundamental (|j| = 1) and superharmonic (|j|> 1) frequencies.
The case j = 0 implies a static shift of the centre of the steady-state solution, which is a known
phenomenon for nonlinear system (2.1) with quadratic stiffness terms (cf. [16]).

5. Numerical examples
We now demonstrate our SSM-based analytic results on forced responses and backbone curves
on three numerical examples. The first is a 2 degrees of freedom (DOF) oscillator introduced by
Shaw & Pierre [2], modified and further studied by Haller & Ponsioen [3] and Szalai et al. [6]. The
nonlinearity in this oscillator arises from a single cubic spring. Our second example, taken from
Touzé & Amabili [15], also has 2 DOF, but its nonlinearities are more complex, consisting of both
quadratic and cubic terms. To demonstrate the applications of our results to higher-dimensional
systems, we select a chain of oscillators with 5 DOF for the third example.

On these three examples, we compare our results with the second-order normal form approach
of Neild & Wagg [14] and with a normal form-type method of Touzé & Amabili [15]. Both methods
assume that the mechanical system is expressed in modal coordinates and hence the linear part
of the system is fully decoupled.

The Neild-Wagg method introduces a time-dependent transformation to remove forcing
terms from all modal coordinates whose eigenfrequencies are not in resonance with the forcing
frequency. Afterwards, it identifies the resonant terms in the dynamics via harmonic balance. Two
major differences to the present approach are the treatment of damping and the nonlinearities.
Specifically, Neild & Wagg [14] assume small nonlinearities and allow only small viscous
damping. Neild et al. [4] also add an trivial dynamical equation for the time evaluation of
the damping coefficients. Afterwards they carry out the normal form transformations for the
enlarged system and obtain that the linear modal damping can be added to the final dynamical
equations. Therefore, no transfer of linear damping between the modal coordinates induced
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m m

k

c2

k,κ

c1

k

c1

f1 f2

q1 q2

Figure 2. The modified Shaw-Pierre example discussed in [6]. We select the non-dimensional parameters m= 1, k = 1,
c1 =

√
3c2 = 0.003 and κ = 0.5.

by the nonlinearities can be captured. Next, the method employs the harmonic balance to
approximate the amplitude of the forced response, which leads to an expression similar to
equation (3.18). Stability conditions for the steady-state solution can be found in Wagg &
Neild [26] and a recent overview in Neild et al. [4].

By contrast, the Touzé-Amabili method starts with the unforced and damped mechanical
systems in modal coordinates with geometric (position-dependent) nonlinearities. After a cubic
transformation to normal form-type dynamical equations, they restrict their calculations to
a subset of coordinates, called the master coordinates. The choice of the master coordinates
is motivated heuristically. External forcing is then introduced directly into the normal form,
representing simple forcing along non-physical, curvilinear coordinates. In addition, the forcing
is assumed to be along the master coordinates only. Therefore, one can only achieve model
reduction via this method, if the non-master modal coordinates are unforced, as we highlight
in example 3. We acknowledge the possibility to modify the Touzé-Amabili method to overcome
this shortcoming by neglecting inconvenient forcing terms. Such a reasoning, however, is not
available in the literature and it is beyond the scope of this study to modify existing methods.
We, therefore, follow the method as it is stated in Touzé & Amabili [15]. In analogy with Kerschen
et al. [27] and Touzé & Amabili [15] we will obtain the forced response of the reduced dynamics
via numerical continuation.

To compare the accuracy of these two methods to ours, we use the Matcont toolbox [28]
of Matlab to calculate the periodic responses in the three examples directly. The result of the
continuation are T-periodic orbits in the full phase space. As routinely done in the vibrations
literature (cf. [4,15,18,27]), the maximal displacement along a modal direction is taken as the
modal amplitude of the first harmonic. To validate the formulae for higher harmonics (cf. (4.10) for
|j|> 1), we extract higher harmonics via the fast Fourier transformation (FFT) of selected orbits.

(a) Modified Shaw-Pierre example
Shown in figure 2, this mechanical system was originally introduced by Shaw & Pierre [2], with
modifications appearing in Haller & Ponsioen [3] and Szalai et al. [6]. Its equations of motion are[

m 0
0 m

][
q̈1
q̈2

]
+
[

c1 + c2 −c2
−c2 c1 + c2

][
q̇1
q̇2

]
+
[

2k −k
−k 2k

][
q1
q2

]
+
[
κq3

1
0

]
=
[

f1
f2

]
. (5.1)

The system is of the general form (2.1) and hence the approach developed here applies. The
eigenvalues and mode shapes of the linearized dynamics at q1 = q2 = 0 are

λ1,3 = −D1ω1 ± iω1

√
1 − D2

1

λ2,4 = −D2ω2 ± iω2

√
1 − D2

2

,
ω1 =

√
k
m

,

ω2 =
√

3k
m

,

D1 = c1

2
√

km
,

2D2 = c1 + 2c2√
12km

,

e1 = 1√
2

[
1 1

]T
,

e2 = 1√
2

[
1 −1

]T
.

For sufficiently small damping the strengthened non-resonance conditions (3.8) hold. By choosing
c1 = √

3c2, the conditions (2.9) are satisfied and hence two non-autonomous SSMs exist. The
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–3
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num. continuation
Touzé-Amabili
Neild-Wagg
SSM O(3)
SSM O(5)
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Neild-Wagg
SSM O(3)
SSM O(5)

(a) (b)

Figure 3. Response curves (thick lines) and backbone curves (thin dash-dotted lines) for example 1 under forcing of
the first mode; solid lines imply stability and dashed lines instability of the forced response; parameters: m= 1, k = 1,
c1 =

√
3c2 = 0.003, κ = 0.5, f1 = f2 = ε/

√
2 cos(Ω t) and ε= 0.003. (a) First harmonic and (b) third harmonic.

unforced limit of these SSMs and their reduced dynamics have already been calculated by Szalai
et al. [6].

To apply the Touzé-Amabili method, we have to assume forcing along one of the modal
coordinates only. First, we investigate forcing along the first modal coordinate f1 = f2 =
ε/

√
2 cos(Ωt) with the amplitude ε= 0.003. We plot the first and third harmonics of the first

modal amplitude (p1,1Ω and p1,3Ω ) in figure 3. For comparison, we show the results obtained
from the Neild-Wagg method, the Touzé-Amabili method and numerical continuation with the
Matlab toolbox Matcont [28] in figure 3a, with the later serving as a benchmark to hit. We indicate
unstable periodic orbits in dashed lines.

While all three methods give results close to the numerical continuation, the O(5) SSM is the
most accurate. This approach, however, is of higher order than the others. The Touzé-Amabili
method can, in principle, be extended to higher orders in the coordinates but it assumes modal
forcing. To improve the results of the Neild-Wagg method, one would also need to include higher-
order terms in their perturbation approach, which would complicate the calculations significantly.
To our best knowledge, higher-order estimates have only been obtained for 1 DOF oscillators
(cf. [26,29]). Out of all third-order methods, the O(3) SSM computation gives the weakest result.

Touzé & Amabili [15] do not explicitly estimate the amplitudes of higher harmonics of the
forced response of system (2.1), hence the omission of the results from their method in figure 3b.
Note that a periodic solution to their reduced dynamics contains fundamental and higher
harmonics, which could be related to amplitudes in physical coordinates via their normal-form
transformation. Here, however, we follow the published results of Touzé & Amabili [15] without
modifications.

The reference solution is generated by the FFT of the continuation signal. Again, all four results
agree closely, but the O(5) SSM method matches the reference solution the best. Owing to the cubic
nonlinearity, the modal amplitudes at even harmonics are zero for the accuracy investigated in
this article.

Next, we apply forcing along the second modal degree of freedom (l = 2), by selecting
f1 = −f2 = ε/

√
2 cos(Ωt) and ε= 0.01. We show the first and third harmonics of the computed

forced response in figure 4. Again, the O(5) SSM approach approximates the benchmark solution
most accurately. The results from the other methods are nearby and align closely with each other.

(b) Spring system
Our second example involves a mass suspended via a vertical and a horizontal spring to the wall
(cf. figure 5). Touzé et al. [30] derive the equation of motion for this system up to third order. With
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3W

 (×
10

–3
)

(a) (b)

Figure 4. Response curves (thick lines) and backbone curves (thin dash-dotted lines), for example 1 under forcing of the
second mode; solid lines imply stability and dashed lines instability of the forced response; parameters: m= 1, k = 1,
c1 =

√
3c2 = 0.003, κ = 0.5, f1 = −f2 = ε/

√
2 cos(Ω t) and ε= 0.01. (a) First harmonic and (b) third harmonic.

mk1

k2

F1

q2

q1

Figure 5. The mechanical system in example 2, discussed by Touzé & Amabili [15].

viscous damping and non-dimensional parameters, the equations of motion subject to horizontal
forcing are

q̈1 + 2D1ω1q̇1 + ω2
1q1 + ω2

1
2

(3q2
1 + q2

2) + ω2
2q1q2 + ω2

1 + ω2
2

2
q1(q2

1 + q2
2) = F1 = f1 cos(Ωt)

and q̈2 + 2D2ω2q̇2 + ω2
2q2 + ω2

2
2

(3q2
2 + q2

1) + ω2
1q1q2 + ω2

1 + ω2
2

2
q2(q2

1 + q2
2) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(5.2)

We choose the form of the damping and forcing for a direct comparison with Touzé &
Amabili [15], but the theory developed here also applies to nonlinear damping and general
forcing (see figure 5)

We select the parameters ω1 = 2, ω2 = 4.5, D1 = 0.01, D2 = 0.2 and f1 is set to 0.02. In figure 6,
we plot the amplitude of the coordinate q1 at the first harmonic. Again, the results from numerical
continuation serve as the benchmark solution. The SSMs of order three and five and the results
from the Touzé-Amabili method agree well and show the same qualitative behaviour as the
benchmark solution. The Neild-Wagg method incorrectly predicts hardening behaviour of the
backbone curve and overestimates the amplitude. The latter arises because of the treatment of
the damping by the Neild-Wagg method. In their method, modal damping is added directly
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excitation frequency W

SSM O(3)
SSM O(5)
Touzé-Amabili
Neild-Wagg
num. continuation

q 1,
1W

Figure 6. Amplitude of the first harmonic of the displacement q1 (thick lines) and backbone curves (thin dash-dotted lines);
solid lines imply stability and dashed lines instability of the forced response; parameters: ω1 = 2, ω2 = 4.5, D1 = 0.01,
D2 = 0.2 and f1 = 0.02.

k,k

c
m

f1

q1

k

c

... m

k

c

fN

qN

k

c

Figure 7. The oscillator chain in example 3.

to the normal form (cf. [4]) and no transfer of the linear modal damping via nonlinearities
arises. Without referring to this specific method, Touzé & Amabili [15] point out this issue for
another method that incorporates damping in a similar manner. The incorrect bending behaviour
arises due to the assumption of small nonlinearities, based on which all quadratic terms of
nonlinearities are neglected for the backbone curve estimation in the Neild-Wagg method. To
recover the effect of quadratic nonlinearities on the backbone curve, a higher-order extension in
their perturbation approach is required, which would complicate the calculations significantly
and is unavailable in the literature at this time. In summary, the small damping and small
nonlinearity assumption made in the Neild-Wagg method is, therefore, not justified for this
example.

Enlarging the frequency response curve for high amplitudes (inset in figure 6), we observe that
the O(5) SSM construction shows the highest accuracy again. The results from the O(3) SSM and
those from the Touzé-Amabili method almost coincide.

(c) Oscillator chain
As an application to a higher-dimensional system, we extend example 1 (cf. figure 2) into a chain
of coupled oscillators. The first and the last mass are suspended to the wall, as shown in figure 7.
We assume a cubic nonlinearity for the spring suspending the first mass to the wall.

The equation of motion of the jth oscillator, pictured in figure 7, is

mq̈j + c(2q̇j − q̇j+1 − q̇j−1) + k(2qj − qj+1 − qj−1) + δ1jκq3
j = fj(t), j = 1, . . . , N. (5.3)
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0
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0.2

0.3

0.4

0.5

excitation frequency

num. continuation
Neild-Wagg
SSM O(3)
SSM O(5)

−2

0

2

−1−0.500.51
−2

0

2

p5

p 3 
(×

10
–2

)

ṗ5

num. continuation
SSM O(5)

x 5,
1W

(a) (b)

Figure 8. Results for example 3 with N = 5 DOF solid lines imply stability and dashed lines instability of the forced response;
parameters: m= 1, k = 1, c = 0.005, κ = 0.5, fj = δ1jε cos(Ω t) and ε= 0.004. (a) Amplitude of the first harmonic of
the displacement of the fifth mass and backbone curves for forcing frequencies in the vicinity of the lowest eigenfrequency
(ω1 ≈ 0.518) and (b) periodic orbits (two stable, one unstable) for the excitation frequencyΩ = 0.522, projected in themodal
subspace spanned by p5, ṗ5 and p3.

We consider the configuration m = 1, c = 0.005, k = 1 and κ = 0.5, with the number of DOF set to
N = 5. For this choice of the parameters, the natural frequencies and modal damping values are

j 1 2 3 4 5
ω2

j 2 − √
3 1 2 3 2 + √

3
, Dj = c

2
, j = 1, . . . , N. (5.4)

The non-resonance conditions (2.9) and (3.8) are satisfied for l = 1 and hence the two-
dimensional time-varying SSM exists. We assume forcing at the first mass ( f1 = ε cos(Ωt) and
fj = 0 j = 2, . . . , N). The frequency is chosen to be close to the lowest eigenfrequency (ω1 ≈ 0.518)
and the amplitude is set to be ε= 0.004. The amplitudes of the first harmonic of the fifth coordinate
q5,1Ω are plotted in figure 6.

As the forcing is not aligned with a set of modal coordinates the unmodified Touzé-Amabili
method is inapplicable in this example, and hence will be omitted in our comparison. Again,
the O(5) SSM matches most accurately with the benchmark solution, obtained via numerical
continuation. The frequency response curves from the SSM O(3) and the Neild-Wagg method
deviate from the benchmark solution.

Even specific orbits computed from the analytic SSM expression match closely with the orbits
obtained by numerical continuation (cf. figure 8b).

6. Conclusion
We have derived highly accurate analytic expressions for the forced response and backbone
curves of damped and forced nonlinear mechanical systems of arbitrary dimension. Our
procedure constructs an approximation for the two-dimensional, non-autonomous SSMs that act
as nonlinear continuations of modal subspaces of the linearized system. The existence, uniqueness
and smoothness of the SSMs are guaranteed under low-order non-resonance condition on the
eigenvalues of the linearization (cf. [3]). We establish that a given autonomous (time-independent)
SSM can be continued for the externally forced system, unless the forcing is in resonance with an
imaginary part of an eigenvalue of the linearized system.

For backbone curve calculations, we focus on such resonant external forcing and construct a
two-dimensional non-autonomous SSM. Constructing the SSM via the parametrization method
(cf. [24]), the reduced dynamics is simplified significantly. Owing to this simplification, we are
able to derive a polynomial expression whose zeros determine the amplitudes of the forced
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response. Furthermore, we calculate backbone curves, stability regions and discover a symmetry
of the forced response.

With our analytical treatment, we confirm the 90◦ phase lag criterion of the response at the
backbone from Peeters et al. [18] for any damping that is a polynomial function of the velocities
and positions. Furthermore, we connect the backbone curve, directly computed from the forced
response, to the frequency–amplitude relationship of the conservative unforced limit of the
system.

We demonstrate the performance of our results on three numerical examples. Comparing
with the Neild-Wagg method [14], the Touzé-Amabili method [15] and numerical continuation,
we conclude an overall superior performance for the O(5) SSM approach. While our method is
applicable to general single harmonic external forcing, a model-order reduction with the Touzé-
Amabili method is only achievable for forcing along a modal direction. Investigating example 2,
where the nonlinearities are of quadratic and cubic form, we discover incorrect predictions from
the Neild-Wagg method.

Ponsioen et al. [7] describe an automated computational algorithm to approximate two-
dimensional SSMs of nonlinear mechanical systems up to arbitrary order. To increase the precision
of our results further, these high-order approximations, can be coupled with the results of this
article, which is our ongoing effort.

We have limited our discussion to two-dimensional SSMs. For multi-frequency forcing
in resonance with multiple eigenvalues of the linearized system, or for structures whose
eigenfrequencies are integer multiples of each other (i.e. equation (3.8) is violated), a reduction
to a higher-dimensional SSM is necessary. As the theory developed by Cabré et al. [24] and Haro
& de la Llave [8] applies to higher-dimensional submanifolds, our calculations can be extended
to the multi-frequency setting.

Data accessibility. A Matlab script to compute the O(5) autonomous SSM (M = 2) is available at
https://github.com/tbreunung/Auto_SSM_O5.
Authors’ contributions. Both authors contributed equally to this work.
Competing interests. We have no competing interests.
Funding. We received no funding for this study.
Acknowledgements. We are grateful to Florian Kogelbauer for helpful discussions and for pointing out an error
in an earlier stage of this work. We are also thankful to Cyril Touzé for helpful suggestions and clarifications
on his method.

Appendix A. Derivations

(a) Derivations for the spectral submanifolds of the forced system
The results stated in (3.2a) and (3.2b) follow from the work of Haller & Ponsionen [3] or Haro
et al. [8]. Both results are generally applicable to system (2.1), because the trivial fixed point
of the unforced equation (2.1) is hyperbolic (cf. conditions (2.2)). As we assume that the non-
resonance conditions (2.9) hold, an SSM associated with the modal subspace E uniquely exists
and persists for small ε≥ 0. Haro & de la Llave [8] formulate their main results for discrete
mappings, but also show the direct applicability of their results to flow maps of continuous
systems.

To calculate a parametrization W(z,φ) and the associated reduced dynamics R(z,φ), we start
from the invariance condition (2.12) in which we substitute the series expansion (2.14). With the
notation (2.16), the series expansion (2.14) can be rewritten as

W(z, φ) = W0(z) + εW1(z, φ) + O(ε2) = W0(z) + εw0
1(φ) + O(ε|z|, ε2)

and R(z, φ) = R0(z) + εR1(z, φ) + O(ε2) = R0(z) + εr0(φ) + O(ε|z|, ε2).

⎫⎬
⎭ (A 1)
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Substituting the expansion (A 1) in the invariance condition (2.12), we obtain

A(W0(z) + εW1(z, φ)) + Gnlin(W0(z) + εW1(z, φ)) + εGext(φ)

= ∂W0(z)
∂z

R0(z) + ε

(
∂W1(z, φ)

∂z
R0(z) + ∂W0(z)

∂z
R1(z, φ) + ∂W1(z)

∂φ
Ω

)
+ O(ε2). (A 2)

Comparing equal orders of ε, we find that the zeroth-order part of (A 2) does not contain forcing
terms:

O(ε0) : AW0 + Gnlin(W0) = ∂W0

∂z
R0. (A 3)

As the non-resonance conditions (2.9) are satisfied, one can solve for the unknown polynomial
coefficients of W0 and R0 (cf. [8]). The fixed point is at the origin, therefore

w0
0 = 0, r0

0 = 0, (A 4)

holds.
Now, we consider the first-order terms in epsilon and the zeroth-order in z in equation (A 2).

At this order, no terms from the nonlinearity Gnlin arise, because it is at least quadratic in its
arguments. The relevant terms at this order from the right-hand side of equation (A 2) W0 and R0
are zero (cf. equation (A 4)), while the terms from W1 and R1 remain

O(ε, |z|0) : Aw0
1(φ) + Gext(φ) = ∂W0

∂z
r0

1(φ) + ∂w0
1

∂φ
Ω . (A 5)

Setting r0
1(φ) = 0, we find that the periodic solutions of (A 5) can be obtained from Dunhamel’s

principle as

w0
1 =

∫ t

0
eA(t−s)Gext(s) ds, (A 6)

where we use the time evolution (2.6) of the angles. The integral in (A 6) can be evaluated
numerically or solved analytically. In our setting, the external forcing can be expanded in a Fourier
series leading to the expression (3.2a).

Again, the existence and smoothness properties stated by Haro & de la Llave [8] ensure the
solvability of the higher-order terms in z and ε in (A 2).

(b) Spectral submanifold for the near-resonant forced mechanical system
To prove theorem 3.2, we explicitly calculate W(z,φ) and R(z,φ) up to the required order
of accuracy O(μ2M+3). We first identify the relevant terms to be calculated by applying the
rescaling (3.9) to the series expansion (2.14):

W(z,φ) = W0(z) + O(z2M+3) + ε(w0
1(φ) + O(z)) + O(ε2)

= W0(z) + μ2M+2w0
1(φ) + O(μ2M+3)

and R(z,φ) = R0(z) + O(z2M+3) + ε(r0
1(φ) + O(z)) + O(ε2)

= R0(z) + μ2M+2r0
1(φ) + O(μ2M+3).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 7)

The first error term (O(z2M+3)) results from the order-(2M+1) truncation of autonomous SSM
(cf. equation (3.7)). The last error term arises from the truncated expansion of the SSM at the order
two in ε in the expansion (2.14). The error term εO(z) arises from the truncation of W1(z,φ) at the
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zeroth order in z. Rewriting the invariance condition (2.14) in terms of the new variable μ, we
obtain

A(W0(z) + μ2M+2w0
1(φ)) + Gnlin(W0(z)) + μ2M+2Gext(φ)

= ∂W0(z)
∂z

R0(z) + μ2M+2[w(1,0)
0 , w(0,1)

0 ]R1(z,φ) + μ2M+2 ∂w0
1(φ)
∂φ

Ω + O(μ2M+3). (A 8)

The time-varying terms in equation (A 8) are of order O(μ2M+2). Since the autonomous
dynamics R0(z) (cf. equation (3.7)) and the corresponding W0(z) are of lower order in μ, also
the formulae from Szalai et al. [6], which are derived for the autonomous case, apply here. As
those formulae for R0 are only applicable when the linear part of (2.4) is diagonalized, we first
perform a change of coordinates w0

1(φ) = Vv(φ) and left-multiply (A 8) V−1 to obtain

O(μ2M+2) : V−1AVv + V−1

[
0

M−1f

]
(eiΩt + e−iΩt) = v̇(Ωt) +

⎡
⎢⎢⎢⎢⎣
δ1 l δ1(l+N)
δ2 l δ2(l+N)
...

...
δ(2N)l δ2N(l+N)

⎤
⎥⎥⎥⎥⎦R1(Ωt),

(A 9)
where the specific terms for w(1,0)

1 and w(0,1)
1 are taken from Szalai et al. [6]. The matrix V−1AV

is diagonal, containing the eigenvalues λj. Furthermore, we have also inserted the canonical
forcing (3.4) in equation (A 9). For the nth coordinate equation (A 9) gives

λnvn + pn(eiΩt + e−iΩt) = v̇n + δnlrc eiΩt + δn(l+N)r̄c e−iΩt, (A 10)

where the complex amplitude pn of the forcing is defined as

pn = tn

[
0

M−1f

]
. (A 11)

We observe that equation (A 10) is a linear ordinary differential equation for the unknown
coefficients vn. Therefore, the periodic solutions of (A 10) can be obtained as in the previous
section from the Dunhamel’s principle. Owing to the Kronecker delta in equation (A 10), three
cases arise

vl = pl − r
iΩ − λl

eiΩt + pl

−iΩ − λl
e−iΩt, (A 12a)

vl+N = p̄l

iΩ − λ̄l
eiΩt + p̄l − r̄

−iΩ − λ̄l
e−iΩt (A 12b)

and vn = pn

iΩ − λn
eiΩt + pn

−iΩ − λn
e−iΩt, n 
= l, l + N. (A 12c)

The amplitude pl coincides with r (cf. equations (3.13b) and (A 11)). Therefore, the first term
in (A 12a) and the second term in (A 12b) vanish. These are the terms that would create small
denominators in the parametrization of the SSM (w0

1). The choice of the coefficient r0
1 in (3.13b)

eliminates these small denominators. Because we assume that the near-resonance conditions (3.8)
are satisfied, small denominators in (A 12c) do not arise, unless the forcing frequency is close to
the imaginary part of another eigenvalue different from λl and λ̄l. In this case, however, the SSM
needs to be constructed tangent to this specific subspace.

Changing back from the diagonal form to the physical coordinates, we recover w0
1(φ)

from (3.12a).
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(c) The choice of the eigenvectors
In the following, we show that the eigenvectors vj can be formed such that the constant rc arising
in the reduced dynamics (3.13b) is purely imaginary. First, note that, for a general choice of
eigenvectors, rc is complex, i.e. can be expressed as

rc = ir eiϕ = tl

[
0

M−1f

]
(A 13)

and rc is not purely imaginary for ϕ 
= ±nπ . Multiplying V with eiϕ and realizing that the vector
tl is the lth row of V−1 (cf. equation (3.11)), we obtain

e−iϕtl

[
0

M−1f

]
= e−iϕ ir eiϕ = ir (A 14)

and rc is purely imaginary holds for Ṽ = eiϕV. This proves corollary 3.6.
Following the proof of corollary 3.6, we show that, in case of purely symmetric system

matrices (N = 0 and G = 0) and structural damping, the constant rc is purely imaginary if we
mass normalize the mode shapes ej. With the real mode shape matrix E and the notation (2.5), the
matrix of eigenvectors V is given by

V =
[

E E
EΛ EΛ̄

]
. (A 15)

To compute the constant rc explicitly, we need to compute the inverse of the matrix
V (cf. equation (3.13b)). By clockwise inversion of (A 15), we obtain

V−1 =
[

E−1 + (Λ̄ − Λ)−1E−1ΛE−1 −(Λ̄ − Λ)−1E−1

(Λ̄ − Λ)−1E−1ΛE−1 (Λ̄ − Λ)−1E−1

]
. (A 16)

As the mode-shape matrix E and its inverse are real, the last N columns of (A 16) are purely
imaginary. Therefore, a multiplication by the forcing in equation (3.13b) will always lead to a
purely imaginary rc.

(d) Amplitude, phase shift and stability of the T-periodic orbits of the reduced dynamics
In the following, we compute periodic orbits with the same period as the forcing of the reduced
dynamics (3.13b). These orbits will determine the steady-state response of the system (2.1). First,
we transform the reduced dynamics (3.12b) into the polar coordinates (3.16), which yields

ρ̇ = Re(λl)ρ +
M∑

m=1

Re(βm)ρ2m+1 + εr sin(θ − φ),

θ̇ = Im(λl) +
M∑

m=1

Im(βm)ρ2m + ε

ρ
(r cos(θ − φ))

and φ̇ =Ω .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 17)

With the change of coordinates ψ = θ − φ, the dynamics (A 17) can be rewritten as

ρ̇ = Re(λl)ρ +
M∑

m=1

Re(βm)ρ2m+1 + εr sin(ψ) = a(ρ) + εr sin(ψ), (A 18)

ψ̇ = Im(λl) +
M∑

m=1

Im(βm)ρ2m + ε

ρ
(r cos(ψ)) −Ω = b(ρ) + ε

ρ
(r cos(ψ)) −Ω (A 19)

and φ̇ =Ω . (A 20)
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The angle ψ represents the phase shift between the forcing and the system response. At the
steady state of (2.4), the amplitude ρ, as well as the phase shift ψ are constant. The trigonometric
functions in (A 18) and (A 19) can be eliminated by solving (A 18) for sin(ψ) and (A 19) for cos(ψ)
and adding the square of both equations. Thereby we obtain equation (3.18). We determine the
phase relation (3.19) by solving the steady-state response of equation (A 19) for ψ . The stability of
such solutions can be obtained by evaluating the eigenvalues of the Jacobian of (A 18) and (A 19)
with respect to ρ and ψ , which we state in (3.20).

Appendix B. Coefficients for the autonomous spectral submanifold
and the reduced dynamics
We recall here for completeness the parametrization of the autonomous SSM (W0(z)) and the
reduced dynamics (R0(z)) from Szalai et al. [6]. To diagonalize the linear part, we apply the
transformation

y = Vx (B 1)

to the autonomous limit (ε→ 0) of system (2.4) and obtain

ẏ = V−1AVy + V−1Gnlin(Vy) = Λy + G(y). (B 2)

The Taylor series of the jth entry of nonlinear terms G is

Gj =
∑

m∈N
2N
0

gm
j ym. (B 3)

As Szalai et al. [6], we use (p@j) to denote an integer multi-index whose elements are zero, except
for the index at the jth position, which is equal to p, i.e.

(p@j) := (0, . . . , 0
j−1

, p
j
, 0

j+1
, . . . , 0) ∈ N

2N . (B 4)

We also use this notation to refer to multi-indices with multiple entries (p@j1, q@j2) and in case of
j1 = j2 the corresponding entry is p + q, i.e.

(p@j1, q@j2) := (0, . . . , 0
j1−1

, p
j1

, 0
j1+1

, . . . , , 0
j2−1

, q
j2

, 0
j2+1

, . . . , 0),

(p@j, q@j) := (0, . . . , 0
j−1

, p + q
j

, 0
j+1

, . . . , 0).

With this notation the coefficients of the parametrization W0(z) for j = 1, . . . , 2N are given by

w(1,0)
j = δjl, w(1,0)

j = δj(l+N),

w(2,0)
j =

g(2@l)
j

2λl − λj
, w(1,1)

j =
g(1@l,1@(l+N))

j

λl + λ̄l − λj
, w(0,2)

j =
g(2@(l+N))

j

2λ̄l − λj
,

w(3,0)
j =

∑2N
q=1(1 + δlq)g(1@l,1@q)

j w(2,0)
q + g(3@l)

j

3λl − λj
,

w(0,3)
j =

∑2N
q=1(1 + δ(l+N)q)g(1@(l+N),1@q)

j w(0,2)
q + g(3@(l+N))

j

3λ̄l − λj
,

w(2,1)
j = (1 − δji)

∑2N
q=1(1 + δlq)g(1@l,1@q)

j w(1,1)
q +∑2N

q=1(1 + δ(l+N)q)g(1@(l+N),1@q)
j w(2,0)

q + g(3@l)
j

2λl + λ̄l − λj

and w(1,2)
j = (1 − δj(i+N))

∑2N
q=1(1 + δlq)g(1@l,1@q)

j w(0,2)
q +∑2N

q=1(1 + δ(l+N)q)g(1@(l+N),1@q)
j w(1,1)

q + g(2@l,1@(i+N))
j

λl + 2λ̄l − λj
.
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The coefficient β1 of the reduce dynamics (3.7) is given by

β1 =
2N∑
q=1

(1 + δlq)g(1@l,1@q)
j w(1,1)

q +
2N∑
q=1

(1 + δ(l+N)q)g(1@(l+N),1@q)
j w(2,0)

q + g(2@l,1@(l+N))
l . (B 5)

To compute the O(5) autonomous SSM (M = 2), we provide a Matlab script as the electronic
supplementary material.
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