quietly { /* Here we put a lot of information together. This plot shows the studentized residuals plotted against the hat values (leverage) with each point weighted by Cook's D. As before, no values exceed the leverage cutoff value, but, two cases affect the jacknifed residuals and seem influential looking at ALL the fitted values. */ regress y x predict y_stud, rstudent predict y_hat , leverage predict y_cook, cooksd regress y1 x predict y1_stud, rstudent predict y1_hat , leverage predict y1_cook, cooksd regress y2 x predict y2_stud, rstudent predict y2_hat , leverage predict y2_cook , cooksd local j=1 local n=10 local alpha=0.05 local tplus =invttail(`n'-1,`alpha'/2) local tminus=invttail(`n'-1,`alpha'/2)*-1 local hat2=2*((`j'+1)/`n') local hat3=3*((`j'+1)/`n') #delimit ; graph twoway (scatter y_stud y_hat [aweight= y_cook]), ylabel(-3(1)5) xlabel(0(.05).4) title("Original Data") ytitle("") xtitle("") yline(`tminus' 0 `tplus', lp(dash) lw(thick)) xline(`hat2' `hat3', lp(dash) lw(thick)) name(cooks1, replace) nodraw ; #delimit cr #delimit ; graph twoway (scatter y1_stud y1_hat [aweight=y1_cook]), ylabel(-3(1)5) xlabel(0(.05).4) title("Scenario #1") ytitle("") xtitle("") yline(`tminus' 0 `tplus', lp(dash) lw(thick)) xline(`hat2' `hat3', lp(dash) lw(thick)) text(5 .1 "Obs. 5") name(cooks2, replace) nodraw ; #delimit cr #delimit ; graph twoway (scatter y2_stud y2_hat [aweight=y2_cook]), ylabel(-3(1)5) xlabel(0(.05).4) title("Scenario #2") ytitle("") xtitle("") yline(`tminus' 0 `tplus', lp(dash) lw(thick)) xline(`hat2' , lp(dash) lw(thick)) text(2.9 .345 "Obs. 10") name(cooks3, replace) nodraw ; #delimit cr #delimit ; graph combine cooks1 cooks2 cooks3, title("Unusual and Influential Data") subtitle("Studentized Residuals Plotted Against hat values, weighted by Cook's D") name(multiple, replace) ; #delimit cr drop y_stud- y2_cook }