regress y x predict y_resid_sta, rstandard regress y1 x predict y1_resid_sta, rstandard regress y2 x predict y2_resid_sta, rstandard label variable y_resid_sta "Original Data" label variable y1_resid_sta "Scenario #1" label variable y2_resid_sta "Scenario #2" */ Look at Data Graphically */ stem y_resid_sta stem y1_resid_sta stem y2_resid_sta #delimit ; graph box y_resid_sta y1_resid_sta y2_resid_sta, asc title("Box Plots of Standardized Residuals") ytick(-2(.5)3) name(boxplots, replace) ; #delimit cr quietly { local alpha=0.05 local tcritp=invttail(e(df_r),`alpha'/2) local tcritm=`tcritp'*-1 noisily di _n _col(2) "{text}" "|t-critical|=" %7.3f `tcritp' noisily list x y y_resid_sta if ( y_resid_sta>`tcritp' | y_resid_sta<`tcritm') noisily list x y1 y1_resid_sta if (y1_resid_sta>`tcritp' | y1_resid_sta<`tcritm') noisily list x y2 y2_resid_sta if (y2_resid_sta>`tcritp' | y2_resid_sta<`tcritm') } /* Density Plots */ #delimit ; kdensity y_resid_sta, normal title("Original Data") xtitle("") note("") name(g1, replace) nodraw ; kdensity y1_resid_sta, normal title("Scenario #1") xtitle("") note("") name(g2, replace) nodraw ; kdensity y2_resid_sta, normal title("Scenario #2") xtitle("") note("") name(g3, replace) nodraw ; graph combine g1 g2 g3, title("Graphical Check for Normality") name(kdens, replace) nocopies ycommon xcommon ; #delimit cr /* Normap Probability Plots */ sort y_resid_sta tempvar ordinate generate `ordinate'=_n/_N #delimit ; graph twoway (scatter `ordinate' y_resid_sta), title("Original Data") xtitle("") ytitle("") name(cumplot1, replace) nodraw ; sort y1_resid_sta; replace `ordinate'=_n/_N; graph twoway (scatter `ordinate' y1_resid_sta), title("Scenario #1") xtitle("") ytitle("") name(cumplot2, replace) nodraw ; sort y2_resid_sta; replace `ordinate'=_n/_N; graph twoway (scatter `ordinate' y2_resid_sta), title("Scenario #2") xtitle("") ytitle("") name(cumplot3, replace) nodraw ; graph combine cumplot1 cumplot2 cumplot3, /// title("Normal Probability Plot of Standardized Residuals") nocopies ; #delimit cr /* PNORM Plots */ #delimit ; pnorm y_resid_sta, title("Original Data") ms(i) mlabel(obs) mlabposition(0) ytitle("") name(g1, replace) nodraw ; pnorm y1_resid_sta , title("Scenario #1") ms(i) mlabel(obs) mlabposition(0) ytitle("") name(g2, replace) nodraw ; pnorm y2_resid_sta, title("Scenario #2") ms(i) mlabel(obs) mlabposition(0) ytitle("") name(g3, replace) nodraw ; graph combine g1 g2 g3, title("PNORM Graphical Check for Normality") note("Sensitive to middle range of the data.") name(pnorm, replace) nocopies ; #delimit cr #delimit ; /* QNORM Plots */ qnorm y_resid_sta, title("Original Data") ytitle("") ms(i) mlabel(obs) mlabposition(0) name(g1, replace) nodraw ; qnorm y1_resid_sta, title("Scenario #1") ytitle("") ms(i) mlabel(obs) mlabposition(0) name(g2, replace) nodraw ; qnorm y2_resid_sta, title("Scenario #2") ytitle("") ms(i) mlabel(obs) mlabposition(0) name(g3, replace) nodraw ; graph combine g1 g2 g3, title("QNORM Graphical Check for Normality") note("Sensitive to tails of the data.") name(qnorm, replace) nocopies ; #delimit cr /* Statistical Tests of Normality: swilk performs the Shapiro-Wilk W test for normality, and sfrancia performs the Shapiro-Francia W' test for normality. swilk can be used with 7<=n<=2000 observations, and sfrancia can be used with with 5<=n<=5000 observations; see sktest for a test allowing a larger number of observations. The null is the variable is normally distributed. */ swilk y_resid_sta y1_resid_sta y2_resid_sta sfrancia y_resid_sta y1_resid_sta y2_resid_sta sktest y_resid_sta y1_resid_sta y2_resid_sta drop y_resid_sta- y2_resid_sta