* quietly { /* The hat value h{i} is a common measure of leverage in regression. The value of h{i} indicates the weight of the contribution of Y{i} to the fitted value Y-hat{i}. This value summarizes the potential influence (the leverage) of all Y{i}'s. h{i} is bounded by: 1/n <= h{i} <= 1 h-bar = (j+1)/n Generally you can use 2(h-bar) as a cutoff for extreme values. in small samples this may nominate too many values and you can use 2(h-bar). */ regress y x predict hat, leverage sum hat local hatcrit =2*r(mean) local hatcrit1=round(`hatcrit',.001) #delimit ; graph twoway (scatter hat obs), ylabel(0(.1).4) ytick(0(.02).4) xlabel(1(1)10) yline(`hatcrit', lp(dash) lw(thick)) note("2*hat-bar = `hatcrit1'") name(hat, replace) ; #delimit cr /* List Extreme Values of h{i} */ noisily list obs y x if hat > `hatcrit' drop hat * }