
SOCY498C—Introduction to Computing for Sociologists
Neustadtl

Combining Data
Combining data taken from several datasets is a common data management task. The datasets are

either “appended” or “merged”. Appending means added to the bottom of an existing dataset—adding
cases. Merging datasets means adding data side-by-side to an existing dataset—adding variables. There
are several types of merges including one-to-one merges and match merging (one-to-many and many-to-
one merges). Merging is often used with the collapse command which creates aggregate statistical
data. A final complication is how missing values and differently named variables in the different datasets
are managed when combining data.

It is common for data, especially survey data, to come in multiple datasets (there are practical rea-
sons for distributing datasets this way). When data are distributed in multiple files, the variables you want
to use will often be scattered across several datasets. In order to work with information contained in two
or more data files it is necessary to merge the segments into a new file that contains all of the variables
you intend to work with.

First, you'll need to determine which variables you need and which datasets contain them. You
can do this by consulting the codebook. Additionally, you need to know the name of the id variable (or
variables). An id variable is a variable that is unique to a case (observation) in the dataset. For a given
individual, the id should be the same across all datasets allowing you to match the data from different da-
tasets to the correct observation. For cross-sectional data, this will typically be a single variable, in other
cases, two or more variables are needed, this is commonly seen in panel data where subject id and date or
wave are often needed to uniquely identify an observation. In order for Stata to merge the datasets, the id
variables have to have the same name across all files. If the variable is a string in one dataset, it must also
be a string in all other datasets, and the same is true of numeric variables (the specific storage type is not
important, as long as they are numerical). Once you have identified the variables you want, and know
what the id variable(s) are, you can begin to merge the datasets.

append (help append)
• This command appends a Stata-format dataset stored on disk to the end of the dataset in memory.
• You can specify the variables to append.
• You can control if labels and notes are retained.

merge (help merge)
• merge joins corresponding observations from the dataset currently in memory (called the master da-

taset) with those from Stata-format datasets stored as filename (called the using datasets) into single
observations.

• You can specify the variables to append.
• You can control if labels and notes are retained.

append
Sometimes parallel datasets are created during data collection. For example if there are multiple

data collection sites. The following data measure patient id (pid), the date a blood glucose measurement
was taken (datestamp), the BG reading, and the data collection site (site). Note that there are two patients
in each dataset with different numbers of records for each patient. The append command will create a
new dataset that contains all of these cases.

Data Site #1
1634 "04/22/05" 213 1
1634 "04/27/05" 117 1
1701 "04/09/08" 232 1
1701 "04/09/08" 324 1
1701 "04/10/08" 250 1
1701 "04/11/08" 213 1

Data Site #4
1525 "03/17/06" 64 4
1525 "03/17/06" 165 4
1525 "03/17/06" 72 4
1525 "03/17/06" 123 4
1683 "05/05/08" 156 4
1683 "05/05/08" 141 4
1683 "05/06/08" 121 4

The data need to be stored in Stata dataset format.
Let’s assume that we have two files called “site1.dta” and
“site4.dta”. To append then we would do the following:

In this example the people at site 1 also collected a
blood based measure called HbA1c—these measurements
were not taken at site 4. That is, the variable hba1c is in the
dataset “site1” but is not present in the dataset “site4”. In
this case Stata adds the new variable but assigns missing
values to hba1c for people from site 4.

Notice the append command does not require the
data to be sorted in any particular way and that you may
want to order your data logically after appending different
datasets. In this example it might make sense to sort the
data by site and within site by pid. Which happened in this
example without sorting because 1) each dataset was al-
ready sorted by pid, and 2) site4 was appended to site1 pre-
serving the site order.

 1683 05/06/08 121 4
 1683 05/05/08 141 4
 1683 05/05/08 156 4

 1525 03/17/06 123 4
 1525 03/17/06 72 4
 1525 03/17/06 165 4
 1525 03/17/06 64 4

 1701 04/11/08 213 1
 1701 04/10/08 250 1
 1701 04/09/08 324 1
 1701 04/09/08 232 1

 1634 04/27/05 117 1
 1634 04/22/05 213 1

 pid datest~p bglevel site

. list, sepby(pid site) noobs

. append using site4

. use site1, clear

 1683 05/06/08 121 4 .
 1683 05/05/08 141 4 .
 1683 05/05/08 156 4 .

 1525 03/17/06 123 4 .
 1525 03/17/06 72 4 .
 1525 03/17/06 165 4 .
 1525 03/17/06 64 4 .

 1701 04/11/08 213 1 8.4
 1701 04/10/08 250 1 9
 1701 04/09/08 324 1 12.4
 1701 04/09/08 232 1 8.1

 1634 04/27/05 117 1 7.3
 1634 04/22/05 213 1 8.4

 pid datest~p bglevel site hba1c

. list, sepby(pid site) noobs

. append using site4

. use site1, clear

merge
Sometimes data, especially survey data, are distributed in multiple datasets to keep individual da-

ta files sizes smaller. In this situation variables will often be scattered across several datasets. In order to
work with information contained in two or more data files it is necessary to merge the variables into a
new file.

Typically you will use the data codebook to determine which variables you need, and which data-
sets contain them. In addition to finding analytically important variables you need to know the name of
an identifying variable. This variable is sometimes called a key or ID variable. Regardless of the name
this variable must be unique to a case (observation) in the dataset. For a given data record, the key should
be the same across all datasets to allow matching the data from different datasets to the right record. For
cross sectional data, this will typically be a single variable, in other cases, two or more variables are
needed, this is commonly seen in panel data where subject ID and date or wave are often needed to uni-
quely identify an observation.

In order for Stata to merge the datasets, the ID variable, or variables, have to have the same name
across all files. Additionally, if the variable is a string in one dataset, it must also be a string in all other
datasets, and the same is true of numeric variables (the specific storage type is not important, as long as
they are numerical). Once you have identified all the variables you need, and know what the ID varia-
ble(s) are, you can begin to merge the datasets.

One-to-one match merge
This example was taken from the Stata 10 manual

on data management [D] and demonstrates a simple one-
to-one merge using a key variable.

The variable _merge was created by Stata during
the merge and keeps track of where the data in the final
dataset come from. When _merge equals:

1 obs. from master data
2 obs. from at least two datasets, master or using
3 obs. from only one using dataset

The data storage type for numeric variables is not
important because Stata will store the data with sufficient
precision so no information will be lost.

Many to one match-merge
A key variable is used in match merging where observations are joined or merged if the values of

the key variable(s) are the same or match. The dataset in memory is called the master dataset and the
other dataset is called the using dataset. An observation is read in the master dataset and in the using da-
taset. If the values of the key variable(s) match the observations are joined. If the key values do not
match then the data values of the smaller of the two values is merged with missing data for the other,
merged variables. Match-merges require that both datasets are sorted by the key variable(s) or that the
sort option is specified.

One dataset has measurements of individuals,
their sex and number of years of education. The other
dataset has household level data—the total family income
for three consecutive years. There is also a household ID
number (hhid) that ties these two datasets together.

There are three records in each dataset, one for
each household. Looking at the variable _merge we see
that the hhid variable was matched in each dataset. It is
important to look at the frequency distribution for this
variable (before dropping it) to be certain the merge
worked as anticipated.

.

This example is very similar except that there
is a duplicate household ID in the individual level data-
set representing the presence of a man and a woman in
the same household.

This merge is a many-to-1 merge because the
individual data (n=4, the many) is being merged with
the household data (n=3, the one).

If the order of the datasets was reversed the
merge command would need to reflect this:

use hh_data, clear
merge 1:m hhid using ind_data

use ind_data, clear
merge m:1 hhid using hh_data

Looking at the variable _merge we see that the
hhid variable was matched in each dataset and each
dataset contributed to each new observation.

In this example there are more households in
the using dataset than in the master dataset. House-
hould #4 is in the using dataset but not in the master
dataset.

This may not be useful and should probably be
dropped. We can detect situations like this by looking
at the variable _merge which in this case indicates that
the fourth record was contributed from the using data-
set with nothing from the master dataset. Once you
confirm that this behavior is appropriate you can drop
all of the records where _merge is equal to 2 (drop
if _merge==2).

Finally, here is a situation where there is a
household ID in master but not in using as well as a
household ID in using but not in master. Both of these
records are detected using the variable _merge.

These records are probably not useful and
should probably be dropped. As before, once you con-
firm that this behavior is appropriate you can drop all
of the records where _merge is equal to 1 or 2
(drop if _merge==1 | _merge==2).

The _merge variables
The _merge variable(s) created by the merge command are easy to miss, but are very important.

As discussed above, they tell us which dataset(s) each case came from. This is important because a lot of
values that came from only one dataset may suggest a problem in the merge process. However, it is not
uncommon for some cases to be in one dataset, but not another. In panel data this can occur when a given
respondent did not participate in all the waves of the study. It can also occur for a number of other rea-
sons. For example, a female respondent might appear in the subset of the data with demographic infor-
mation, but be completely absent from the subset of data with information on female respondents’ child-
ren, because she does not have children.

Because cases that are not present in all datasets are not necessarily a problem, in order for the in-
formation in _merge variables to be useful you need to know what to expect if the datasets merged cor-
rectly. Having too many, or all, of the cases in your merged dataset come from one, or only a few of the
datasets you’ve merged is a sign that the ID variable does not match correctly across datasets.

Once we have examined and sorted the datasets we can merge them. The syntax below does this,
note that the command is the same as in the first example. By default, Stata will allow cases to come from
any of the three datasets. There are options that will allow you to control which datasets the cases come
from, you can find out about them by typing "help merge" (without the quotes) in Stata.

Using collapse with merge
The collapse command is very powerful and creates a new dataset of summary or aggregate

statistics. But, it can be more useful when used with the merge command. In this example we will use a
dataset with measurements on 3,141 counties to create a dataset with an aggregate measurement at the
state level (n=51). Further, we will merge this aggregate data back into the county level dataset.

Here we create a new dataset
(statetemp.dta) that contains one record per
state with a variable called statecrim which
is the average of the crime rates from all of
the counties.

The key variable here is state, a nu-
meric code unique to each state. This varia-
ble ties the two datasets together.

This dataset can be used to examine
county level crime within the context of the
overall state average crime rate.

use SOCY401-Neustadtl-County-Crime.dta, clear

preserve
 collapse statecrim=crimerate04, by(state)
 sort state
 save statetemp, replace
 list
restore

merge m:1 state using statetemp
erase statetemp.dta

The preserve and restore commands deal with the programming problem where the data must be
changed to achieve the desired result (e.g. using collapse) but, when the program concludes, you want
to undo the damage done to the data. See help preserve for more details.

Exercise
1. The Stata data three files md.dta, dc.dta, and va.dta county-level demographic data for these states.

Create a new, combined Stata data file called merged-md-dc-va.dta by appending these data files.

2. Six Stata files (mdpop00.dta through mdpop05.dta) contain county-level population variables for
each year. That is, the 2000 population variable for Maryland is in the file mdpop00.dta, the
2001 data is in mdpop01.dta, and so forth. The Maryland data files have twenty-four observa-
tions (i.e. twenty-four counties).

Merge these six files so that the resulting dataset has one variable for each year (you could use this
dataset to examine trends). Save the new dataset as merged-md00-05. The data should look like
this:

3. The Stata dataset countybirths.dta contains birth data for each county in the United States (n=3,141).

The dataset merged-md-dc-va.dta that you created earlier contains population data for the 159
counties in Maryland, the District of Columbia, and Virginia.

Create a new dataset called merged-births-deaths.dta that has both the population and birth data for
the 159 counties by merging the two data files.

 Note: dataset has changed since last saved
Sorted by: county

pop05 long %12.0g Total resident population, 7/1/05
pop04 long %12.0g Total resident population, 7/1/04
pop03 long %12.0g Total resident population, 7/1/03
pop02 long %12.0g Total resident population, 7/1/02
pop01 long %12.0g Total resident population, 7/1/01
pop00 long %12.0g Total resident population, 7/1/00
 County name
countyname int %43.0g countynametmp
 State name
statename byte %20.0g statenametmp
fips long %12.0g State and county FIPS Code
county int %8.0g County FIPS Code

variable name type format label variable label
 storage display value

 size: 888 (99.9% of memory free)
 vars: 10 3 Mar 2010 11:07
 obs: 24 County Characteristics, 2000-2007, Dataset 0001
Contains data from mdpop00.dta

