/* Create subset of the GSS data for this example */ #delimit ; use year prestg80 educ age sex race marital using "C:\data\GSS-98-08.dta" if year==2008 & race<3, clear ; #delimit cr drop year /* Rename dummy variables for clarity */ rename sex female rename race black /* Estimate regression model Keep all cases used in estimation Create predicted values, Y-hats Create Figure 1 */ xi: regress prestg80 educ age i.female i.black keep if e(sample) /* Three alternatives to creating a variable of predicted values */ /* Method #1 gen yhat=5.707446 + ( 2.458468 *educ) + /// ( .0995691*age) + /// ( .3035981*_Ifemale_2) + /// (-1.443287 *_Iblack_2) Method #2 gen yhat=_b[_cons] + (_b[educ]*educ) + /// (_b[age]*age) + /// (_b[_Ifemale_2]*_Ifemale_2) + /// (_b[_Iblack_2]*_Iblack_2) */ /* Method #3 */ predict yhat, xb /* Compare mean Y-hat to adjust command */ /* Figure 2 */ tabstat yhat adjust /* Figure 3 */ table marital if !missing(marital), contents(mean yhat) format(%6.4f) adjust, by(marital) /* Figure 4 */ table marital female if !missing(marital), contents(mean yhat) format(%6.4f) adjust, by(marital female) /* Figure 5 */ adjust, by(marital female) format(%6.2f) adjust _Iblack_2, by(marital female) format(%6.2f) /* Figure 6 */ adjust educ age, by(marital female) format(%6.2f) /* Figure 7 */ adjust _Ifemale_2=0 _Iblack_2=0 , by(marital female) format(%6.2f) /* Figure 8 */ adjust, by(marital female) format(%6.2f) ci /* Figure 9 */ adjust if mod(age,5)==0, by(age) format(%6.2f) ci /* Figure 10 */ adjust if mod(age,5)==0, by(age) stdf ci