
Introduction to Computing for Sociologists
Neustadtl

Stata Macros
local (help macros or help local)

 A Stata macro is a storage place, you put text in. You then use what’s in storage in subsequent
commands.

 A macro is simply a name associated with some text.
 Macros can be local or global in scope.

looping (over variables)
foreach (help foreach)

 foreach repeatedly sets a local macro lname to each element of a list and executes the commands
enclosed in braces.

 The loop is executed zero or more times; it is executed zero times if the list is null or empty.

Return Results
help return (see also help ereturn and help creturn)

In addition to the output in the shown in the results window, many of Stata’s commands store in-
formation about the command and its results in memory. This allows you, as well as other Stata com-
mands, to easily make use of this information. Stata calls these “returned results”. Returned results can
be very useful when you want to use information produced by a Stata command to do something else in
Stata.

Stata returned results can be placed into categories. Arguably, the most important categories are
r-class, e-class, and c-class commands.

Macros
A macro is simply a name associated with some text. Whenever you want to use that text you can

use the shorter macro as a substitute and Stata will translate the macro to your text. Macros can be local
or global in scope. This document will mostly discuss local macros, global macros will only be discussed
in passing.

Storing Text in Local Macros
Local macros have names of up to 31 characters and are known only in the place where they were

created (the command, a do file, or a program).

You define a local macro using local lclname [=] text and you evaluate it using
`lclname’. Note the use of a backtick or left quote. This key is typically on the left of most key-
boards above the Tab key and is paired with the tilde key (~).

You can use the = sign or not but there is an important difference. Local macros created without
an equal sign are used to store text up to ~165k characters (up to a million in Stata SE). The text is often
enclosed in quotes but it doesn’t have to be. Local macros created with the equal sign are limited to 244
characters because the macro is treated as a string variable (see help limits).

When you type: local name "something" or . local name `"something"'

something becomes the contents of the macro. The compound double quotes (`" and "') are
needed when something itself contains quotation marks.

When you type: local name = something, something is evaluated as an expression,
and the result becomes the contents of the macro. Note the presence and lack of the equal sign.

So, if you type:

local problem "2+2"

local result = 2+2

then problem contains 2+2, whereas result contains 4.

Macros can be used when you need to run a large number of regression equations that include a
standard set of control variables, say sex, race, age, agesqr, and educ. One option is to type these varia-
ble names in each equation (or cut and paste the names). These alternatives are tedious and error prone.
Instead you can use a macro:

Without macros:
regress sexfreq1 sex race age agesq education.

regress reliten1 sex race age agesq education.

regress attend1 sex race age agesq education.

regress polviews sex race age agesq education.
regress childs sex race age agesq education.

With macros:
local controls sex race age agesq education

regress sexfreq1 `controls’

regress reliten1 `controls’

regress attend1 `controls’

regress polviews `controls’

regress childs `controls’

With only one regression to run you haven’t saved anything; with many models with different
dependent or independent variables macros saves work and ensures consistency.

If you decide you should have used log-income rather than income as a control, all you need to do
is change the macro definition at the top of your do file, say to read logincome instead of income and all
subsequent models will be run with income properly logged (assuming these variables exist).

Warning: evaluating a macro that doesn’t exist is not an error; it just returns an empty string. So
be careful to spell macro names correctly. If you type regress sexfreq `contrls’, Stata will
read regress sexfreq1, because the macro `contrls’ does not exist. The same would happen if
you type `control’ because macro names cannot be abbreviated the way variable names can. Either
way, the regression will run without any controls. But you always carefully check your output, right?

Suppose you are working with a demographic survey where age has been grouped in five-year
groups and ends up being represented by seven dummies, say age15to19 to age45to49, six of which will
be used in your regressions.

local controls sex race education

local age “age20to24 age25to29 age30to39 age35to39 age40to44 age45to49”

regress sexfreq1 `controls’ `age’

Not only is this shorter and more readable, but also closer to what you intend, which is to regress
reported sexual frequency on a set of control variables and “age”, which happens to be a set of indicator
variables. This also makes it easier to change the representation of age; if you later decide to use linear
and quadratic terms instead of the six dummies all you do is define local age “age agesq” and rerun your
models. Note that the first occurrence of age here is the name of the macro and the second is the name of
a variable. I used quotes to make the code clearer. Stata never gets confused.

Keyboard Mapping with Global Macros
Global macros have names of up to 32 characters and as the name indicates have global scope—

they continue to exist outside of the context in which they were created. You define global macros using
global name [=] text and evaluate it using $name. You can use ${name} to clarify where the
name ends.

I suggest you avoid global macros because of the potential for name conflicts. A useful applica-
tion, however, is to map the function keys on your keyboard. If you work on a shared network folder with
a long name try something like this:

global F5 \\server\shared\research\project\subproject\

Then when you use the F5 key Stata will substitute the full name. Your do files can use com-
mands like do ${F5}dofile (the braces to indicate that the macro is called F5, not F5dofile).

You probably don’t want to type this macro each time you use Stata. So, enter it in your pro-
file.do file, a set of commands that is executed each time you run Stata. Type help profile to learn
more. If you are working on public computers you can create a small do file that has Stata commands to
set up your computing environment and run it at the beginning of your work session.

More on Macros
Macros can also be used to obtain and store information about the system or the variables in your

dataset using extended macro functions. For example you can retrieve variable and value labels, a feature
that can come handy in programming.

There are also commands to manage your collection of macros, including macro list and
macro drop. Type help macro to learn more.

Looping
Some programming tasks are repetitive and nothing is better at repetitions than a computer. The

main looping command in Stata is foreach (see help foreach). From the help file:

Say you wanted to summarize a large number of variables. You could use the foreach com-
mand in the following way:

The command begins with foreach. This is followed by lname which is a local macro name,
in this case, var. Since I am summarizing variables the next part of the command is of varlist fol-
lowed by the list of variables to be stored in the local macro var (age, educ, and sexfreq1). Finally, the
line ends with an open bracket ({). Stata commands that are to be repeated across the variable list are in-
serted on the next line (or several lines). In this case summarize `var’. Note that var is enclosed in
the macro-specific quotes (` and ‘) because it is a local macro. The following Stata code produces the
same output and has the advantage of only changing the values of local varsum in case we have lots
of analyses of those variables.

local varsum “age educ sexfreq1”
foreach var of varlist `varsum’ {
 summarize `var’
}

 3. the close brace must appear on a line by itself.

 command to be executed must appear on a new line;
 2. nothing may follow the open brace except, of course, comments; the first

 1. the open brace must appear on the same line as the foreach;

 Braces must be specified with foreach, and

 foreach lname of numlist numlist {

 foreach lname of newlist newvarlist {

 foreach lname of varlist varlist {

 foreach lname of global gmacname {

 foreach lname of local lmacname {

 foreach lname in any_list {

 Allowed are

 }
 commands referring to `lname'
 foreach lname {in|of listtype} list {

Syntax

 sexfreq1 19711 55.69299 65.99505 0 237

 Variable Obs Mean Std. Dev. Min Max

 educ 39449 12.85328 3.081281 0 20

 Variable Obs Mean Std. Dev. Min Max

 age 39427 45.96807 17.49501 18 89

 Variable Obs Mean Std. Dev. Min Max

 3. }
 2. summarize `var'
. foreach var of varlist age educ sexfreq1 {

Loops can be used to create new variables. Consider the following example:

foreach var of varlist socrel socommun socfrend socbar {

 recode `var’ (1=1) (2/7=0) (else=.), gen(`var’1)

}

This foreach loop creates four new dummy variables (socrel1, socommun1, socfrend1, and
socbar1) that are coded 1 if the respondents socialize “almost daily” and 0 otherwise. Note how the
generate option substitutes the original variable name with a “1” appended to it.

This example is a little more complicated not because of the looping but because it uses other
commands (egen) and a logical expression that evaluates to either 0 or 1 to create the dummy variable.
In this example cases coded 1 have values greater than the median for the list of variables. Note that the
original variables names are used as a prefix for the generated variable name:

foreach x of varlist educ prestg80 wordsum {

 egen median_`x’ = median(`x’)

 gen byte `x’_above = (`x’>median_`x’) & !missing(`x’)

 label var `x’_above “`x’ above median dummy”

 drop median_`x’

 }

The following example creates three dummy variables based on the race variable in the GSS by
looping over the values of the race variable. Note how the numbers are appended to the variable names
and labels:

foreach num of numlist 1(1)3 {

 gen racedum`num’=(race==`num’) if race !=.

 label var racedum`num’ “Dummy for race=`num’

}

Problems
1. Using loops (i.e. foreach) create two new variables called leduc and lage that are logged versions

of educ and age.

2. This problem uses a lot of different Stata concepts. Write a loop
to produce the following table:

Columns 1, 2, and 3 respectively represent 1) the value of marital, 2) the regression coefficient
from regressing sexfreq3 on age, and 3) the r2 from each of these models based on 2012 data.

To create this table you will need to do several things.

a) Create a sexual frequency measure as follows:

/* Create the yearly sexual frequency variable */
capture drop sexfreq3
generate sexfreq3=.
replace sexfreq3= 0 if sexfreq==0
replace sexfreq3= 2 if sexfreq==1
replace sexfreq3= 12 if sexfreq==2
replace sexfreq3= 36 if sexfreq==3
replace sexfreq3= 52 if sexfreq==4
replace sexfreq3=156 if sexfreq==5
replace sexfreq3=208 if sexfreq==6
label variable sexfreq3 "Yearly sexual frequency"

b) You need to estimate five regression models, one for each value of marital status, of sex-
freq3 regressed on age. Anytime you see something repetitive it might make sense to
loop.

c) You need to suppress some of the output (i.e. the regression results) but not others (i.e. the
coefficients, etc.). You can suppress output using the quietly command (help
quietly).

d) You need to use the display command (help display) to send the values marital sta-
tus, the regression coefficients, and the r2’s to the screen. So, you need to know how to
access the values stored in the e() saved results (help ereturn) and how to access
the regression coefficients stored in the matrix of coefficients e(b) (help regress
and help _variables).

e) Put all this together to create the listing of results for each level of marital status.

3. This is not a problem but another example to demonstrate how great looping can be to reduce your
work and errors. The following code used the ds command (help ds) to identify all numeric
variables in a dataset and store their names in the r() local macro called r(varlist). This
local macro is then used in a foreach loop to create z-transformed variables:

5 -1.1439784 .027275
4 -2.9450347 .17872824
3 -2.1965718 .12503279
2 -2.3836519 .23321738
1 -1.9203678 .18697281

/* Create z-scores from all variables in the dataset */
ds, has(type numeric)
foreach var of varlist `r(varlist)’ {
 egen `var’_z=std(`var’)
}

The ds command is very powerful and worth exploring. A new user-written command called
findname is very similar and has more features (findit findname).

r-class
In addition to producing output in the results window, commands like summarize return results in

temporary variables in r(). These results generally must be used before executing more commands that
replace the current values of r(). To see the r() variables you type return list after issuing a
command like summarize. For example:

sum age

return list

All statistics from the summarize command are saved temporarily in r() until the next command
is called. Here we can see that 56,859 valid cases were used in this command [r(N)] and that the mean
of age is 45.969795…[r(mean)] with a standard deviation of 17.47211…[r(sd)]

To create a z-transformed variable for age we can use the return values from the summarize
command and the generate command to create a new variable with mean 0 and standard deviation 1.
This must be done after using the summarize command for age and before another command that will
write-over/replace (i.e. destroy) the values of r():

generate age_z=(age-r(mean))/r(sd)

An easier way to do this is to use egen (but that doesn’t demonstrate using local variables):

egen age_z=std(age)

 r(sum) = 2598340
 r(max) = 89
 r(min) = 18
 r(sd) = 17.47211195368916
 r(Var) = 305.2746961222475
 r(mean) = 45.69795458942296
 r(sum_w) = 56859
 r(N) = 56859
scalars:

. return list

 age 56859 45.69795 17.47211 18 89

 Variable Obs Mean Std. Dev. Min Max

. sum age

e-class
Commands that return results in e-class variables are estimation commands such as regress, lo-

gistic, etc., that fit statistical models. The estimation results are available until the next model is fitted.
To see the results of an e-class command type ereturn list after your estimation command. For
example:

regress sexfreq1 age agesqr

ereturn list

Even though the model R-squared and F-statistic are provided in the results window as well as in
e(r2) and e(F), they can be calculated using e-class variables:

di e(mss)/(e(rss) + e(mss)) /* R-squared */

di (e(mss)/e(df_m))/(e(rss)/e(df_r)) /* F-statistic */

 e(sample)
functions:

 e(V) : 3 x 3
 e(b) : 1 x 3
matrices:

 e(estat_cmd) : "regress_estat"
 e(model) : "ols"
 e(predict) : "regres_p"
 e(properties) : "b V"
 e(cmd) : "regress"
 e(depvar) : "sexfreq3"
 e(vce) : "ols"
 e(marginsok) : "XB default"
 e(title) : "Linear regression"
 e(cmdline) : "regress sexfreq3 age agesqr"
macros:

 e(rank) = 3
 e(ll_0) = -143885.4850435673
 e(ll) = -141828.9161256346
 e(r2_a) = .1487885736252415
 e(rss) = 100378589.4181262
 e(mss) = 17555044.8038082
 e(rmse) = 62.71995490116255
 e(r2) = .1488552855987808
 e(F) = 2231.312876856802
 e(df_r) = 25517
 e(df_m) = 2
 e(N) = 25520
scalars:

The regress command also stores values in matrices—Stata has a robust matrix programming
language. The matrix e(b) contains the regression coefficients and can be listed using the command
matrix list e(b). Individual matrix elements may also be accessed using the _b[varname]
convention. The following commands 1) show the contents of the matrix e(b), display the predicted
value of sexfreq1 for the first case in the dataset, and 3) creates a new variable, yhat, containing the pre-
dicted values (yes, it is easier to use the predict postestimation command):

matrix list e(b)

di _b[_cons] + (_b[age]*age) + (_b[agesqr]*agesqr)

generate yhat=_b[_cons] + (_b[age]*age) + (_b[agesqr]*agesqr)

Storing Results in Local Macros
The second type of macro definition local name = text, with an equal sign is used to store

results. It instructs Stata to treat the text on the right hand side as an expression, evaluate it, and store a
text representation of the result under the given name.

You run a regression and want to store the resulting R-squared, for comparison with a later re-
gression. The regress command stores R-squared in e(r2), so you think local rsq e(r2)
would do the trick.

But it doesn’t. Your macro stored the formula e(r2), as you can see by typing display “`rsq’”.
What you needed to store was the value. The solution is to type local rsq = e(r2), with an equal
sign. This causes Stata to evaluate the expression and store the result.

To see the difference try this

regress sexfreq1 age
local rsqf e(r2)
local rsqv = e(r2)
di `rsqf’ /* This has the current R-squared */
di `rsqv’ /* as does this one */

regress sexfreq1 age sex race
di `rsqf’ /* This has the new R-squared */
di `rsqv’ /* This has the old one */

Another way to force evaluation is to enclose e(r2) in single quotes when you define the mac-
ro. This is called a macro expression, and is also useful when you want to display results. It allows us to
type display “R-squared=`rsqv’” instead of display “R-squared=“ `rsq’.

An alternative way to store results for later use is to use scalars (type help scalars to learn
more). This has the advantage that Stata stores the result in binary form without loss of precision. A

(202 missing values generated)
. generate yhat=_b[_cons] + (_b[age]*age) + (_b[agesqr]*agesqr)

80.779246
. di _b[_cons] + (_b[age]*age) + (_b[agesqr]*agesqr)

y1 -.60401117 -.00949179 109.82719
 age agesqr _cons
e(b)[1,3]

. matrix list e(b)

macro stores a text representation that is good only for about 8 digits. The downside is that scalars are
global so there is a potential for name conflicts, particular in programs (unless you use temporary names,
see help tempvar).

c-class
Stata’s c-class, c(), contains the values of system parameters and settings, along with certain

constants such as the value of pi. c() values may be referred to but may not be assigned. To see all of
the c-class variables type creturn list. To use one c-class variable as an example we can display
the contents of the variable c(current_date):

di c(current_date)

You can learn more about these stored values by looking at the online help files (help re-
turn, help ereturn, and help creturn). These returned values are macro variables or simply
macros.

21 Jan 2009
. di c(current_date)

