
Introduction to Computing for Sociologists 
Neustadtl 

Stata “Gotchas” 
Stata has a couple of issues that can bite you if you are not aware of them—the treatment of miss-

ing values and the precision of the data stored in variables and comparisons. 

Missing Values 
So far we have treated a period (“.”) in a numeric variable as a missing value that leads that case 

to be excluded from calculations and statistical analyses.  Stata actually has twenty-seven numeric miss-
ing values—the period is just one, but the one most people use.  The missing values .a, .b, .c, …, .z, are 
called “extended missing values”.  Extended missing values are used when it is necessary to differentiate 
between different types of missing data.  For example survey questions sometimes allow for the following 
responses in addition to simply missing: “Not Applicable”, “Don’t Know”, “Refused to Answer”.  These 
different reasons for missing data may be coded using .a, .b, and .c in case someone wanted to do an anal-
ysis of the missing responses. 

Stata numeric missing values are represented by large positive values.  The ordering is all non-
missing numbers < . < .a < .b < ... < .z.  The expression sociability > 10 is true if variable sociability is 
greater than 10 or missing.  To exclude missing data you must specify that the value is less than “.”.  For 
instance, “list if sociability > 10 & sociability < .”.  

Stata has one string missing value, which is denoted by “” (blank). 

The following Stata code creates a small dataset to illustrate how missing values work.  Case four 
is missing on the numeric variable y and case five is missing on the string variable id: 

/* Understanding missing values */ 
clear 
input str1 id byte y 
"a"  1 
"b"  2 
"c"  3 
"d"  . 
""   5 
end 
list, noobs  

list y if y>=5, noobs 

list y if y>=5 & y <., noobs 

 

            
         5  
     d   .  
     c   3  
     b   2  
     a   1  
            
    id   y  
            

       
    5  
       
    y  
       

. list y if y>=5 & y <., noobs

       
    5  
    .  
       
    y  
       

. list y if y>=5, noobs



The following Stata code creates four new variables using different methods: 

gen byte y1=(y>=3)        /* Missing values are set equal to 1 */ 
 
gen byte y2=(y>=3 & y<.)  /* Missing values are set equal to 0 */ 
 
generate y3=. 
replace y3=0 if y<3 
replace y3=1 if y>=3 & y<. 
 
generate byte y4=cond(y<3,0,cond(y>=3 & y<.,1,.)) 
 

list, noobs 

 
The variable y1 demonstrates a significant issue with missing values.  This was an attempt to cre-

ate a dummy variable where all values greater than or equal to 3 are set equal to one; all other values are 
equal to 0.  Stata dutifully did this task and converted the missing value to be equal to 1 since it too is 
greater than or equal to 3.   

The second variable y2 takes this into account.  Now, values greater than or equal to 3 and less 
than . (missing) are equal to 1.  But, the value for case four is equal to 0!  How did this happen?  The Stata 
statement (y>=4 & y<.) is a Boolean or logical expression that evaluates to either false (0) or true (1).  So, 
you can see that the missing value in case 4 becomes a 0 using this logic. 

Look at the Stata code that created y3 to see one way to handle missing values and logical condi-
tions.  First a new variable y3 is created where every value is equal to missing (.).  Then these values are 
selectively replaced to be equal to 0 (if y is less than 3) or 1 (if y is greater than or equal to three and y is 
less than missing). 

Three lines of Stata code are inefficient and can be reduced to a single line of code by using the 
cond function (help cond) and logical expressions.  The general form of this function is: 

cond(x,a,b) 

So, for example, cond(y<3, 0, 1) has the same result as method one (y1) discussed above 
since x=y, a=0, and b=1.  The cond() function evaluates x and if x is true assigned the value a.  If x is 

                                
         5    1    1    1    1  
     d   .    1    0    .    .  
     c   3    1    1    1    1  
     b   2    0    0    0    0  
     a   1    0    0    0    0  
                                
    id   y   y1   y2   y3   y4  
                                

. list, noobs

(1 missing value generated)
. generate byte y4=cond(y<3,0,cond(y>=3 & y<.,1,.))

(2 real changes made)
. replace y3=1 if y>=3 & y<.

(2 real changes made)
. replace y3=0 if y<3

(5 missing values generated)
. generate y3=.

. gen byte y2=(y>=3 & y<.)  /* Missing values are set equal to 0 */

. gen byte y1=(y>=3)        /* Missing values are set equal to 1 */



false the value b is assigned.  But, functions can be nested and here the third argument b is replaced with 
another cond function. 

The following example creates a new variable y5 that is missing for both cases 4 and 5.  Howev-
er, the missing values are differentiated with case 4 equal to the “normal” missing period (.) and case 5 
missing is equal to .a.   

gen y5=y 
replace y5=.a if y==5 
list y5, noobs 
list y5 if !missing(y5), noobs 
list y5 if y5<=., noobs 

 

Three different list commands are issued.  The first simply lists all values of y5 including the 
missing values.  The second lists all non-missing values of y5.  This example uses the missing() function 
which returns 1 (true) if any of the function arguments are missing and 0 (false) if none of the arguments 
are missing.  This function is combined with the “not” operator (“!”).  The missing() function [help 
missing()] is used to limit the listing results note that the Stata code !missing(y5) is read as “not 
missing on y5” (help operator).  The last example lists all non-missing values of y5 and values 
equal to missing (“.”).   

1. Recode or replace the missing values for the individual sociability variables socrel, socommun, 
socfrend, and socbar respectively to the missing values .a, .b, .c, and .d.  List out the values 
for these variables for the records 23,414 to 23,425 and describe the pattern of missing values. 

2. Describe the missing value pattern of the sociability variables socrel, socommun, socfrend, and 
socbar.  This is a little complicated but follows these general steps: 

a. Recode each of the individual sociability variables to be equal to 0 if the case has a valid value 
(1 through 7) and 1 if it is missing.  These variables should be called socre1l, socommun1, 
socfrend1, and socbar1.   

b. Create a variable equal to the sum of these four component measures called socmiss.  Values 
equal to 0 mean no missing values on the four component measures; values equal to ` mean 
missing on one and only one variables, and so on. 

c. Use tabulate and graph hist for all values great than 0 to describe the pattern of missing 
values. 

        
     .  
     3  
     2  
     1  
        
    y5  
        

. list y5 if y5<=., noobs

        
     3  
     2  
     1  
        
    y5  
        

. list y5 if !missing(y5), noobs

        
    .a  
     .  
     3  
     2  
     1  
        
    y5  
        

. list y5, noobs

(1 real change made, 1 to missing)
. replace y5=.a if y==5

(1 missing value generated)
. gen y5=y



Precision 
Programs like Stata store results in binary, and to the right of the decimal point, there is often not 

an exact equivalent between decimal and binary given a finite number of digits.  For 0.5 there is an exact 
equivalent:  0.1 base 2.  For 0.25 there is an exact equivalent:  0.01 base 2.  For 0.125 there is an exact 

equivalent:  0.001 base 2.  This means to the right of the binary point the powers are 1 22 ,  2 ,   and so on.  

0.1 base 2 is 1 1
1*2 .

2
    0 .01 base 2 is 2 1

1*2 .
4

    0.11 base 2 is  
1 1 3

.
2 4 4
   

There are lots and lots of numbers less than 1 for which there is an exact binary representation.  
However, just because there is an exact representation in one base does not imply there is an exact repre-
sentation in another.  Think of the number 1/3.  In base 10, it is 0.3333333 and that requires an infinite 
number of digits.   

The difference in representing numbers in decimal (what we use) and binary (what computers 
use) can create some problems.  The following program creates a dataset with 10 records and one varia-
ble, x, where every value is equal to 7.3.  Note that the default storage type Stata used for this variable is 
float.   

clear 
set obs 10 
gen x=7.3 
desc 
list 

 

            
 10.   7.3  
  9.   7.3  
  8.   7.3  
  7.   7.3  
  6.   7.3  
            
  5.   7.3  
  4.   7.3  
  3.   7.3  
  2.   7.3  
  1.   7.3  
            
         x  
            

. list

     Note:  dataset has changed since last saved
Sorted by:  
                                                                                   
x               float  %9.0g                  
                                                                                   
variable name   type   format      label      variable label
              storage  display     value
                                                                                   
 size:            80 (99.9% of memory free)
 vars:             1                          
  obs:            10                          
Contains data

. desc

. gen x=7.3

obs was 0, now 10
. set obs 10

. clear



Data stored as floats have about 7 digits of accuracy.  Thus, 1234567 can be stored perfectly as a 
float, as can 1234567e+20.  The number 123456789, however, would be rounded to 123456792. 

Now, let’s try to list some specific examples to demonstrate the problem: 

list if x==7.3 
 
list if x==float(7.3)

 

When the command list if x==7.3 was issued no values of x satisfied the equality!  The 
float() function rounds its argument (7.3 in this example) to float accuracy.  Now, the two values are 
equal (within rounding) and the list command does as we expect. 

The following Stata code displays three values to 14 decimal places: 1) the contents of variable x 
for the first record, 2) the number of 7.3 (as a double), and 3) the number of 7.3 represented in float accu-
racy. 

di %16.14f x 
di %16.14f 7.3 
di %16.14f float(7.3) 

 

Note that the first and second numbers are not equal (so the list command fails).  But, the first 
and third numbers are identical (so the list command works).  Another solution is to store your data as 
double (more precision than float), but this typically just wastes memory by increasing the storage re-
quirements of your data.  In a simple test a dataset that stored numbers as double was 1.8 times larger than 
the same numbers stored as floats. 

3. There are no problems for you to complete, just be careful with precision issues. 

 

            
 10.   7.3  
  9.   7.3  
  8.   7.3  
  7.   7.3  
  6.   7.3  
            
  5.   7.3  
  4.   7.3  
  3.   7.3  
  2.   7.3  
  1.   7.3  
            
         x  
            

. list if x==float(7.3)

. 

. list if x==7.3

7.30000019073486
. di %16.14f float(7.3)

7.30000000000000
. di %16.14f 7.3

7.30000019073486
. di %16.14f x



Big Numbers 
The precision issue can also bite you when you have large numbers.  Large numbers are often 

used as case identifiers (ID’s).  Consider the following: 

clear 
input id 
123456789 
123456790 
123456791 
123456792 
123456793 
123456794 
123456795 
123456796 
end 
list, noobs 

 

format id %9.0f 
list, noobs 

 

First we read in some data and display them.  The values are difficult to read because they are 
displayed in scientific notation.  We can use the format command to tell Stata that we would like it to 
display the values with 9 values before the decimal place and with no values after the decimal place.  
Now we can see that the values were not stored they way we anticipated.  The problem is that id is stored 
as float which can only store an integer value with up to 7 digits of accuracy (the id values are 9 digits). 

There are two solutions 1) change the data storage type to long or double, or 2) store your identi-
fication numbers as strings (if they have no numerical importance).  If identification numbers are integers 
and take 9 digits or less, store them as longs; otherwise, store them as doubles (doubles have 16 digits of 
accuracy).  The following Stata code demonstrates both of these solutions: 

input long id 
123456789 
123456790 
123456791 
123456792 
123456793 
123456794 
123456795 
123456796 
end 
 
format id %9.0f 
list, noobs 

input str9 id 
123456789 
123456790 
123456791 
123456792 
123456793 
123456794 
123456795 
123456796 
end 
 
list, noobs 

 

4. There are no problems for you to complete, just be careful with precision issues and large numbers. 

 

              
    1.23e+08  
    1.23e+08  
    1.23e+08  
              
    1.23e+08  
    1.23e+08  
    1.23e+08  
    1.23e+08  
    1.23e+08  
              
          id  
              

. list, noobs

               
    123456800  
    123456792  
    123456792  
               
    123456792  
    123456792  
    123456792  
    123456792  
    123456792  
               
           id  
               

. list, noobs

. format id %9.0f

               
    123456796  
    123456795  
    123456794  
               
    123456793  
    123456792  
    123456791  
    123456790  
    123456789  
               
           id  
               

. list, noobs

               
    123456796  
    123456795  
    123456794  
               
    123456793  
    123456792  
    123456791  
    123456790  
    123456789  
               
           id  
               

. list, noobs


