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Abstract—Semiarid rangelands are very sensitive to global
climatic change; studies of their biophysical attributes are crucial
to understanding the dynamics of rangeland ecosystems under
human disturbance. In the Santa Rita Experimental Range, AZ,
the vegetation has changed considerably, and there have been
many management activities applied. This study calculates seven
surface variables: the enhanced vegetation index, the normal-
ized difference vegetation index (NDVI), surface albedos (total
shortwave, visible, and near-infrared), leaf area index (LAI), and
the fraction of photosynthetically active radiation (FPAR) ab-
sorbed by green vegetation from the Enhanced Thematic Mapper
(ETM+) data. Comparison with the Moderate Resolution Imaging
Spectroradiometer vegetation index and albedo products indicates
they agree well with our estimates from ETM+, while their LAI
and FPAR are larger than from ETM+. Human disturbance has
significantly changed the cover types and biophysical conditions.
Statistical tests indicate that surface albedos increased and FPAR
decreased following tree-cutting disturbances. The recovery will
require more than 67 years and is about 50% complete within
40 years at the higher elevation. Grass cover, vegetation indexes,
albedos, and LAI recovered from cutting faster at the higher eleva-
tion. Woody plants, vegetation indexes, and LAI have recovered to
their original characteristics after 65 years at the lower elevation.
More studies are needed to examine the spectral characteristics of
different ground components.

Index Terms—Albedo, Enhanced Thematic Mapper (ETM+),
fraction of photosynthetically active radiation (FPAR), leaf area
index (LAI), Moderate Resolution Imaging Spectroradiometer
(MODIS), rangeland, remote sensing.

I. INTRODUCTION

ARID and semiarid rangelands, covering 30% of the
world’s total land area [1], are very important for under-

standing terrestrial carbon dynamics. Studies have been carried
out to examine regional carbon dynamics arising from human
disturbance such as land use and management practices [2]. Yet,
more studies are needed to improve our understanding of such
issues as: 1) whether past management caused any difference
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to the rangeland; 2) whether and how local human disturbance
will affect regional carbon dynamics; and 3) whether natural
influence is positive or negative to the primary production.

The Santa Rita Experimental Range (SRER) (see descrip-
tions about the study area in next section), located in south
Arizona, is biogeographically typical of a large swath of semi-
arid rangelands [3]. Numerous studies have focused on soil and
ecological development in SRER during the past century. Re-
cently, research has been carried out to assess the human influ-
ence of carbon dynamics at the regional level by the authors.
In particular, we were interested in determining the biophysical
characteristics under different management practices, which are
indispensable for understanding the carbon dynamics. Seven
commonly used metrics were selected to study the biophysical
characteristics of the rangeland: the enhanced vegetation index
(EVI) and the normalized difference vegetation index (NDVI),
surface broadband albedo, leaf area index (LAI), and the frac-
tion of photosynthetically active radiation (FPAR) absorbed by
the green vegetation.

Studies have been carried out to estimate these biophysical
variables, especially with respect to areas with changing land
management activities [4], [5]. For example, optical properties
of overgrazing and protected areas were derived and compared
[6]. Calculation of vegetation indexes is straightforward, and ef-
forts have been made to derive surface albedos accurately [7].
Conventionally, LAI and FPAR are estimated through correla-
tions with spectral vegetation indexes [8] or through the inver-
sion of radiative transfer (RT) models [9]. However, reliable
estimation of LAI and FPAR for semiarid rangeland is com-
plicated because of the spectral mixture of canopy, litter, and
ground [10], [11]. Gobron et al. [12] estimated FPAR with op-
timized vegetation indexes developed through RT simulation;
however, these vegetation indexes are complicated in formation.
Therefore, new methods are needed for this purpose.

The primary objective of this paper is to evaluate how
different management practices will affect the land surface
biophysical properties in SRER. To achieve that, we executed
two tasks, first estimating surface biophysical variables from
remotely sensed data, and then making a comparison of them
between disturbed and control plots. A new LAI and FPAR
estimation method was developed in this paper. After these
parameters were estimated from Enhanced Thematic Mapper
Plus (ETM+) data, they were compared with the Moderate
Resolution Imaging Spectroradiometer (MODIS) standard
products [13]. Statistical tests were conducted to evaluate
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whether different management practices have caused any sig-
nificant change. Land cover characteristics were also analyzed
since they were closely related to the optical and biophysical
properties of the study area.

II. STUDY AREA

The Santa Rita Experimental Range, founded in 1903, is
located south of Tucson, AZ (31.8 N, 111.9 W). It has been
a principal site for pioneer range research on the improvement
and management of semiarid grasslands in the southwest
U.S. [3]. It is characterized by long, gently sloping alluvial
fans. Elevation ranges from 900–1400 m, and average annual
precipitation increases from 275–450 mm along this gradient.
The vegetation is currently a mixture of trees, shrubs, cacti and
perennial grasses. Velvet mesquite (Prosopis velutina) is the
most common species, and burroweed (Isocoma tenuisecta),
cholla, and prickly pear (Opuntia spp.), and grama grass
(Bouteloua spp.) and lovegrass (Eragrostis lehmanniana) are
common shrub, cacti, and grass species, respectively [14]. In
general, vegetation structure ranges from desert scrub at low
elevations to mesquite-grass savanna at higher elevations.

Over the past century, the vegetation has changed consider-
ably, and there have been many management activities applied
to reverse those changes. Specifically, velvet mesquite has in-
creased from 1% cover to 30% to 40% cover in many upland
areas since 1900 [14]. In response to increasing velvet mesquite,
several projects of tree removal were applied between 1930 and
1980. Mesquite removals performed in the 1930s and 1960s pro-
vide areas for comparison with locations where mesquite has
been allowed to increase unabated.

Six study sites were selected to represent three types of set-
tings [Fig. 1(a)]: where all mesquite trees were cut and killed
in 1935 and 1937 (C_1935 and E_1937); where about half of
all trees were killed [15] with aerially applied herbicide in the
early 1960s (D_1960 and D_1962); and control sites where the
mesquite increase was not reversed (D_control and E_control).
All sites are in two general locations: the upper elevation at ap-
proximately 1100 m including C_1935, D_1960, D_1962, and
D_control; and the lower elevation at approximately 1000 m in-
cluding E_1937 and E_control. Study sites C and D are within
1 km of each other, and study sites E are adjacent to each other.
The size of each site ranges from 4–6 ha. D_control serves as
an untreated comparison for the nearby C_1935, D_1960, and
D_1962.

The C_1935 and E_1937 sites are some of the oldest
mesquite-killed areas on the study area, and they serve to help
estimate how long the clearing effort would last before the sites
would return to uncut conditions. The D_1960 and D_1962
sites serve as intermediate-aged mesquite-killed areas and
therefore serve the same role for estimating the longevity of
the treatment. The two elevations provide the opportunity to
compare the rates of recovery following tree removal in relation
to elevation.

III. METHODS

Using Landsat ETM+ data to estimate the surface biophys-
ical variables, the initial step was to convert radiance recorded

Fig. 1. (a) Landsat ETM+ standard (grayscale) composite image of the Santa
Rita Experimental Range (SRER) on September 25, 2002. The small color boxes
are six study plots (1, C_1935; 2, D_1960; 3, D_1962; 4, D_control; 5, E_1937;
6, E_control). (b) MODIS surface reflectance (MOD09) image of the same area
(RGB: 214) on the same day. The SRER is delineated with white lines.

at the top of the atmosphere to surface reflectance using an at-
mospheric correction algorithm [16]. Vegetation indexes and all
other variables were calculated from ETM+surface reflectance
and then compared with MODIS standard products.

A. Vegetation Index and Albedo Calculation

NDVI is calculated by

NDVI (1)

where and are surface reflectance at red and near in-
frared (NIR), respectively. EVI optimizes the vegetation signal
and reduces the background and atmospheric influence. EVI is
defined by

EVI (2)

where is the blue band reflectance, is the canopy back-
ground adjustment, and and are the coefficients of the
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aerosol resistance term. The coefficients used in the EVI algo-
rithm are , , , and gain factor
[17].

Surface broadband albedos are computed by the following
equations [18]:

(3)

where , , and are the total shortwave, total vis-
ible, and total NIR albedo, respectively, and is the spectral
albedo of each ETM+ band. If the surface is assumed to be
Lambertian, the spherical albedos are numerically equivalent to
spectral reflectances from atmospheric correction.

B. Surface LAI Estimation

In this paper, a new hybrid approach was developed to esti-
mate LAI and FPAR. The new approach extends from a previous
study estimating crop LAI from ETM+ data [19]. The essential
idea is to estimate LAI with a neural network method based on
simulated databases. In the radiative transfer simulation, soil re-
flectances are derived from the instant remotely sensed images.
Major steps of this approach are as follows:

• perform atmospheric correction of the ETM+ image to
obtain surface reflectance;

• identify soil pixels and estimate the soil reflectance index
(SRI) from the red and NIR reflectance scatterplot;

• construct a database through a canopy radiative transfer
model (e.g., the MCRM model by [20]) simulation with a
variety of input parameters;

• train a neural network with the simulated database;
• predict the surface LAI with the training results.

LAI can be estimated from the atmospherically corrected sur-
face reflectances as well as top of atmospheric (TOA) radiance
data. Atmospherically corrected ETM+ band 3 and 4 are most
appropriate in LAI estimation. The method has been validated
and works well for both Landsat ETM+ and EO1 ALI data [21].

C. Surface FPAR Estimation

We extended the hybrid LAI estimation algorithm [19] to
estimate surface FPAR. The approach integrated the conven-
tional RT inversion method and neural network method. In the
neural network training process, FPAR was in the input layer.
The output layer consisted of the simulated six ETM+ bands. In
the prediction process, the atmospherically corrected ETM+ re-
flectances were used to estimate FPAR. Different kinds of band
combinations were tested, and all three visible bands (band 1,
2, and 3) were used since they have the most stable outputs.

FPAR is computed by [22]

FPAR (4)

where is the surface albedo and is the absorptance of
the soil. For a Lambertian surface, the value of is equal to

the nadir reflectance observed by ETM+. can be calculated
by

(5)

where and are the absorbed direct (single scattering) and
diffuse (multiple scattering) radiance, respectively. The soil ab-
sorptance is given by the following equations:

(6)

where is the portion of single-scattering illumination, the
canopy transmittance of direct radiation, and the bidirec-
tional reflectance of soil; and

(7)

where and are canopy diffuse transmittance for direct and
diffuse incoming radiation, respectively, the portion of sky-
light, and the bihemispheric soil reflectance.

The simulated reflectances from Section III-B were used
to construct the database for FPAR training. Obviously, a
common database can be used for both LAI and FPAR esti-
mation. Values obtained for and were integrated over all
visible bands to obtain the surface albedo and soil absorptance
over 400–700 nm.

D. Statistical Analysis

After the biophysical variables were derived, their values
for the treatment sites and the control sites were compared
statistically to see if the management measures have caused
any significant difference. The treatment sites and control sites
are assumed independent from each other and there is mutual
independence between any pair of samples. In this case, the
Wilcoxon rank sum test, a nonparametric alternative to
the difference or means test, is appropriate [23]. It is useful
for analyzing differences between two samples and making
inferences to corresponding populations. The hypotheses of
two sample Wilcoxon tests are as follows:

• : Distribution of measurements for the first population
is equal to that of the second population.

• : Distribution of measurements for the first population
is larger (or smaller) than that for the second population
(one-tailed).

The test statistic is

(8)

where is the sum of ranks of sample , and and
represent the theoretical mean and standard deviation of ,
respectively.

Given the settings of the study area, we performed four
groups of Wilcoxon tests among study sites: 1) comparing
sites at upper elevation (sites C_1935, D_1960, D_1962, and
D_control); 2) comparing sites at lower elevation (E_1937 and
E_control); 3) comparing the difference among upper sites and
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TABLE I
MODIS DATA USED IN THE STUDY. THESE DATA WERE OBTAINED FROM

THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION EARTH

OBSERVING SYSTEM DATA GATEWAY

the differences among lower sites to compare the vegetation re-
covery speed at two elevations; and 4) comparing the difference
between upper and lower sites.

IV. REMOTE SENSING AND FIELD DATA COLLECTION

The Landsat ETM+ image was acquired on September 25,
2002, when it was clear and cloudless (Fig. 1). The solar zenith
angle (SZA) was 39.11 , and the azimuth angle was 142.02 .
The ETM+ data were registered to UTM coordinates (Zone 12).
Atmospheric correction of the ETM+ was performed to obtain
the surface reflectance [16]. It is noted the SRER is not homoe-
geneous at the ETM+ pixel scale [Fig. 1(a)]. Some linear ditches
are obvious in the ETM+ images, although they occupy only a
small portion of the plot. Those pixels are treated as an inte-
grated phenomenon of the grassland.

The MODIS vegetation index, albedo, LAI, and FPAR prod-
ucts were obtained by using the gateway at Earth Resources
Observation System (EROS) Data Center (EDC) (Table I). A
composite image of MODIS surface reflectance is shown in
Fig. 1(b). The MODIS data were projected to the same projec-
tion as the ETM+ data (UTM 12) and then resampled to 500-m
resolution with the MODIS Reprojection Tool (MRT).

A five-day field campaign was carried out from September
23–27, 2002 during the satellite overpass. Land cover types
of tree, shrub, grass, and bare ground were estimated for each
study site during the field campaign. In each area, a point
intercept technique [24] was used to estimate cover along ten
randomly located transects consisting of 100 points each for a
total of 1000 points for each site. All layers of vegetation were
recorded; and, therefore when the cover sums to 100%, it
reflects that some shorter shrubs or grass are found under the
taller trees or shrubs.

Surface reflectance was measured with the Analytical Spec-
tral Devices (ASD) [25]. ASD measures the reflectance over
350–2500 nm wavelengths. At each plot, more than 100 random
measurements were taken. The average reflectance is used to
represent total plot reflectance. Some researchers measure dif-
ferent surface components, such as bare sands, biological soil
crusts, annuals, and perennials for spectral unmixing analysis
[11]. With this method, the plot reflectance is obtained from a
spectral composition based on coherent land cover measure-
ment. However, annuals or perennials are often affected by
background soil within the ASDs field of view (FOV), and it is
nearly impossible to get a pure component within the FOV.

Field LAI was measured for E_1937 and E_control with LAI-
2000 Plant Canopy Analyzer in the 2002 campaign. Unfortu-

Fig. 2. Comparison of the retrieved ETM+ reflectance and the aggregated ASD
measured reflectance. The two dashed lines represent�0.08 away from the solid
1 : 1 line.

Fig. 3. Comparison of the biophysical attributes derived from ETM+ and
MODIS. The mean values and the standard deviation (in error bars) are shown.

nately, field measurement was very difficult in such discontin-
uous plant communities. In October 2003, we did a second field
campaign. AccuPAR linear PAR ceptometer was used to take
field LAI and FPAR measurements. AccuPAR is advantageous
because it does not require the diffuse radiation conditions. The
operation procedures were carefully followed in order to mini-
mize system errors. Some mature forest sites near SRER were
measured. We assume that the LAI and FPAR measures are
comparable with a year ago.

V. RESULTS

With the help of MODTRAN, atmospheric correction was
performed with a desert atmospheric profile and a default visi-
bility of 40 km. Nearly all of the retrieved ETM+ reflectances
are within 8%, and most pixels (74%) are within 5% off
the field measured values (Fig. 2). The root mean square er-
rors (RMSE) between the ETM+ reflectances and the aggre-
gated ASD reflectances are as low as 0.035 (Fig. 2). Although
some points do not match perfectly, given the surface hetero-
geneity in the study sites and uncertainties of the field measure-
ments, this result is notably accurate and was used in the fol-
lowing analyses.
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Fig. 4. Land surface broadband albedo maps estimated with the hybrid approach. (a) Total shortwave. (b) Total visible. (c) Total NIR.

A. Biophysical Characteristics of SRER

All seven biophysical parameters were calculated success-
fully with the method in Section III and were compared with
equivalent MODIS products (Fig. 3). NDVI and EVI maps were
calculated with (1) and (2), respectively. For brevity, these maps
are not shown, but their values were examined in the statis-
tical analysis. There is a very good fit between the ETM+ and
MODIS vegetation index (Fig. 3). The MODIS EVI value is
lower than the NDVI product. So are the ETM+ products. The
minor differences between the MODIS and ETM+ vegetation
index products are mainly caused by the scale difference. The
SRER is very homogeneous in the MODIS image, but not at
ETM+ resolution. MODIS LAI and FPAR products are higher
than our estimation from ETM+ (Fig. 3).

The broadband albedo maps (Fig. 4) were derived with equa-
tions in (3). In SRER, the total shortwave albedo ranges from

0.063–0.329. In fact, only three pixels’ shortwave albedos are
larger than 0.3. The minimum and maximum albedos are 0.01
and 0.247 for the visible band and 0.106 and 0.424 for the NIR
band, respectively. The ETM+ albedo results are very similar to
the MODIS albedo products (Fig. 3). The maximum difference
(0.027) is observed for the total NIR albedo. This is attributed to
the resolution difference between ETM+ and MODIS. To verify
the accuracy of the converted broadband albedo products, they
are compared with albedometer measurements in Fig. 5. The
overall is 0.972, and the RMSE is less than 0.05. There are
some differences in the near infrared bands. They are attributed
mainly to the scale mismatch between point measurement and
the 30-m ETM+ pixel. Surface heterogeneity and measurements
limitations (only vegetation 2 m are measured) also contribute
to the deviation.

LAI and FPAR derived from ETM+are smaller than those
from MODIS (Fig. 3). This is mainly due to their different spa-
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Fig. 5. Comparing the converted total shortwave, total visible, and total NIR
albedos from ETM+ imagery with albedometer measurements.

Fig. 6. LAI of the SRER estimated from the Landsat ETM+ (800 � 800).
Values greater than 1.0 are shown with the grayscale index of 1.0 for better
visual effect.

tial resolutions and algorithms: ETM+ revealed much of the spa-
tial complexity of land cover at the sites (trees, shrubs, grasses,
and bare ground); in contrast, there is only one type (shrub) in
the MODIS LAI/FPAR algorithm’s biome map. LAI and FPAR
for the whole SRER region are shown in Figs. 6 and 7, respec-
tively. Of all the LAI in this 800 800 region, over 96% are
less than 1.0. In order to show the lower LAI pixels clearly, LAI
values higher than 1.0 have been zipped to the highest value
(1.0) in the legend bar. There are some forest stripes in the upper
left corner of the figure whose LAI values are as high as 3.0–4.0.
These forest strips are probably the pecan tree farms located at
elevations below the Santa Rita. The forest LAI at the lower
corner is around 0.5–2.0. In the SRER, most of the LAI values
are around 0.3–0.6 (Fig. 6). The LAI distribution, typical of a
sloping alluvial fan, shows higher values in the drainages than
in the adjacent uplands. The distribution of the FPAR (Fig. 7)
is quite similar to that of the LAI due to their similar physical
characteristics. The forest FPAR can be above 0.8 and the grass-
land FPAR between 0.2 and 0.5 in the study area.

Fig. 7. FPAR of the SRER estimated from the Landsat ETM+ (800 � 800).

Fig. 8. Comparison of (a) LAI and (b) FPAR estimated from ETM+ with field
measurements.

TABLE II
LAND COVER CHARACTERISTICS (PERCENT) OF THE STUDY SITES. “WOODY

PLANTS” IS THE SUM OF TREE AND SHRUB COVER

Estimations of LAI and FPAR were compared with ground-
measured values (Fig. 8). Results from a few forest and grass
points demonstrate that LAI and FPAR estimated from ETM+
compared fairly well with field measurements. However, ETM+
estimation is lower than field measurements for both LAI and
FPAR. This is understandable because the field measurements
included the tree trunks and branches. Some studies take into
account the leaf–plant ratio for such a woody plant environment
[10], [26], which would make the results more accurate. More
ground measurements are needed in this area.

B. Management Effects on Rangelands

The land cover characteristics for the study sites are shown
in Table II. All trees and shrubs are combined into a woody
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Fig. 9. Mean value and standard deviation (error bars) for EVI, NDVI, albedo,
LAI, and FPAR for each plot.

plant category. The mean values of EVI, NDVI, albedo, LAI,
and FPAR for each site are shown in Fig. 9. Wilcoxon test results
are shown in Table III.

Comparing Sites at Upper Elevation (Sites C_1935, D_1960,
D_1962, and D_control): Based on cover types, woody plant
cover decreases from the uncut (D_control) to the oldest cut
area (C_1935), and the lowest values are where the most re-
cent mesquite treatment (herbicides) was applied (D_1960 and
D_1962). This suggests that recovery will require more than 67
years, but it is more than 50% complete within 40 years. How-
ever, for grass cover there is a different pattern. Grass cover is
least in the uncut situation, but there are no consistent differ-
ences among the areas where mesquite were killed at different
times in the past.

EVI seems to show a negative relationship with the woody
plant coverage and a positive relationship with grass coverage.
EVI decreases from the oldest cut area (C_1935) to the uncut
site (D_control), and the highest values are at the most recent
treatment sites (D_1960 and D_1962). The NDVI of C_1935
and D_1962 have decreased after treatment. Artificial treatment
significantly increased the surface total shortwave, visible, and
NIR albedos for all sites. The LAI values of the treated sites are
also significantly larger than those of the control sites due to the
higher grass cover of the treated sites. However, FPAR values
decrease after treatment. The albedo, LAI, and FPAR values are
still not recovered after 67 years. Comparison among treatment
sites is complicated. For example, the albedo values for D_1962
are higher than C_1935, which are higher than D_1960. Note
that there is no difference between the NDVI of D_1960 and
D_control, nor between the LAI of D_1962 and C_1935.

Comparing Sites at Lower Elevation (E_1937 and E_con-
trol): Based on the cover types, woody plant cover is not dif-
ferent between the two study sites, although tree cover is greater
in the uncut site (E_control). This suggests that recovery of
woody cover occurs within 65 years. But, the difference in tree
cover may reflect a slow growth rate of trees at the lower eleva-
tion. For grass cover there is a similar pattern. Bare ground frac-
tion is greater in the treated site. Corresponding to these cover

type patterns, the surface albedos in E_1937 are significantly
greater than in the uncut situation. There is a different pattern
for FPAR. FPAR is higher in the control site. There is no sig-
nificant difference for vegetation indexes and LAI at the lower
elevation. They have recovered to their original characteristics
after 65 years.

Comparing the Recovery Rates at Upper and Lower Ele-
vations: At the lower elevation, the conditions are drier and
warmer than at the higher elevation. Therefore, we would
expect faster recovery from cutting at higher elevation and
more bare ground at the lower elevation. As expected, Table III
demonstrates that grass cover recovered from cutting faster at
the higher elevation. The vegetation indexes, albedo estimates,
and LAI exhibit the same pattern.

Comparing the Difference Between Upper and Lower
Sites: Vegetation indexes, LAI, and FPAR increase with eleva-
tion, while albedo values decrease with elevation. This pattern
corresponds well to the cover type. Tree cover and grass cover
increase with elevation, and shrub cover is greater at lower
elevation. These patterns are consistent with the expectation
[14] of more mesquite-grassland vegetation at upper elevations
versus desert scrub vegetation at lower elevations, which are
dominated by shrub species (Table II).

VI. SUMMARY AND CONCLUSION

To evaluate the impacts of the management practice on bio-
physical properties of the semiarid rangeland in the SRER, a set
of biophysical variables were estimated from ETM+ data. The
data included vegetation indexes, surface broadband albedos,
and LAI based on the existing algorithms, as well as FPAR
calculated using a new method developed in this study. The
Wilcoxon statistical test was used to evaluate the response of
vegetation to management practices.

The average total shortwave, total visible, and total NIR
albedo of SRER is 0.27, 0.17, and 0.08, respectively. The albedo
data are very accurate compared with field measurements
RMSE . A hybrid approach, which integrated the

advantages of convectional canopy radiative transfer simulation
and nonparametric neural network methods, was developed to
estimate LAI and FPAR from Landsat ETM+ data. For SRER,
the LAI is between 0.3–0.6, and the FPAR between 0.2–0.5. The
estimated LAI and FPAR values are very reasonable compared
with ground measurements and other data sources.

Ultimately, the vegetation indexes, broadband albedos, LAI,
and FPAR calculated from ETM+ were compared with the
corresponding MODIS land surface products. The ETM+ and
MODIS vegetation indexes are in agreement with each other.
Their EVI values are lower than the NDVI products. MODIS
albedo products matched very well with the ETM+ results,
while LAI and FPAR overestimated. Different spatial scales
between MODIS and ETM+ data may have contributed to the
difference to some extent.

To study the human disturbance on canopy attributes, the
treated and control sites were compared. The two elevations pro-
vide the opportunity to compare the magnitude of cover types.
Comparison of cover types suggests that recovery will require
more than 67 years, but it is more than 50% complete within
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TABLE III
WILCOXON SIGNIFICANCE LEVEL FROM THE STATISTICAL COMPARISON OF TREE, BRUSH, WOOD, AND GRASS FRACTIONS,

AND EVI, NDVI, ALBEDO, LAI, AND FPAR VALUES FOR DIFFERENT TREATMENT AND ELEVATIONS.
“+” (“-”) MEANS THE FIRST TREATMENT SITE(S) IS/ARE LARGER (OR LESS) THAN THE SECOND

40 years at the higher elevation. Human disturbance has in-
creased the surface total shortwave, visible, and NIR albedos at
the higher elevation. LAI has increased after tree removal, while
FPAR value decreased. The albedo, LAI and FPAR values may
take more than 67 years to recover to their control site condi-
tions. At the lower elevation, woody plant cover has recovered
within 65 years. There is no difference for vegetation indexes
and LAI in the treated site. However, surface albedos are still
significantly greater and FPAR lower in the treated site.

Grass cover recovered faster from cutting at the higher eleva-
tion. As a result, the vegetation indexes, albedo estimates, and
LAI recovered faster at the higher elevation. Vegetation indexes,
LAI, and FPAR increase with elevation, and albedo values de-
crease with elevation, corresponding to the cover type. Tree
cover and grass cover increases with elevation, and shrub cover
is greater at lower elevation.

Studies in this paper are crucial to the understanding of
carbon dynamics under different management practices. Carbon
changes in management and natural ecosystems are driven
largely by land use and management practices [2]. From the
data provided in this paper, local carbon dynamics of primary
production can be extracted. Data derived from high spatial
resolution, remotely sensed data at landscape scales can by used
in scaling-up local models to study the impact of local human
disturbance on regional carbon dynamics. Our results also satisfy
the requirement in managing large tracts of semiarid lands. In
addition to the impact of human disturbance, it is also necessary
to study the effects of natural processes (such as grass fires) to the
canopy characteristics and local carbon dynamics in general.
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