#comment This is a study of a small static storage ring. This MARYLIE run will analyze the half turn transfer map, and then track multiple half turns through the lattice. #beam 4.8691481317597001 0.84942584789219999 1.0000000000000000 1.0000000000000000 #menu drvs drft 0.300000000000000 drs drft 0.450000000000000 drml drft 1.48646000000000 drl drft 2.28646000000000 bend pbnd 36.0000000000000 0.00000000000000 0.500000000000000 1.20000000000000 hfq quad 0.500000000000000 3.13000000000000 1.00000000000000 1.00000000000000 hdq quad 0.500000000000000 -1.92000000000000 1.00000000000000 1.00000000000000 hcs sext 0.500000000000000 2.65000000000000 vcs sext 0.500000000000000 -5.01000000000000 fileout pmif 1.00000000000000 12.0000000000000 3.00000000000000 mapout ptm 3.00000000000000 3.00000000000000 0.00000000000000 0.00000000000000 1.00000000000000 raysin rt 13.0000000000000 14.0000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 track rt 0.00000000000000 14.0000000000000 5.00000000000000 310.000000000000 1.00000000000000 0.00000000000000 chrom tasm 2.00000000000000 1.000000000000000E-03 1.00000000000000 0.00000000000000 3.00000000000000 0.00000000000000 iden iden fin end #lines nsex 1*drl 1*hdq 1*drs 1*bend 1*drs & 1*hfq 1*drl tsex 1*drl 1*hdq 1*drs 1*bend 1*drs & 1*hfq 1*drvs 1*hcs 1*drml lsex 1*drml 1*vcs 1*drvs 1*hdq 1*drs & 1*bend 1*drs 1*hfq 1*drl half 1*nsex 1*tsex 1*lsex 1*nsex 1*nsex ring 2*half #lumps #loops #labor 1*fileout 1*raysin 1*half 1*chrom 1*mapout 1*track 1*fin twiss analysis of static map P sub tau = -0.0000000000000000 delta = 0.0000000000000000 tunes, chromaticities, etc. for epsilon defined in terms of momentum deviation: on momentum horizontal tune = 0.33018547907462015 first order horizontal chromaticity = -5.0836441463742138E-004 second order horizontal chromaticity = 16.392636999925319 horizontal tune when epsilon = 0.0000000000000000 0.33018547907462015 on momentum vertical tune = 6.3227244365017865E-002 first order vertical chromaticity = -8.9058574997637316E-004 second order vertical chromaticity = -12.178177776504121 vertical tune when epsilon = 0.0000000000000000 6.3227244365017865E-002 tune separation when epsilon = 0.0000000000000000 0.26695823470960228 anharmonicities hh= 38.346961505868741 hv= 2.8673469073973545 vv= 0.61251759350291601 squared betatron amplitudes ha2= 0.0000000000000000 va2= 0.0000000000000000 finite amplitude horizontal tune = 0.33018547907462015 finite amplitude vertical tune = 6.3227244365017865E-002 finite amplitude tune separation = 0.26695823470960228 matrix for map is : 3.71731E-01 4.86128E+00 0.00000E+00 0.00000E+00 0.00000E+00 -3.49162E+00 -3.07966E-01 -1.33728E+00 0.00000E+00 0.00000E+00 0.00000E+00 -1.01272E-01 0.00000E+00 0.00000E+00 5.48139E-01 2.60973E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 -1.10952E-01 1.29610E+00 0.00000E+00 0.00000E+00 1.11295E+00 5.16158E+00 0.00000E+00 0.00000E+00 1.00000E+00 1.05182E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 nonzero elements in generating polynomial are : f( 0)=f( 00 00 00 )= 45.111999999981 f( 28)=f( 30 00 00 )=-0.51714051077699 f( 29)=f( 21 00 00 )= -4.8790573879345 f( 33)=f( 20 00 01 )= -1.2713167778801 f( 34)=f( 12 00 00 )= -14.356813797105 f( 38)=f( 11 00 01 )= -8.6091649476806 f( 39)=f( 10 20 00 )=-0.57480702313803 f( 40)=f( 10 11 00 )= 2.1535856911965 f( 43)=f( 10 02 00 )=-0.23385635802925 f( 48)=f( 10 00 02 )= -3.7903489409163 f( 49)=f( 03 00 00 )= -10.095440524513 f( 53)=f( 02 00 01 )= -28.749629612880 f( 54)=f( 01 20 00 )= -4.8676979484183 f( 55)=f( 01 11 00 )= 25.178527593201 f( 58)=f( 01 02 00 )= -24.955355122107 f( 63)=f( 01 00 02 )= 0.24870572684991 f( 67)=f( 00 20 01 )= 1.4190256085394 f( 70)=f( 00 11 01 )= -6.2848065640486 f( 76)=f( 00 02 01 )= -12.548412723025 f( 83)=f( 00 00 03 )= -19.367900524518 f( 84)=f( 40 00 00 )= -1.1226234932478 f( 85)=f( 31 00 00 )= -18.508072322998 f( 89)=f( 30 00 01 )= -3.2033394382141 f( 90)=f( 22 00 00 )= -116.57515022811 f( 94)=f( 21 00 01 )= -27.687744938571 f( 95)=f( 20 20 00 )= 0.36539976777681 f( 96)=f( 20 11 00 )= 2.9849078410505 f( 99)=f( 20 02 00 )= -33.854616670401 f(104)=f( 20 00 02 )= -28.225116719138 f(105)=f( 13 00 00 )= -305.62227805297 f(109)=f( 12 00 01 )= -101.41517819810 f(110)=f( 11 20 00 )= -1.4302896201977 f(111)=f( 11 11 00 )= 32.788559634195 f(114)=f( 11 02 00 )= -232.41803238853 f(119)=f( 11 00 02 )= -174.86265747800 f(123)=f( 10 20 01 )= 2.3607064778068 f(126)=f( 10 11 01 )= -4.7863190256742 f(132)=f( 10 02 01 )= -55.908627470363 f(139)=f( 10 00 03 )= -62.274396302556 f(140)=f( 04 00 00 )= -337.95772995004 f(144)=f( 03 00 01 )= -55.322509665609 f(145)=f( 02 20 00 )= -10.918051207894 f(146)=f( 02 11 00 )= 31.345401800685 f(149)=f( 02 02 00 )= -320.70340565228 f(154)=f( 02 00 02 )= -466.74394906491 f(158)=f( 01 20 01 )= 4.2047841022214 f(161)=f( 01 11 01 )= 55.497877942791 f(167)=f( 01 02 01 )= -379.57949141256 f(174)=f( 01 00 03 )= -95.542857277077 f(175)=f( 00 40 00 )=-0.71081436705546 f(176)=f( 00 31 00 )= 13.608837848327 f(179)=f( 00 22 00 )= -87.030851323349 f(184)=f( 00 20 02 )= -5.1342116123916 f(185)=f( 00 13 00 )= 229.56951922200 f(190)=f( 00 11 02 )= 32.330038339298 f(195)=f( 00 04 00 )= -247.20909402934 f(200)=f( 00 02 02 )= -168.04924009243 f(209)=f( 00 00 04 )= -96.401192952636