MATHEMATICS 140: CALCULUS

 
Professor Robert L. Ellis        This information is available on the web at  http://www.wam.umd.edu/~rle/webpage_140.html

Room 4417, Mathematics Building                                                                                           or       www.math.umd.edu

Tel. (301) 405-5118

E-mail: rle@math.umd.edu

Office Hours:  MWF 11:00 - 11:50, 1:00-1:50
                        and by appointment or chance
 
 

TIME AND LOCATION:

              MWF:  10:00-10:30  ARM 0126
              TuTh: The time and location depends upon your section.  See the Schedule of Classes.

COURSE DESCRIPTION:

Introduction to calculus, including functions, limits, continuity, derivatives and applications of the derivative, sketching of graphs of functions, introduction to definite and
 indefinite integrals, and calculation of area.  The course is especially recommended for science and mathematics majors. Credit will be granted for only one of the following:
 MATH 140 or MATH 220.Topics
PREREQUISITES:
 
Permission of the department based on 3 1/2 years of college preparatory mathematics (including trigonometry) and either a satisfactory score on the mathematics placement
                                      examination or completion of Math 115 with a grade of C or better.

TEXT:

Calculus and Analytic Geometry,  by Robert Ellis and Denny Gulick,  5th  Edition, published by Saunders College Publishing

                                                                                        ISBN 0-03-096800-3

GRADING:

Based on total points as follows:
   Exams :  100 points each
   Quiz average:  100 points
   Final exam:  200 points
   TOTAL:  600 points
Each exam will be curved immediately after it is graded.  The quiz average will be curved at the end of the semester. All curves will be added to produce a curve for the entire course.

FINAL EXAMINATION:

          Friday, May 17, 1:30 - 3:30
 

ACADEMIC  INTEGRITY:

 Students are subject to the University's Code of Academic Integrity as approved by the Campus Senate.
FREE TUTORING:  (Times below are tentative.)

         By teaching assistants:     Room 0301 in the Math. Bldg. :    Monday : 8:00 - 11:00, 1:00 - 2:00;     Tuesday:  9:00 - 10:00;    Wednesday:  8:00 - 12:00;
                                                                                                                                                  Thursday:  8:00 - 11:00 ;  Friday:  8:00 - 9:00, 10:00 - 11:00

            By Office of Multi-Ethnic Student Education:      Call 405-5616 for schedule.
 

LEARNING ASSISTANCE: http://www.inform.umd.edu/LASRV

         If you  are experiencing difficulties in keeping up with the academic standards of this course, you may wish to contact the Learning Assistance Service, 2201 Shoemaker Building, 301-314-7693.  Their educational counselors may be able to help with time management, reading, notetaking and exam preparation skills.
 
 

LECTURE SCHEDULE:
 

M  Jan 28   Review-Chapter 1
W          30                2.1
 F  Feb   1                 2.2

M           4                 2.3
W           6                 2.4
Th          7  QUIZ
 F            8                 2.5

M           11               2.5-2.6
W           13               2.6 and Review
 F            15  EXAM

M            18                3.1
W            20                3.2
Th           21 QUIZ
 F             22                3.2-3.3

M            25                3.3
W            27                3.4
Th           28  QUIZ
 F   Mar    1                 3.4-3.5

M              4                 3.6
W              6                 3.6-3.7
Th             7  QUIZ
 F              8                  3.7

M             11                3.8
W             13               Review
 F              15   EXAM

M             18                4.1
W             20                4.1-4.2
Th            21  QUIZ
 F              22                4.3

M-F        25-29    SPRING BREAK

M   Apr      1                4.4
W                 3                4.5
Th                4  QUIZ
 F                  5               4.5-4.6

M                 8                4.6
W               10                4.7
Th              11  QUIZ
 F                12                4.8

M                15               4.9
W                17              Review
 F                19  EXAM

M                22              5.1
W                24              5.2
Th               25  QUIZ
 F                 26              5.3

M                 29              5.4
W  May         1             5.4-5.5
Th                   2  QUIZ
 F                    3              5.6

 M                   6             5.6-5.7
 W                   8             5.8
  F                  10   EXAM
 

 M                  13   COURSE REVIEW
  F                   17   FINAL EXAM  1:30-3:30   LOCATION TO BE ANNOUNCED
 
 
 

HOMEWORK  ASSIGNMENTS:
 
SECTION            EXERCISES
 

1.1                        25, 31, 60, 72, 74
1.2                        13, 71
1.3                        12, 23, 47, 50
1.4                        28, 31, 48, 58(Do part (b) graphically.)
1.5                        9, 27, 30, 49, 61
1.6                        27, 28, 39, 43, 56
1.7                        29, 35(a-c), 39, 49
1.8                        1, 3, 14, 15, 17, 41
1 REVIEW         58, 63, 66

2.1                       7, 9, 10, 26-29, 31, 33, 36, 37, 39
2.2                       5, 8, 17, 23, 28, 29
2.3                       2, 3, 6, 9, 13, 15, 19, 21, 23, 45, 61, 64
2.4                       1, 4, 9, 12, 15, 17, 26, 31, 33, 35, 44
2.5                       7, 8, 11, 13, 18, 21, 25, 26, 33, 53, 54, 57,87
2.6                       1, 2, 6, 17, 19, 20, 30, 37, 47, 57
2 REVIEW        10, 13, 18, 25, 42, 43(b-d)

3.1                       4, 6, 15, 24, 27, 37, 44, 51, 55, 59, 65, 72
3.2                       7, 8, 12, 34, 38, 39, 44(a), 49, 52
3.3                       3, 4, 6, 7, 12, 18, 19, 24, 30, 39, 45, 54, 61, 66(a)
3.4                       2, 3, 5, 7, 10, 13, 20, 31, 34, 47, 51, 70, 78
3.5                       2, 5, 12, 19, 26, 35, 37, 40, 63, 70
3.6                       1, 4, 5, 18, 31, 35, 40, 43
3.7                       1, 7, 11, 13, 25, 28, 35
3.8                       1, 13, 19, 20, 27, 29, 35, 49
3 REVIEW         8, 9, 16, 20, 33 61, 62

4.1                       3, 6, 11, 15, 17, 22, 52, 55, 59
4.2                       1, 14, 32, 33
4.3                       6, 12, 15, 25, 31, 40, 49, 53, 54, 69
4.4                       2, 9, 14, 19
4.5                       3, 11, 23, 27, 28, 38, 49, 56
4.6                       5, 7, 14, 15, 22, 31
4.7                       3, 5, 6, 10, 14, 25, 33, 36, 37(e)
4.8                       1-4, 9, 10, 17, 20, 25, 53
4.9                       5, 7, 8, 12, 36
4 REVIEW         6, 12, 31, 38, 43, 62

5.1                       1, 2, 5, 6, 15, 21, 28
5.2                       2, 13, 14, 21, 29, 54
5.3                       9, 12, 19, 25
5.4                       1-7, 15, 19, 27, 28, 33, 36, 47, 63
5.5                       1-3, 5-8, 13, 24, 32, 52
5.6                       1, 3, 6, 8, 11, 13, 16, 18, 19, 23, 28, 31,35,44,60
5.7                       1, 3, 11, 14, 23, 24, 32, 55(a,b)
5.8                       1, 2, 6-8, 11, 14, 15, 25, 41
5 REVIEW         7, 20, 31, 36, 43, 47, 60
 

TOPICS:

                                       I. Functions

                                           Inequalities
                                           Functions
                                           Graphs of functions
                                           Trigonometric function

                                      II. Limits and Continuity

                                     III. Derivatives

                                          Derivatives, including the Chain Rule
                                          Implicit differentiation
                                          Related rates
                                          Approximation of derivatives
                                          Newton-Raphson method

                                      IV. Applications of the Derivative

                                          Mean Value Theorem
                                          Exponential growth and decay
                                          Analysis of graphs of functions
                                          Applications of the derivative

                                      V. The Integral

                                          Definite and indefinite integrals
                                          The Fundamental Theorem of Calculus
                                          Integration by substitution
                                          Natural logarithmic function
                                          Area